
CHAPTER 1. INTRODUCTION AND
OVERVIEW

1.1 Overview of This Book

This book provides a course on generalized linear models for bounded
variables. We focus on numeric dependent variables whose scales are
bounded either at one end or both ends. Examples are income (typi-
cally bounded below at 0), hours spent on an activity per day (bounded
between 0 and 24), or percentage of a population eligible to vote
(bounded from 0 to 100).

Why is this topic important? The human sciences deal in many vari-
ables that are bounded. Ignoring bounds can result in misestimation
and improper statistical inference. On the other hand, taking bounds
into account not only can provide more accurate statistics but also often
reveals insights that otherwise would escape the researcher’s notice.

Why is a book like this needed? Bounded scales and variables often
are analyzed with conventional but inappropriate techniques. This is due
to lack of familiarity with the techniques for working with bounded
variables. Books and other teaching materials that introduce generalized
linear models ignore or give only scant attention to such techniques.
Instead, techniques and relevant concepts regarding bounded variables
typically crop up only in specialized contexts such as survival analysis,
psychophysics, engineering, or econometrics. Our goal is to make them
generally available and accessible to nonspecialists.

There are book-length surveys of limited dependent variables, includ-
ing the now classic monograph by Long (1997b) and the more recent
treatment by Smithson andMerkle (2013). Books also have been devoted
to subsets of these variables. Categorical variables understandably have
received the most attention, including handbooks on logistic regres-
sion (Hosmer Jr., Lemeshow, & Sturdivant, 2013), log-linear analysis
(Agresti, 2013), and ordinal categorical regression (Agresti, 2010). Singly
bounded variables usually appear under the guise of “life distributions”
(Marshall & Olkin, 2007). Censoring and truncation have been given
an accessible introduction by Breen (1996). To our awareness, however,
there is no introduction to quantitative bounded variables that is both
accessible and as thorough as might be desired. By focusing exclusively
on these variables (rather than including them along with categorical
variables), we have attempted such an introduction in this book.
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This is a good time for this book to appear, because the early part of
the 21st century has seen rapid growth in the availability of software
resources for analyzing bounded variables. Bounded-variable models
are available in popular computing environments, including R, Stata,
MPlus, and SAS. Generalized linear models (GLMs) for singly bounded
variables have been widely available for some time in these environments.
GLMs for doubly bounded variables have been made available in R,
Stata, and SAS. The stage is set for accelerating understanding and
application of these models, and this book is intended to provide a guide
and impetus for such applications.

This is a “second” course in generalized linear models. We assume
that the reader is familiar with linear multiple regression and has
had at least an introduction to the general linear model. The Sage
collection has excellent books on both topics: Colin and Michael Lewis-
Beck’s (2015) Applied Regression and Jeff Gill’s (2000) Generalized
Linear Models.

Here is what our book covers. In this first chapter, we introduce
the different types of bounds and present examples of two of the most
well-known kinds. In Chapter 2, we focus on singly bounded variables,
beginning with the basic concepts underpinning a GLM for such vari-
ables and then introducing readers to three of the most popular relevant
distributions and examples of models that use them. In Chapter 2, we
also discuss alternative methods for dealing with cases on the bound-
ary and how to choose such a method. In Chapters 3 and 4, we cover
methods for dealing with doubly bounded variables. Chapter 3 focuses
on models employing the beta distribution, while Chapter 4 introduces
distributions for modeling quantiles of doubly bounded variables. In
Chapter 5, we deal with what are known as “censored” and “truncated”
variables, starting with the popular Tobit model and then moving on
to different types of censoring and truncation, as well as non-Gaussian
and heteroscedastic models. In Chapter 6, we conclude the book with
an overview of bounded variables and brief discussions of extensions to
the models covered in the preceding chapters. These extensions include
multivariate and random-effects models, Bayesian estimation, and the
treatment of bounded covariates or independent variables.

We provide worked examples in every chapter, using real data sets
from a variety of disciplines. The software used for the examples include
R, SAS, and Stata. The data, software code, and detailed explanations
of the example models are available in the supplementary materials
on the website for this book: www.study.sagepub.com/researchmethods/
qass/smithson-and-shou-generalized-linear-models. We take care not to
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include particulars in the book about software that quickly become out-
dated, instead relegating such specifics to the supplementary web-based
materials where they can be updated as needed. The supplementary
materials also contain additional details, including code, development,
and interpretation of the models, in some cases going beyond the models
described in the book itself.

1.2 The Nature of Bounds on Variables

Bounds on variables occur in two contexts: as categorical bounds and
bounds on one or more continuous ranges. This book deals with vari-
ables that have bounds on continuous ranges. Moreover, we restrict
our treatment to variables that have only one or two bounds. Bounded
variables also require two kinds of considerations regarding GLMs for
them. First, there is the problem of constructing a GLM that takes the
bounds into account (e.g., by not generating predictions outside of the
range). Second, there is the issue of how to model and interpret cases at
the bounds.

A useful typology of bounds on continuous variables distinguishes
among three kinds: “absolute,” “censoring,” and “truncating.” Absolute
bounds are values beyond which it is impossible for the variable to go
(e.g., a proportion cannot go below 0 or above 1). Censoring bounds
are values that only put a lower or an upper limit on the true scores
of cases on the boundary (i.e., those cases’ scores are “censored”). For
example, a webpage automatically logs visitors out after their inactivity
has exceeded 15 minutes, so lengths of visits to that webpage are only
known to be at least 15 minutes’ duration if they timed out. Truncating
bounds are those for which cases are excluded altogether from a sam-
ple (e.g., a perception experiment excludes participants whose vision is
worse than 20-40). Absolute bounds more strongly constrain the choice
of distributions for modeling the data because they determine the sup-
port or domain of the distribution, whereas censoring and truncation do
not entirely determine the distribution support.

Among the most common kinds of censoring or truncating are
when bounds on a variable are an artifact of a nonexhaustive collec-
tion of items whose scores are combined to form a scale or due to
scale endpoints that truncate scores. An example of the first kind is
the ethical risk-taking subscale in the DOSPERT (the Domain-Specific
Risk-Taking Inventory; Weber, Blais, & Betz, 2002), composed of eight
items, each of which has a score from 1 to 5, so that the subscale range
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is from 8 to 40. We cannot infer that a person who scores 8 on this scale
never takes any ethical risks, because the eight items do not exhaust
the list of unethical acts. An example of the second is a scale record-
ing household incomes with an upper bound “more than $I ,” where I is
a threshold amount.

There also are different varieties of truncation due to sample selec-
tion. Boundary cases may consist exclusively of exclusions from a
sample, such as amounts owing on household mortgages in which the
zeros are those households that are not currently mortgaged. Conversely,
boundary cases may include a mix of sample exclusions and inclusions.
For instance, data consisting of the number of cigarettes smoked by a
person in the past week may include zeros that are smokers as well as
zeros that are nonsmokers.

The question of whether bounds are absolute or not can be debatable
for at least three reasons. First, the answer may depend on the target con-
struct being measured by the scale. Percentage score on an examination
is a commonplace example. Clearly, it makes no sense for a percentage
to fall below 0 or above 100 in this context, and if the exam is intended
simply to measure knowledge about what is being examined, then these
bounds are absolute. However, if the examination items do not exhaust
the subject of the examination, then the bounds are not absolute in the
sense of measuring the student’s knowledge of the subject. A student
scoring 0 still may have some subject knowledge, and a student scoring
100 may not know everything about the subject.

Second, the definition of the construct may determine the nature
of the bounds. In Tobin’s (1958) original application of a censored
regression model, the dependent variable was the ratio of household
expenditure on durable goods to disposable income. If we regard the
underlying construct as propensity to purchase durable goods, then we
may elect to define an observed value of 0 as corresponding to a latent
propensity of 0 (so the boundary is absolute) or to define it as a censored
latent propensity.

Third, the boundaries may be open to multiple interpretations by
respondents. An example is a scale with verbal anchors, such as a World
Values Survey (World Values Survey Association, 2015) item that asks
participants, “How important is it for you to live in a country that is
governed democratically?” on a scale from 1 to 10, where 1 is labeled not
at all important and 10 is labeled absolutely important. Taken literally,
this scale’s bounds seem absolute insofar as values outside these bounds
do not make sense. However, there is no guarantee that all respondents
will interpret these verbal anchors literally.
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Finally, we return briefly to the issue of boundary cases. A prepon-
derance of cases on a boundary produces what is sometimes called a
“boundary-inflated” distribution. It suggests that at least some of the
boundary cases may be distinct in some way from the rest of the cases.
In some contexts, there are good reasons for supposing the existence
of such a distinction. Suppose we ask people to estimate the probabil-
ity that humanity will become extinct within the next thousand years.
A large number of zeros in the responses would indicate that there may
be two types of respondents, those who believe the human species never
will become extinct and those who believe that extinction is possible.
We may then decide to ascertain what distinguishes the zero-respondents
from the others, separately from identifying predictors of how probable
people think human extinction is. Another important class of boundary
cases is so-called corner solutions, as identified in the economics litera-
ture. A corner solution occurs when an agent maximizes his or her utility
at a boundary, as in a person who refuses all bets, no matter how attrac-
tive, on grounds that it is against his or her moral code to gamble. We
will revisit the treatment of boundary cases several times in this book.
First, however, we will briefly review the concepts from the generalized
linear model that will be used throughout this book.

1.3 The Generalized Linear Model

1.3.1 Definitions and Concepts

Many of the models described in this book are generalized linear models,
or GLMs (McCullagh & Nelder, 1989). We are going to provide a brief
introduction to them, starting with definitions and basic concepts. For
a complete introduction to GLMs, however, readers should consult
Jeff Gill’s book (2000). First, let us consider the general linear model.
Suppose we have a dependent variable, Y , whose expected value is a
linear function of predictor variables xj, for j = 1, . . . , J:

Y = μ + e = β0x0 + β1x1 + β2x2 + · · · + βJxJ + e = xβ + ε, (1.1)

where the vector x has x0 = 1 as its first entry, β is the vector of
coefficients, and ε has a normal distribution with mean 0 and variance
σ 2. Another way to write the model in equation (1.1) is to think of Y
as having a conditional distribution (i.e., a distribution whose parameters
are at least partly determined by the predictor variables). So, in equation
(1.2), we describe the conditional distribution of Y |x,β as normal with
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mean μ and variance σ 2, where μ is determined by the weighted linear
combination of predictors, xβ. This last equation in equation (1.2) is the
systematic component of the general linear model, and the ε error term
in equation (1.1) is what makes Y |x,β the stochastic component.

Y |x,β ∼ N
(
μ, σ 2

)
μ = xβ.

(1.2)

The generalized linear model often is confused with the general linear
model, but it is indeed a more general form of a linear model in two
respects. First, it relaxes some of the assumptions required of the general
linear model and admits other distributions than the normal. Second, it
involves a link function connecting the systematic and stochastic com-
ponents of the general linear model. The link function, g, is applied to
the parameter μ being estimated via the weighted linear combination
of predictors, as shown in equation (1.3). This function is smooth and
monotonic in μ. In some representations of the GLM, the inverse is
used instead (i.e., μ = g−1(xβ)) because it focuses on the estimation
of the parameter μ. The general linear model, then, is a special case of
the GLM, with the link function being the identity: g(μ) = μ.

Y |x,β ∼ f
(
μ, σ 2

)
g (μ) = xβ.

(1.3)

In some cases, there may be more than one available link function. A
special link function is known as the canonical link, because it arises
as a result of how the distribution f is defined. Why is this distinc-
tion between canonical and noncanonical link functions important? Gill
(2000) provides a detailed and accessible explanation of the desirable
statistical properties of the canonical link. Aside from the statistical or
theoretical reasons, the most pragmatic reason is that in a few cases,
the domain of the canonical link function is not the same as the per-
missible range of μ. For example, this is true of the exponential and
gamma distributions, whose canonical link functions are the reciprocal
functions. In such cases, modelers often will use an appropriate non-
canonical link function (such as the log) that restricts estimates to the
permissible range.

As an example, we introduce the lognormal GLM, where the log of
Y is assumed to have a normal distribution. We are using this example
because the lognormal is a popular choice for modeling variables that
have a lower bound of 0, such as income or reaction time. In equation
(1.4), we see that Y is distributed as lognormal (LN) with parameters
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μ and σ , and the link function g(μ) = log(μ). Although μ can only take
positive values, log(μ) can take any value on the real line, positive or neg-
ative. Thus, g unbounds the μ parameter so that it can be estimated by
the weighted linear combination of predictors without worrying about
the lower bound.

Y |x,β ∼ LN
(
μ, σ 2

)
log (μ) = xβ.

(1.4)

It is important to bear in mind that the link function does not always
translate straightforwardly to the expected value of Y or its variance. In
the lognormal distribution, although E(log(Y )) = μ, the expectation
of Y is E(Y ) = exp(μ + σ 2/2). Likewise, although the variance of
log(Y ) is σ 2, the variance of Y is (exp(σ 2) − 1) exp(2μ + σ 2). This
type of difference between the link function and the parameterization of
summary statistics such as the mean, variance, and quantiles will crop up
frequently for bounded variables, and we will return to this issue several
times to extract the connection between it and the nature of bounds
on variables.

Most of the GLMs in this book involve location-scale distributions
that are fully specified by two parameters. Often, these consist of a
location parameter (e.g., a mean) and a scale or dispersion parameter
(e.g., a standard deviation). Roughly speaking, a location parameter
determines the central tendency of a distribution, whereas a dispersion
parameter determines the variability of a distribution.

Traditionally, applied modelers have focused exclusively on modeling
the location parameter, relegating the dispersion parameter to the status
of a nuisance parameter or a role in evaluating location model error. This
tradition stems from two related sources. One is the popular assumption
of homoscedasticity or homogeneity of variance (i.e., variance is con-
stant regardless of the location of the mean), as in conventional linear
regression models.

The second, more implicit source is the fact that many location-scale
distributions whose support is the real line (e.g., the normal and t distri-
butions) have the property that the location parameter can be changed
without altering dispersion and vice versa. However, for variables with
bounds, this generally is not the case. When location and dispersion
are not independent of one another, then modeling both location and
dispersion parameters becomes important.

Returning to the lognormal GLM example, we already have seen that
in its original scale, the mean and variance of Y are influenced both by
μ and by σ . Thus, in its original scale, Y is naturally heteroscedastic.
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It therefore could make sense to model both μ and σ explicitly, with
predictor variables for each. We then would have two submodels, as
shown in equation (1.5), a location submodel for μ and a dispersion
submodel for σ , each with its own link function (in this example, it is
the log for both). Moreover, in zδ, the variables in the vector zmay differ
from or overlap with those in x.

Y |x,β ∼ LN
(
μ, σ 2

)
log (μ) = xβ
log (σ ) = zδ.

(1.5)

1.3.2 Estimation

Most of the GLMs in this book are estimated via maximum likeli-
hood (ML) estimation rather than least squares estimation. The latter
has been the default method in linear regression, and in linear regres-
sion, least squares and ML estimates are identical. However, in many
GLMs, especially those that model dispersion parameters, ML estima-
tion is relatively straightforward whereas least squares estimation often
is inapplicable. Equation (1.1) presents a “least squares” view of a GLM
with the conventional error term ε, whose sum of squares is minimized
in least squares estimation. On the other hand, equations (1.2) to (1.5)
present a “likelihood” view that refers directly to a distribution, condi-
tional on its parameter values. The error term ε has been absorbed into
the conditional distribution, and by the time we arrive at equation (1.5)
with its submodel for σ , there is no viable place for an error term of
that kind.

Instead, the ML approach deals with the likelihood of each observa-
tion in the distribution, conditional on the parameter estimates. Suppose
we have a random sample of independent observations xi, for i =
1, . . . ,N, from a random variable X whose probability density function
is f (x, θ), where θ is the vector of parameters that define the density func-
tion. Then the likelihood of any xi conditional on μ and σ is f (xi |θ ).
The likelihood function is the product of all of these likelihoods, due
to the independence of the xi. The log of the likelihood function is
more computationally convenient to work with, so the ML approach
conventionally uses the log-likelihood function

L (x |θ ) =
N∑
i=1

log ( f (xi |θ )). (1.6)

The maximum likelihood estimates of the parameters in a GLM are the
values of those parameters that maximize L (x |θ ).
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1.3.3 Evaluating and Comparing Models

Given alternative models with different sets of parameters and predic-
tors, researchers frequently wish to compare these models to determine
which of them fit the data best. This inclination naturally arises from
the availability of likelihood statistics and some of their attractive prop-
erties, and while it may not always result in the best practice regarding
comparisons among models, we will use it throughout this book because
it is practical and also related to Bayesian model comparison methods
such as Bayes factors.

To begin, it is important to distinguish between nested and nonnested
models. Model 1 is nested in Model 2 if Model 2 includes all of Model
1’s parameters and additional parameters as well. For instance, suppose
that Model 1 has a location submodel μ = β0 + β1x1 + β2x2, while
Model 2’s location submodel is μ = β0 +β1x1 +β2x2 +β2x3 and Model
3’s location submodel is μ = β0 + β2x2 + β2x3. Then Model 1 is nested
in Model 2 but not in Model 3, whereas both Models 1 and 3 are nested
in Model 2. Sometimes the nested model (e.g., Model 1) is called the
reduced model, and the nesting model (Model 2) is called the full model.

When models are nested, they may be compared via likelihood-based
tests. There are three asymptotically equivalent such tests: the likelihood
ratio, Lagrange multiplier, and Wald tests (Engle, 1984). The likelihood
ratio test (LRT) may be written as

G2
12 = −2 (L (y |x1, θ1 ) − L (y |x2, θ2 )) , (1.7)

where the subscripts 1 and 2 denote the parameters in Models 1 and 2,
respectively, and all of the variables and parameters in Model 1 are
contained in those for Model 2. When the null hypothesis that these
model likelihoods are equal (i.e., the additional parameters in Model
2 do not improve model fit) is true, G2

12 asymptotically follows a χ2

distribution, whose degrees of freedom are k2 − k1, where k1 and k2
are the number of parameters in Models 1 and 2, respectively. Reject-
ing the null hypothesis motivates the researcher to regard Model 2 as
better fitting than Model 1. Failing to reject the null hypothesis, on
the other hand, justifies preferring Model 1 over Model 2 on grounds
of parsimony.

The other two tests sometimes are useful alternatives to the LRT,
partly because each of them requires full estimation of only one of the
alternative models. The Lagrange multiplier test requires only that the
reduced model be estimated. The full model is then fitted in a single iter-
ation, and the resulting change in fit is used to evaluate the full model.
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The Wald test, on the other hand, requires only complete estimation of
the full model. It simultaneously tests null hypotheses regarding parame-
ters in the model, enabling the researcher to discard those parameters for
which the null hypothesis cannot be rejected. However, theWald test uses
two approximations (the χ2 approximation and approximate standard
errors for the parameters), whereas the LRT uses only the χ2 approx-
imation, so the Wald approach is more susceptible to small-sample
inaccuracy.

These three tests cannot be applied to comparisons between
nonnested models. The two most popular statistics for comparing
nonnested models are the Akaike information criterion (AIC; Akaike,
1974) and the Bayesian information criterion (BIC; Schwarz, 1978),
sometimes also known as the Schwarz information criterion. The AIC
is defined as

AIC = −2L (y |x, θ ) + 2k, (1.8)

where k is the number of parameters estimated in a model, and the BIC
is defined as

BIC = −2L (y |x, θ ) + k log (N) , (1.9)

where N is the sample size. Both the AIC and BIC penalize a model by
its number of parameters (i.e., its complexity). The lower the information
criterion score, the better the model fit is relative to the model’s complex-
ity. The BIC penalizes model complexity more severely than the AIC by
including sample size as a factor, and some researchers prefer the BIC to
the AIC because they believe the BIC is more likely to help them avoid
selecting an overfitted model. On the other hand, while the AIC actually
is based on information theory, the BIC is not. Vrieze (2012) presents a
thoughtful discussion of alternative information criteria.

In addition to computing overall measures of fit with the data,
researchers are well advised to evaluate the model in greater detail.
Broadly speaking, there are three ways that this can be done: investi-
gating the extent to which a candidate model fits all of the observations
equally well, ascertaining whether particular observations have a dispro-
portionate influence on the model parameter estimates, and assessing
how sensitive the model fit is to perturbations of the parameter estimate
values. These are related but distinct investigations. Assessments of how
well a model fits individual observations typically are conducted using
residuals, which are based on the difference between an observation’s
value and the model’s prediction thereof. Assessments of the influence
an observation has on the model parameter estimates usually are done
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via “leverage” statistics, which measure the sensitivity of parameter
estimates to the presence or perturbation of the observation. Assess-
ments of model fit sensitivity to perturbations of model parameter values
are less common than the other two types of assessment but can be done
as a by-product of the other two kinds or simply by computing likeli-
hoods of the model with alternative parameter values sampled within
their respective standard error or confidence bounds.

Turning first to residuals, four commonly employed kinds are the raw
(or response), Pearson, Anscombe, and deviance residuals. The response
residuals are just the difference between the observations and the model’s
predictions:

ri = yi − y′
i

∣∣∣(xi, θ̂)
. (1.10)

The Pearson residuals scale the raw residuals by the standard error of the
predicted value:

rpi = ri√
V

(
y′
i

(
xi, θ̂

)) , (1.11)

whereV is the variance function associated with the GLM’s distribution.
Pearson residuals are asymptotically normally distributed under appro-
priate conditions, but in real situations, they can be strongly skewed.
Anscombe residuals (Anscombe, 1953) transform the numerator and
denominator of the Pearson residuals to make them unimodal and sym-
metric, thereby as close to a normal distribution as possible. A full
explanation of these residuals would constitute a digression here, but
Gill (2000) provides an accessible and detailed explanation.

A different type of residual is the deviance residual. The deviance
statistic associated with a model is defined as twice the difference
between the log-likelihood of a “saturated” model that perfectly predicts
the observations yi and the log-likelihood of the model:

D (y |x, θ ) = 2 (L (y |ξ ) − L (y |x, θ )) , (1.12)

where ξ is the vector of parameters that perfectly predicts the yi. The
deviance residual, then, is

rdi = sign (ri)
√
di (xi, θ), (1.13)

where sign() takes the sign of the term in the parentheses, and di denotes
the ith contribution to the deviance,

di (yi |xi, θ ) = 2 (L (yi |ξi ) − L (yi |xi, θ )) . (1.14)
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In addition to examining residuals, assessing the effect of individ-
ual observations on the model provides a second way of evaluating the
model. A commonplace assumption among researchers is that exces-
sively influential observations also are outliers, but this is not always
true. Thus, there is a role for influence statistics, which measure the
impact that an observation has on the model. The main idea underpin-
ning influence statistics is cross-validation, whereby one observation at
a time is removed from the data and the model is fitted to the remain-
ing data. The most popular influence statistic is Cook’s distance, which
measures the sum of the changes in regression coefficients when one
observation is removed from the data (Cook, 1977). Cook’s distance
was derived in the context of linear regression, and variants of it have
subsequently been developed for other GLMs. Likewise, a popular stan-
dardized measure of change in a model parameter when an observation
is removed is the change in the coefficient divided by the standard error
of the original parameter estimate, for example,

�i

(
β̂
)

=
(
β̂ − β̂(i)

)/
σ̂

β̂
, (1.15)

where β̂(i) denotes the ML estimate of β when the ith observation has
been removed. These influence statistics are called “dfbetas.”

1.4 Examples

Having reviewed GLMs and introduced some ideas about bounds, we
will finish our introduction with two examples. We hope these examples
will make these concepts more concrete and also illustrate some of the
benefits from using techniques that take bounds into account.

1.4.1 Absolute Bounds Example

Income distributions are a prototypical example of a distribution with
one bound. We will use household income data for households with pos-
itive income for two of the years, 2010 and 2015, from the American
Community Survey database (U.S. Census Bureau, 2015), for our exam-
ple. These data comprise 148,076 households, and their income distri-
bution and normal quantile-quantile (Q-Q) plot are shown in Figure
1.1. The distribution is strongly skewed (the largest household income
exceeds $2 million), and the Q-Q plot shows that it deviates far from a
normal distribution.
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Figure 1.1 Household Income Distribution and Q-Q Plot

Figure 1.2 Log(Household Income) Distribution and Q-Q Plot

The distribution of the log income and its Q-Q plot in Figure 1.2 sug-
gest that the lognormal may be an appropriate distribution for modeling
these data. The Q-Q plot shows that the log income distribution closely
corresponds to the normal distribution for all but approximately 2% of
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the data in the lower tail (i.e., the data from about 2 standard deviations
below the mean downward).

Suppose we wish to compare the incomes for households that
obtained food stamps with those that did not, and we also would like
to ascertain whether the difference between them changed from 2010 to
2015. A linear regression model (equivalent to an analysis of variance
[ANOVA] with Type III sums of squares) yields this outcome:

Y |x,β ∼ N
(
μ, σ 2

)
μ = xβ = 75990.63 − 54389.33x1 + 10029.23x2 − 4476.95x1x2,

(1.16)

where x1 is the food-stamp dummy variable (x1 = 1 for households
obtaining food stamps and 0 for households with no food stamps), x2
is the year dummy variable (x2 = 1 for 2015 and 0 for 2010), and x1x2 is
the product of x1 and x2.

Now, there are two commonplace versions of a “lognormal” model
among researchers. One of these is a linear regression model with the
log of the dependent variable. Let us denote this as the “log-DV” model.
This model with the same predictors yields this outcome:

log(Y )|x,β ∼ N
(
μ, σ 2

)
μ = xβ = 10.888 − 1.223x1 + 0.101x2 + 0.053x1x2

log (σ ) = δ = −0.101.
(1.17)

All of the coefficients are statistically significant, not least because
of the enormous sample size. Our focus here is on the structure, effects,
and goodness of fit of each model. Beginning with the structure, we can
see from the coefficients that there is one obvious difference between the
two models, namely that the linear model has a negative interaction term
and the log-DV model has a positive interaction term. It also should be
borne in mind that the magnitudes of the coefficients differ considerably
due to the fact that one model is in the linear scale and the other is in
the log scale. There are several more or less equivalent ways to compare
the effects of these two models, all of which require transforming from
one model’s scale to the other’s. We will transform the log-DV model’s
estimates to the linear scale.

Table 1.1 displays the predicted means for each of the models in
their respective scales. In the row below the log-DV model’s means, the
corresponding means have been computed in the linear scale. Recall that
although E(log(Y )) = μ, the expectation of Y is E(Y ) = exp(μ + σ 2/2).
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Table 1.1 Linear and Log-DVModel-Predicted Means and Effects

Food Stamp No No Yes Yes
Year 2010 2015 2010 2015

Linear model
σ̂ = 78, 270 Means 75,990.63 86,019.85 21,601.30 27,153.58

Ratios 3.52 3.17
Log-DV model
σ̂ = 0.9036 Means 10.8878 10.9883 9.6652 9.8188

Linear scale 80,505.23 89,012.98 23,705.75 27,642.44
Ratios 3.40 3.22

For example, the 2010 no-food-stamps mean is E(Y ) = exp(10.8878 +
0.90362/2) = 80, 505.23 (allowing for a small roundoff error). The
estimated standard deviation, σ̂ , for each model is displayed in the left-
most column. Although the log-DV model’s transformed means differ
from those of the linear model, the effect sizes are fairly similar. The
linear model’s mean of the no-food-stamp households in 2010 is 3.52
times higher than the food-stamp household mean for the same year
(75, 990.63/21, 601.30 = 3.52), and the corresponding log-DV ratio of
its means is 3.40. For 2015, the linear model means ratio is 3.17 and the
log-DV means ratio is 3.22.

Now we turn to goodness of fit. Both models perfectly reproduce
the sample means in their respective scales. That is, the linear regression
model perfectly reproduces the means in the original scale, and the log-
DVGLMperfectly reproduces the means in the log scale. However, as we
saw earlier, the log-DVmodel does not produce the same mean in the lin-
ear scale as the linear model does (e.g., the mean income for households
not receiving food stamps in 2010 is 80,505.23 rather than 75,990.6).

Now let us turn to the second version of a lognormal model, in which
the link function for the mean response is the log. This model yields a
somewhat different set of coefficients from those in the log-DV model of
equation (1.17):

Y |x,β ∼ LN
(
μ, σ 2

)
log (μ) = xβ = 11.2384 − 1.2579x1 + 0.1240x2 + 0.1048x1x2.

(1.18)

We have deliberately chosen a “trivial” example to illustrate the fact that
transforming the lognormal model’s estimates back to the linear scale
reproduces the sample means in the linear scale, just as the linear model
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does. For example, using a more precise estimate of the intercept to
diminish roundoff errors, the model’s estimated mean income for house-
holds not receiving food stamps in 2010 is exp(11.238365) = 75, 990.6.
Moreover, the lognormal model has exactly the same log-likelihood as
the linear model. Thus, the most important practical difference between
the log-DV and lognormal models is that the log-DV model rescales the
dependent variable, whereas the lognormal model rescales the model.

1.4.2 Censoring Bounds Example

We now turn to an example of a model for a censored dependent
variable. A class of 159 second-year Australian National University psy-
chology students completed the DOSPERT, and we will model their
responses on the “ethical risk-taking” subscale. Items in this subscale
ask respondents to rate their likelihood to commit acts such as cheating
on an exam and pirating software. A substantial number of the stu-
dents’ responses yielded the lowest possible score. Why is this lowest
possible score “censored”? One way to think about this is that it may
be possible to find other examples of unethical acts that even some of
these 20 respondents would rate themselves as likely to do. After all, the
DOSPERT includes only eight examples of unethical acts, nowhere near
exhausting the human repertoire.

Figure 1.3 displays a histogram of the subscale responses, showing
20 cases on the lower boundary of the subscale. Two fitted distributions
also are displayed. The dashed-line distribution is a normal distribution
that reproduces the sample mean, μ̂ = 15.12, and standard deviation,
σ̂ = 5.48. The solid-line distribution is a normal distribution fitted
via a Tobit model, which takes censoring into account (Tobin, 1958). It
estimates the mean as μ̂ = 14.73 and standard deviation as σ̂ = 6.11,
appropriately decreasing the mean and increasing the standard deviation
estimates. Moreover, the Tobit model’s distribution fits the data better
than the normal distribution: The log-likelihood for the Tobit is −471.1
whereas for the normal, it is −495.6.

The Tobit model is the most popular GLM for censored outcomes. It
assumes that the data are sampled from a censored normal distribution.
In our example, that means assuming that the 20 boundary cases, if they
were uncensored, would be distributed as in the lower tail of a normal
distribution whose support extends beyond the scale’s boundary (the
lower tail of the solid-line distribution in Figure 1.3). Censoring can
occur at either end of a scale (or both), and there are several kinds
of censoring. These matters will be elaborated in Chapter 6, but here
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Figure 1.3 Normal and Tobit Distributions Fitted to Subscale Scores

we focus on a lower-censored Tobit model. The traditional notation for
such a model describes the uncensored observations in terms of equation
(1.1), that is,

yi = xiβ + εi, (1.19)

where εi ∼ N (0, σ) . For the variable’s censored observations, suppose τ

is the censoring threshold. Then

xiβ + εi ≤ τ , (1.20)

so that εi ≤ τ − xiβ and therefore

Pr(yi ≤ τ |xi ) = 1 − 
((xiβ − τ )/σi), (1.21)

where 
 is the standard normal cumulative distribution function. A
model for the censoring rate is given by equation (1.21).

We have seen in our example that the Tobit model gives different
estimates of the mean and standard deviation from those of the linear
regression model. The linear regression model’s estimate of the mean is
just μxβ, where μx denotes the vector mean of the predictor variables.
The Tobit model’s mean estimate is

E [y] = 
τμxβ + σφτ + τ (1 − 
τ ), (1.22)

where 
τ = 
((μxβ−τ )/σ ) and φτ = φ((μxβ−τ )/σ ). We now consider
a linear regression and a Tobit model with scores on the DOSPERT
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Table 1.2 Linear Regression and Tobit Model Summaries

Standard
Model Coefficient Estimate Error

Regression Intercept 1.414 1.274 Log-likelihood −449.4
Health risk 0.687 0.062 t 11.132

Tobit Intercept −0.592 1.464 Log-likelihood −424.4
Health risk 0.770 0.070 t 10.968

Quantiles 10% 25% 50% 75% 90%

Empirical 8 11 14 18 22
Regression 10.35 12.41 14.48 17.22 19.42
Tobit 9.41 11.72 14.03 17.11 19.57

health subscale predicting scores on the ethical risk-taking subscale. The
two models’ coefficients, t statistics, predicted versus empirical quantiles,
and log-likelihoods are displayed in Table 1.2. The linear regression
model’s coefficient is smaller than the Tobit’s, although their t values are
similar (due to the Tobit model’s larger residual standard error estimate).
As before, the log-likelihoods indicate that the Tobit model is the better
fit. This also is borne out by the predicted quantiles, which in all but one
case are closer to their empirical counterparts for the Tobit than for the
regression model.

In this chapter, we have tried to set the stage for the rest of the book by
reviewing the general linear model, introducing the concepts needed for
understanding the nature of bounds on variables, and presenting what
we hope are motivating demonstrations of models for bounded variables.
We now move on to considering models for singly bounded variables,
when the boundary is treated as absolute.

 
Do n

ot 
co

py
, p

os
t, o

r d
ist

rib
ute

 

Copyright ©2020 by SAGE Publications, Inc. 
 This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.




