
CHAPTER 2. THE EXPONENTIAL FAMILY

The development of the theory of the generalized linear model is
based upon the exponential family of distributions. This formalization
recharacterizes familiar functions into a formula that is more useful
theoretically and demonstrates similarity between seemingly disparate
mathematical forms. The name refers to the manner in which all of
the terms in the expression for these PDFs and PMFs are moved into
the exponent to provide common notation. This does not imply some
restrictive relationship with the well-known exponential probability
density function.

Quasi-likelihood models (McCullagh, 1983; Wedderburn, 1974),
which we describe later, replace this process and only require the stipu-
lation of the first two moments. This allows the separation of the mean
and variance functions, and the estimation is accomplished by employ-
ing a quasi-likelihood function. This approach has the advantage of
accommodating situations in which the data are found or assumed not
to be independent and identically distributed (henceforth iid).

Justification

Fisher (1934) developed the idea that many commonly applied proba-
bility mass functions and probability density functions are really just
special cases of a more general classification he called the exponential
family. The basic idea is to identify a general mathematical structure
to the function in which uniformly labeled subfunctions characterize
individual differences. The label “exponential family” comes from the
convention that subfunctions are contained within the exponent com-
ponent of the natural exponential function (i.e., the irrational number
e = 2.718281 . . . raised to some specified power). This is not a rigid
restriction as any subfunction that is not in the exponent can be placed
there by substituting its natural logarithm.

The primary payoff to reparameterizing a common and familiar func-
tion into the exponential form is that the isolated subfunctions quite
naturally produce a small number of statistics that compactly summa-
rize even large datasets without any loss of information. Specifically,
the exponential family form readily yields sufficient statistics for the
unknown parameters. A sufficient statistic for some parameter is one
that contains all the information available in a given dataset about that
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parameter. For example, if we are interested in estimating the true range,
[a, b], for some uniformly distributed random variable: Xi ∈ [a, b] ∀Xi,
then a sufficient statistic is the vector containing the first and last order
statistics: [x(1), x(n)] from the sample of size n (i.e., the smallest and
largest of the sampled values). No other elements of the data and no
other statistic that we could construct from the data would provide
further information about the limits. Therefore, [x(1), x(n)] provides “suf-
ficient” information about the unknown parameters from the given data.

It has been shown (Barndorff-Nielsen, 1978, p. 114) that exponential
family probability functions have all of their moments. The nth moment
of a random variable about an arbitrary point, a, is μn = E[(X − a)n],
and if a is equal to the expected value of X , then this is called the nth
central moment. The first moment is the arithmetic mean of the random
variable X , and the second moment along with the square of the first
can be used to produce the following variance: Var[X ] = E[X2]− E[X ]2.
While we are often interested only in the first two moments, the infinite
moment property is very useful in assessing higher-order properties in
more complex settings. In general, it is straightforward to calculate the
moment generating function and the cumulant generating function for
exponential family forms. These are simply functions that provide any
desired moment or cumulant (logged moments) with quick calculations.

Throughout this monograph, we describe in detail the form, elements,
characteristics, and examples of the most common probability density
functions: Poisson, binomial, normal, gamma, negative binomial, and
multinomial. Extensions and adaptions are more briefly described.

Two important classes of probability density functions are not mem-
bers of the exponential family and therefore are not featured in this
volume. The Student’s t and the uniform distribution cannot be put
into the form of Equation 2.1. Also, in general, a probability function
in which the parameterization is dependent on the bounds, such as the
uniform distribution, is not a member of the exponential family. Even
if a probability function is not an exponential family member, it can
sometimes qualify under particular circumstances. The Weibull proba-
bility density function (useful for modeling failure times), f (y|γ ,β) =
γ
β
yγ−1 exp(−yγ /β) for x ≥ 0, γ ,β > 0, is not an exponential family form

since it cannot be rewritten in the required form Equation 2.2. However,
if γ is known (or we are willing to assign a fixed value), then the Weibull
PDF reduces to an exponential family form.

In the final chapter, we provide a brief introduction and description of
other less common extensions to exponential forms that are designed to
deal with certain data challenges. These include quasi-likelihood forms,
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zero-inflated models, generalized linear mixed-effects models, fractional
regression, and Tobit models.

Some widely used members of the exponential family that facilitate
generalized linear models but are not discussed here include beta, curved
normal, Dirichlet, Pareto, and inverse gamma. The theoretical focus of
this monograph is intended to provide readers with an understanding
necessary to successfully encounter these and other distributional forms.

Derivation of the Exponential Family Form

Suppose we consider a one-parameter conditional probability density
function or probability mass function for the random variable Z of the
form f (z|ζ ). This is read as “f of z given zeta.” This function or, more
specifically, this family of PDFs or PMFs is classified as an exponential
family if it can be written in the following form:

f (z|ζ ) = exp [t(z)u(ζ )] r(z)s(ζ ), (2.1)

where r and t are real-valued functions of z that do not depend on ζ ,
s and u are real-valued functions of ζ that do not depend on z, and
r(z) > 0, s(ζ ) > 0 ∀z, ζ .

Furthermore, Equation 2.1 can easily be rewritten according to

f (z|ζ ) = exp

⎡⎢⎢⎢⎣ t(z)u(ζ )︸ ︷︷ ︸
interaction
component

+ log(r(z)) + log(s(ζ ))︸ ︷︷ ︸
additive component

⎤⎥⎥⎥⎦ . (2.2)

The second part of the right-hand side of the equation is labeled the
“additive component” because the summed components are distinct
and additive with regard to z and ζ . The first part of the right-hand
side is labeled the “interaction component” because it is reminiscent
of the interaction specification of two parameters in a standard linear
model. In other words, it is the component that reflects the product-
indistinguishable relationship between z and ζ . It should be noted that
the interaction component must specify t(z)u(ζ ) in a strictly multiplica-
tive manner. So a term such as − 1

β
yγ , as seen in the exponent of

the Weibull PDF, disqualifies this PDF from the exponential family
classification.

In addition, the exponential structure of Equation 2.2 is pre-
served under random sampling such that the joint density function
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of independent, identically distributed (iid) random variables is given by
the following: Z = {Z1,Z2, . . . ,Zn} is

f (z|ζ ) = exp

[
u(ζ )

n∑
i=1

t(zi) +
n∑
i=1

log(r(zi)) + n log(s(ζ ))

]
. (2.3)

This means that the joint distribution of a systematic random sam-
ple of variates with exponential family marginal distributions is also
an exponential family form. While the following chapters develop the
theory of generalized linear models with Equation 2.2 for simplic-
ity, the joint density function, Equation 2.3, is the more appropriate
form since multiple data are used in all practical work. Fortunately,
there is no loss of generality since the joint density function is also an
exponential family form. If it makes the exposition easier to follow, pic-
ture Equation 2.2 with subscript i as an index of the data: f (zi|ζ ) =
exp [t(zi)u(ζ ) + log(r(zi)) + log(s(ζ ))].

Canonical Form

The canonical form is a handy simplification that greatly facilitates
moment calculations as shown in Chapter 3. It is a one-to-one transfor-
mation (i.e., the inverse function of this function returns the same unique
value) of terms of the probability function that reduces the complexity
of the symbolism and reveals structure. It turns out to be much easier to
work with an exponential family form when the format of the terms in
the function says something directly about the structure of the data.

If t(z) = z in Equation 2.2, then we say that this PDF or PMF is in
its canonical form for the random variable Z. Otherwise, we can make
the simple transformation y = t(z) to force a canonical form. Similarly,
if u(ζ ) = ζ in Equation 2.2, then this PDF or PMF is in its canonical
form for the parameter ζ . Again, if not, we can force a canonical form
by transforming θ = u(ζ ) and call θ the canonical parameter.

In many cases, it is not necessary to perform these transformations
as the canonical form already exists or the transformed functions are
tabulated for various exponential families of distributions. The final
form after these transformations is the following general expression:

f (y|θ ) = exp [yθ − b(θ ) + c(y)] . (2.4)
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Note that the only term with both y and θ is a multiplicative term.
McCullagh and Nelder (1989, p. 30) call b(θ ) the “cumulant function,”
but b(θ ) is also often called a “normalizing constant” because it is the
only nonfunction of the data and can therefore be manipulated to ensure
that Equation 2.4 sums or integrates to 1. This is a minor point here
as all of the commonly applied forms of Equation 2.4 are well behaved
in this respect. More important, b(θ ) will play a key role in calculat-
ing the moments of the distribution. In addition, the form of θ , the
canonical link between the original form and the θ parameterized form,
is also important. The canonical link is used to generalize the linear
model by connecting the linear-additive component of the nonnormal
outcome variable.

The form of Equation 2.4 is not unique in that linear transformations
can be applied to exchange values of y and θ between the additive com-
ponent and the interaction component. In general, however, common
families of PDFs and PMFs are typically parameterized in a standard
form that minimizes the number of interaction terms. Also, it will some-
times be helpful to use Equation 2.4 expressed as a joint distribution
of the data, particularly when working with the likelihood function
(Chapter 3). This is just

f (y|θ ) = exp

[ n∑
i=1

yiθ − nb(θ ) +
n∑
i=1

c(yi)

]
. (2.5)

The canonical form is used in each of the developed examples in this
monograph. There is absolutely no information gained or lost by this
treatment; rather, the form of Equation 2.5 is an equivalent form to
Equation 2.3 where certain structures such as θ and b(θ ) are isolated
for theoretical consideration. As will be shown, these terms are the key
to generalizing the linear model.

To add more intuition to the exponential family form Equation 2.5,
consider how likelihood is constructed and used. A likelihood function
is just the joint distribution of an observed set of data under the iid
assumption for a given PDF or PMF: f (X|θ ) = f (X1|θ )×f (X2|θ )×· · ·×
f (Xn|θ ). Fisher’s notational sleight of hand was to note that once we
observe the data, they are known even if θ is unknown. So notationally,
use L(θ |X) for this product since we want the unknown value of θ
that is mostly likely to have generated X. Returning to Equation 2.5,
we see that there are three subcomponents of the function: one that
interacts with the data and the parameter, one that is only a function
of θ (multiplied by n, however), and finally one that is a function of the
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data only. If we care about the θ that mostly likely generated the data,
then the latter is not going to be consequential. The first subcomponent
shows how different values of y weight θ in the calculation, and b(θ ) is
a parametric statement about how we should treat θ in the maximum
likelihood estimation process. In combination, these two demonstrate
how data and distributional assumptions determine the final model
that we produce. Obviously, some of these statements are slightly vague
because we have yet to derive how the components of the exponential
family form produce parameter estimates and predicted values.

Multiparameter Models

Up until now, only single-parameter forms have been presented. If
generalized linear models were confined to single-parameter density
functions, they would be quite restrictive. Suppose now that there are
k parameters specified. A k-dimensional parameter vector, rather than
just a scalar θ , is now easily incorporated into the exponential family
form of Equation 2.4:

f (y|θ ) = exp

⎡⎣ k∑
j=1

(
yθj − b(θj)

) + c(y)

⎤⎦ . (2.6)

Here the dimension of θ can be arbitrarily large but is often as small as
two, as in the normal (θ = {μ, σ 2}) or the gamma (θ = {α,β}).

In the following examples, several common probability functions are
rewritten in exponential family form with the intermediate steps shown
(for the most part). It is actually not strictly necessary to show the
process since the number of PDFs and PMFs of interest is relatively
small. However, there is great utility in seeing the steps both as an
instructional exercise and as a starting point for other distributions of
interest not covered herein. Also, in each case, the b(θ ) term is derived.
The importance of doing this will be apparent in Chapter 3.

Example 2.1: Poisson Distribution Exponential Family Form
The Poisson distribution is often used to model counts such as the
number of arrivals, deaths, or failures in a given time period. The Poisson
distribution assumes that for short time intervals, the probability of an
arrival is fixed and proportional to the length of the interval. It is indexed
by only one (necessarily positive) parameter, which is both the mean
and variance.

 
Do n

ot 
co

py
, p

os
t, o

r d
ist

rib
ute

 

Copyright ©2020 by SAGE Publications, Inc. 
 This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



17

Given the random variable, Y , distributed Poisson with expected
number of occurrences per intervalμ, we can rewrite the familiar Poisson
PMF in the following manner:

f (y|μ) = e−μμy

y! = exp
[
y log(μ)︸ ︷︷ ︸

yθ

− μ︸︷︷︸
b(θ )

− log(y!)︸ ︷︷ ︸
c(y)

]
.

In this example, the three components from Equation 2.4 are labeled by
the underbraces. The interaction component, y log(μ), clearly identifies
θ = log(μ) as the canonical link. Also, b(θ ) is simply μ. Therefore, the
b(θ ) term parameterized by θ (i.e., the canonical form) is obtained by
taking the inverse of the θ = log(μ) to solve for μ. This produces
μ = b(θ ) = exp(θ ). Obviously, the Poisson distribution is a simple
parametric form in this regard. ‖

Example 2.2: Binomial Distribution Exponential Family Form
The binomial distribution summarizes the outcome of multiple binary
outcome (Bernoulli) trials such as flipping a coin. This distribution is
particularly useful for modeling counts of success or failures given a
number of independent trials such as votes received given an electorate,
international wars given country dyads in a region, or bankruptcies given
company starts.

Suppose now that Y is distributed binomial (n, p), where Y is the
number of “successes” in a known number of n trials given a probability
of success p. We can rewrite the binomial PMF in exponential family
form as follows:3

f (y|n, p) =
(
n
y

)
py(1 − p)n−y

= exp
[
log

(
n
y

)
+ y log(p) + (n− y) log(1 − p)

]
= exp

[
y log

(
p

1 − p

)
︸ ︷︷ ︸

yθ

− (−n log(1 − p))︸ ︷︷ ︸
b(θ )

+ log
(
n
y

)
︸ ︷︷ ︸

c(y)

]
.

From the first term in the exponent, we can see that the canonical link

for the binomial distribution is θ = log
(

p
1−p

)
, so substituting the inverse
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of the canonical link function into b(θ ) produces (with modest algebra)
the following:

b(θ ) = [−n log(1 − p)]

∣∣∣∣
θ=log

(
p

1−p
)= n log (1 + exp(θ )) .

So the expression for the b(θ ) term in terms of the canonical parameter
is b(θ ) = n log (1 + exp(θ )). In this example, n was treated as a known
quantity or simply ignored as a nuisance parameter. Suppose instead
that p was known and we developed the exponential family PMF with n
as the parameter of interest:

f (y|n, p) = exp
[
log

(
n
y

)
+ y log(p) + (n− y) log(1 − p)

]
(2.7)

= exp [log(n!) − log((n-y)!) − log(y!) + . . .] .

However, we cannot separate n and y in log((n − y)!) and they are
not in product form, so this is not an exponential family PMF in
this context. ‖

Example 2.3: Normal Distribution Exponential Family Form
The normal distribution is without question the workhorse of social sci-
ence data analysis. Given its simplicity in practice and well-understood
theoretical foundations, this is not surprising. The linear model (typi-
cally estimated with ordinary least squares [OLS]) is based on normal
distribution theory, and as we shall see in Chapter 4, this comprises a
very simple special case of the generalized linear model.

Often, we need to explicitly treat nuisance parameters instead of
ignoring them or assuming they are known as was done in the binomial
example above. Themost important case of a two-parameter exponential
family is when the second parameter is a scale parameter. Suppose ψ is
such a scale parameter, possibly modified by the function a(ψ), and then
Equation 2.4 is rewritten:

f (y|θ ) = exp
[
yθ − b(θ )
a(ψ)

+ c(y,ψ)
]
. (2.8)

When a given PDF or PMF does not have a scale parameter, then
a(ψ) = 1, and Equation 2.8 reduces to Equation 2.4. In addition,
Equation 2.8 can be put into the more general form of Equation 2.6
if we define θ = {θ , a(ψ)−1} and rearrange. However, this form would no
longer remind us of the important role the scale parameter plays.
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The Gaussian normal distribution fits this class of exponential fam-
ilies. The subclass is called a location-scale family and has the attribute
that it is fully specified by two parameters: a centering or location
parameter and a dispersion parameter. It can be rewritten as follows:

f (y|μ, σ 2) = 1√
2πσ 2

exp
[
− 1
2σ 2

(y− μ)2)
]

= exp
[
−1
2
log(2πσ 2) − 1

2σ 2
(y2 − 2yμ+ μ2)

]
= exp

[
( yμ︸︷︷︸
yθ

− μ2

2︸︷︷︸
b(θ )

)/ σ 2︸︷︷︸
a(ψ)

+ −1
2

(
y2

σ 2
+ log(2πσ 2)

)
︸ ︷︷ ︸

c(y,ψ)

]
.

Note that the μ parameter (the mean) is already in canonical form
(θ = μ), so b(θ ) is simply b(θ ) = θ2

2 . This treatment assumes that μ
is the parameter of interest and σ 2 is the nuisance parameter, but we
might want to look at the opposite situation. However, in this treatment,
μ is not considered a scale parameter. Treating σ 2 as the variable of
interest produces

f (y|μ, σ 2) = exp
[
−1
2
log(2πσ 2) − 1

2σ 2
(y2 − 2yμ− μ2)

]
= exp

[
1
σ 2︸︷︷︸
θ

(
yμ− 1

2
y2
)

︸ ︷︷ ︸
z

+ −1
2

(
log(2πσ 2) − μ2

σ 2

)
︸ ︷︷ ︸

b(θ )

]
.

Now the canonical link is θ = 1
σ 2
. So σ 2 = θ−1, and we can calculate

the new b(θ ):

b(θ ) = −1
2

(
log(2πσ 2) − μ2

σ 2

)
= −1

2
log(2π) + 1

2
log(θ ) − μ2θ .

‖

Example 2.4: Gamma Distribution Exponential Family Form
The gamma distribution is particularly useful for modeling terms that
are required to be nonnegative such as variance components. Further-
more, the gamma distribution has two important special cases: the χ2

distribution is gamma (ρ2 ,
1
2 ) for ρ degrees of freedom, and the expo-

nential distribution is gamma(1,β), both of which arise quite often in
applied settings.
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Assume Y is now distributed gamma indexed by two param-
eters: the shape parameter and the inverse-scale (rate) parameter.
The gamma distribution is most commonly written as f (y|α,β) =
1


(α)β
αyα−1e−βy, y,α,β > 0. For our purposes, a more convenient form

is produced by transforming α = δ,β = δ/μ. The exponential family
form of the gamma is produced by

f (y|μ, δ) =
(
δ

μ

)δ 1

(δ)

yδ−1 exp
[−δy
μ

]
= exp

[
δ log(δ) − δ log(μ) − log(
(δ)) + (δ − 1) log(y) − δy

μ

]

= exp

[
(− 1
μ
y︸ ︷︷ ︸

θy

− log(μ)︸ ︷︷ ︸
b(θ )

)/
1
δ︸︷︷︸

a(ψ)

+ δ log(δ) + (δ − 1) log(y) − log(
(δ))︸ ︷︷ ︸
c(y,ψ)

]
.

From the first term in the last equation above, the canonical link for

the gamma family variable μ is θ = − 1
μ
. So b(θ) = log(μ) = log

(
− 1
θ

)
with the restriction θ < 0. Therefore, b(θ ) = − log(−θ). ‖

Example 2.5: Negative Binomial Distribution Exponential Family Form
The binomial distribution measures the number of successes in a given
number of fixed trials, whereas the negative binomial distribution mea-
sures the number of failures before the rth success.4 An important
application of the negative binomial distribution is in survey research
design. If the researcher knows the value of p from previous surveys, then
the negative binomial can provide the number of subjects to contact to
get the desired number of responses for analysis.

If Y is distributed negative binomial with success probability p
and a goal of r successes, then the PMF in exponential family form
is produced by

f (y|r, p) =
(
r+ y− 1

y

)
pr(1 − p)y

= exp

[
y log(1 − p)︸ ︷︷ ︸

yθ

+ r log(p)︸ ︷︷ ︸
b(θ )

+ log
(
r+ y− 1

y

)
︸ ︷︷ ︸

c(y)

]
.
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The canonical link is easily identified as θ = log(1− p). Substituting this
into b(θ ) and applying some algebra gives b(θ ) = r log(1 − exp(θ )). ‖

Example 2.6: Multinomial Distribution Exponential Family Form
The multinomial distribution generalizes the binomial by allowing more
than k = 2 nominal choices or events to occur. The set of possible
outcomes for an individual i is a k−1 length vector of all zeros except for
a single 1 identifying the chosen response: Yi = [Yi2,Yi3, . . . ,Yi(k)]. The
first category k = 1 is left out of this vector and is called the reference
(or baseline) category, and all model inferences are comparative to this
category. Therefore, an individual picking the reference category will
have all zeros in the Yi vector.

We want to estimate the k − 1 length of categorical probabilities
(π1, . . . ,πk) for a sample size of n, g−1(θ ) = μ = [π1,π2, . . . ,πk−1],
from the dataset consisting of the n× (k− 1) outcome matrix Y and the
n × p matrix of p covariates X including a leading column of 1s. The
estimates are provided with a logit (or a probit) link function, giving for
each of the k − 1 categories the probability that the ith individual picks
category r:

p(Yi = r|X) = exp(X iβr)

1 + ∑k−1
s=1 exp(Xβs)

where βr is the coefficient vector for the rth category (logit version).
For simplicity of notation, consider k = 3 possible outcomes, without

loss of generality, and drop the indexing by individuals. If there are
n individuals in the data picking from these three categories, then the
intuitive PMF that shows similarity to the binomial case is given by

f (Y|n,μ) = n
Y1!Y2!(n− Y1 − Y2)!

π
Y1
1 π

Y2
2 (1 − π1 − π2)

n−Y1−Y2

= exp
[((

Y1
n
,
Y2
n

)
︸ ︷︷ ︸

Y

(
log

(
π1

1 − π1 − π2

)
, log

(
π2

1 − π1 − π2

))′

︸ ︷︷ ︸
θ

− (− log(1 − π1 − π2))︸ ︷︷ ︸
b(θ )

)
n+ log

(
n

Y1!Y2!(n− Y1 − Y2)!
)

︸ ︷︷ ︸
c(y)

]
.

Note that this exponential form has two-dimensional structure for Y
and θ , which is an important departure from the previous examples. The
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two-dimensional link function that results from this form is

θ = (θ1, θ2) = g(π1,π2) =
(
log

(
π1

1 − π1 − π2

)
, log

(
π2

1 − π1 − π2

))
.

We can therefore interpret the results in the following way for a
single respondent:

θ1 = log
[

p(choice 1)
p(reference category)

]
= log

[
π1

1 − π1 − π2

]
= X iβ1

θ2 = log
[

p(choice 2)
p(reference category)

]
= log

[
π2

1 − π1 − π2

]
= X iβ2.

With minor algebra, we can solve for the inverse of the canonical
link function:

π1 = (1 − π2)
exp(θ1)

1 + exp(θ1)

π2 = (1 − π1)
exp(θ2)

1 + exp(θ2)
.

This allows us to rewrite b(θ ) in terms of the two-dimensional canonical

link function θ : b(θ ) = − log
(
1 − (1 − π2)

exp(θ1)
1+exp(θ1)

− (1 − π1)
exp(θ2)

1+exp(θ2)

)
which reveals multinomial structure in this simplified case. ‖

We have now shown that some of the most useful and popular PMFs
and PDFs can easily be represented in the exponential family form.
The payoff for this effort is yet to come, but it can readily be seen
that if b(θ ) has particular theoretical significance, then isolating it as
we have in the θ parameterization is helpful. This is exactly the case
as b(θ ) is the engine for producing moments from the exponential fam-
ily form through some basic likelihood theory. The reparameterization
of commonly used PDFs and PMFs into the exponential family form
highlights some well-known but not necessarily intuitive relationships
between parametric forms. For instance, virtually all introductory statis-
tics texts explain that the normal distribution is the limiting form for
the binomial distribution. Setting the first and second derivatives of the
b(θ ) function in these forms equal to each other gives the appropriate
asymptotic reparameterization: μ = np, σ 2 = np(1 − p).
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