THE NULL MODEL

OVERVIEW

The multilevel null model, which is sometimes called the “unconditional means model,” is
primarily important for two reasons:

1. The null model is used in two-level models to see if the grouping variable at level 2 (or
higher) significantly affects the intercept (mean) of the dependent variable (DV) at level 1. If it
does not, then multilevel modeling may not be needed and some usual form of regression may
be employed instead. Specifically, if the variance component for the grouping variable (e.g., the
school level at level 2 in a study of student test scores at level 1; see Figure 3.1) is significant in
the random effects table, then there is an effect of the higher level on the DV at the lower level
and therefore multilevel modeling is necessary. This is mathematically equivalent to finding that
there is a significant intraclass correlation coefficient (ICC) based on the grouping variable. The
closer the ICC is to 0, the more likely it is to be nonsignificant, meaning that the level 1 DV is
independent of the level 2 grouping variable and multilevel modeling is not needed. However, to
use OLS regression in spite of a significant level 2 variance component or significant ICC ignores
heteroskedastic error variance and will lead to inaccurate standard errors and significance tests.

THE INTRACLASS CORRELATION COEFFICIENT (ICC)

Inatwo-level unconditional (null) model, the intraclass correlation coefficient may
be computed by taking the variance component of the level 2 clustering (grouping,
level) variable and dividing it by the total of all variance components. Thus the ICC
isthe variance in the outcome variable explained by the level 2 clustering variable
as a percentage of all variance explained by random effects, including that of the
residual variance component.

A significant ICC means that the level 2 clustering variable is significant and
therefore multilevel modeling should be used. However, since the significance of
the ICC is mathematically equivalent to the significance of the level 2 clustering
variable, there is no need to compute the ICC, which in this context is redundant.
It is for this reason that most multilevel statistical packages do not compute the
ICC coefficient.
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FIGURE3.1 @ The Unconditional Random Intercept (Null) Model

The clustering (link, level, grouping)
Level 2 categorical variable defining level 2

Null
Model

Level 1 The outcome variable at level 1
(the intercept or mean of mathach)

2. The null model may be used as a baseline model. When' the researcher adds additional
effects to the model, predictions should improve and error should be less. The likelihood ratio
test, discussed below, tests if the researcher’s model has significantlyless error than the null model.

In this chapter, we illustrate the null model using the-“High School and Beyond” dataset,
described in Appendix 1 and available on the companion website sagepub.com/garson. In this
classic dataset, students are nested within schools. The outcome variable is math achievement
score (mathach). We use the null model to see if math scores at level 1 cluster by school (the
schoolid variable) at level 2. If there is a school effect, then multilevel modeling is needed. Use of
ordinal least squares (OLS) regression instead would generate coeflicients which are inappropriate
since observations are clustered rather than independent, violating a basic assumption of OLS.

TESTING THE NEED FOR
MULTILEVELMODELING

Overview

In the SPSS, Stata, SAS, HLM 7, and R sections below, we test whether the variance com-
ponent associated with the level 2 grouping variable is significant. As mentioned above, this
is equivalent mathematically to testing whether the ICC is significant. Given the example of
student scores at level 1 and schools as the grouping variable at level 2, a finding of signif-
icance-means that there is a random effect of school-level variation on student-level scores.
Put another way, variation between schools on mean student math scores is important and
alters the estimates of standard errors when estimating student scores. Standard errors com-
puted by OLS regression will be wrong because the clustering of scores at the school level is
ignored. However, when the school variance component (or ICC) is nonsignificant, multilevel
and OLS regression estimates will be approximately the same for the intercept of the level 1

dependent variable (DV).

It is important to note, however, that when the variance components/ICC test returns a find-
ing of nonsignificance, this is not absolute proof that there is no need for multilevel modeling.
Nonsignificance only shows that the means of the dependent variable do not vary by school. It is
still possible that the slopes (b coefficients) of level 1 predictors do vary by school. Thus, while a
finding of nonsignificance rules out the need for a random intercept model, it does not rule out
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the need for a random coefficients model. In practice, however, it is unlikely that the random
effect of a higher level variable like schools would affect the slopes of fixed effects at level 1 but
not affect the DV mean at level 1.

Using the schools—student scores example, the ICC coeflicient may be computed as the vari-
ance component for schools divided by the total of variance components (the school compo-
nent plus the residual component in a null model). This is illustrated in worked examples in
the statistical package sections further below. Put another way, the ICC is the between-groups
effect (the school component) divided by total effects (school plus residual components) in
the null model. The residual component is the within-groups effect reflecting variation in
student scores at level 1 not explained by variation in mean scores at the school level. That is,
the residual component is unexplained variance. These components are shown in an ANOVA
(analysis of variance) table in multilevel output. This table may be labeled the “variance
components,” the “covariance parameters,” or the “random effects” table, depending on the
software package used.

The Intraclass Correlation Coefficient (ICC)

The intraclass correlation (ICC) may be considered a special case of the partition of vari-
ance components, discussed in a later section of this chapter. It is the share of variance
accounted for by the random effect of the intercept component in a null'model. ICC reflects
the effect size of the level 2 grouping variable when there are no-other random or fixed
effects in the two-level model. For his similar science test example, Peugh (2010) thus wrote,
“Conceptually, the ICC is similar to the R?* effect size from regression and the eta-squared
effect size from ANOVA; it is the proportion of student science achievement score variance
that can be explained by mean science achievement differences across schools” (p. 89; when
no other variables are in the model). ICC may also-be computed for models with three or
more levels.

Variance Components/ICC Test Results vs. ANOVA Results

The variance components or equivalent ICC tests may be used to investigate if there is a sig-
nificant level 2 (e.g., school-level) effect-on the intercept for a level 1 variable (math achieve-
ment scores in the current example). If the effect of the level 2 clustering (a.k.a. grouping,
link, or level) variable is nonsignificant, multilevel modeling may not be called for. However,
it is possible for the school effect to be nonsignificant by the ICC test yet in a one-way
ANOVA with school as the independent variable there still may be a significant effect of
school on math scores, seemingly contradicting the results of the variance components/ICC
test! In deciding between the two criteria, the variance components/ICC test should take
precedence because variance components/ICC in linear mixed modeling and ANOVA are
testing two different things.

ANOVA relies on F-tests of significance of group means. The formulas for t-tests reflect a special
case of one-way ANOVA. A finding of significance is based on three things: the difference in
means, sample size, and the magnitude of the variances. That is, the ANOVA F-test is a function
of the variance of the set of group means, the overall mean of all observations, and the variances
of the observations in each group weighted for group sample size. Thus, the larger the difference
in means, the larger the sample sizes, and/or the lower the variances, the more likely a finding

of significance in ANOVA.

By way of comparison, in linear mixed modeling the random effects (like the school effect) are
variance components, reflecting the proportion of variance in math scores accounted for by the
school effect and by other random and residual effects in the model. In the variance components/
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ICC test there is only one random factor, which is the level 2 link variable, schoolid. When the
within-school (residual) component is large, the between-schools (random effect of schoolid)
may be too small to be significant. That is, nonsignificance will be found when we cannot say
that the amount of variance in math scores accounted for by schoolid is different from zero,
implying that multilevel modeling may not be warranted.

In summary, that the schoolid variance component is not significant does not mean that the
means and variances associated with all the schools are the same. ANOVA may show that they
are not. However, whether means and variances are the same across schools is a different ques-
tion from whether there is a random effect of schools at level 2 on math scores at level 1. If the
variance components/ICC test is significant, then the ANOVA test will be significant also.
However, the reverse is not true. If ANOVA shows significant differences across schools, it is not
necessarily the case that the variance components/ICC test will be significant.

LIKELIHOOD RATIO TESTS

OLS estimation in linear regression provides the familiar R-squared coefficient as a measure of

model effect size, interpreted in terms of percentage of DV variance explained. There is no such
measure in multilevel modeling. Multilevel modeling usually employs some form of maximum
likelihood estimation (ML or its restricted version, REML, discussed in Chapter 4). The effect
size measure returned by ML is the likelihood (L), a measure of model error, with lower being
less error and better model fit. Because when converted to —2 log likelihood (—2LL) it then
conforms to a chi-square distribution and therefore may be the basis for significance testing. It
is this value (-2LL) which is used in likelihood ratio tests. The —2LL value is also called “model
chi square” or “deviance.”

There is no “percentage of variance explained” or other easily understood intrinsic meaning for
the —2LL value. Instead, the overall effect size of the researcher’s model is gauged in terms of
how much the model reduces error, reflected in a lower —2LL value, compared to some baseline
model. The most common baseline for comparison is comparing —2LL in the researcher’s model
with —2LL in the null model. While a likelihood ratio test may be used with any comparison of
nested models, this is its most ubiquitous application. The likelihood ratio test is illustrated with
worked examples in Chapter 6 and elsewhere in later sections of this book. A synonym for the
likelihood ratio test is the “chi-square difference test.”

The likelihood ratio test is one of the fundamental procedures in multilevel modeling. It com-
pares the amount of error in the researcher’s current model of interest with the amount of
error in some comparison model. As just discussed, a common comparison model is the null
model.'A second common type of likelihood ratio test comparison is comparing the researcher’s
model with a reduced model (the researcher’s model after dropping one or more random or fixed
effects). If the difference in error is nonsignificant by the likelihood ratio test then the reduced
model is preferred since it is the more parsimonious. That is, simpler models are preferred and

the dropped effects remain dropped.

It is important to emphasize that when comparing two models with likelihood ratio tests, the
smaller model must be nested within the larger model. “Nested” thus means that the larger
model must have all the terms found in the smaller model. Nonnested models must be com-
pared using information theory measures (discussed in Chapter 5), not the likelihood ratio test.
Note also that the likelihood ratio test for differences in fixed effects requires ML estimation. If
only random effects are being tested, ML or REML estimation may be used. ML, REML, and
other types of estimation are discussed in Chapter 4.
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Partly by way of summary, there are several cautions associated with likelihood ratio tests:

1. The models compared must be nested, with all the terms in the smaller model included
in the larger model. For instance, the null model is nested within the random intercept
model or the random coefficients model. As a second example, models with any of the
other covariance structures are nested within the unstructured covariance structure
model. Covariance structures were discussed in Chapter 2.

2. REML estimation, which is the default in some computer programs, will lead to erroneous
likelihood ratio test results if the two models compared differ in their fixed effects.

3. Maximum likelihood (ML) estimation should be used if the models being compared
differ in fixed effects. ML estimation assumes the dependent variable does not deviate
markedly from a normal distribution.

4. Assignificant difference in model chi-square values between two models may be due to
sample size as well as due to actual difference. That is, in large samples, even very small
and substantively trivial differences may be statistically significant. The likelihood ratio
test is inaccurate if the two models being compared differ in sample sizes. One way this
can happen is through listwise deletion of cases with missing dara.

5. Deviance (-2LL) values may be strongly affected by model misspecification.
Misspecification includes specification of the wrong covariance structure. Simulation
research has shown misspecification can lead to erroneous inferences using the
likelihood ratio test (Yuan & Bentler, 2004).

6. The likelihood ratio test is inaccurate if one or more predictor variables have missing data.

Though often executed “behind the scenes” by computer software, the computation of the like-
lihood ratio test is simple, paralleling ordinary chi-square tests. For the chi-square test value, the
researcher takes the difference in —2LL between a model of interest and a comparison model such as
the null model. The degrees of freedom (df) is the difference in degrees of freedom between the two
models. Using the chi-square value and df, and given a researcher-selected alpha significance level
(typically .05), a chi-square table may be consulted. If the computed chi-square value is as large or
larger than the table value for the given df and alpha values, then the difference is significant.

A significant finding resulting from a likelihood ratio test means that the presence in the
larger model of the random and/or fixed effects which are missing from the smaller model is
such that model error is significantly reduced. Therefore these effects are retained in the larger
model, which is typically the researcher’s model of interest. Conversely, a nonsignificant finding
(p > .05) means the effect or effects do not reduce error and therefore they are dropped one at a
time from the larger model.

The Wald test, used by SPSS, is an alternative to the likelihood ratio test method of choosing
which effects to retain in or drop from the researcher’s model. However, the likelihood ratio
test is preferred over the Wald test as the lacter is known to incur greater Type II error (false
negatives) due to its tendency to inflate standard errors for large effects (Singer & Willett, 2003).
Referring to the Wald test and others like it, Singer (1998) writes,

the validity of these tests has been called into question both because they rely on large
sample approximations (not useful with the small sample sizes often analyzed using
multilevel models) and because variance components are known to have skewed (and
bounded) sampling distributions that render normal approximations such as these

questionable. (p. 351)
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PARTITION OF VARIANCE COMPONENTS

The variance components model, which was discussed in Chapter 2, is the basis for null model
testing of the need for multilevel modeling and, by extension, for variance components/ICC
tests for the same purpose. While the term variance components is sometimes used generically
for all random effects, technically a random effect is a variance component if its variance-
covariance structure is of the variance components (VC) type. In the VC type, the off-diagonal
cells of the variance-covariance matrix are 0s. In simple language this means that there is
0 covariance between any two random effects. (Partitioning variance components only
applies if there are two or more.) The same is true of diagonal (DIA) structure models and
“Independence” structure models. In contrast, for unstructured (UN) models, random effects
are allowed to covary.

When the random effects are independent, as in VC, DIA, and Independence models, one
may sum variance components to obtain a total for the variance explained in the depen-
dent variable. One cannot add to get a total in models where random-effects covary because
there is “overlap,” making summation impossible. In VC, DIAG, or Independence structure
models, however, any given random effect component may be divided by the sum of esti-
mated components to give its share of variance explained in the level 1 dependent variable by
level 2 effects. These percentages are ones controlling for other variables and effects in the
model. In summary,

o The component for the grouping variable at level 2 divided by the total is the
percentage of variance attributable to the grouping variable (e.g., school), controlling
for other random and fixed effects, where percentage of variance refers to percentage
of level 2 effects. Rabe-Hesketh and Skrondal (2008) call this a reliability coeficient
and state, “The reliability can be thought of as the proportion of the total variance that
is ‘explained’ by subjects, analogously to the coefficient of determination R? in linear
regression” (p. 58). However, in simple linear regression, R? reflects explanation by all
fixed effects in the model and there are no random effects. The intercept reliability in
multilevel modeling reflects explanation by the random effect of the level 2 grouping
variable, controlling for other random and fixed effects.

o 'The residual component divided by the total gives the percentage of variance in the
DV accounted for at level 2 by within-group effects. For instance, in the null model
example, this is the variance in math scores due to variation among students after
controlling for the school effect. In general, the residual percentage is the percentage of
variance not explained by other effects.

o If there are other random effects, dividing that component by the total yields the
percentage of total variance attributable at level 2 to that random effect, controlling for
other random effects. In general, as other random effects are added to the model, the
random effect of the grouping variable (e.g., the school effect) will diminish.

EXAMPLES

Overview

In the following five subsections, we present how to implement the same null model in SPSS,
Stata, SAS, HLM 7, and R respectively. While there is necessarily some repetition in presenting
five packages, there are also differences in approach, assumptions, labeling, input and output
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options, and sometimes even in results. Looking at all five is not only a learning experience but
also is good preparation for being a statistics-literate reader of the professional literature, where
any of the packages may be encountered.

For readers wishing to see the model presented in equation form, with equations for each level,
the HLM 7 package is the only one presenting this in output. The interested reader may wish to
skip to the HLM 7 section for this type of model presentation.

The Null Model in SPSS
For the null model in SPSS, we use the file hsbmerged.sav, described in Appendix 1 and avail-

able on the companion website. Like most statistical packages, there is more than one way to
implement a null model in SPSS, but using the standard method, the steps in running the null
model are described below, with commentary on output.

1. We open the data in the usual way by selecting File > Open > Data from the
SPSS menu.

2. Request multilevel modeling by selecting Analyze > Mixed Models > Linear from
the menu.

3. SPSS opens the “Specify Subjects and Repeated” dialog, shown.in Figure 3.2. “Subjects”
refers to the clustering variable which defines the level 2 groups, here schoolid. There
are no repeated measures in this example, but if there were the variable defining the
repetitions (e.g., year for year of math test) would be entered. Click Continue.

FIGURE 3.2 @ The Initial Specify Subjects and Repeated Dialog

8

‘ Click Continue for models with uncorrelated terms.
| Specify Subject variable for models with correlated random effects.

| Specify both Repeated and Subject variables for models with correlated
residuals within the random effects.

Subjects:

& minority G schoolid
| | & female
| | & ses @
1 I mathach
. & size

il sector
‘ & pracad Repeated:
f disclim
il himinty
& meanses -

Repeated Covariance Type: 3 -
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4. SPSS next shows the main “Linear Mixed Models” dialog, shown in Figure 3.3.
In the null model there are no factors or covariates, only the dependent variable,
mathach. As there are no fixed effects in a null model, the Fixed button may
be ignored.

FIGURE 3.3 @ The Main “Linear Mixed Models" Dialog

L)y
@ Linear Mixed Models

Dependent Variable:
&a schoolid Q [ mathacn

i fr::::::y Eactor(s):
l ses »
& size =
{ﬂ sector
’ pracad Qovan'ate(s):
& disclim

o] himinty | - |
’ meanses

Residual Weight:

&N |
Lok J (gsste [ BesetJ(cancer_rietp |

Click the “Random” button in the “Linear Mixed Models” dialog to go to the
“Random Effects” dialog, shown in Figure 3.4. There is one random effect,
which is the school effect on the intercept (mean) of the level 1 DV, mathach.
Let the “Covariance Type” be “Variance Components” (the default). A common
textbook recommendation for null model testing is to make the assumed
covariance structure one of the “Variance Components” (VC) type. However,
in fact the null model is a type of random intercept model, for which
covariance structure specifications are irrelevant. Any specification will yield
the same result. Check “Include intercept” (not a default), then move

schoolid from the “Subjects” variable list so it also appears in the “Combinations”
variable list. Click “Continue” to return to the main “Linear Mixed

Models” dialog.
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FIGURE 3.4 @ The "Random Effects” Dialog

'}@ Linear Mixed Models: Random Effects X

r Random Effect 1 of 1

Covariance Type:
Random Effects
@® Build terms
Eactors and Covariates:

\Variance Components . ~|

© Build nested terms
Model:

[ Include intercept

[Factonat - |

[ By* ][Q\glthm;J [ClgarTer.’nJ [ Add J[Be:t\cve]

Build Term

Subject Groupings \ - 4
Subjects: Combinations:
&, schoolid &4 schoolid

5. Click the “Estimation” button. In the “Linear Mixed Models: Estimation” window,
override default REML estimation and instead click the “Maximum Likelihood (ML)”
radio button, as shown in Figure 3.5. The choice between ML and REML estimation is
discussed in Chapters 2 and 4. Other defaults are left as they were. If the model failed
to converge on a solution, it might be necessary to adjust these settings, as discussed
in Chapter 2. Again click “Continue” to return to the previously shown main “Linear

Mixed Models” dialog.
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FIGURE 3.5 @ The “Estimation” Dialog

@ Linear Mixed Models: Estimation X

~ Method
© Restricted Maximum Likelihood (REML)
® Maximum Likelihood (ML)

- Iterations
Maximum iterations: [100 | |
Maximum step-halvings: [10
("] Printiteration history for every 1 step(s)

- Log-Likelihood Convergence

@ Absolute © Relative
LE UL [ T—
- Parameter Convergence
@ Absolute © Relative

vaue (o0oopoty )

- Hessian Convergence

@ Absplute © Relative
Value : —
Maximum scoring steps: |1 I

Singularity tolerance: W
|Gontinue | {_Cancel | Help |

6. Click the “Statistics” button to arrive at the dialog shown in Figure 3.6. In this
dialog, the researcher selects the wanted statistical outputs. The default is none.
Here we have checked three outputs: “Descriptive statistics” (helpful to view
the mean of the DV and other basic information about the data), “Parameter
estimates” (needed to assess fixed effects, though in a null model the only fixed
effect is the intercept) and “Tests for covariance parameters” (needed to assess
random effects, which in this null model will be just the schoolid effect and the
residual effect).
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FIGURE 3.6 @ The “Statistics" Dialog

|
}@ Linear Mixed Models: Statistics X

- Summary Statistics
Descriptive statistics
Case Processing Summary

- Model Statistics
Parameter estimates

'/ Tests for covariance parameters
Correlations of parameter estimates
Covariances of parameter estimates
Covariances of random effects
Covariances of residuals

Contrast coefficient matrix

Confidence interval: 95 %

7. Click Continue, then in the main “Linear Mixed Models” dialog, click OK to run the model.

Output will appear in a separate window. Subsequent steps refer to analysis of the output.

8. CONVERGENCE. In-output, check for convergence as discussed in Chapter 2. If
there is a convergence problem, a warning will be issued (not the case for the example).
If the researcher wishes to document convergence, then under the “Estimation” button,
check “Print iteration history.” This will cause an “Iteration History” table to be printed
and if the algorithm converged on a solution, a table note will state “All convergence
criteria are satisfied.” Results should not be reported if convergence is not achieved.

9. DESCRIPTIVE STATISTICS. This very long table is not reproduced here but it
shows the mean and standard deviation for math achievement (mathach) for each of
the 160 schools defined by the grouping variable, schoolid. Among other things it may
be used to spot outlying schools with very high or very low math achievement.

10. FIXED EFFECTS. As mentioned above, the intercept is the only fixed effect in the
null model. Fixed effects output is illustrated in Figure 3.7. There is an F-test and
a t-test of the significance of the fixed effects model. Both agree, as is usual but not
inevitable. That the fixed effects model’s intercept is significant at the .000 level
confirms that the intercept is significantly different from 0, a trivial finding. For a null
model, the fixed effects table would not be reported.
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FIGURE 3.7 @ Fixed Effects Output in SPSS

% Fixed Effects

Type Il Tests of Fixed Effects’

Denominator
Source Numerator df df F Sig.

Intercept 1 157.621  2690.773 .000
a. Dependent Variable: mathach.

Estimates of Fixed Effects”
95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound  UpperBound
Intercept 12.637070 243617  157.621 51.873 .000 12155895 13118245
a. Dependent Variable: mathach.

11. RANDOM EFFECTS AND THE VARIANCE COMPONENTS/ICC TEST. In SPSS
output, random effects are found in the “Estimates of Covariance Parameters” table,
shown in Figure 3.8. There are two random effects, one for the between-groups school
effect (labeled “Interceptsubject=schoolid]”) and one for the within-groups “Residual”
effect, which reflects variance in math achievement not explained by the school effect.

FIGURE 3.8 @ Random Effects Output for the Null Model in SPSS

N
Covariance Parameters

Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error  Wald Z Sig. Lower Bound ~ Upper Bound
Residual 39.148400 660647 59.258 .000 37.874735 40.464896
Intercept [subject= Variance 8.553464 1.068633 8.004 .000 6.695709 10.926661
scheolid)

a. Dependent Variable: mathach.

That the school variance component is significant indicates that mean math
achievement varies significantly between schools. That the school component is much
smaller than the residual component indicates that the majority of math achievement
variation is within schools at the student level, even after controlling for the school effect.

Because the null model is a variance components model, the school variance
component (8.553) and the residual component (39.148) may be added together

to get the total variance in math achievement (8.553 + 39.148 = 47.702). The
intraclass correlation is the school component divided by the total (8.553/47.702 =
0.179). The school component is significant at the .000 level and so is the ICC since
the two are mathematically equivalent in significance. Because the school variance
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component (and the ICC) is significant, the researcher concludes that multilevel
modeling is necessary. Correspondingly, the researcher concludes that the estimated
standard error of math achievement using OLS regression would have been in error.

12. AIC, BIC, AND -2LL, AIC MEASURES. In SPSS, the values for —2LL, AIC,
BIC, and related measures are found in the “Information Criteria” table shown in
Figure 3.9. As discussed eatlier in this chapter, the “—2 Log Likelihood” is the —2LL
value (a.k.a. model chi-square or deviance) used as a measure of model error when
conducting likelihood ratio tests discussed eatlier in this chapter. Likelihood ratio
tests use the —2LL value (47115.810) and model degtees of freedom (3, from the “Total”
row in the “Model Dimensions” table) when comparing nested models. In Chapter 5,
for example, the likelihood ratio test is illustrated to determine if a random intercept
model is significantly better than the null model. For nonnested model comparisons,
various information theory measures such as the Akaike information criterion (AIC)
or its more conservative cousin, the Bayesian information criterion (BIC) are used.
Models with lower values have less error and better fit. For a single model with no
other comparison model, these measures have little use as, unlike R-squared in OLS
regression, they lack an intrinsic meaning that is easily communicated:

FIGURE3.9 @ -2LL,AIC, and BIC in SPSS Output

N

Model Dimension®

Number of Covariance Number of Subject
Levels Structure Parameters Variables
Fixed Effects Intercept 1 ( \ 1
Random Effects Intercepth 1 Variance 1 schoolid
Components
Residual \ 1
Total 2 3

a. Dependent Variable: mathach.

h. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your
command syntax may yield results that differ from those produced by prior versions. If you
are using version 11 syntax, please consultthe current syntax reference guide for more
information.

Information Criteria®

-2 Log Likelihood 47115.810
Akaike's Information 47121.810
Criterion (AIC)

Hurvich and Tsai's 47121.814
Criterion (AICC)

Bozdogan's Criterion 47145.449
(CAIC)

Schwarz's Bayesian 47142449
Criterion (BIC)

The information criteria are displayed in
smaller-is-hetter form.

a. Dependent Variahle: mathach.
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The Null Model in Stata

For the null model in Stata, we use the file hsbmerged.dta, described in Appendix 1 and avail-
able on the companion website. Stata output for the null model, though not the process for
obtaining it, largely parallels SPSS output. Therefore, to minimize redundancy, the reader is
referred to fuller discussion of the null model in the SPSS section above.

Multilevel models are ordinarily implemented in Stata using the mixed command. While
some texts refer to the old xtmixed command, Stata online documentation states “xtmixed
has been renamed to mixed. xtmixed continues to work but, as of Stata 13, is no longer an
official part of Stata.” Also note that the same syntax using xtmixed may not generate output
identical to mixed. Below and in ensuing sections we confine ourselves to illustration of the
mixed command and interpretation of its output.

1. DATA. For the null model in Stata, load hsbmerged.dta using File > Open from
the Stata menu system, browsing to where you saved the file downloaded from the
companion website (see Appendix 1). This will implement a command similar to that
below, or it may be entered directly after the Stata prompt. After loading the example
dataset, the Stata interface will appear as shown in Figure 3.10.

use "C:\Data\hsbmerged.dta", clear

FIGURE 3.10 @ The Stata User Interface

N Stata/IC 15.0 - C:\Data\hsbmerged.dta

- (u] X
File Edit Data Graphics Statistics User Window Help A e
FES 8@ -4 ¥ -HR B3 OC-O
Review T4 X Variables TR X
e e o e (R
| Filter commands h| @ | 7 7 7 7 A\ [Filter variables here
# | Command rc / v /. / / /. / 15.0 Copyright 1985-2017 StataCorp LLC Name Label
o Statistics/Data Analysis StataCorp hooiid
T 4905 Lakeway Drive T S
: minority
College Station, Texas 77845 USA P I
800-STATA-PC http://www.stata.com emale
979-696-4600 stata@stata.com kad
979-696-4601 (fax) mathach
size
Single-user Stata perpetual license: sector
Serial number: 301506217808 pracad
Licensed to: George Garson disclim
NCSU Home Office o
himinty
| meanses
1. Unicode is supported; see help unicode_advice.
Properties 1%
. use "C:\Data\hsbmerged.dta", clear A
- “"
= B Variables A
= Name
s Label
] Type
£ Format
Value label
Notes
© Data
Filenamg hehmefdeside

Label
Notes

| o

C:\Users\David\Documents CAP NUM OVR

2. SYNTAX. In the null model, mathach is the level 1 dependent variable (DV) and
schoolid is the level 2 grouping variable. In the null model there are no other predictor
variables. The Stata command for the null model is:

mixed mathach || schoolid:, mle
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The following points may be made with regard to the command syntax above:

a.

mixed—This calls for linear mixed modeling, which is a synonym for multilevel modeling.

b. mathach—By being listed first, math achievement is declared to be the level 1

dependent variable.

|| schoolid:—Random effects are set off with double bars. In the null model, only the
level 2 grouping variable, schoolid, is a random effect. Random effect labels end in a colon.

, mle—The comma flags the start of the options list. The mle option asks for ML
estimation. ML, not REML, is the default in Stata, so this option could have been omitted.

It is not necessary to request tests of random effects as this is part of default Stata output. The
remaining steps interpret the output.

CONVERGENCE. Estimation information appears at the top of Stata output, shown
below. That only two iterations are listed and no error messages appear means that
convergence on a solution was reached.

Performing EM optimization:

Performing gradient-based optimization:
Iteration 0: log likelihood = -23557.905
Iteration 1: log likelihood = -23557.905

Computing standard errors:

DESCRIPTIVE STATISTICS AND —2LL. In the header information for default
multilevel output, Stata outputs certain descriptive information along with the log
likelihood (LL). This must be multiplied manually by -2 to get —2LL, which is the
deviance or model chi-square value used in likelihood ratio tests when the null model is
the baseline. Thus =2 * —23557.905 = 47115.810, as reported above for SPSS. Later, the
researcher’s model with additional predictors should yield a significantly lower —2LL
value to show less error and better fit than the null model.

Mixed-effects ML regression Number of obs = 7,185
160

Group variable: sschoolid Number of groups

Obs per group:

min = 14
avg = 44.9
max = 67
Wald chi2(0) =
Log likelihood = -23557.905 Prob > chi2 =

INFORMATION THEORY MEASURES. While —2LL is used for likelihood

ratio tests when comparing nested models, information theory measures are used for
nonnested as well as nested model comparisons. These measures penalize —2LL (make
it higher) to compensate for the degree of complexity (lack of parsimony) in the model.
In Stata, the information theory measures are not part of default output but must

be requested by the postestimation command, estat ic. Only AIC and BIC are
reported, but both values are the same as in SPSS above and in other packages. When
comparing models, which need not be nested, lower is better model fic.
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estat ic
Akaike’s information criterion and Bayesian information criterion
Model | Obs 1l(null) 11 (model) df AIC BIC
____________ +__________________________________________________________
\ 7,185 . -23557.91 3 47121.81  47142.45

Note: N=Obs used in calculating BIC; see [R] BIC note.

FIXED EFFECTS. The null model has no fixed effects (level 1 regression) other than
the intercept, which Stata labels “_cons” (constant). The constant is included in the
level 1 fixed effects model by default. That it is significant only shows that the intercept
at level 1 is significantly different from zero, which is a trivial finding.‘Controlling for
the multilevel effect of schoolid, mean math achievement is expected to be 12.637.

mathach | Coef. Std. Err. z P> z| [95% Conf. Interval]
____________ +____________________________________________________________
__cons | 12.63707 .2436178 51.87 0.000 12.15959 13.11455

RANDOM EFFECTS. Random effects are shown in the “Random-effects Parameters”
table in Stata output, shown below. The values for the estimates are the same as in SPSS
and other packages. The values in the “Estimate” column are the variance components.
The “schoolid: Identity var(_cons)” row shows the component for the school effect.
Since 0 is not within its confidence limits, it is significant at the .05 level. Because there
is a significant school effect on.mean math scores (intercepts), multilevel modeling

is needed and OLS regression estimates of standard error would be in error. The
“var(Residual)” row shows the residual component, reflecting within-groups (within-
schools) variance in math-achievement scores still unexplained after controlling for the
school effect. The residual component reflects unexplained variance in the DV, which

is also significant. The residual component is much larger than the variance explained
by the school effect. The large unexplained (residual) effect suggests the need for a more
complex model with additional predictors.

Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall]
___________________________ o
schoolid: Identity

var( _cons) | 8.55352 1.068642 6.69575 10.92674

___________________________ +_________________________________________
var(Residual) | 39.14839 .6606469 37.87473 40.46489

‘The “Identity” part in the output above is a reminder that a diagonal covariance structure was
assumed by default in Stata. In a null model, this is equivalent to a variance components structure.

LIKELIHOOD RATIO TEST OF THE NULL MODEL VS. OLS BASELINE. At

the end of the default Stata output is the likelihood ratio test of whether the null model
is significantly different from the corresponding OLS model.
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LR test vs. linear model: chibar2(0l) = 983.92
Prob >= chibar2 = 0.0000

Thac this test is significant indicates that multilevel modeling is needed because multilevel
estimates differ significantly from OLS estimates of standard errors. This test is not found
in SPSS though could be computed manually. However, the variance components/ICC
test serves the same function and is much more widely reported.

9. THE VARIANCE COMPONENTS/ICC TEST. A significant school effect or ICC
means that a random intercept model is needed for accurate estimates. That the school
variance component in random effects output above is significant is mathematically
identical to finding the intraclass correlation (ICC) to be significant. The ICC is the
school effect divided by the total effect, here 0.179. The significance of the ICC is
mathematically identical to the significance of the school effect. By manual computation:

ICC = school effect/total effect = school effect/(school effect + residual effect)
=8.553/(39.148 + 8.553)
=0.179

The Null Model in SAS
For the null model in SAS, we use the file hsbmerged.sas7bdat, described in Appendix 1 and

available on the companion website. Because SAS output (but not input) for the null model
largely parallels SPSS output, to minimize redundancy, the reader is referred to fuller discussion
of the null model in previous SPSS and Stata sections in this chapter.

SAS is primarily a code-based statistical system based on input of user-supplied syntax in the
(syntax) Editor window. The SAS user interface is-shown in Figure 3.11.

FIGURE 3.11 @ The SAS User Interface
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Results % | M‘ ms'ou‘p!
(&P Results
-5 Mixed: Multilevel Null Model Multilevel Null Model A
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[#] Class Level Information The Mixed Procedure
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[a] Number of Obsenvations ffil] Results Model Information
+-|#] tteration History .
[8] Convergence Status Viewer Data Set IN.HSBMERGED
[#] Covariznce Parameter Estin Dependent Variable mathach
[s] Fit Statistics e
E] Solution for Fixed Effects Covariance Structure Variance Components
la] solution for Random Effect Subject Effect schoolid
Estimation Method ML
v
Results Residual Variance Method | Profile
(table of B En - Urieat SE=
contents) LIBNAME in "C:\Data"; ~
TITLE "Multilevel Null Model";
E/PROC MIXED DATA=in.hsbmerged COVIEST METHOD = ML
CLASS schoolid;
MODEL mathach = /SOLUTION CL; .
RANDOM INTERCEPT / SUBJECT=schoolid CL; Syntax Editor
RUN; v
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SAS has a very large number of options within any procedure, including PROC MIXED,
which is the primary SAS module used to implement multilevel models. Since this volume
is aimed at the introductory graduate level, however, discussion here is restricted to core
methods. The process of obtaining and interpreting null model output is given below as a
series of numbered steps.

1. SYNTAX. In Figure 3.11, SAS syntax for the null model has been entered into the
Editor window shown at the bottom. When viewed on a monitor the start and end
of a SAS procedure is shown in black (here, PROC MIXED. . . .RUN). Other SAS
command words and options are shown in blue. Note that statements end in semi-
colons. Options for a statement are delimited by a slash mark. In this figure, the
syntax has already been run so output is shown in the “Results Viewer” window
above the syntax editing window. Also, in the “Results” window on the left, a table of
contents to sections of the results is available. SAS has other windows, some of which
have tabs shown at the bottom of Figure 3.11, for additional types of information. For
instance, error messages appear in the Log window.

Below is the commented SAS syntax needed to generate output for the null model,
parallel to the previous sections for SPSS and Stata. Comments are shown in green, within
“I*.. . *I” markers. Comments are ignored by SAS, being only for the reader’s benefit.

LIBNAME in "C:\Data";
/* LIBNAME sets a pointer with,the user-supplied name "in"*/
/* which points to the data directory, differs for */

/* each user. */

TITLE "Multilevel Null Model";
/* TITLE puts a heading on each output page */

PROC MIXED DATA=in.hsbmerged COVTEST METHOD = ML;

/* PROC MIXED invokes SAS’s multilevel modeling module */

/* DATA=.specifies the data file to use; the .sas7bdat */

/* extension is assumed */

/* COVTEST requests tests of random effects */

/* METHOD = ML overrides SAS’s default of REML estimation */

CLASS schoolid;
/* CLASS declares schoolid as a categorical variable,*/

/* which the Level 2 grouping variable must be */

MODEL mathach = /SOLUTION CL;

/* mathach is declared the Level 1 dependent variable */
/* /SOLUTION asks for fixed effects output. */

/* In the null model there are no level 1 fixed effects */
/* except the level 1 intercept, which is included by */

/* default unless the NOINT option is included */

/* CL causes display of fixed effects confidence limits */
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/* In more complex models, the MODEL statement is where */

/* fixed effects are listed. */

RANDOM INTERCEPT / SUBJECT=schoolid CL;

/* The RANDOM statement lists random effects */

/* In null models, only the intercept is a random effect */
/* INTERCEPT requests a level 2 intercept be included in /*
/* the model as a random effect */

/* SUBJECT= declares schoolid to be the level 2 grouping /*
/* variable */

/* CL causes display of random effects confidence limits */

RUN;
/* Runs the model. */

After entering the syntax above (possibly without comments) into the syntax editing win-
dow, the “Run” icon at the top of the user interface is clicked to actually run the model.
This is necessary even though “RUN;” is part of the syntax. This icon looks like a running
person. Alternatively, one may select “Run” from the main menu at the top, also shown
in Figure 3.11. Output is discussed in subsequent steps.

2. CONVERGENCE. If convergence is reached satisfactorily, SAS states so, as shown at
the bottom of the iteration history in Figure 3.12.

FIGURE 3.12 @ The SAS Iteration History for the Null Model

Iteration History
Iteration Evaluatioms-I -2 Log Like | Criterion
0 1 48099.73204627

1l - 2]47115.82988208  0.00000114
2 1|47115.81024259 | 0.00000000

Convergence criteria met.

3. MODEL INFORMATION. Model information in the initial portion of SAS
output simply reminds the researcher of the input and model specifications,
including that mathach is modeled under ML estimation using a variance
components covariance structure assumption. There are 160 schools (schoolids are
shown in the “Class Level Identification” table) and 7,185 students, as shown in

Figures 3.13A and 3.13B.
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FIGURE 3.13A @ Model Information for the Null Model in SAS

Multilevel Null Model

The Mixed Procedure

Model Information

Data Set IN.HSBMERGED
Dependent Variable mathach

Covariance Structure Variance Components
Subject Effect schoolid

Estimation Method ML

Residual Variance Method  Profile
Fixed Effects SE Method Model-Based

Degrees of Freedom Method  Containment

Class Level Information

Class Levels Values

schoolid 160 1224 1288 1296 1308 1317 1358 1374 1433 1436 1461 1462 1477 1499 1637 1906 1909
1942 1946 2030 2208 2277 2305 2336 2458 24672526 2626 2629 2639 2651 2655 2658
2755 2768 2771 2818 2917 2990 2995 3013 3020 3039 3088 3152 3332 3351 3377 3427
3498 3499 3533 3610 3657 3688 3705 3716 3838 3881 3967 3992 3999 4042 4173 4223
4253 4292 4325 4350 4383 4410 4420 4458 4511 4523 4530 4642 4868 4931 5192 5404
5619 5640 5650 5667 5720 5761 5762 5783 5815 5819 5838 5937 6074 6089 6144 6170
6291 6366 6397 6415 6443 6464 6469 6484 6578 6600 6808 6816 6897 6990 7011 7101
7172 7232 7276 7332 7341 7342 7345 7364 7635 7688 7697 7734 7890 7919 8009 8150
8165 8175 8188 8193 8202 8357 8367 8477 8531 8627 8628 8707 8775 8800 8854 8857
8874 8946 8983 9021 9104 9158 9198 9225 9292 9340 9347 9359 9397 9508 9550 9586

FIGURE 3.13B @ Dimensions and Number of Observations in SAS

Dimensions
Covariance Parameters 2
Columns in X 1

Columns in Z per Subject| 1

Subjects 160
Max Obs per Subject 67
Number of Observations

Number of Observations Read 7185
Number of Observations Used 7185
Number of Observations Not Used 0
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4. FIT STATISTICS AND —2LL. As shown in Figure 3.14, in the “Fit Statistics” table,
SAS reports =2 log likelihood (=2LL), which is the deviance or model chi-square value
used in likelihood ratio tests when the null model is the baseline.

FIGURE 3.14 @ Information Theory Measures and —2LL for the Null Model in SAS

Fit Statistics
-2 Log Likelihood 471158
AIC (Smaller is Better) 47121.8
AICC (Smaller is Better) 47121.8
BIC (Smaller is Better) 47131.0

5. INFORMATION THEORY MEASURES. Also in Figure 3:14, SAS reports the
Information theory measures AIC, AICC, and BIC, all of which penalize —2LL (make
it higher) to compensate for the degree of complexity (lack of parsimony) in the model.
Later, when comparing models, which need not be nested, lower is better model fit.
Here, corrected AIC (CAIC) is identical to AIC, whereas it can be seen that BIC has
a more conservative (higher) value. Note that SAS uses a different formula for BIC.
Whereas the default for sample size in the BIC formula is the level 1 sample size in
SPSS, Stata, and R, it is the level 2 sample size in SAS. This difference in formulas will
not matter as long as the researcher uses BIC as output by the same statistical package
for all model comparisons.

6. FIXED EFFECTS. SAS reports level 1 fixed effects, also known as the regression
model, in the “Solution for Fixed Effects” table in Figure 3.15. The only fixed effect in
the null model is the level 1 intercept since there are no predictor variables. That the
intercept (constant) term is significant trivially shows that the intercept is significantly
different from zero.

FIGURE 3.15 @ Fixed Effects for the Null Model in SAS

Solution for Fixed Effects

Standard
Effect Estimate Error | DF  tValue |Pr>|t| Alpha| Lower Upper

Intercept | 12.6371 0.2436 | 159 51.88 <.0001 0.05  12.1560  13.1181

7. RANDOM EFFECTS. Random effects are shown in the “Covariance Parameters
Estimates” table in SAS output, shown in Figure 3.16. The values for the estimates are
the same as for other packages.

Copyright ©2020 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



78

Multilevel Modeling

e The “Intercept” random effect is the school effect, reflecting between-school
variance in mathach. The “Pr>Z” column on the right shows that the school effect
is significant. This implies that a multilevel model is needed to properly estimate
effects in a random intercepts model and that OLS estimates would be in error.

o The “Residual” random effect row reflects within-group variance in mathach
remaining after the school effect is controlled. That it is much larger than the
variance component explained by the school effect means that there is much
unexplained variance in the null model, which is typical. Therefore, there is reason
to proceed with a more complex model involving additional predictors at level 1
and/or additional predictors and random effects at level 2 or higher.

FIGURE 3.16 @ Random Effects for the Null Model in SAS

Covariance Parameter Estimates

Standard
Cov Parm | Subject Estimate Error ZValue ) Pr>Z
Intercept | schoolid  8.5490 1.0676 8.01 <.0001
Residual 39.1488 0.6607 59.26 <.0001

8. THE VARIANCE COMPONENTS/ICC TEST. That the school variance component
is significant is mathematically identical to finding the intraclass correlation (ICC)
to be significant. Both indicate there is significant between-schools variation in math
achievement due to the nonindependence (clustering) of math scores by school. The
ICC is the school effect divided by the total effect, as in the formula below.

ICC = school effect/total effect = school effect/(school effect + residual effect)
=8.5490/(39.1488 + 8.5490)
=0.179

The multilevel modeling algorithm runs one regression for each of the 160 schools in the level 2
sample. Variation in the estimated intercepts of these 160 equations is used to adjust estimates
of the standard error of the intercept (reflecting mean math score) at level 1. In the “Solution for
Random Effects” table, not shown here due to length, SAS prints out the intercept estimates for
each of the 160 regression equations. While this table is rarely reported in multilevel articles, it is
helpful in providing insight into the process of multilevel modeling,.

The Null Model in HLM 7

For the null model in HLM 7, we use as input the SPSS-format file hsbmerged.sav, described in
Appendix 1 and available on the companion website. HLM 7 output largely parallels SPSS output
for the null model. Therefore to minimize redundancy, the reader is referred to fuller discussion of
the null model in the SPSS section and other eatlier sections of this chapter. The HLM 7 user inter-
face, however, is quite different, involving creation of special files unique to HLM 7 (.mdmt, .mdm;
both are also available at the companion website). In later chapters, the reader may wish to refer
back to the HLM 7 section of Chapter 3 to recall the process for creating .mdmt and .mdm files.
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HLM 7 is authored by three leaders in the field of multilevel modeling, Stephen Raudenbush
and Anthony Bryck (2002) and Richard Congdon, along with their associates. The manual is
Raudenbush, Bryk, Cheong, Congdon, and Du Toit (2011). Software, including a free student
version, is available from Scientific Software International (SSI, www.ssicentral.com). The stu-
dent version will support the example data file used here.

To obtain the null model in HLM7, we follow the steps enumerated below. The eatlier steps
create the “multivariate data matrix template” (.mdmt) file which is used in a later step, to create
the “multivariate data matrix” (mdm) file for a particular model, in this case the null model.
The .mdmt file defines a dataset and variables to be used in possibly multiple models while the
.mdm file uses the .mdmt file to create a file specific to a given model such as the null model.

1. CREATING THE MDM FILE. The first step in multilevel analysis with HLM 7 is
to declare the data file and variables of interest, including the grouping (link, level)
variables defining levels in the analysis. In doing this we create a .mdm file, which
stands for “multivariate data matrix file” and which is a data file in HLM 7 format.
Later in the process of creating the .mdm file, the “multivariate data matrix template”
(mdmt) file will also be created so it may be used as a template which can be reused for
a variety of multilevel models, including the null model.

Run HLM 7 and select File > Make new MDM file > Stat package input, arriving at the initial
HLM 7 page as shown in Figure 3.17. While the menu provides for reading data from a text file,
in this exercise we select “Stat package input” and proceed to load the SPSS-form file, hsbmerged.
sav, used earlier in the SPSS section.

FIGURE3.17 @ HLM 7 File Menu

HLM for Windows - m] pod
File | Basic Settings Other Settings Run Analysis Help
Create a new model using an existing MDM file ()

Edit/Run old command(.him/.mim) file

Manually edit command(.him{.mirg) file
1en Raudenbush

Anthony Bryk
Richard Congdon

Save

Save As

Save model as .em§

Save mixed modelas .emf

& YW file
WDV Tile

ASCll input

Make new MDM from old MDM template(.mdmt) file —

Display MDM stats

View Output
Graph Equations >
Graph Data

linear Modeling

Preferences

Exit

[Mixed| v
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2.

In the “Select MDM type” dialog which opens, select the desired type of multilevel
model. For this example we request the two-level hierarchical linear model, HLM2, as

shown in Figure 3.18. Then click OK.

FIGURE3.18 @ HLM 7 Select MDM Type Window

Select MDM type

Nested Models
®HLM2 OHLM3 OHLM4

Hierarchical Multivariate Linear Models
OHMLM O HMLM2

Cross-classified Models

OHCM2 O HLM-HCM O HCM3 |

cance

Figure 3.18 lists various types of models which may be run with HLM 7 software:

HLM?2 is for two-level hierarchical (nested) models.
HLMS3 is for three-level hierarchical models.
HLM4 is for four-level hierarchical models.

HMLM models are for hierarchical multivariate linear models, meaning ones with
more than one dependent variable.

HMLM2 models are ones with multiple dependent variables such as ones where level
1 measures are nested within persons and persons are nested with some higher level.

HCM2 models are ones in which level 1 units (e.g., students) are cross-classified by
two higher level factors, such as neighborhoods and schools. In a hierarchical model,
students would be listed by school and schools would be listed by neighborhood
(assuming multiple schools per neighborhood). In a cross-classified model, where
students in a given neighborhood may attend more than one school and a given
school might recruit from more than one neighborhood, students are listed in

cells formed by a matrix in which schools may be rows and neighborhoods may be
columns. Cross-classified models are treated in Chapter 11.

HCM3 is for three-level hierarchical and cross-classified models. In this type

of model, students are listed in cells in the neighborhood-vs-school matrix as in
HCM2, but columns (e.g., neighborhoods) may be clustered within a higher level
such as municipalities.

HLM-HCM is for hierarchical linear models with level 2 units cross-classified at
level 3. An example would be repeated measures nested within students at level 2,
with students cross-classified by a matrix in which rows are neighborhoods and
schools are columns.
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3. After selecting the model type, the “Make MDM” dialog window appears, shown in
Figure 3.19. Highlights have been added to show the entries for the current example.

FIGURE3.19 @ The HLM2 Make MDM Page

Make MDM - HLM2

MDM template file MDM File Name (use .mdm suffix)
File Name: hsbmerged.mdm I
Open mdmt file Save mdmtfile  Edit mdmtfile Input File Type | SPSS/Windows v I

Structure of Data - this affects the notation only!
@ cross sectional (persons within groups) (O measures within groups

O longitudinal (occasions within persons)

Level-1 Specification

Browse Level-1 File Name: C:\Data\hsbmerged.sav Choos_e Vaﬁablg
Missing Data? Delete missing level-1 data when:
@®@No OYes (O making mdm O running analyses

Level-2 Specification

Browse | Level-2File Name: C:\Data\nsbmerged.sav Choose Variables
Spatial Dependence Specification

[Jinclude spatial dependence matrix

Browse  Spatial Dep. File Name: Choose Variables

Make MDM i C?leckglafs Done

Note in the “Level-1 Specification” and “Level-2 Specification” areas of Figure 3.19 that HLM 7
can read SPSS .sav files. Other possible formats include SAS transport files, Stata files, and Systat
files. Warning: it is essential that the data files be sorted by the level 2 grouping (link) variable,
which is schoolid in-this example. This has already been done in the downloadable example file
provided. The researcher must also declare whether or not level 1 data rows have missing data, or
must elect how to delete rows with missing data. The example dataset does not have missing data.
Note here that the same datafile, hsbmerged.sav, is listed for both the level 1 data and the level 2
data. It is, however, possible to have each level in a separate file if desired.

4. Still on the “Make MDM? page, click the “Choose Variables” button for level 1,
leading to the window shown in Figure 3.20. In the first (ID) column, check schoolid
as the level 2 grouping variable which links level 1 to level 2. In the other column,
check other level 1 (student level) variables to be used in the researcher’s models even
if not needed for the null model. One of these must be the dependent variable, here
mathach (math achievement score). Here, the level 1 variables mathach, minority,

female, and ses are checked. Click OK to return to the “Make MDM” window.
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FIGURE 3.20 @ The HLM2 Level 1 Choose Variables Window

Choose variables - HLM2 ‘

Mo innmou D | in MDM
o Minuom D | |in MDM
o Minuom D [ |in MDM
[E] O Min mom D | |inMDM
O Minmom D [ |inMDM
Oo [Jin mom D | |inMDM
o [Jin mom D | in MDM
o Jin mom D |_in MDM
o [Jin Mo D [in MDM

o [Jin MoM D [ in MOM
o [Jin MoM D | |ingmon

D | in MDM MD 4 it MDM

Page 1 of 1 < > |_ Cancel

5. On the “Make MDM” page, click the “Choose Variables” button for level 2 as shown
in Figure 3.21. In the first (ID) column, again check schoolid as the level 2 link
variable. In the other column, check other level 2 (school level) variables to be used in
the researcher’s models even if not needed for the null model. These are size through
meanses in Figure 3.21. Click OK to return to the “Make MDM” window.

FIGURE 3.21 @ The HLMz2 Level 2 Choose Variables Window

Choose variables - HLM2 ‘
Mo | inmom D [ |in MDM
o [Jin oM D [ in MDM
o [Jin MoM D [ ]in MDM
E O Jin mom D | |in MDM
OO [Jin oM D [ |inMDM
o Hin mom D [ |in MDM
o Min mom D [ |in MDM
o Min mom D [ in MDM
O Min vom D [ in MDM
!E] [Oo Min Mom D [ |in MDM
o Fin MoM D [ ]in MDM

D [ |in MDM D | |in MDM
Page 1 of 1 < > || ok cancel |
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6. Also on the “Make MDM” page, click the “Save mdmt file” button near the top and
save to the desired directory with the desired filename (e.g., hsbmerged.mdmt), as
shown in Figure 3.22. The .mdmt file is an MDM template file which can be retrieved
to implement a variety of models using the data file and variables named in steps above.

FIGURE3.22 @ HLM 7 Save MDM Template Window

Save As MDM Template File X
* > ThisPC » OS(C:) » Data v 0 Search Data P
Organize v New folder (2]
[ This PC A Name - Date modified Type Size
; Desktop [:l hsbmerged.mdmt 8/7/2016 11:06 AM  MDMT File 1K8
|Z) Documents
& Downloads
D Music vl IE Y il
File name: vl
Save as type:  MDM template files(*.mdmt) [ A\ v
A Hide Folders [ Help | | Save I | Cancel

7. Click the “Make MDM” button at the bottom of the “Make MDM” page shown in
Figure 3.19. HLM 7 pops up a page of descriptive statistics, shown in Figure 3.23.

FIGURE 3.23 @ Null Model Descriptive Statistics

~J) HLM2MDMASTS - Notepad - m] X
File Edit Format View Help
| A

LEVEL-1 DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXIMUM
MINORITY 7185 0.27 0.45 0.00 1.00
FEMALE 7185 0.53 0.50 0.00 1.00
SES 7185 0.00 0.78 -3.76 2.69
MATHACH 7185 12.75 6.88 -2.83 24.99

LEVEL-2 DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXIMUM
SIZE 160 1097.83 629.51 100.00 2713.00
SECTOR 160 0.44 0.50 0.00 1.00
PRACAD 160 0.51 0.26 0.00 1.00
DISCLIM 160 -0.02 0.98 -2.42 2.76
HIMINTY 160 0.28 0.45 0.00 1.00
MEANSES 160 -0.00 0.41 -1.19 0.83

MDM template: C:\Data\hsbmerged.mdmt
MDM file name: hsbmerged.mdm

Date: Oct 2, 2017

Time: 13:37:44
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8. Click the “Done” button on the “Make MDM” page shown in Figure 3.19. The
foregoing steps created hsbmerged.mdmt, a template file which may be used to create
a variety of multilevel models using the dataset and variables selected above. In the
next set of steps, a model is created for a specific model, in this case the two-level null

model with mathach as the dependent variable at level 1 and schoolid as the grouping
(link) variable at level 2.

9. Upon clicking “Done” in the previous step, the window shown in Figure 3.24
appears. Here the researcher may specify the null model. Specify mathach as the
level 1 dependent variable. The researcher is given the ability to specify that mathach
should be entered uncentered, group centered, or grand mean centered. Here we
choose uncentered, in order to follow Raudenbush and Bryck (2002). In a null
model there are no other level 1 variables. Note the arrows (“>>” and “<<”) show
what level of the model you are dealing with at any given moment. Here the level 1
variables are listed.

FIGURE3.24 @ HLM 7DV Selection Window

WHLM: him2 MDM File: hsbmerged.mdm — O X
File Basic Settings Other Settings Run Analysis Help
Outcome LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) 2
>> Level-1 KL
MATHACH = +r
Level-2 Fo
INTRCPT1 LEVEL 2 MODEL (bold italic: grand-mean centering)
MINORITY £ =y +u
FEMALE 0 o0
SES
MATHACH of 9
Outcome variable
add variable uncgentered
add variable gsoup centered
add variable grand centered
Deletewariablé from model
[0 Mixed v

10. Upon entering mathach as the level 1 dependent variable, HLM 7 displays the
model selected thus far, in equation form, as shown in Figure 3.25. Because
“>>Level-2<<” is selected on the left-hand size, level 2 variables are shown, but this
does not affect computation. Note it is not necessary to specify schoolid as the level
2 grouping (link) variable as that was done when the .mdmt file was created in a
previous step.

The level 1 model equation is read as “MATHACH is a function of a level 1 intercept term
plus level 1 residual error.” The level 2 model is read as “The level 1 intercept term equals the
grand mean of intercepts at level 2 plus a random error term (which indicates the intercept is
modeled as a random effect).” Some researchers find the explicit statement of the operational
equation at each level of analysis to be an aid to understanding the model and an advantage

of HLM 7.
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FIGURE 3.25 @ HLM 7 Models Window

Outcome
Level-1
>> Level-2 <<

INTRCPT2
SIZE
SECTOR
PRACAD
DISCLIM
HIMINTY
MEANSES

E WHLM: him2 MDM File: hsbmerged.mdm =
File Basic Settings Other Settings Run Analysis Help

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)
MATHACH = £, +r

LEVEL 2 MODEL (bold talic: grand-mean centering)

O X

Fo = Tog * Up

Mixed v

11.  Before running the null model above, settings should be checked. First click “Basic
Settings” in the dialog shown in Figure 3.25. As shown in Figure 3.26, declare the
distribution of mathach to be normal/continuous. Other distribution choices are
discussed in Chapter 12, which deals with generalized multilevel models. In the “Basic
Model Specifications” window, also give a title and an output filename for the model
being created. Click OK when done.

FIGURE 3.26 @ HLM2 Model Specifications Window

O Binomial (number.of trials)
O Poisson (variable exposure)

O Multinomial
O Ordinal

Output file name [ C:\Data\Null_Model_HLM2_html

Basic Model Specifications - HLM2

Distribution of Outcome Variable

@® Normal (Continuous)
OBemoulli (0 or 1)
O Poisson (constant exposure)

None

Number of categories

[ Over dispersion

i—LeveI-1 Residual File v Level-2 Residual File

Title | HLM 7 Null Model ]

(See File->Preferences to set default output type)

[ Make graph file

Graph file name [ C:\Data\grapheq.geq I

=)
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12. Then select “Other Settings > Estimation Settings” from the modeling window.

Override HLM 7’s default REML estimation method and replace it with ML as
shown in Figure 3.27. There are many other settings here, some of which the text will
come back to, but this is the only one needed for the null model. Click OK to return
to the modeling window.

FIGURE 3.27 @ HLM2 Estimations Settings Window

Estimation Settings - HLM2

Type of Likelihood
O Restricted maximum likelihood @ Full maximum likelihood

A

Adaptive Gaussian Quadrature Iteration Control

Do adaptive Gaussian iterations Maximum number of iterations

Number of quadrature points |

OFirst derivative O Second derivative
LaPlace Iteration Control
Do EM Laplace iterations Maximum number of iterations
Run as spatial dependence model [ Diagonalize Tau

:Constraint of fixed eﬁects: 'Heterogeneoti_sigg_la‘i? |Plausible values[ [Multiple imputation:

Level-1 Deletion Variables | Weighting [Latent Variable Regression
Fix sigma*2 to specific value
(Set to "computed” if you want sigma*2

random or if over-dispersion is desired) E

13.

Then select “Other Settings > Output Settings” from the modeling window. As shown
in Figure 3.28, change settings as desired. In the current example, two defaults are
overridden: (1) check to print the variance-covariances matrices and (2) uncheck
“Reduced output” so as to get full output. Click OK to return to the modeling window.

FIGURE 3.28 @ HLM 7 Output Settings Window

Ouput Settings - HLM2

# of OLS estimates shown
[ Print variance-covariance matrices

[OJReduced output III
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14. Select File > Save As to save the model under a name such as “Null_Model.” This
creates a command file called Null_Model.hlm and an output file called Null_Model
.html. Retain the files created here in the null model section as they will be used in
later chapters.

15. From the HLM2 modeling window, select “Run Analysis” to obtain the output
discussed in the numbered sections below. As the output is a .html file, it will appear
in the browser, not in HLM 7 itself.

16. MODEL INFORMATION. Null model output is shown below in Courier New font.
The initial “Specification for this HLM2 run” section reminds us that we are using
the previously specified “hsbmerged” data in a model we have named “Null_Model.”
There are 7,185 students at level 1 and 160 schools at level 2. We are using full
maximum likelihood estimation. Though the default covariance structure in HLM.7
is unstructured (UN) rather than variance components, this will not matter for the
estimates discussed below since the null model is a type of random intercept model.
Estimates conform to those in SPSS, SAS, and Stata.

Specifications for this HLM2 run

Problem Title: Null Model

The data source for this run = hsbmerged.mdm

The command file for this run = C:\Multilevel\Null. Model.hlm
Output file name = C:\Multilevel\Null Model.html

The maximum number of level-1 units = 7185

The maximum number of level-2 units = 160

The maximum number of iterations = 100

Method of estimation: full maximum likelihood

17. MODEL SUMMARY. The model summary section of output shows the model in
equation form. For the null model, at level 1, MATHACH is equal to an intercept
and a residual error term. The intercept, 3, o is a function at level 2 of the mean of all
160 intercepts (y,,) plus a randomeetror term (x, ) The “mixed model” equation is an
equivalent mathematical integration of the level 1 and level 2 equations.

The outcome variable is MATHACH
Summary of the model specified
Level-1 Model
MATHACHy, =, B, + r
Level-2 Model
B()j = YOO + qu
Mixed Model
MATHACH‘lj = Yo t quJr Ty

18. FIXED EFFECTS (INITIAL). By default, HLM 7 first presents the level 1 regression
model both for OLS estimates and for multilevel estimates using the requested
method, ML. OLS estimates are presented without and then with robust standard
errors. The multilevel intercept estimate, shown under the heading “Estimation
of fixed effects,” is 12.64, as in SPSS, SAS, and Stata. The robust OLS estimate is
inflated somewhat (12.74). Note, however, these are estimates based on starting values.
A refined set of estimates follows the iteration process and convergence on a solution
in the next step.
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19.

Initial results

The average OLS level-1 coefficient for INTRCPT1 = 12.62075
Least Squares Estimates

o? = 47.30368

Least-squares estimates of fixed effects

Standard Approx.
Fixed Effect Coefficient error t-ratio d.f. p-value
For INTRCPTI, BO
INTRCPT2, vy, 12.747853 0.081140 157.110 7184 <0.001

Least-squares estimates of fixed effects

(with robust standard errors)

Standard Approx.
Fixed Effect Coefficient error t-ratio dif. p-value
For INTRCPTI, [30
INTRCPT2, vy, 12.747853 0.239305 53.270 7184 <0.001

Starting Values

o?, = 39.14163
-[(0)
INTRCPTI, B, 8.72185

Estimation of fixed effects

(Based on starting values of covariance components)

Standard Approx.
Fixed Effect Coefficient error t-ratio d.f. p-value
For INTRCPTI, [30
INTRCPT2, V,, 12.636803 0.245768 51.418 159 <0.001

CONVERGENCE. Following the fixed effects model, HLM 7 prints out iteration

history. It shows that convergence on a solution was reached after four iterations. A

refined set of fixed effects output follows the iterations history. Differences from the
starting values estimates are very small for the data at hand.

The value of the log-likelihood function at iteration 1 = -2.355710E+004
The value of the log-likelihood function at iteration 2 = -2.355699E+004
The value of the log-likelihood function at iteration 3 = -2.355699E+004
Final Results - Iteration 4

Iterations stopped due to small change in likelihood function

02 = 39.14838

Standard error of o2 = 0.66054
T

INTRCPTI, [30 8.55379

Standard error of T

INTRCPT1, B, 1.06124

Copyright ©2020 by SAGE Publications, Inc.

This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter3 m The Null Model

Random level-1 Reliability estimate
coefficient
INTRCPTL, B, 0.901

The value of the log-likelihood function at iteration 4 = -2.355699E+004

Final estimation of fixed effects:

Standard Approx.
Fixed Effect Coefficient error t-ratio d.f. p-value
For INTRCPTI, EC
INTRCPT2, vy, 12.637067 0.243638 51.868 159 <0.001

Final estimation of fixed effects

(with robust standard errors)

Standard AppProx.
Fixed Effect Coefficient error t-ratio d.f. p=value
For INTRCPTI, ,80
INTRCPT2, vy,, 12.637067 0.243617 51.873 159 <0.001

20. RANDOM EFFECTS. Random effects appear in the “Final estimation of variance4
components’ table, shown below. HLM 7 labels the intercept effect, which is the
between-groups school effect on math achievementat level 1, as “INTRCPTT, u,.”
It labels the within-groups residual effect as “level=1, r.” The residual effect
reflects variance in math achievement after the'school random effect is controlled.
That it is much larger than the school effect suggests the need for better specification
of the model.

Final estimation of variance components

Standard Variance
Random Effect Deviation Component d.f. X2 p-value
INTRCPT1, u, 292469 8.55379 159 1660.22552  <0.001
level-1l, r 6.25687 39.14838

21. THE VARIANCE COMPONENTS/ICC TEST. That the p value for the school
(intercept) effect is significant means that the clustering of math achievement scores by
schoolid is significant and will affect estimates of mean math achievement at level 1.
This also means OLS estimates will be in error compared to multilevel estimates. The

significance of ICC is mathematically identical to the significance of the school effect
above. The ICC is the school effect divided by the total effect, here 0.179.

ICC = school effect/total effect = school effect/(school effect + residual effect)
=8.55379/(39.14838 + 8.55379)
=0.179

22. MODEL CHI-SQUARE/DEVIANCE (-2LL). At the bottom of output, HLM

7 prints the deviance, which is a -2 log likelihood measure commonly used as the
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23.

24.

baseline in likelihood ratio tests discussed eatlier in this chapter. The estimate in
HLM is trivially different from that in SPSS, SAS, and Stata due to minor algorichmic
differences (47113.97 in HLM 7 compared to 47115.81 in other packages).

Statistics for the current model
Deviance = 47113.972333

Number of estimated parameters = 3

INFORMATION THEORY MEASURES. Where —2LL is used for comparing nested
models, information theory measures like AIC and BIC are commonly used to compare
nonnested as well as nested models. HLM 7 does not output information theory.
measures though they may be computed manually as described in Online Appendix 2.

SAVED MATRICES. By default, HLM 7 saves certain matrices to file, noted in a
final section of output shown below. These matrices, particularly the tau matrix, may
be examined in the event of failure to converge on a solution, looking for variance
components close to 0, collinearity among random effects; or; in the gamma matrix,
extreme estimates in the level 1 regression.

tauvc.dat, containing tau and the variance-covariance matrix of tau

has been created.

The file tauvc.dat contains the variance-covariance matrix associated with random effects. In
general, tauvc.dat contains tau(pi); tau(beta); and the inverse of the information matrix. It has
these contents for the current example:

8.5537872 (variance component for the school effect on the intercept of mathach,
labeled as 62 | by HLM?7)

1.1262391 (This is the square of the standard error of tau, which in HLM 7 output is
labeled “Standard error of T, INTRCPT1,0).” Squared standard error, of course, is

variance.
39.1483812 (variance component for the residual effect, labeled To) INTRCPTLg,)

In this equivalent to a variance components model, the covariance between the two
random effects is 0 and is not shown in tauvc.dat.

gamvc.dat, containing the variance-covariance matrix of gamma has

been created.

The file gamve.dat contains the variance-covariance matrix associated with fixed effects. The
gamve.dat file contains the nonrobust version of the gamma values and the gamma variance-
covariance matrix used to compute the robust standard errors. For instance, this file contains
the intercept fixed effect, previously computed to be 12.6370672 and labeled “INTRCPT1, 30
INTRCPT2, y00” in HLM 7.

gamvcr.dat, containing the robust variance-covariance matrix of gamma has

been created.

The gamver.dat file contains the robust version of the gamma values and the gamma variance-
covariance matrix used to compute the robust standard errors.
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The Null ModelinR

For the null model in R, we use the file hsbmerged.rds, described in Appendix 1 and available
on the companion website. The process for importing data from other packages is described in
Online Appendix 1. For this exercise we import hsbmerged.sav, which is in SPSS format. For anal-
ysis we use the R package called 1me 4, which currently is the most widely used one for multilevel
modeling in R (Hox, Moerbeek, & van de Schoot, 2018, p. 25; Bates, 2010; Bates et al., 2015).

R syntax for the null model

# LOAD AND VIEW THE DATA

# Set the working directory

setwd("c:/Multilevel™)

# Clear the environment of previous data

rm(list=1s())

# Assuming the haven package has been installed, invoke it
# Otherwise type install.packages(“haven”)
library(haven)

# Read data from an SPSS format file into the object hsbmerged
hsbmerged <- read sav("hsbmerged.sav")

# Optionally, view the data (capitalize "View")

View(hsbmerged)

#NULL MODEL WITH Imer() FUNCTION FROM PACKAGE LME4

# If not yet installed, install the Ime4 linear modeling package

# with the command as in Online Appendix 1: install.packages ("1lme4d")

# The Ime4 package supports the Imer () multilevel model function

library(lmed)

# Run the null model using ML estimation

NullModel <- lmer(mathach~(l]Jschoolid), REML = FALSE, data = hsbmerged)
# View the output

summary (NullModel)

Comments on 1mer () syntax for the null model:
NullModel <- Tmer(mathach~ (1|schoolid), REML = FALSE, data = hsbmerged)

NullModel <-
Output is sent to an object called NullModel
lmer(mathach
Multilevel modeling is invoked with mathach as dependent variable
~(1llschoolid)
Predictors are listed after the tilde. Here there is only the random schoolid effect.
Level 1 observations are nested within schoolid at level 2.
Note a random effect is enclosed in parentheses. If there were more than one

random effect, they would be separated by a double vertical bar (||).

A comma separates the list of options
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REML = FALSE,
REML estimation is the default. Setting it to FALSE invokes maximum likelihood
(ML) estimation.
data = hsbmerged)
The dataset data frame hsbmerged is named as the data source.
summary(NullModel)
The separate summary command displays the output. It must be lower case. This command
is unnecessary if the entire command string is enclosed within parentheses, thereby causing

output to appear automatically:

Output from the Imer () procedure

Output coeflicients are the same as in other statistical packages previously discussed in this chapter:

NullModel <- Imer(mathach~ (1l|schoolid), REML = FALSE, data = hsbmerged)
summary (NullModel)

Linear mixed model fit by maximum likelihood [’lmerMod”]
Formula: mathach ~ (1 | schoolid)

Data: hsbmerged

AIC BIC logLik deviance df.resid
47121.8 47142.4 -23557.9 47115.8 7182

Scaled residuals:
Min 10 Median 30 Max

-3.06262 -0.75365 0.02676 +0.76070 2.74184

Random effects:

Groups Name Variance Std.Dev.
schoolid (Intercept) 8.553 2.925
Residual 39.148 6.257

Number of obs: 7185, groups: schoolid, 160

Fixed effects:
Estimate Std. Error t value
(Intercept) 12.6371 0.2436 51.87

Interpretation of output

Because R output (but not input) for the null model largely parallels output from previously
discussed packages, to minimize redundancy the reader is referred to fuller discussion of the null
model in the SPSS and other eatlier sections of this chapter.

1. SIGNIFICANCE COEFFICIENTS (p VALUES). Casual inspection of R output
above shows the 1mer () procedure does not output significance coefficients for either
fixed or random effects. However, t values are output for fixed effects and standard
deviations are output for random effects. This omission is not an accident but rather

< »

reflects the view of the author of the 1me4 package that what is a true “p” parameter
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is a matter of dispute since the usual t-distribution method does not always yield
correct p-value estimates, leading the author to not include p values in the Imer()
function.! A preferred way of significance testing is using the likelihood ratio test

of the difference between two models, such as between one with and one without a
given variable or effect. This is illustrated in Chapter 4 but cannot be illustrated here
since there is only the one model (the null model). Alternatively, p values may be
estimated using the ImerTest package, as described further below in the section
on random effects output. (Note that the Monte Carlo approach to obtaining p
values described by Finch, Bolin, and Kelley, 2014, pp. 57-59, no longer works with
the 1mer () function.?)

2. CONVERGENCE. If the null model discussed here were run under REML
estimation (using the REML = TRUE) option, then if convergence is satisfied, output
will include this line:

REML criterion at convergence: 47116.79

If ML estimation is used, as in the example in this chapter, there is no corresponding output line.
In the example illustrated above, convergence was achieved. Failure to converge would lead to an
error message such as the following:

Model failed to converge: degenerate Hessian with 1 negative eigenvalues

3. MODEL INFORMATION. Basic model information appears at the top of R output,
showing math achievement was modeled as an effect of the level-2 grouping variable
schoolid, using ML estimation based on the hsbmerged dataset.

Linear mixed model fit by maximum likelihood [’lmerMod’]
Formula: mathach ~ (1 | schoolid)

Data: hsbmerged

Below the random effects output, it is noted that there are 7,185 students grouped in 160
schools.

Number of obs: 7185, groups: schoolid, 160

4. FIT STATISTICS, —2LL, AND INFORMATION THEORY MEASURES. In R
output below, =2LL is labeled “deviance” and is —2*logLik. This value is used when
comparing nested models using the likelihood ratio test. The AIC and BIC information
criteria are also listed, used for comparing unnested as well as nested models, where
lower is less error and better fit.

AIC BIC logLik deviance df.resid
47121.8  47142.4 -23557.9  47115.8 7182

5: FIXED EFFECTS. Fixed effects are the regression part of the model and interpreted
as such. Controlling for other effects in the model (the only one of which is the
effect of the level 2 grouping variable, schoolid) the intercept of 12.6371 is the
estimate of the mean mathach score. While significance coefficients (p values) are
not displayed, that the estimate is more than 1.86 standard errors from 0 means it is
significant at better than the .05 level. The 5% confidence limits on the estimate are

+/—1.96%0.2436.
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Fixed effects:
Estimate Std. Error t value
(Intercept) 12.6371 0.2436 51.87

Note that unlike the Imer () function in the 1me4 package discussed here, the 1me () muldi-
level modeling command in the nmle package, though now considered outdated by some, does
generate fixed effects p values (though not random component p values). See Online Appendix 1.

6. RANDOM EFFECTS. In the null model there are two random effects: the school
effect based on schoolid as the level 2 grouping variable, and the residual effect. These
are the between-groups and within-groups effects respectively. Again, p values are not
displayed. The standard deviations are no standard errors and cannot be used directly
to compute confidence limits around the random effect components, similar to what
was done for fixed effects.

Random effects:

Groups Name Variance Std.Dev.
schoolid (Intercept) 8.553 2.925
Residual 39.148 6.257

The needed p values can be generated using the 1merTest package, whose rand () function
gives a p value for the variance component of a grouping variable in a null model, such as for
the previously created object NullModel, whose grouping variable was schoolid. Later, for more
complex models, the summary () and anova () commands 1merTest will also give p val-
ues. Click the “Install” icon under the “Packages” tab in RStudio, then enter ImerTest as the
package to install. A large number of subsidiary packages will also be installed. In RStudio, check
the box for the ImerTest package, equivalent to issuinga 1ibrary () command. Below we
invoke the ImerTest library, re-create NullModel using the same formula as before, then run the
rand() command. It shows that the schoolid effect is significant at better than the 0.001 level
(p approximates .000, as in other statistical packages). Use of lmerTest is illustrated more

fully in Chapter 6.

Tibrary(ImerTest)
NullModel <- Imer(mathach~(1|schoolid), REML = FALSE, data = hsbmerged)
rand(Nullmodel)

Analysis of Random effects Table:
Chi.sq Chi.DF p.value
schoolid 986 1 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ” 1

7. VARIANCE COMPONENTS/ICC TEST. The intraclass correlation is the schoolid

component divided by the sum of both components:
ICC =8.553/(8.553 + 39.148) = 0.179

Since the schoolid random effect component was significant, we can say that the ICC (which
is mathematically equivalent) is also significant. For either, significance indicates the need for
multilevel modeling and that OLS estimation would be in error.
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Key concepts learned by the reader in Chapter 3 include the level 2 grouping variable is the between-

the following points: groups effect, reflecting variation in the mean

The primary purpose of the null model is to test
whether the values of the dependent variable
(DV) at level 1 cluster within groups formed by
the grouping (level) variable at level 2, thereby
violating the data independence assumption

of OLS regression and indicating the need for
multilevel modeling.

When the data independence assumption of OLS
regression is violated, estimates of standard
errors will be wrong and significance tests will
not be accurate.

A secondary purpose of the null model is to serve
as a baseline of comparison with later models.

Comparison of models is accomplished
through the likelihood ratio test, which is based
on—2LL, also known as the model chi-square
or deviance value.

The deviance value is a measure of error, with
lower being less error and better model fit.

Likelihood ratio tests assume that the smaller
model is nested within the larger model. For
nonnested comparisons, information theory
measures such as AIC or BIC are used.

The Wald test is an alternative to the likelihood
ratio test and is;available in some packages
such as SPSS. In general, the likelihood ratio
test is preferred.

When fixed effects differ between models being
compared, ML rather than REML estimation
should be used. Most statistical packages
default to REML and therefore ML must be
requested explicitly if it is desired.

The fixed effects portion of the null model
includes only the intercept and is of only minor
research interest.

The random effects portion of the null model
includes two effects. The random effect of

of the level 1 DV across groups. The other
random effect is the residual effect, reflecting
the within-group variation in the DV after the
random effect of the level 2 grouping variable is
controlled. The residual effect thus represents
unexplained variance in the DV.

The label for the random effects table varies
by statistical package used. Common labels
are the variance components, covariance
parameters, or random effects table.

The intraclass correlation (ICC) is calculated as
the variance component of the grouping variable
divided by the sum of both variance components

(both the residual component plus the grouping

variable component). If the grouping variable
component is significant, then the ICC will be
significant. In either of these mathematically
equivalent cases, significance indicates the
need for multilevel modeling. This is called the
“ICC test.”

While it is widely stated that the ICC test
presumes that the researcher has specified a
variance components (VC) variance-covariance
structure, the specification of a variance-
covariance structure is ignored for random
intercept models (ones where only the intercept
is modeled, not any slopes). The null model is a
type of random intercept model.

The ICC test may lead to different results than an
ANOVA test of the same DV and grouping variable.
This is because they test different things.

In any statistical package, results should not be
reported unless convergence on a solution has
been achieved.

Difference among statistical packages are
illustrated by differences in default output

for information theory fit statistics. Stata

and R generate AIC (the Akaike information
criterion) and BIC (Bayes information criterion).




SAS generates AIC, BIC, and AICC (corrected
AIC, used when sample size is small]. SPSS
generates AIC, BIC, AICC, and CAIC (consistent
AIC, an alternative to AICC, used to penalize
for lack of parsimony in small samples). HLM 7
does not generate any of these, though manual
computation is possible.

HLM 7 shows equations for each level and each
intercept or slope effect. The other packages
use a single-equation model. HLM 7 is also

the only package which by default generates
reliability coefficients. Likelihood ratio tests are
a built-in function in HLM 7. HLM 7 by default
outputs both ordinary and robust estimates,
though robust standard error models are easily

Glossary

ANOVA F-test

Analysis of variance (ANOVA] relies on F-tests of signif-
icance of differences among group means. The ANOVA
F-test is a function of the variance of the set of group
means, the overall mean of all observations, and the
variances of the observations in each group weighted for
group sample size. The larger the difference in means,
the larger the sample sizes, and/or the lower the vari-
ances, the more likely ANOVA results will be significant.
The output may be labeled the ANOVA table, the variance
components table, the covariance parameters table, or
the random effects table, depending on what software
package is used.

Assumption of independence

A critical assumption of ordinary least squares (OLS)
regression, the independence assumption requires data
to be independent. In the context of multilevel model-
ing, when the values of the dependent variable at level
1 cluster within groups formed by the grouping (level)
variable at level 2, the OLS assumption of independence
is violated.

If OLS regression is used despite a violation of the
independence assumption, estimates of standard
errors will be wrong and significant tests will not be
accurate.

implanted in Stata, and with less ease, in other
packages.

Stata by default outputs a likelihood ratio test of
the difference between the OLS model and the
multilevel model.

For multilevel modeling, the main SPSS module is
the MIXED module. For Stata, the main multilevel
command is the mixed command. For SAS, the
main multilevel analysis module is PROC MIXED.
HLM 7 has eight multilevel analysis:modules. The
one used in this chapter for the null model was
HLM2. The leading packages in R for multilevel
analysis are the 1me4 and the ImerTest
packages, with the latter requiring the former.

Information theory fit statistics

In likelihood ratio testing, —2LL (model chi-square, devi-
ance) is a measure of model error, with lower repre-
senting better model fit. Information theory fit statistics
penalize —2LL to adjust for lack of parsimony. Where
likelihood ratio testing is appropriate for comparing
nested models, information theory measures are used
to compare either nested or nonnested models, again
with lower representing better fit. Common information
theory fit measures include the Akaike information cri-
terion (AIC) and the Bayesian information criterion (BIC).
Of these, BIC is the more conservative measure, penal-
izing lack of parsimony more heavily.

Intraclass correlation (ICC)

The intraclass correlation (ICC) is the share of variance
accounted for by the random effect of the intercept com-
ponent in a null model. As the null model contains no
other random or fixed effects, in a two-level model the
ICC reflects the effect size of the level 2 grouping vari-
able. Finding a significant ICC based on the grouping
variable indicates multilevel modeling is needed, as the
level 1 DVis notindependent of the level 2 grouping vari-
able. If in a null model the intercept component is sig-
nificant, then the ICC will also be significant. If either is
nonsignificant, OLS regression may be appropriate and
multilevel model not needed.




Likelihood ratio test

When using maximum likelihood estimation (ML), as is
typical in multilevel modeling, output includes the effect
size measure of likelihood (L). When the log is taken of
this value and then multiplied by negative 2, the result is
the —2LL statistic, also called model chi square or devi-
ance. The —2LL statistic conforms to a chi-square dis-
tribution, allowing it to be used for significance testing.
The likelihood ratio test (a.k.a. chi-square difference
test) utilizes this —2LL value to test the amount of error
in a given model comparison to another version of the
model. The smaller model must be nested within the
larger model. In general, the likelihood ratio (LR) test
assesses whether the researcher’s model has signifi-
cantly less errorand hence better fit than the null model,
but other bases of comparison than the null model are
also possible.

Nested models vs. nonnested models

A nested model is when the larger model contains all
of the terms found in the smaller model. It is common
to use the likelihood ratio test to compare nested mod-
els. In contrast, when the larger model does not contain
all the terms of the smaller model, the comparisoniisa
nonnested one. For purposes of comparing nonnested
models, often information theory measures like AIC
or BIC are used in lieu of the likelihood ratio test. For
information theory measures, lower is less error and
better fit.

- —

Challenge Questions With Answers

Questions

Residual component

In multilevel models, the residual component reflects unex-
plained variance. It is the within-groups effect reflecting
variation in values of the dependent variable at level 1 not
explained by other random effects in the model (e.g., not
explained by the random effect of the level 2 grouping vari-

able). For models with an assumed variance components

(VC) structure, the residual component divided by the total
of variance components is the percentage of variance in the
dependent variable accounted for by within-group effects.

Unconditional means model

The unconditional means model is a synonym for the
multilevel null model. This model is important because
itis used to see if the grouping variable at level 2 signifi-
cantly affects the intercept of the dependent variable at
level 1, which indicates whether or not multilevel model-
ing is needed. In addition, the null model can be used as
a baseline model for other comparisons.

Variance components model

A variance components (VC) model is one in which the
assumed variance-covariance matrix is of the VC type,
meaning that all matrix entries on the off-diagonal are
0 and those on the diagonal reflect the same variance.
This model is the basis for null model testing for the
need for multilevel modeling. In a variance components
model, there is no covariance between any two random
effects (this is indicated by the off-diagonal Os).

3-1. True or false? If convergence is not reached, you should not report your results.

3-2. Trueor false? The Wald test is preferred over the likelihood ratio test for selecting effects to retain in

or drop from the researcher’s model.

Which of the following is NOT a major purpose of the null model in multilevel modeling?

a. totest whether the random and fixed effects in the model are all significant

b. touse as a baseline model

c. toseeif the grouping variable at level 2 significantly affects the intercept of the dependent variable at level 1

What assumption of ordinary least squares regression would be violated if OLS is utilized rather than

multilevel modeling, despite clustering of observations by groups formed by the categorical variable

defining level 2 in a two-level model?




3-10.

True or false? Getting nonsignificant results for the variance components or ICC test always means
multilevel modeling need not be used and that OLS regression may be used instead.

True or false? The intraclass correlation coefficient (ICC) is the within-groups effect divided by total effects
in the null model.

The residual component in a multilevel model represents

a. the explained variance in the model

b. variance explained by the grouping variable

c. the unexplained variance

True or false? If the ICC test is significant, then ANOVA will also be significant. Yet significant ANOVA
results do not necessarily indicate the ICC test will be significant.

The —2LL value reflects which of the following?

a. model error

b. model significance

c. unexplained variance in the model

What measures of model comparison should be used with nonnested models?

Answers

3-1.

3-2.

3-3.

True. Nonconvergence means that the multilevel algorithm did not arrive at a stable solution. Results are
in error to some unknown degree and therefore it is inappropriate to report results.

False. The likelihood ratio test is preferred over the Wald test. Some statistical packages do not offer the
Wald test for this reason, though others (e.g., SPSS] do.

A. To test whether the random and fixed effects in the model are all significant is NOT one of the two
primary reasons why the multilevel null model is used. Such testing applies to all multilevel models, not
just the null model.

The independence assumption of OLS regression would be violated, yielding biased estimates.

False. Although nonsignificance indicates the means of the dependent variable do not vary by the groups
formed by the grouping variable at level 2 (e.g., schooll, this is not definitive proof that multilevel modeling
is not needed because it is still possible that the slopes of level 1 predictors do vary by group. Therefore,
nonsignificance rules out a random intercept model, although it does not rule out a random coefficients
model.

False. The intraclass correlation coefficient (ICC] is the between-groups effect divided by total effects in
the null model, not the within-groups effect divided by total effects.

C. The residual component represents the unexplained variance.
True.

A. The —2LL value is a measure of model error and as such is an effect size measure, not a significance
measure. Because it conforms to a chi-square distribution, chi-square methods may be used to obtain a
significance (p) value for differences in —=2LL for nested models.

For nonnested models, information theory measures such as AIC and BIC are commonly used rather than
likelihood ratio tests.




Notes

The omission of p values in default implementa-
tion of the 1mer () command highlights the fact
that the R environment consists of modules sub-
mitted by individuals and teams, each with their
own unique idiosyncracies. There is no overall

“company” to enforce uniformity, quality control,

or even maintenance, though the R community
does some of this. Douglas Bates, a lead author
of the LME4 package, gives his reasons for not
including p values at this url: https://stat.ethz.ch/
pipermail/r-help/2006-May/094765.html. There,
Bates invites collaboration in helping evolve lme4
to deal with the p value issue. John Hall, another
author of LME4, has reportedly gone on to program
in a language different from R. As a statistical
environment, R is more of a “moving target” than
a company-supported statistical package, with R
modules continually appearing, evolving, becoming
obsolete, and so on. Other authors have since come
along to offer the ImerTest package, which con-
tains commands for obtaining one type of p values.

The code below implements the Finch et al.
approach for the null model discussed here. It
assumes the object NullModel has been created by
the foregoing steps.

install.packages("coda")

library(coda)

install.packages("languageR")
library(languageR)

NullModel.pvals <- pvals.fnc(NullModel, nsim =
10000, withMCMC = TRUE)

However, this method is now outdated and returns
this error message:

Error in pvals.fnc(NullModel, nsim = 10000,
withMCMC = TRUE) :

MCMC sampling is no longer supported by Tme4.
For p-values, use the TmerTest package,
which provides
functions summary() and anova() which give

p-values of
various kinds.

Visit study.sagepub.com/researchmethods/statistics/garson-multilevel-modeling
for downloadable study resources to accompany this text!
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