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INTRODUCTION TO 

MULTILEVEL MODELING

OVERVIEW
Multilevel modeling goes back over half a century to when social scientists became attuned to 
the fact that what was true at the group level was not necessarily true at the individual level. The 
classic example was percentage literate and percentage African American. Using data aggregated 
to the state level for the 50 American states in the 1930s as units of observation, Robinson 
(1950) found that there was a strong correlation of race with illiteracy. When using individual- 
level data, however, the correlation was observed to be far lower. This difference arose from the 
fact that the Southern states, which had many African Americans, also had many illiterates of 
all races. Robinson described potential misinterpretations based on aggregated data, such as 
state-level data, as a type of “ecological fallacy” (see also Clancy, Berger, & Magliozzi, 2003). 
In the classic article by Davis, Spaeth, and Huson (1961), the same problem was put in terms of 
within-group versus between-group effects, corresponding to individual-level and group-level 
effects. A central function of multilevel modeling is to separate within-group individual effects 
from between-group aggregate effects.

Multilevel modeling (MLM) is appropriate whenever there is clustering of the outcome variable 
by a categorical variable such that error is no longer independent as required by ordinary least 
squares (OLS) regression but rather error is correlated. Clustering of level 1 outcome scores 
within levels formed by a level 2 clustering variable (e.g., employee ratings clustering by work 
unit) means that OLS estimates will be too high for some units and too low for others. As a 
corollary, errors of over- and underestimation will cluster by unit. It is this clustering of errors 
which is “correlated error.” Multilevel modeling is one of the leading approaches to dealing with 
correlated error.

While there are other methods of handling clustered data and correlated error, such as general-
ized estimating equations (GEE) or use of cluster-robust standard errors, multilevel modeling is 
the most ubiquitous approach (McNeish, Stapleton, & Silverman, 2017). If OLS regression is 
used for data with multilevel effects, the model is misspecified and parameter estimates (b coeffi-
cients, for example) will be in error, leading to possible significant errors of model interpretation. 
Put another way, the researcher contemplating a regression model of the usual monolevel type 
should first check to see if MLM modeling is needed instead.

It is common to refer to the outcome variable data (e.g., student scores) as being at level 1 and 
the clustering variable (e.g., classrooms) as being at level 2 (and there may be yet higher levels, 

Copyright ©2020 by SAGE Publications, Inc. 
 This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

 
Do n

ot 
co

py
, p

os
t, o

r d
ist

rib
ute

 



2  Multilevel Modeling

like level 3 = schools). The notion of levels is contained in the term hierarchical linear modeling 
(HLM), often used interchangeably with multilevel modeling (MLM). In this book, however, 
we prefer MLM terminology for three reasons.

1. Not all multilevel models are strictly hierarchical, as we shall see when cross-classified 
models are discussed.

2. The clustering variable need not be one which is organizationally at a higher level as 
classrooms are with respect to students. Rather, potentially any categorical variable 
may be a clustering variable (e.g., nation of origin, which is not normally discussed in 
terms of “higher level” in the organization chart sense).

3. There is ambiguity about the term level in HLM terminology, where level may  
refer to the clustering variable (e.g., religious affiliation) but values of that variable  
(e.g., Catholic, Baptist, Orthodox Jewish) are also called the levels of that variable.

Linear mixed modeling (LMM) is another synonym for multilevel modeling. In LMM, mixed 
refers to a model having both fixed and random effects. In LMM, random effects are the 
effects of clustering of the dependent variable (DV) within categorical levels of a clustering 
variable. Fixed effects are those in the level 1 regression model, just as conventional OLS 
regression models are fixed effects models. SPSS and certain other statistical packages imple-
ment MLM using LMM terminology. In this book, though we certainly discuss fixed and 
random effects (see Chapter 4), we prefer MLM as the general term for our models since we 
have found it to be more intuitive for the introductory graduate-level students who are our 
target audience.

CLUSTERING DEFINED

As used here, clustering of data occurs whenever measures of an outcome 
variable are conditional in part or whole on values of a categorical variable. 
For instance, student test scores may be conditional on the student’s school. 
Students at better schools may tend to score higher. Thus higher scores may be 
concentrated in better schools. This concentration is “clustering.” When cluster-
ing is ignored, estimates of student scores will be too low for better schools and 
too high for worse schools, on average. Therefore errors will tend to be positive 
values for better schools, reflecting underestimates (where error = observed 
minus estimated values) and will tend to be negative values for worse schools, 
reflecting overestimates. In this way, error clusters by school, meaning there is 
“correlated error.”

Multilevel modeling handles the problem of correlated error due to the existence 
of a clustering variable. In multilevel analysis, typically the DV (test scores) is con-
sidered level 1 and the clustering variable (schools) is level 2. There may be higher 
levels of clustering (e.g., school district), calling for three-level or higher models. 
The clustering variable is also called the grouping variable, the level variable, or 
the link variable. It is also possible that the DV will cluster on other categorical 
variables not serving as grouping variables. This clustering over and above that 
associated with grouping variables is addressed in part through use of cluster- 
robust standard errors, discussed in Chapter 2.
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Chapter 1   ■   Introduction to Multilevel Modeling  3

Numerous other synonyms for multilevel modeling exist. Depending on the discipline and 
research design, various types of multilevel model may be referred to as random intercept models, 
random coefficients models, random effects models, growth models, longitudinal models, and 
covariance components models, to name a few. These and other terms are treated in this book  
as they arise.

The reader may be given pause by the term linear being part of linear mixed modeling, which 
has just been described as equivalent to multilevel modeling. It is true that, by default, MLM 
models assume linear relationships, as do OLS regression models. Most of the examples in this 
book make this assumption. This is not an unreasonable assumption since a great many social 
science relationships are linear.

However, it is perfectly possible to extend MLM to nonlinear modeling. For instance, logistic 
regression may be substituted for OLS regression for a model in which the outcome variable 
is binary. Nonlinear MLM is called “generalized multilevel modeling” (GMLM). Synonyms 
include but are not limited to “generalized linear mixed modeling” (GLMM) and “generalized 
hierarchical linear modeling” (GHLM). Generalized modeling software allows OLS regression 
but also supports nonlinear forms of regression such as binary logistic regression for binary DVs, 
ordinal regression for ordinal DVs, multinomial regression for nominal DVs, gamma regression 
for skewed data, Poisson regression for count data, and other variants, to name a few. Generalized 
multilevel modeling is treated in Chapter 12 of this book.

WHAT MULTILEVEL MODELING DOES
Multilevel models adjust estimates of the intercept (mean) of one or more dependent  
variables at level 1 based on grouping variables defining higher levels. Predictor variables at 
any level may also be incorporated in the model. Multilevel models may also adjust the slope 
(b coefficient) of one or more predictors (regressors) at lower levels. For instance, math score 
at the student level (level 1) may be predicted by student socioeconomic status (also level 1) as 
influenced by school (the level 2 clustering variable). Predicted mean math scores and/or the 
estimated slope (b coefficient) for socioeconomic status will be adjusted by MLM algorithms for 
the clustering of math scores at the school level.

As discussed above, the multiple levels of multilevel models are defined by categorical (factor) 
variables, such as classroomid for classrooms as the variable defining groups at level 2. Such a fac-
tor variable may be called the clustering variable, the grouping variable, the level variable, or the 
link variable. While the clustering variable often is a function of sampling (voters sampled within 
census tracts, census tracts sampled within voting districts, etc.), the clustering variable may be any 
categorical variable, the presence of which causes data and data residuals to be nonindependent, 
thereby violating a basic assumption of ordinary regression. For example, when math scores cluster 
by school because student scores within a given school are more similar than otherwise would be 
expected, both student scores and error terms associated with their predicted scores are not inde-
pendent. Independence of error terms is an assumption of OLS regression and related techniques.

When a clustering variable is present and has an effect, lack of independence means that stan-
dard errors computed in ordinary regression will be in error. This in turn means that signifi-
cance tests will be in error. Specifically, standard errors will be too low, resulting in the Type I 
error of spuriously “significant” effects (Maas & Hox, 2004, p. 428).

When a clustering variable is suspected, the researcher will want to compute significance 
for the variance component for the effect of the clustering variable in the null model. This 
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4  Multilevel Modeling

is mathematically equivalent to computing the significance of the intraclass correlation 
coefficient (ICC). Variance components and the ICC are discussed in Chapter 3 and later 
in this book. If that variance component or ICC is significant, then nonindependence is 
present to a significant degree and some form of multilevel modeling should be undertaken. 
Clustering is very common in social science data and therefore multilevel modeling has wide 
application.

It should be noted that multilevel modeling can change substantive conclusions in social  
science research. This point is illustrated by Raudenbush and Bryk (2002), pioneers in mul-
tilevel modeling, who studied elementary school students’ math scores. They wrote of the 
difference made by multilevel modeling that

The results were startling—83% of the variance in growth rates was between schools. In 
contrast, only about 14% of the variance in initial status was between schools, which is 
consistent with results typically encountered in cross-sectional studies of school effects. 
This analysis identified substantial differences among schools that conventional models 
would not have detected because such analyses do not allow for the partitioning of 
learning-rate variance into within- and between-school components. (pp. 9–10)

THE IMPORTANCE OF  
MULTILEVEL THEORY
As with other quantitative techniques, the researcher should not arrive at study conclusions 
on a data-driven basis. Rather, in the case of multilevel problems, the researcher should have a 
multilevel theory about the relationships among the variables in the study. There should be some 
plausible line of reasoning, supported by the literature, induction from examples, or deduction 
from principles, that links the upper level in a multilevel model to the lower level. For example, 
it is not enough to show that there is a significant school effect on students’ math scores. There 
should also be some argument about how this effect comes about. For example, it may be rea-
soned that schools with higher budgets pay teachers more, motivating them to elicit better stu-
dent performance. Or it may be reasoned that schools within which the average socioeconomic 
status (SES) of pupils is higher get better test results because the pupils have higher SES peer 
learning. There may be many multilevel theories, each of which will suggest additional variables 
which might be included in the model. In general, multilevel models require theories about the 
mediators between levels.

An “ecological fallacy” is thinking that because something is true at one level, it must be true at 
another level. A previously mentioned example is thinking that the correlation of race and illit-
eracy in aggregated state-level data means that race and illiteracy are correlated in the same way 
at the individual level. They are not. The higher correlation with state aggregate data is because 
states high on percentage of minority race are also high on illiteracy for all races. The implication 
for multilevel modeling is that level 1, which is the observation level, must be the level at which 
the actual causation is thought to occur. For the (false) theory that race causes illiteracy based 
on state aggregate data, we cannot argue that individual-level illiteracy is caused by state-level 
racial proportions.

In general, the researcher must have sound theory justifying whether a construct is to be mea-
sured at the individual level, the cluster level, or both. Stapleton, Yang, and Hancock (2016) 
have noted the pitfalls of construct validation in a multilevel context, such as the pitfall of 
spurious construct-irrelevant dependency and other spurious effects which may occur with 
hierarchical data, illustrating these through simple simulations. For instance, if the researcher 
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Chapter 1   ■   Introduction to Multilevel Modeling  5

posits that a construct exists only at the individual level (e.g., student scores) but it is found that 
dependency exists at the cluster level (e.g., school level), then the researcher must show either 
that there are cluster-level causal mechanisms with a transfer effect to the individual level (e.g., 
higher paid, higher ability, and/or more motivating teachers affecting class performance) or 
that there are no real transfer effects, only spurious ones.

TYPES OF MULTILEVEL DATA
In broad terms, multilevel modeling is applicable to five types of data:

1. Hierarchical data: As discussed above, multilevel modeling applies when data are orga-
nized hierarchically. This was the example of math test scores given over time and nested 
within student id; student id nested within classrooms; classrooms nested within schools, 
and so on. With hierarchical data, there may be variables at each level: test scores at the  
test level, student attributes at the student id level, classroom attributes such as teacher expe-
rience at the classroom level, school budget per pupil at the school level, and so on. Only 
categorical variables above level 1 (the test level in this example) may be the clustering variables 
(student id, classroom id, school id, etc.). Multilevel modeling will show how clustering vari-
ables and other variables at higher hierarchical levels affect the dependent variable at level 1 
(e.g., math scores).

2. Repeated measures data: Repeated measures may be seen as a special case of hierarchical 
data. The repeated measures (e.g., math scores) become level 1 while the unit of analysis (student 
id) becomes level 2. Level 1 data need not be repeated measures as, for instance, would be the 
case of a cross-sectional study of budget variables at level 1 nested within the 50 American states 
at level 2. The difference is that with repeated measures, each unit of analysis (e.g., student id) 
has multiple rows of data—one row for each test administration.

3. Random effects data: Random effects data are another special case of hierarchical data. An 
example is a marketing study in which consumer attitudes at level 1 are nested within product 
brands at level 2, where the researcher is interested in whether the brand effect is significant. The 
researcher can generalize the findings from multilevel modeling under one of two conditions: 
(1) Level 2 includes all brands (an “enumeration” or “census”), or (2) level 2 includes a random 
sample of brands (sometimes weakened in practice to be a “representative” sample). In condition 
(2), the level 2 effect is called a “random effect.” Unfortunately, it is common to call all level 2 
effects “random effects” and software often labels these effects as such. However, if the units in 
level 2 are a convenience sample of unknown representativeness of the population of all such 
units, the random effect of the level 2 clustering variable should not be interpreted the same way 
as for a random sample. In the example, it is no longer “the brand effect” but rather the effect of a 
particular set of brands, where the effect may be different for a different set of brands.

4. Cross-classified data: In some cases, data are not nested in a strict hierarchy. An example is 
where students are nested hierarchically within neighborhoods (any student is in just one neigh-
borhood) but neighborhoods are cross-classified within schools (a given neighborhood may send 
students to multiple schools; a given school may draw from multiple neighborhoods). Another 
example is where subjects are interviewed by an interviewer who may use any of multiple forms. 
Subjects are nested within interviewers (hierarchical) but one interviewer will use many forms 
and a given form may be used by many interviewers (cross-classified).

Cross-classified examples are numerous, so much so that some assert that cross- 
classified data are more common in social science than strictly hierarchically nested data. 
Multilevel modeling can handle cross-classified data, but it must use a different algorithm. 
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6  Multilevel Modeling

The researcher must declare the data to be cross-classified1 and must use software which 
supports multilevel modeling for cross-classified data. Failure to do this can result in serious 
bias. For further reading on cross-classification in IBM SPSS Statistics, see Heck, Thomas, 
and Tabata (2010, Ch. 8); in SAS2, see Patterson (2013) and Beretvas (2008); in Stata3, see 
Leckie (2013); in HLM 7, see Raudenbush, Bryk, Cheong, Congdon, and Du Toit (2011); 
and in R, see Roberts and Bates (2010). Cross-classification in all five statistical packages is 
covered in West, Welch, and Galecki (2015, pp. 369–394).

5. Multiple outcome data: Multilevel modeling can also support models in which there is more 
than one dependent variable (DV) at level 1. Again, this must be declared by the researcher who 
must use software supporting multivariate multilevel modeling (MMLM), also known as multi-
variate linear mixed modeling (MLMM) or hierarchical multivariate linear modeling (HMLM). 
For nonlinear models, there is also generalized multivariate multilevel modeling (GMMLM), also 
called multivariate generalized linear mixed modeling (MGLMM). See the discussion of gener-
alized models in Chapter 12. One use of such models is multilevel latent outcome modeling, as 
when the DVs are several math tests at level 1 seen as indicators of a latent construct called math IQ 
at level 2. Another use has been in the analysis of dyadic data (see Knafl et al., 2009). Multivariate 
multilevel modeling is discussed further in Snijders and Bosker (1999, pp. 282–288) and in Brant 
and Sheng (2013). For coverage of multivariate multilevel analysis in SPSS, see Heck et al. (2010, 
Ch. 7); in SAS, see Wright (1998); and in HLM 7, see Raudenbush et al. (2011). See Baldwin, 
Imel, Braithwaite, and Atkins (2014), especially the statistical programming supplement by Atkins 
(2014), for coverage of multivariate multilevel modeling in Stata, SAS, R, SPSS, and MPlus.

COMMON TYPES OF MULTILEVEL MODEL
There are many models possible with multilevel modeling and, unfortunately, an even larger 
number of labels for these models. In this section, we briefly describe the most common model 
types. We use the five arrows in Figure 1.1 to illustrate possible combinations of effects and their 
relationship to model types. To simplify here, we assume only two levels and a maximum of 
one predictor variable at either level (not counting the level variable), but in real research there 
may well be more predictor variables at either level and there may be more hierarchical levels or 
cross-classification of levels.

There are six common types of multilevel model discussed below. These are the unconditional 
random intercept (null) model, the conditional random intercept model, the random coeffi-
cients model, the random intercept regression model, the random intercept ANCOVA model, 
and the random coefficients ANCOVA model. We base this common labeling scheme largely on 
Raudenbush and Bryk (2002), but it should be noted that a variety of typologies and labels are 
used by different authors in describing types of multilevel model. Readers are advised, therefore, 
not to overemphasize model labels but instead to focus on underlying differences in the models. 
As a further complexity not discussed in this introductory section, all six models may come in 
the usual nested (hierarchical) flavor or in the cross-classified flavor and all six may come in the 
usual monovariate (one outcome) or multivariate (multiple outcomes) flavors.

The Null or Unconditional Random Intercept Model
In multilevel modeling, the null model isn’t one with just the intercept (constant) of the depen-
dent variable, without any predictor variables, as is the case in OLS regression. Rather it is 
the model with only the grouping (clustering, level) variable as a determinant of the intercept 
of the dependent variable. That is, it is a model with just Arrow 1 in Figure 1.1. This is an 

1 SPSS is a registered trademark of International Business Machines Corporation.
2 SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute 
Inc. in the USA and other countries.®indicates USA registration.
3 Stata is a registered trademarks of StataCorp LLC.
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Chapter 1   ■   Introduction to Multilevel Modeling  7

“unconditional” model in that there are no other predictor variables to condition the estimates. 
It is a “random intercept” model because it is predicting the level 1 intercept of the outcome 
variable and is not predicting any b coefficients at lower levels (there aren’t any). Note that all 
other models involve predictor variables and therefore are “conditional.”

The null model is often used to see if there is any need for multilevel modeling in place of some 
form of regression, which is monolevel. In Figure 1.1, if Arrow 1 is nonsignificant then there is 
no level 2 (here, school) effect and data do not cluster by school. Therefore OLS or other types 
of monolevel regression may be used without recourse to multilevel modeling. The null model is 
discussed with worked examples in Chapter 3.

There are several less used synonyms for the null model:

• the unconditional random intercept model (as discussed above)

• the unconditional model (the outcome is not conditioned by any predictor variables)

• the intercept-only model (because there are no level 1 predictors)

• the baseline model (we use the null model to compare model fit with later models 
which include predictor variables or other additional effects)

• the random intercept null model (the school effect is a random effect predicting average 
outcome values at level 1, where the intercept is the average, and null refers to not 
having other predictor variables)

• the one-way ANOVA with random effects model (one-way because there is only one 
independent variable, such as the clustering variable school; random effects because 
this variable is treated as a random effect; ANOVA, which centers on comparing means, 
because we are seeing if the predicted mean or intercept using the cluster variable 
differs from the mean not using it)

FIGURE 1.1  Common Types of Multilevel Effects
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8  Multilevel Modeling

In contrast to the null model, which is unconditional, the researcher’s more complex model is a 
conditional model. That is, estimates of the outcome variable are conditioned on the predictor 
variables which have been entered at any level of the model. The null model may be used as a 
baseline to compare the researcher’s model using a measure of how much model error exists. 
Ideally, the researcher’s model displays significantly less error. Since multilevel modeling uses 
maximum likelihood estimation (ML) rather than ordinary least squares (OLS), error is reflected 
in the likelihood statistic, where higher is more error (contrast OLS regression, where model error 
is 1 - R2). The likelihood conforms to a chi-square distribution, making it useful for significance 
testing, when its log is multiplied by -2. The -2 log likelihood statistic is labeled -2LL and is also 
called model chi-square or deviance.

The likelihood ratio test uses -2LL to test the significance of the amount of error in predicting 
the level 1 outcome (e.g., math score) compared to some nested model, such as the null model. 
This may be done by comparing -2LL in the researcher’s full model with -2LL in the null  
model. The -2LL value will be lower in the researcher’s model, assuming effects in the researcher’s 
model have some explanatory effect and thereby reduce error as compared to knowing only the 
level 2 clustering variable as is the case in the null model. The likelihood ratio test is discussed in 
later chapters, starting in Chapter 3.

The Conditional Random Intercept Model
A random intercept model, also called a conditional random intercept model, is random because 
it incorporates the random effect of the clustering variable (e.g., school in a model predicting 
math score at level 1). It is an intercept model because only the intercept of the outcome vari-
able is adjusted for the random effect. It is conditional because predictor variables are present 
in addition to the clustering variable(s) which define level 2 or higher. The intercept, of course, 
represents the mean of the dependent variable (math score). The slopes (b coefficients) of any 
level 1 predictor variables are not modeled as random effects.

Note that here we follow the rather ambiguous labeling convention prevalent in multilevel mod-
eling, where random effect may refer to either higher or lower level variables. Strictly speaking, 
of course, random effects refer to any variable at a lower level whose intercept or slope is adjusted 
to take into account correlated error at a higher level (this does not include fixed effects of higher 
level predictor variables used in the fixed effects regression at level 1). In widespread practice, 
however, the higher level variables which are the source of adjustment are also often called 
“random effects.” The reader is advised not to worry too much about this ambiguity but rather 
to understand that random effects always involve at least two variables: a higher level variable 
which is the basis for adjustment and a lower level variable whose intercept and/or slope is 
adjusted by the multilevel algorithm.

In multilevel modeling, the regression model, or more precisely, the regression portion of the 
multilevel model, is the dependent variable at level 1 as predicted by any fixed effects. Fixed 
effects, in turn, include any level 1 predictor variables. However, in addition, a level 2 predictor 
variable may be used as a random effect at level 2 (it may be used along with the level variable for 
level 2 to condition the DV intercept at level 1) while still also serving as a fixed effect at level 1.  
In fact, it is usual in multilevel modeling to enter all higher level predictor variables as fixed 
effects. Fixed versus random effects are discussed in Chapter 4.

The conditional random intercept model is a regression model with one or more fixed effects of 
level 1 predictor variables on the intercept of the level 1 outcome (Arrow 2 in Figure 1.1) com-
bined with the random effect on the DV intercept (e.g., on mean student math scores) of the 
level 2 clustering variable (e.g., school; this is Arrow 1 in Figure 1.1). Level 2 predictor variables 
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Chapter 1   ■   Introduction to Multilevel Modeling  9

treated as random effects (e.g., school budget per pupil, in Figure 1.1) are not part of a basic 
random intercept model. However, below we discuss the random intercept regression model and 
the random intercept ANCOVA model. In all intercept models, the intercept of the outcome 
variable at level 1 is adjusted for higher level effects. If slopes are adjusted also, this makes the 
model a type of random coefficients model, also discussed below.

In Figure 1.1, student self-confidence is a level 1 predictor variable modeling mean math score, 
which also is at level 1. The random intercept model adjusts the intercept (mean) of math score 
due to the random effect of school as the clustering variable. A synonymous label for the random 
intercept model is the ANCOVA model with random effects. Random intercept models are 
discussed with worked examples in Chapter 5.

The Conditional Random Coefficients Model
The random coefficients model, also called the conditional random coefficients model, is the 
model with Arrows 1, 2, and 3 in Figure 1.1.

• Arrow 1 adjusts the intercept (mean) of math score for the random effect of school at 
level 2.

• Arrow 2 is the fixed effects regression fixed effects regression portion of the model.

• Arrow 3 adjusts the b coefficient (slope) of student self-confidence, the level 1 predictor 
variable, for the random effect of school also.

The coefficients term in random coefficients model should not obscure the fact that a random 
coefficients model estimates the intercept (mean) as well as the slope (regression coefficient) at 
level 1. Synonyms for the random coefficients model are RC model and random coefficients 
regression model. Random coefficients models are treated in more detail in Chapter 5 and  
later chapters.

The Random Intercept Regression Model
In terms of Figure 1.1, the random intercept regression model is the model with only Arrows 
1 and 4. This and all remaining models mentioned in this chapter are also conditional models 
since one or more predictor variables in addition to the level variable are in the models. Only 
the mean (intercept) of math score is estimated, not the slope of any level 1 predictor variable. 
Unlike the basic random intercept model, adjustments to the level 1 intercept (representing 
mean math scores in our example) are made not only based on the clustering variable (school, 
reflected in Arrow 1) but also for a level 2 variable (school budget per pupil, reflected in Arrow 
4). There are no level 1 regressors (adding a level 1 regressor would make it a random intercept 
ANCOVA model, discussed next). Synonyms for this model are the random intercept model 
with level 2 predictors or the means as outcomes regression model.

The Random Intercept ANCOVA Model
A random intercept ANCOVA model is a random intercept regression model to which one or 
more level 1 regressors (predictor variables) have been added. In terms of Figure 1.1, this is the 
model adding Arrow 2 to Arrows 1 and 4. That is, the random intercept ANCOVA model com-
bines the monolevel regression model (Arrow 2) with the random intercept regression model 
(Arrows 1 and 4). Synonyms are the random intercept model with level 1 and level 2 predictors 
or the means as outcomes ANCOVA model. The ANCOVA part refers to the fact that this model 
centers on seeing if the predicted intercept using the cluster variable and any level 1 predictor 
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10  Multilevel Modeling

variables differs from the mean not using them. In the random intercept ANCOVA model, only 
the intercept of math score is estimated. If level 1 slopes are also estimated, this becomes the  
random coefficients ANCOVA model, discussed next.

The Random Coefficients ANCOVA Model
The random coefficients ANCOVA model may be either the model with Arrows 1 to 4 in 
Figure 1.1 or the model with Arrows 1 to 5. The central difference from the random intercept 
ANCOVA model discussed above is the addition of Arrow 3 and/or Arrow 5, both of which 
represent adjustments to the slope (coefficient) of student self-confidence, a level 1 predictor 
variable. At level 1, the intercept (mean) of math score is adjusted by taking into account the 
random effects of school as the grouping variable (Arrow 1) and of school budget per pupil as 
a level 2 predictor (Arrow 4). Also, the slope of student self-confidence is estimated taking into 
account the random effect of school as the grouping variable (Arrow 3).

The slope of student self-confidence may also be modeled by a level 2 predictor variable (Arrow 5).  
Note that modeling a lower level variable’s slope by a higher level predictor variable (not the 
grouping variable) is equivalent to add the interaction term for the two variables to the model 
and most statistical packages other than HLM 7 represent Arrow 5 in this manner. Synonyms 
for this model are the full random coefficients model or the intercepts and slopes as outcomes 
model.

Of the six common types of multilevel model, none is best. Rather, the selection of model 
depends on the research purposes and causal assumptions of the researcher. Not uncommonly, 
researchers may find the need to investigate more than one type of model. And, of course, there 
are many additional types of model, particularly if there are more than two levels as is often the 
case, for example, for longitudinal data.

Mediation and Moderation Models in Multilevel Analysis
Mediation refers to the causal chain from predictor to outcome passing through one or more 
intermediate variables. Moderation refers to the strength or direction of the causal path from 
predictor to outcome being contingent on values of a third variable (the moderator). It is also 
possible to have moderated mediation and mediated moderation. Mediation and modera-
tion models in multilevel modeling is an advanced topic not covered in the present volume. 
Moreover, one will not find these terms in the indices of the great majority of other texts on 
multilevel modeling.

Nonetheless, considerable work has been done on the subject in the last two decades (e.g., 
Bauer, Preacher, & Gil, 2006; Kenny, Korchmaros, & Bolger, 2003; Krull & MacKinnon, 
1999, 2001). The rationale for multilevel mediation analysis (analysis of indirect effects) is given 
in Tofighi, West, and MacKinnon (2013), who also present an online supplement of extended 
analytic proofs. These authors outline a multilevel procedure for analyzing mediation effects 
which involves running mixed models with and without an assumed correlation of a moderator 
and an outcome variable, and they illustrate through simulations employing the lme4 package 
in R (discussed in subsequent chapters of the current volume).

Perhaps the most cited work on mediation and moderation in regression models is that by 
Andrew Hayes (2013). Hayes has since published on multilevel mediation analysis, using the 
MPlus software package (Hayes, 2014). In 2017, Hayes’s Mechanisms and Contingencies Lab 
at Ohio State University released an SPSS macro called MLMED, written by Hayes’s doctoral 
student Nick Rockwood. MLMED implements multilevel mediation and moderated mediation 
analysis, and is available for download at https://njrockwood.com/mlmed.
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Chapter 1   ■   Introduction to Multilevel Modeling  11

For Stata, the ml_mediation command is provided to implement the multilevel mediation 
method described by Krull and MacKinnon (2001). The Institute for Digital Research and 
Education (IDRE) at UCLA provides a description of this method.1 An alternative method 
using the Stata command xtmixed (since superseded by mixed) based on the work of Bauer, 
Preacher, and Gil (2006) has also been described by IDRE.2 See also Zhang, Zyphur, and 
Preacher (2009), who use Stata for their multilevel mediation simulations.

For SAS, IDRE has documentation of multilevel mediation analysis paralleling the two methods 
described for Stata above.3

For the R language, Elizabeth Page-Gould (see Sharples & Page-Gould, 2016) has made avail-
able R source code, example R syntax, example data, plus slides and a help file to estimate 
unbiased indirect effects in multilevel models.4 Indirect effects, of course, is simply a synonym 
for mediation effects.

As mentioned at the outset of this subsection, multilevel mediation analysis is an advanced 
topic, which in turn means it is fraught with complexities and pitfalls. As Zhang et al. (2009) 
noted, for instance,

tests of multilevel mediation can be problematic when between-group variation in a 
Level-1 variable is not explicitly separated in a test of 2-1-1 mediation—the same would 
be true for 1-1-1 mediation tests. By adhering to traditional recommendations for 
testing mediation with multilevel data, researchers may be making one hypothesis  
(i.e., group-level mediation) while testing another (i.e., mediation that conflates 
between-group and within-group effects). (p. 717)

These and other methodological problems must be taken into account by researchers pursuing 
multilevel mediation models.

With regard to multilevel moderation analysis, heterogeneous multilevel models (discussed in 
Chapter 9) may be used to address the question of whether the multilevel model varies condi-
tional on a categorical moderator variable. However, more complex moderation models may 
be better examined using multilevel structural equation modeling (MSEM), as advocated by 
Preacher, Zhang, and Zyphur (2016), who implement such models in MPlus. MSEM may also 
be implemented in Stata using the gsem command and in R using the xxM package.

As with multilevel mediation analysis, multilevel moderation analysis can be marked by com-
plexities and pitfalls. Preacher et al. (2016) critique common tests of multilevel moderation as set 
forth, for instance, by Raudenbush and Bryk (1986, 2002), noting that “problems occur because 
most approaches to testing multilevel moderation do not separate lower- and higher-level effects 
into their orthogonal components, and instead conflate these effects by combining them into 
single coefficients” (p. 189; see also Preacher, Zyphur, & Zhang, 2010). Across multiple fields, 
such conflation is known to cause model misspecification (see Hausman, 1978), resulting in 
conceptual and statistical problems. Conceptually, researchers (a) create theories and hypotheses 
that are insensitive to the different yet theoretically meaningful ways that moderation can occur, 
and (b) specify models reflecting this insensitivity. Statistically, researchers test moderation by  
(a) unknowingly constraining effects to equality across levels and (b) introducing bias into  
estimates of moderation effects by not treating outcomes and predictors as latent variables at 
the levels of analysis stipulated in theory. As a result, researchers’ theories are often tested with 
conflated and potentially biased parameter estimates, while theoretically meaningful moderation 
effects go undetected. The latent variable approach to which these authors allude is integral to 
multilevel structural equation modeling, which is beyond the scope of the present volume.
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12  Multilevel Modeling

ALTERNATIVE STATISTICAL PACKAGES
In the examples in later chapters, an attempt has been made to show the parallel implementation 
of the same models for the same data in SPSS, Stata, SAS, HLM 7 software packages, and in 
the R statistical language. All these statistical programming environments support many more 
options and models than are described in this introductory volume. While any given researcher 
is apt to pick a particular software her or his favorite, nonetheless, the multipackage approach in 
this book is helpful for a number of reasons and it is recommended that the reader at least scan 
implementations in all packages.

1. Different packages use different labels and vocabulary for the same thing, and having 
some multipackage familiarity enhances the researcher’s ability to read the literature.

2. Different packages have differing options and outputs, and the researcher may need at 
times to be aware of alternative options and to use an alternative package.

3. Different packages may use different algorithms, defaults, and assumptions. The default 
output for one package may differ from that for another package, something that may 
not be noticed by the researcher who only uses one package. Running the model in two 
packages may illuminate issues surrounding the choice of options and at a minimum 
will confirm findings.

4. When the researcher is attempting to replicate the work of others who have used a 
different statistical package, it may be necessary to understand the options of statistical 
packages other than one’s favorite.

5. Taking the model one has implemented in one package and replicating it in another 
package is a good method for catching mistakes and for validating results.

6. Pedagogically, looking at a problem from the viewpoint of multiple approaches is often 
helpful to the learning process.

7. Knowledge of multiple packages helps the researcher become a statistics-literate reader 
of the professional literature, where diverse statistical packages are used.

No particular statistics package is endorsed in this book. Each has advantages and disadvantages, 
though this does not mean they are equivalent. For the novice reader, a few orienting remarks 
may be helpful.

•	 SPSS was long the favorite in the social sciences and is still widely used. It employs a very 
user-friendly menu system which makes accomplishment of most tasks easy, though a program-
ming mode is also available. It is criticized for being less comprehensive than some other packages 
but it has sought to remedy this by making the process of adding third-party modules, even R 
modules, easier. It is also criticized for its expense. It has good support from its company and user 
communities, though not at the level of some other packages.

•	 SAS has been the dominant package for business and government. Often it has the most 
extensive options for any given procedure. SAS is not just a statistical package but is also an 
enterprise management solution. While a menu mode is available, most users employ the pro-
gramming mode, writing SAS syntax. Syntax is widely shared on the web. Third-party modules 
can extend SAS’s functionality. Extensive company and community support is available. In its 
Enterprise Miner solutions, it can handle what is called big data, including textual data.
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Chapter 1   ■   Introduction to Multilevel Modeling  13

•	 Stata has eclipsed SPSS as a teaching tool due to its lower expense, superb user sup-
port, versatile programming language, excellent graphics, and wealth of third-party extensions 
which are easily added, among other factors. It too provides a menu mode though most use 
the command mode. For the same reasons, Stata has become a leading tool for researchers. 
Very active user communities have developed in some lines of academic inquiry, including 
econometrics and survival analysis. Its free technical support is perhaps the best of the packages 
considered here.

•	 HLM 7 originates from founders of the multilevel modeling method and reflects classic 
literature on MLM. It is free software in its student version and its interface clearly reveals 
just what effects are being modeled at each level and what the corresponding equations are, 
making it a useful learning tool. It displays the equations underlying the model at each level 
whereas the other packages do not display separate equations for each level. Students wishing 
an equations-based approach to multilevel modelling should give particular attention to the 
HLM 7 sections in this volume. It offers some options which can be difficult to implement in 
other packages, though it is not as comprehensive as some and, indeed, is not intended to be a 
comprehensive statistical package, just an MLM package. Also, the student version has limited 
functionality.5

•	 R evolved as a favorite for advanced users who wished to program their own statistical 
procedures. With roots based on John Chambers’s S language, R is an open-source statisti-
cal programming environment which has slowly become popular for teaching and general 
research, not just advanced data analytics, aided by the fact that it is free, with full func-
tionality. While it has modules to accomplish almost any statistical task, including an array 
of data visualization possibilities, it is less user-friendly than most other packages. However, 
its thousands of third-party modules cover state-of-the-art procedures not available in other 
packages. It is emerging, for example, as the package of choice for collecting and analyzing big 
data, such as that from social media. Unlike the other packages, R is not hosted by a company 
which maintains quality control and provides centralized user help but rather relies on a very 
widespread and active user community to continually improve what is available (much like 
wikis do). R is a constantly changing and evolving environment. Getting started with R is 
described in Online Appendix 1.

It should be noted that there are, of course, many other statistical packages for multilevel mod-
eling apart from the five covered in this volume. Among these are MPlus, MLWin, R2MLwiN 
(runs MLWin from within R), and STAT-JR, to name a few.

MULTILEVEL MODELING VERSUS GEE
It is possible to examine hierarchical data using the alternative statistical procedure known 
as generalized estimating equations (GEE). For longitudinal data GEE is equivalent to  
population-averaged panel data regression (Garson, 2013b; free pdf at http://www.statistical 
associates.com). Both multilevel modeling and GEE address the problem of correlated error 
which arises when values of an outcome variable at level 1 cluster within groups defined by a 
categorical variable. However, the two procedures attack the problem in different ways.

Multilevel models incorporate both fixed and random effects while GEE allows only fixed 
effects. Fixed effects, which are also called marginal effects, generate coefficients assumed to be 
fixed for the entire population. For this reason, like regression weights, fixed effect coefficients 
are a type of population average. Population-averaged panel data regression models are the same 
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14  Multilevel Modeling

as GEE models. In contrast, multilevel models assume that the categorical grouping variable 
may involve context-specific (i.e., group-specific) effects on the outcome variable. Multilevel 
models also partition variance into between-group effects and within-group effects. The former 
reveal the impact of differences between groups (e.g., schools, in the classic case of predicting 
student achievement scores at level 1) while the latter reveal the impact of residual variation in 
values of the outcome variable due to variation among subjects within groups (e.g., variation 
of students within schools). Put another way, the effect of within-group variability is directly 
observable in output for the residual random effects variance component, whereas in GEE mod-
els variability within groups is treated as a nuisance term and is incorporated in the intercept, 
along with other sources of model error, preventing the researcher from analyzing the effect of 
variability within groups directly.

Thus GEE is a population-averaged (marginal) method rather than a subject-specific method. 
As a simple example, let days of unemployment be measured over a period of time and let the 
groups be a group receiving training and a group not receiving training. GEE does not focus 
on variation within groups of days of unemployment but rather focuses on the difference in 
average effects between the training and no-training groups. To make this comparison, GEE 
must assume that the within-group variation over time does not matter. What matters in GEE 
is the average response in each subpopulation (each group) based on the predictor variables.  
GEE maximizes the predictability of group means, not the predictability of subject-level  
outcome measures.

Because multilevel modeling and GEE handle subject-level variation differently, when the  
grouping variable does indeed provide contextual effects for the relationship of predictor  
variables to the outcome variable, both methods may provide similar estimates but the GEE 
method will give erroneous standard errors and the regression coefficients for predictor  
variables will tend to be lower than in subject-specific models (see Neuhaus, Kalbfleisch, & 
Hauck, 1991). This reflects the lowering of effect sizes due to averaging, aggregating, binning, 
and other approaches which do not take advantage of subject-specific information.

While more information is generally better than less information, making multilevel modeling 
with its incorporation of subject-specific effects a better choice than GEE, this is not the whole 
story. There are two oft-cited advantages of GEE, which may make it a better choice in certain 
contexts.

1. GEE is a nonparametric procedure (see Hardin & Hilbe, 2002, p. 55). The researcher 
need not assume that the outcome variable is normally distributed as in the case 
of ordinary multilevel modeling. Being nonparametric is achieved by using quasi-
likelihood estimation rather than maximum likelihood estimation, and by using fit 
measures like QIC (the quasi-likelihood under independence criterion) instead of 
ML-based fit measures like AIC or BIC (Akaike information criterion and Bayesian 
information criterion). The estimation method and fit measures in GEE are attempts 
to approximate what maximum likelihood would estimate under conditions of fuller 
information about the data.

2. Likewise, homogeneity of variances of values of the outcome variable between groups is 
not assumed.

Advocates of multilevel modeling tend to view multilevel modeling as preferable to GEE because 
it incorporates more information. With regard to the parametric/nonparametric issue, gener-
alized multilevel modeling is available (see Chapter 12), allowing the researcher to select an 
appropriate data distribution and link function. If the data distribution is unknown, alternative  
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Chapter 1   ■   Introduction to Multilevel Modeling  15

distributions can be explored using likelihood ratio tests. With regard to the issue of homogeneity/ 
heterogeneity of variances, multilevel modeling supports heterogeneous variance models (see 
Chapter 9) and again, likelihood ratio tests allow the researcher to explore the effects of different 
assumptions about variances.

One researcher put the difference between multilevel mixed modeling and GEE modeling this way:

GEEs appeal to people who don’t like distributional assumptions, whereas MLMs 
appeal to people who like generative models. I prefer MLMs because I like to set up an 
explicit model for the data; others prefer GEEs because they like to have a procedure 
that estimates parameters in the absence of assumptions for how the coefficients vary. 
(Gelman, 2006; see also McNeish et al., 2017)

In summary, the multilevel mixed modeling vs. GEE choice remains a debatable topic with no 
“correct” answer. There is agreement that GEE is a population-averaged method unsuitable for 
analysis of subject-specific effects. The essential argument in favor of GEE for analysis of group- 
averaged effects is that its relaxed assumptions present the researcher fewer obstacles and make the 
issue of model misspecification less important (see Hubbard et al., 2010). The essential argument 
in favor of multilevel mixed modeling is that it allows the researcher to explore subject-specific 
as well as between-group effects and to use full information to analyze alternative model assump-
tions. Moreover, for larger samples, multilevel modeling is itself reliable and robust even when 
assumptions are violated to a non-extreme degree (cf. Hox, Moerbeek, & van de Schoot, 2018).

Summary

Key concepts learned by the reader in this introductory 
chapter include the following points:

• Multilevel modeling is used for any data in 
which the outcome variable’s values are not 
independent but rather cluster by the groups 
formed by categorical variables within which it 
is nested or by which it is cross-classified.

• Ignoring the clustering effects of multilevel data 
violates the data independence assumption 
of OLS regression and may lead to serious 
misinterpretation of regression effects. OLS 
regression will tend to yield too many spuriously 
significant findings (Type I errors).

• Whether a multilevel model is needed can be 
inferred from either of two mathematically 
equivalent tests: (1) The intraclass correlation 
(ICC) is significant, or (2) the random effect of the 
clustering variable component is significant.

• There are many synonyms for multilevel 
modeling, the primary ones being linear 
mixed modeling (LMM) and hierarchical linear 
modeling (HLM).

• Ordinary multilevel modeling uses linear 
regression but there is also generalized 
multilevel modeling for nonlinear relationships.

• The categorical variable by which values of 
the dependent variable(s) cluster is called the 
clustering variable. Synonyms are the grouping 
variable, link variable, or level variable.

• The clustering variable at level 2 may be used 
to adjust the intercept (estimated mean) of the 
DV at level 2. In addition it may be used to adjust 
the slope (b coefficient) of any level 1 predictor 
variables (regressors, predictor variables) of 
the DV. The same is true of any level 2 predictor 
variables. There may be more than two levels.
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16  Multilevel Modeling

• If only the intercept of the DV is adjusted, the 
model is a type of multilevel intercept model. If 
one or more slopes are adjusted as well, the 
model is a type of multilevel coefficients model.

• Different statistical packages implement 
multilevel modeling in somewhat different 
ways, not infrequently using different labels for 
the same things. Moreover, different statistical 
packages offer different default settings, 
different estimation algorithms, different output 
options, and different assumptions. Familiarity 
with different packages helps with selecting 
the best tool for the job, replication of previous 
studies, and simply reading the diverse multilevel 
modeling literature. This book illustrates MLM 
models in SPSS, Stata, SAS, HLM 7, and R.

• It is not enough to show higher levels affect 
intercepts and slopes at lower levels. The 
researcher should be prepared to explain  
the mechanisms by which higher levels  
may affect lower levels. To avoid having  
data-driven results, the researcher should  
base the research design in multilevel theory.

• Multilevel models use five main types of 
multilevel data: hierarchical data, repeated 
measures data, random effects data, cross-
classified data, and multiple outcome data.

• In multilevel modeling, the null model is the 
model with only the clustering variable as a 
modifier of the mean (intercept) of the DV, with 
no predictor variables at any level. A primary use 
of the null model is to test if there is a significant 

effect of the clustering variable, thereby justifying 
the need for multilevel modeling.

• The random intercept model is one in which the 
clustering variable models the intercept at level 1 
(as does the null model) but there are also fixed 
effects of predictor variables at level 1. This is a 
type of ANCOVA model with random effects.

• The random coefficients model has the 
elements of a random intercept model but in 
addition the clustering variable models one or 
more slopes of lower level predictor variables.

• The random intercept regression model is one 
with no predictor variables at level 1 but in which 
the level 1 intercept is modeled both by the 
clustering variable at level 2 and by one or more 
level 2 predictor variables. This is sometimes 
called the means as outcomes regression model.

• The random intercept ANCOVA model is a random 
intercept regression model to which one or more 
predictor variables have been added at level 1.

• The random coefficients ANCOVA model is a 
random intercept ANCOVA model in which the 
slopes of one or more level 1 predictor variables 
is modeled by the clustering variable and possibly 
by one or more level 2 predictor variables.

• There are many other types of multilevel model.

• Hierarchical data may also be handled using 
generalized estimating equations (GEE), but that 
technique is unsuitable for analyzing subject-level 
effects.

Glossary

Multilevel modeling (MLM)
Common synonyms are linear mixed modeling (LMM) or 
hierarchical linear modeling (HLM). Multilevel modeling 
is used when there is clustering of the outcome variable 
by a categorical variable, such that error is correlated. 
When error is no longer independent, OLS regression 
would result in biased estimates.

Multilevel models have at least 2 levels. Level 1 
includes the outcome variable while level 2 reflects 
groups defined by the categorical clustering (group-
ing, level) variable. Higher levels may also be in the 
model. Although commonly used for nested hierarchical 
data, MLM can also handle cross-classified data if the 
researcher declares the data as such.
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Chapter 1   ■   Introduction to Multilevel Modeling  17

Multilevel models include both fixed and random effects, 
with fixed effects referring to the level 1 regression model 
for the outcome variable. Predictor variables at any level 
may be fixed effects in this model. Random effects refer to 
the effects of the grouping variable on the intercept of the 
outcome variable or to its effects on slopes (b coefficients) 
of one or more level 1 fixed effects. Lower level slopes may 
also be conditioned by higher level predictor variables.

Fixed effects vs. random effects
Fixed effects refer to effects in the level 1 regression 
model. Fixed effects may be associated with predic-
tors at any level. Random effects refer to the effects 
of clustering of the outcome variable within categor-
ical levels of a clustering variable which defines a 
level in a multilevel model. Random effects are used 
to adjust estimates for the intercept of the level 1 out-
come variable or slope (b) coefficients of one or more 
predictor variables. The same variable may be both a 
fixed effect (it is a predictor in the level 1 regression 
model) and a random effect (its slope estimates are  
conditioned by random effects of the grouping variable).

Within-group effects vs. between-group effects
Between-group effects refer to effects existing at the group 
level as defined by the grouping variable. Within-group 
effects refer to effects remaining at the individual level after 
controlling for the effects of the grouping variable. The 
residual variance component in MLM is the within-group 
effect and reflects unexplained variance. Multilevel model-
ing can compare within-group and between group effects. 
When random effects are uncorrelated, as in variance 
components (VC) models, MLM can partition the variance 
in the outcome variable into the percentage attributable to 
between-groups effects (e.g., effects of a grouping vari-
able such as schoolid) and the percentage attributable to 
within-groups effects (e.g., residual individual-level effects 
after controlling for between-groups effects).

Null model
In OLS regression, the null model is an intercept-only 
model with no predictors of the outcome variable. In 
MLM, the null model is the similar but is not strictly 
an intercept-only model since there is one predictor: 
the categorical variable defining groups at level 2.  
Another synonym for the null model in MLM is the 
baseline model, referring to the fact that the null may 

be used to assess improvement in model fit vis-à-vis 
later models which include additional effects.

Unconditional model vs. conditional model
The null model is unconditional since estimates of the 
outcome variable are not conditioned by any effects 
other than the effect of the grouping (level) variable. 
More complex models are considered conditional, as the 
estimates of the outcome variable are conditioned on the 
predictor variables added to the model.

Random intercept models vs.  
random coefficients models
A random intercept model includes the random effect of 
the clustering variable on the mean (intercept) of the out-
come variable but does not include random effects on the 
slopes of any regressors in the fixed effects (regression) 
model for the outcome variable at level 1. In contrast, a 
random coefficients model estimates not only the level 1 
intercept but also one or more regressor slopes.

Random intercept regression model
The random coefficients regression model estimates only 
the intercept of the outcome variable. No slopes of level 1  
predictor variables are estimated in this model. In addi-
tion to the effect of the level 2 grouping variable on the 
intercept, there are one or more level 2 predictor variables 
which also influence the level 1 outcome variable.

In comparison, the random intercept ANCOVA model is 
similar to the random intercept regression model but 
adds one or more level 1 predictor variables as pre-
dictors of the level 1 intercept. This is distinguished 
from the random coefficients ANCOVA model, which is 
similar to the random intercept ANCOVA model but the 
slopes of one or more level 1 predictor variables are 
modeled by the grouping variable.

Generalized multilevel modeling (GMLM)
GMLM supports nonlinear multilevel modeling. Although 
by default ordinary multilevel modeling assumes linear 
relationships, generalized modeling software can be used 
to incorporate such nonlinear forms of regression as 
gamma regression for skewed data, ordinal regression for 
ordinal outcome variables, logistic regression for binary 
outcomes, and many others. Synonyms include general-
ized linear mixed modeling and generalized hierarchical 
linear modeling.
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18  Multilevel Modeling

Challenge Questions With Answers

Questions

 1-1.  Apart from obtaining more accurate model coefficients, what is the primary function of multilevel 
modeling for two-level models?

a. to separate within-group individual effects from between-group aggregate effects

b. to separate between-group aggregate effects from the total effects

c. to combine the effects of variables at different levels

d. to combine the effects of variables at the group level

 1-2.  What OLS regression assumption often is violated by multilevel data?

 1-3.  What is one of the two mathematically equivalent tests which indicate whether a multilevel model is needed?

 1-4. True or false: Multilevel modeling can only be done with linear relationships.

 1-5. True or false: Multilevel modeling can handle more than two levels.

 1-6. Which of the following statistical packages handles multilevel modeling?

a. HLM 7

b. SAS

c. SPSS

d. All of these

 1-7. What is multilevel theory and why is it important in multilevel analysis?

 1-8.  Which of the following is NOT one of the five main types of multilevel data?

a. cross-classified data

b. cross-sectional data

c. hierarchical data

d. multiple outcome data

 1-9.  What are the two primary uses of the null model in multilevel modeling?

1-10.  True or false: The random coefficients model is one in which the grouping variable models the intercept at 
level 1 (as does the null model) but there are also fixed effects of predictor variables at level 1.

Answers

 1-1.  A. Apart from obtaining more accurate estimates, the primary function of multilevel modeling is to 
separate within-group individual effects at level 1 from between-group aggregate effects at level 2, for 
two-level models.

 1-2.  The OLS regression assumption of data independence often is violated by multilevel data, as dependent 
variable values at level 1 may well cluster within groups defining level 2.

 1-3.  For the null model, the researcher looks at the significance of the intraclass correlation (ICC) coefficient 
and/or the random effect of the variance component for the grouping (clustering, level) variable. If one is 
significant, the other will be also. Significance indicates that a multilevel model is necessary.

 1-4.  False. Although ordinary multilevel modeling uses linear regression, generalized multilevel modeling is 
also available to handle nonlinear relationships.
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Chapter 1   ■   Introduction to Multilevel Modeling  19

 1-5.  True. Multilevel modeling can handle more than two levels. More than two levels is often the case, for example, 
with longitudinal data. In practice, multilevel models rarely have more than four levels.

 1-6.  D. All of these. Of the packages discussed in this book, HLM 7, SAS, SPSS, Stata, and R all support multilevel 
modeling, although implementation may differ (e.g., by using different labels and offering different default settings).

 1-7.  Multilevel theory explains the mechanisms behind these effects in the multilevel model. That is, multilevel 
theories relate higher level effects to lower level effects. Without multilevel theory, findings may be data 
driven and therefore may be less valid and less stable.

 1-8.  B. Cross-sectional data is not a type of multilevel data. The five main types of multilevel data are hierarchical data, 
repeated measures data, random effects data, cross-classified data, and multiple outcome data.

 1-9.  A primary use of the null model is to test if there is a significant effect of the grouping variable which defines 
a higher level such as level 2. If this is significant, the need for multilevel modeling is justified. A second 
major use of the null model is as a baseline for comparison using likelihood ratio tests of model differences.

1-10.  False. The model in which the clustering variable models the intercept at level 1 (as does the null model) 
but there may also be fixed effects of predictor variables at level 1 is the random intercept model. In 
contrast, the random coefficients model has elements of the random intercept model, but in addition the 
clustering variable models one or more slopes of lower level predictor variables.

Notes

1. https://stats.idre.ucla.edu/stata/faq/how-can-i- 
perform-mediation-with-multilevel-data-method-1/

2. https://stats.idre.ucla.edu/stata/faq/how-can-i- 
perform-mediation-with-multilevel-data-method-2/

3. https://stats.idre.ucla.edu/sas/faq/how-can-i- 
perform-mediation-with-multilevel-data-method-1/;  
https://stats.idre.ucla.edu/sas/faq/how-can-i-perform- 
mediation-with-multilevel-data-method-2/

4. http://www.page-gould.com/r/indirectmlm/

5. Information on the student version of HLM is found 
at http://www.ssicentral.com/hlm/student.html. 
Limitations: The STAT/Transfer utility used for the 
importation of data is not included. The student  

edition will only accept ASCII, SYSTAT, SPSS for  
Windows, or SAS transport data files. Note that SPSS 
data files created with SPSS 21 or earlier can be 
used with the student edition. For a Level-3 model, 
the maximum number of observations that may be 
used at Levels 1, 2, and 3 is approximately 8000, 
1700, and 60, respectively. Note that the restriction 
applies to observations in the case of the level-2 file, 
for example, and not to the actual number of level-2 
units to be included in the analysis. For a level-2 
model, the maximum number of observations at the 
two levels is 8000 at level 1 and 350 at level 2 of the 
hierarchy. No more than five effects may be included 
in any HLM equation at any level of the model, and 
the grand total of effects cannot be 25 or higher.

Visit study.sagepub.com/researchmethods/statistics/garson-multilevel-modeling  
for downloadable study resources to accompany this text!

• Online Appendix 1: Getting Started with R and R Studio 

• Online Appendix 2: Additional Frequently Asked Questions

• Datasets and Codebooks from the book

• Figures & Tables from the book 
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