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7
COMPUTING 

CORRELATION 
COEFFICIENTS

Ice Cream and Crime

Difficulty Scale  
(moderately hard)

WHAT YOU WILL LEARN IN THIS CHAPTER

✦ Understanding what correlations are and how they work

✦ Computing a simple correlation coefficient

✦ Interpreting the value of the correlation coefficient

✦ Understanding what other types of correlations exist and when they should 
be used

✦ Computing a partial correlation

✦ Interpreting the value of a partial correlation

WHAT ARE CORRELATIONS  
ALL ABOUT?
Measures of central tendency and measures of variability are not the only descriptive 
statistics that we are interested in using to get a picture of what a set of scores looks 
like. You have already learned that knowing the values of the one most representative 
score (central tendency) and a measure of spread or dispersion (variability) is critical 
for describing the characteristics of a distribution.
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132  Part III ■ Σigma Freud and Descriptive Statistics

However, sometimes we are as interested in the relationship between variables—or, 
to be more precise, how the value of one variable changes when the value of another 
variable changes. The way we express this interest is through the computation of a 
simple correlation coefficient. For example, what’s the relationship between age and 
strength? Income and education? Memory skills and drug use? Voting preferences 
and attitude toward regulations?

A correlation coefficient is a numerical index that reflects the relationship between 
two variables. The value of this descriptive statistic ranges between −1.00 and +1.00. 
A correlation between two variables is sometimes referred to as a bivariate (for two 
variables) correlation. Even more specifically, the type of correlation that we will talk 
about in the majority of this chapter is called the Pearson product-moment correla-
tion, named for its inventor, Karl Pearson.

The Pearson correlation coefficient is a statistic that quantifies the relation-
ship between two variables, and both of those variables should be continuous 
in nature. In other words, they are variables that can assume any value along 
some underlying continuum; examples include height (you really can be 5 feet 
and 6.1938574673 inches tall), age, test score, and income. But a host of other 
variables are not continuous. They’re called discrete or categorical variables, 
and examples are race (such as black and white); social class (such as high and 
low); and political affiliation (such as Democrat, Republican, and Independent). 
You need to use other correlational techniques, such as the point-biserial cor-
relation, in these cases. These topics are for a more advanced course, but you 
should know they are acceptable and very useful techniques. We mention them 
briefly later on in this chapter.

Other types of correlation coefficients measure the relationship between more than 
two variables, and we’ll leave those for the next statistics course (which you are look-
ing forward to already, right?).

Types of Correlation Coefficients: Flavor 1 and Flavor 2

A correlation reflects the dynamic quality of the relationship between variables. In 
doing so, it allows us to understand whether variables tend to move in the same or 
opposite directions when they change. If variables change in the same direction, 
the correlation is called a direct correlation or a positive correlation. If variables 
change in opposite directions, the correlation is called an indirect correlation or a 
negative correlation. Table 7.1 shows a summary of these relationships.

Now, keep in mind that the examples in the table reflect generalities, for example, 
regarding time to complete a test and the number of correct items on that test. In 
general, the less time that is taken on a test, the lower the score. Such a conclusion is 
not rocket science, because the faster one goes, the more likely one is to make careless 
mistakes such as not reading instructions correctly. But of course, some people can 
go very fast and do very well. And other people go very slowly and don’t do well at 
all. The point is that we are talking about the performance of a group of people on 
two different variables. We are computing the correlation between the two variables 
for the group, not for any one particular person.
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Chapter 7 ■ Computing Correlation Coefficients  133

TABLE 7.1  Types of Correlations.

What Happens 
to Variable X

What Happens 
to Variable Y

Type of 
Correlation Value Example

X increases in 
value.

Y increases in 
value.

Direct or 
positive

Positive, ranging 
from .01 to +1.00

The more time you spend 
studying, the higher your 
test score will be.

X decreases in 
value.

Y decreases in 
value.

Direct or 
positive

Positive, ranging 
from .01 to +1.00

The less money you put in 
the bank, the less interest 
you will earn.

X increases in 
value.

Y decreases in 
value.

Indirect or 
negative

Negative, ranging 
from −1.00 to −.01

The more you exercise, the 
less you will weigh.

X decreases in 
value.

Y increases in 
value.

Indirect or 
negative

Negative, ranging 
from −1.00 to −.01

The less time you take to 
complete a test, the more 
items you will get wrong.

There are several easy (but important) things to remember about the correlation 
coefficient:

• A correlation can range in value from −1.00 to +1.00.

• A correlation equal to 0 means there is no relationship between the two 
variables.

• The absolute value of the coefficient reflects the strength of the correlation. 
So, a correlation of −.70 is stronger than a correlation of +.50. One 
frequently made mistake regarding correlation coefficients occurs when 
students assume that a direct or positive correlation is always stronger (i.e., 
“better”) than an indirect or negative correlation because of the sign and 
nothing else.

• A correlation always reflects a situation in which there are at least two data 
points (or variables) per case.

• Another easy mistake is to assign a value judgment to the sign of the 
correlation. Many students assume that a negative relationship is not 
good and a positive one is good. That’s why, instead of using the terms 
negative and positive, we may prefer to use the terms indirect and direct to 
communicate meaning more clearly.

• The Pearson product-moment correlation coefficient is represented by the 
small letter r with a subscript representing the variables that are being 
correlated. For example,
� rXY is the correlation between variable X and variable Y.
� rweight-height is the correlation between weight and height.
� rSAT.GPA is the correlation between SAT scores and grade point average 

(GPA).
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134  Part III ■ Σigma Freud and Descriptive Statistics

The correlation coefficient reflects the amount of variability that is shared 
between two variables and what they have in common. For example, you can 
expect an individual’s height to be correlated with an individual’s weight because 
these two variables share many of the same characteristics, such as the indi-
vidual’s nutritional and medical history, general health, and genetics. However, 
if one variable does not change in value and therefore has nothing to share, then 
the correlation between it and another variable is zero. For example, if you com-
puted the correlation between age and number of years of school completed, and 
everyone was 25 years old, there would be no correlation between the two vari-
ables because there’s literally nothing (no variability) in age available to share.

Likewise, if you constrain or restrict the range of one variable, the correlation 
between that variable and another variable will be less than if the range is not 
constrained. For example, if you correlate reading comprehension and grades 
in school for very high-achieving children, you’ll find the correlation to be 
lower than if you computed the same correlation for children in general. That’s 
because the reading comprehension score of very high-achieving students is 
quite high and much less variable than it would be for all children. The les-
son? When you are interested in the relationship between two variables, try to 
collect sufficiently diverse data—that way, you’ll get the truest representative 
result. And how do you do that? Measure a variable as precisely as possible.

COMPUTING A SIMPLE 
CORRELATION COEFFICIENT
The computational formula for the simple Pearson product-moment correlation coef-
ficient between a variable labeled X and a variable labeled Y is shown in Formula 7.1.

 
r

n XY X Y

n X n Y Y
XY �

�

� � ��
��

�
��

� � ��
��

�
��

� � �
� � � �X 2 2 2 2

,
 

(7.1)

where

• rXY is the correlation coefficient between X and Y;

• n is the size of the sample;

• X is the individual’s score on the X variable;

• Y is the individual’s score on the Y variable;

• XY is the product of each X score times its corresponding Y score;

• X2 is the individual’s X score, squared; and

• Y2 is the individual’s Y score, squared.

Here are the steps to get the numbers needed to calculate the correlation coefficient:

1. List the two values for each participant like in Table 7.2. You should do this in a 
column format so as not to get confused. Use graph paper if working manually.

Visit edge.sagepub 
.com/salkindshaw 
to watch an R 
tutorial video on 
this topic.
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Chapter 7 ■ Computing Correlation Coefficients  135

2. Compute the sum of all the X values and compute the sum of all the  
Y values.

3. Square each of the X values and square each of the Y values and sum the 
values for each column.

4. Find the sum of the XY products.

If you want to fill in the table manually, use the numbers in the columns for X and Y 
of Table 7.2 and follow the steps above. As a final step, check your work by comparing 
it to Table 7.3.

Another option? Instead of computing everything by hand, let’s use R to com-
pute r. We will first compute r the long way to get more practice with R and 
become more comfortable with Formula 7.1. Then we will use the function for 
correlation.

Let’s start by first populating each column and then sum all numbers in a column to 
fill in the last row.

TABLE 7.2  Start With the Numbers for X and Y.

Respondent ID X Y X2 Y2 XY

1 2 3

2 4 2

3 5 6

4 6 5

5 4 3

6 7 6

7 8 5

8 5 4

9 6 4

10 7 5

Total, sum, or ∑

To start, let’s create two vectors, one to hold the numbers for X and the other to hold 
the numbers for Y:

> X <- c(2, 4, 5, 6, 4, 7, 8, 5, 6, 7)

> Y <- c(3, 2, 6, 5, 3, 6, 5, 4, 4, 5)

Copyright ©2020 by SAGE Publications, Inc. 
 This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

 
Do n

ot 
co

py
, p

os
t, o

r d
ist

rib
ute

 



136  Part III ■ Σigma Freud and Descriptive Statistics

To fill in the rest of the table, let’s tell R to square and multiply some numbers for 
us. Starting with X,

> Xsq <- X^2

> Xsq

[1] 4 16 25 36 16 49 64 25 36 49

>

X^2 told R to square—multiply every number by itself—every value of X and store 
the result in Xsq. Now we will repeat that step with Y.

> Ysq <- Y^2

> Ysq

[1] 9 4 36 25 9 36 25 16 16 25

>

We have the numbers to fill in the next two columns of our table. To fill in the last 
column, let’s multiply each row of numbers stored in X and Y to create a new vector 
called XY. For example, X = 2 in the first row and Y = 3. Multiply those two numbers 
and you get 6. With R, we get products for every row with a simple command:

> XY <- X*Y

> XY

[1] 6 8 30 30 12 42 40 20 24 35

>

We now have values for X2, Y2, and XY. Everything has been filled in except for the last row.

The last numbers we need to complete our table are the sum totals (Σ) of every num-
ber in each table column. Again, let R do the heavy lifting of summing all of the 
numbers in a vector. The function that we saw when using R to calculate the mean 
was sum(). To sum up the X vector, we will use the sum function on the X vector 
and store the result in sumX.

> sumX <- sum(X)

> sumX

[1] 54

Repeat this step with Y, Xsq, Ysq, and XY to create sumY, sumXsq, sumYsq, and 
sumXY to fill in the rest of the table and have the numbers we will plug into R to get 
r. Your table should now be complete and resemble Table 7.3.
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Chapter 7 ■ Computing Correlation Coefficients  137

TABLE 7.3  The Final Table.

Respondent ID X Y X2 Y2 XY

1 2 3 4 9 6

2 4 2 16 4 8

3 5 6 25 36 30

4 6 5 36 25 30

5 4 3 16 9 12

6 7 6 49 36 42

7 8 5 64 25 40

8 5 4 25 16 20

9 6 4 36 16 24

10 7 5 49 25 35

Total, sum, or ∑ 54 43 320 201 247

Before we plug the numbers into the formula both by hand and in R, let’s make sure 
you understand what each one represents:

• ∑X, or the sum of all the X values, is 54.

• ∑Y, or the sum of all the Y values, is 43.

• ∑X2, or the sum of each X value squared, is 320.

• ∑Y2, or the sum of each Y value squared, is 201.

• ∑XY, or the sum of the products of X and Y, is 247.

It’s easy to confuse the sum of a set of values squared and the sum of the 
squared values. The sum of a set of values squared is taking values such as 2 
and 3, summing them (to be 5), and then squaring that (which is 25). The sum 
of the squared values is taking values such as 2 and 3; squaring them (to get 4 
and 9, respectively); and then adding those together (to get 13). Just look for the 
parentheses as you work.

These values from the last row of the table are plugged into the equation you see in 
Formula 7.2:

 

r
n XY Y

n X X n Y Y

r

XY

XY

�
�

� � ��
��

�
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��

�
��
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� � �
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X

2 2 2 2

10 247

,

�� �� �
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54 43

10 320 54 10 201 432 2
.

 (7.2)
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138  Part III ■ Σigma Freud and Descriptive Statistics

Ta-da! And you can see the answer in Formula 7.3:

 rXY = =
148

213 83
692

.
. .  (7.3)

Instead of pulling out a calculator, let’s enter the equation in R, using the R objects we 
created. We will create one more object to hold the size of our sample. Then we will 
re-create the formula.

> n <- 10

> rByHand <- ((n * sumXY) - (sumX * sumY))/

+ sqrt((((n * sumXsq) - (sumX^2)) * ((n * sumYsq) - 

(sumY^2))))

> rByHand

[1] 0.6921331

What’s really interesting about correlations is that they measure the amount of 
distance that one variable covaries in relation to another. So, if both variables 
are highly variable (have lots of wide-ranging values), the correlation between 
them is more likely to be high than if not. Now, that’s not to say that lots of 
variability guarantees a higher correlation, because the scores have to vary 
in a systematic way. But if the variance is constrained in one variable, then no 
matter how much the other variable changes, the correlation will be lower. 
For example, let’s say you are examining the correlation between academic 
achievement in high school and first-year grades in college and you only look at 
the top 10% of the class. Well, that top 10% is likely to have very similar grades, 
introducing no variability and no room for the one variable to vary as a function 
of the other. Guess what you get when you correlate one variable with another 
variable that does not change (that is, has no variability)? rXY = 0, that’s what. 
The lesson here? Variability works, and you should not artificially limit it.

A Visual Picture of a Correlation: The Scatterplot

There’s a very simple way to visually represent a correlation: Create what is called a 
scatterplot, or scattergram. A scatterplot is simply a plot of each set of scores on 
separate axes.

Here are the steps to complete a scatterplot like the one you see in Figure 7.1, which 
plots the 10 sets of scores for which we computed the sample correlation earlier.

1. Draw the x-axis and the y-axis. Usually, the X variable goes on the 
horizontal axis and the Y variable goes on the vertical axis.

2. Mark both axes with the range of values that you know to be the case for the 
data. For example, the value of the X variable in our example ranges from 
2 to 8, so we marked the x-axis from 0 to 9. There’s no harm in marking 
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Chapter 7 ■ Computing Correlation Coefficients  139

the axes a bit low or high—just as long as you allow room for the values to 
appear. The value of the Y variable ranges from 2 to 6, and we marked that 
axis from 0 to 9. Having similarly labeled (and scaled) axes can sometimes 
make the finished scatterplot easier to understand.

3. Finally, for each pair of scores (such as 2 and 3, as shown in Figure 7.1),  
we entered a dot on the chart by marking the place where 2 falls on the  
x-axis and 3 falls on the y-axis. The dot represents a data point, which is the 
intersection of the two values.

When all the data points are plotted, what does such an illustration tell us about the 
relationship between the variables? To begin with, the general shape of the collection of 
data points indicates whether the correlation is direct (positive) or indirect (negative).

A positive correlation occurs when the data points group themselves in a cluster from 
the lower left-hand corner on the x- and y-axes through the upper right-hand corner. 
A negative correlation occurs when the data points group themselves in a cluster from 
the upper left-hand corner on the x- and y-axes through the lower right-hand corner.

We can easily create a scatterplot with R. Try this command:

FIGURE 7.1  A simple scatterplot.

9

8

7

6

5

4

3

2

1

0
9876543210

Y

X

Data point (2,3)

> plot(Y ~ X)

• plot is the name of the function.

• Y listed first tells R what variable we want represented with the vertical axis.

• ~ is a symbol that roughly means related.

• X is listed second and will be displayed on the horizontal axis.
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140  Part III ■ Σigma Freud and Descriptive Statistics

Here are some scatterplots showing very different correlations where you can see  
how the grouping of the data points reflects the sign and strength of the correlation 
coefficient.

Figure 7.2 shows a perfect direct correlation where rXY = 1.00 and all the data points 
are aligned along a straight line with a positive correlation.

FIGURE 7.2  A perfect positive correlation.
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If the correlation were perfectly indirect, the value of the correlation coefficient 
would be −1.00, and the data points would align themselves in a straight line as well 
but from the upper left-hand corner of the chart to the lower right. In other words, 
the line that connects the data points would have a negative correlation.

Don’t ever expect to find a perfect correlation between any two variables in the 
behavioral or social sciences. Such a correlation would say that two variables 
are so perfectly related, they share everything in common. In other words, 
knowing one is like knowing the other. Just think about your classmates. Do 
you think they all share any one thing in common that is perfectly related to 
another of their characteristics across all those different people? Probably not. 
In fact, r values approaching .7 and .8 are just about the highest you’ll see.

In Figure 7.3, you can see the scatterplot for a strong (but not perfect) direct relation-
ship where rXY = .70. Notice that the data points align themselves along a positive 
line, although not perfectly. If you were to draw a circle around the data points, it 
would look like an ellipse.

Now, we’ll show you a strong indirect, or negative, relationship in Figure 7.4, where 
rXY = −.82. Notice that the data points align themselves on a negative line from the 
upper left-hand corner of the chart to the lower right-hand corner. Again, a circle 
drawn around the data points will look like an ellipse.
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Chapter 7 ■ Computing Correlation Coefficients  141

FIGURE 7.3  A strong, but not perfect, direct relationship.
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FIGURE 7.4  A strong, but not perfect, indirect relationship.
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That’s what different types of correlations look like, and you can really tell the gen-
eral strength and direction by examining the way the points are grouped.

Not all correlations are reflected by a straight line showing the X and the Y val-
ues in a relationship called a linear correlation (see Chapter 17 for tons of fun 
stuff about this). The relationship may not be linear and may not be reflected 
by a straight line. Let’s take the correlation between age and memory. For the 
early years, the correlation is probably highly positive—the older children get, 
the better their memories. Then, into young and middle adulthood, there isn’t 
much of a change or much of a correlation, because most young and middle 
adults maintain a good (but not necessarily increasingly variable) memory. 
But with old age, memory begins to suffer, and there is an indirect relation-
ship between memory and aging in the later years. If you take these together 
and look at the relationship over the life span, you find that the correlation 
between memory and age tends to look something like a curve where memory 
increases, levels off, and then decreases. It’s a curvilinear relationship, and 
sometimes, the best description of a relationship is that it is curvilinear.
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142  Part III ■ Σigma Freud and Descriptive Statistics

Bunches of Correlations: The Correlation Matrix

What happens if you have more than two variables? How are the correlations illustrated? 
Use a correlation matrix like the one shown in Table 7.4—a simple and elegant solution.

TABLE 7.4  Correlation Matrix.

Income Education Attitude Vote

Income 1.00 .574 −.08 −.291

Education .574 1.00 −.149 −.199

Attitude −.08 −.149 1.00 −.169

Vote −.291 −.199 −.169 1.00

As you can see, there are four variables in the matrix: level of income (Income), level 
of education (Education), attitude toward voting (Attitude), and whether the indi-
vidual voted in the most recent election (Vote).

For each pair of variables, there is a correlation coefficient. For example, the correla-
tion between income level and education is .574. Similarly, the correlation between 
income level and whether the person participated in the most recent election is −.291 
(meaning that the higher the level of income, the less likely people are to vote, and of 
course, the lower the level of income, the more likely it is people will vote).

In such a matrix with four variables, there are always 4!/[(4 − 2)!2!], or four things 
taken two at a time for a total of six correlation coefficients (recall 4! = 4 × 3 × 2 × 1). 
Because variables correlate perfectly with themselves (those are the 1.00s down the 
diagonal), and because the correlation between Income and Vote is the same as the 
correlation between Vote and Income, the matrix creates a mirror image of itself.

You will see such matrices (the plural of matrix) when you read journal articles that 
use correlations to describe the relationships among several variables.

UNDERSTANDING WHAT THE 
CORRELATION COEFFICIENT MEANS
Well, we have this numerical index of the relationship between two variables, and we 
know that the higher the value of the correlation (regardless of its sign), the stron-
ger the relationship is. But because the correlation coefficient is a value that is not 
directly tied to the value of an outcome, just how can we interpret it and make it a 
more meaningful indicator of a relationship?

Here are different ways to look at the interpretation of that simple rXY.

Using-Your-Thumb (or Eyeball) Method

Perhaps the easiest (but not the most informative) way to interpret the value of a cor-
relation coefficient is by eyeballing it and using the information in Table 7.5.
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Chapter 7 ■ Computing Correlation Coefficients  143

TABLE 7.5  Interpreting a Correlation Coefficient.

Size of the Correlation Coefficient General Interpretation

.8 to 1.0 Very strong relationship

.6 to .8 Strong relationship

.4 to .6 Moderate relationship

.2 to .4 Weak relationship

.0 to .2 Weak or no relationship

So, if the correlation between two variables is .5, you could safely conclude that the 
relationship is a moderate one—not strong, but certainly not weak enough to say 
that the variables in question don’t share anything in common.

This eyeball method is perfectly acceptable for a quick assessment of the strength of 
the relationship between variables, such as when you briefly evaluate data presented 
visually. But because this rule of thumb depends on a subjective judgment (of what’s 
“strong” or “weak”), we would like a more precise method. That’s what we’ll look 
at now.

These cutoff points may differ from cutoffs other researchers use. The exact cutoffs 
and what is considered strong versus weak depend on the field of research. Ask your 
professor what standards they use.

A DETERMINED EFFORT: SQUARING 
THE CORRELATION COEFFICIENT
Here’s the much more precise way to interpret the correlation coefficient: computing 
the coefficient of determination. The coefficient of determination is the percentage 
of variance in one variable that is accounted for by the variance in the other variable. 
Quite a mouthful, huh? A simpler way would be to say the coefficient of determina-
tion is the amount of variance the two variables share.

Earlier in this chapter, we pointed out how variables that share something in com-
mon tend to be correlated with one another. If we correlated math and English 
grades for 100 fifth-grade students, we would find the correlation to be moderately 
strong, because many of the reasons why children do well (or poorly) in math tend 
to be the same reasons why they do well (or poorly) in English. The number of hours 
they study, how bright they are, how interested their parents are in their schoolwork, 
the number of books they have at home, and more are all related to both math and 
English performance and account for differences between children (and that’s where 
the variability comes in).

The more these two variables share in common, the more they will be related. 
These two variables share variability—or the reason why children differ from 
one another. And on the whole, the brighter child who studies more will do 
better.
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144  Part III ■ Σigma Freud and Descriptive Statistics

To determine exactly how much of the variance in one variable can be accounted for 
by the variance in another variable, the coefficient of determination is computed by 
squaring the correlation coefficient.

For example, if the correlation between GPA and number of hours of study time is 
.70 (or rGPA.time = .70), then the coefficient of determination, represented by rGPA.time

2 ,  
is .702, or .49. This means that 49% of the variance in GPA can be explained by 
the variance in studying time. And the stronger the correlation, the more variance 
can be explained (which only makes good sense). The more two variables share in 
common (such as good study habits, knowledge of what’s expected in class, and lack 
of fatigue), the more information about performance on one score can be explained 
(and, as you will learn in Chapter 18, predicted) by the other score.

However, if 49% of the variance can be explained, this means that 51% cannot—so 
even for a strong correlation of .70, many of the reasons why scores on these variables 
tend to be different from one another go unexplained. This amount of unexplained 
variance is called the coefficient of alienation (also called the coefficient of non-
determination). Don’t worry. No aliens here. This isn’t Avatar, Signs, or District 9 
stuff—it’s just the amount of variance in Y not explained by X (and, of course, vice 
versa since the relationship goes both ways).

How about a visual presentation of this sharing variance idea? Okay. In Figure 7.5, 
you’ll find a correlation coefficient, the corresponding coefficient of determination, 
and a diagram that represents how much variance is shared between the two vari-
ables. The larger the shaded area in each diagram (and the more variance the two 
variables share), the more highly the variables are correlated.

• The first diagram in Figure 7.5 shows two circles that do not touch. They 
don’t touch because they do not share anything in common. The correlation 
is zero.

• The second diagram shows two circles that overlap. With a correlation of .5 
(and rXY

2 25= . ), they share about 25% of the variance between them.

• Finally, the third diagram shows two circles placed almost on top of each 
other. With an almost perfect correlation of rXY = .90 ( rXY

2 = .81), they share 
about 81% of the variance between them.

FIGURE 7.5   Correlations and the resulting amount of variance 
shared.

Variable X Variable Y

0% shared

25% shared

81% shared

Correlation

rXY = .5

rXY = .9

rXY = 0

Coefficient of
Determination

r 
2  = .81 or 81%XY

r 
2

  = .25 or 25%XY

r 
2

  = 0XY
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Chapter 7 ■ Computing Correlation Coefficients  145

As More Ice Cream Is Eaten . . . the Crime  
Rate Goes Up (or Association vs. Causality)

Now here’s the really important thing to be aware of, and very careful about, when 
computing, reading about, or interpreting correlation coefficients.

Imagine this. In a small Midwestern town, a phenomenon occurred that defied any 
logic. The local police chief observed that as ice cream consumption increased, crime 
rates tended to increase as well. Quite simply, if you measured both, you would find 
the relationship was direct, meaning that as people eat more ice cream, the crime rate 
increases. And as you might expect, as they eat less ice cream, the crime rate goes 
down. The police chief was baffled until he recalled the Stats 1 class he took in college 
and still fondly remembered.

He wondered how this could be turned into an aha! “Very easily,” he thought. The 
two variables must share something or have something in common with one another. 
Remember that it must be something that relates to both level of ice cream consump-
tion and level of crime rate. Can you guess what that is?

The outside temperature is what they both have in common. When it gets warm out-
side, such as in the summertime, more crimes are committed (it stays light longer, 
people leave the windows open, bad guys and girls are out more, etc.). And because 
it is warmer, people enjoy the ancient treat and art of eating ice cream. Conversely, 
during the long and dark winter months, less ice cream is consumed and fewer crimes 
are committed as well.

Joe, recently elected as a city commissioner, learns about these findings and has a 
great idea, or at least one that he thinks his constituents will love. (Keep in mind, he 
skipped the statistics offering in college.) Why not just limit the consumption of ice 
cream in the summer months to reduce the crime rate? Sounds good, right? Well, on 
closer inspection, it really makes no sense at all.

That’s because of the simple principle that correlations express the association that 
exists between two or more variables; they have nothing to do with causality. In other 
words, just because level of ice cream consumption and crime rate increase together 
(and decrease together as well) does not mean that a change in one results in a change 
in the other.

For example, if we took all the ice cream out of all the stores in town and no more 
was available, do you think the crime rate would decrease? Of course not, and it’s 
preposterous to think so. But strangely enough, that’s often how associations are 
interpreted—as being causal in nature—and complex issues in the social and behav-
ioral sciences are reduced to trivialities because of this misunderstanding. Did long 
hair and hippiedom have anything to do with the Vietnam conflict? Of course not. 
Does the rise in the number of crimes committed have anything to do with more 
efficient and safer cars? Of course not. But they all happen at the same time, creating 
the illusion of being associated.

Using RStudio to Compute the Correlation Coefficient

Let’s use RStudio to compute the correlation coefficient. The data set we are using is 
Chapter 7 Data Set 1 (ch7ds1.csv).
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146  Part III ■ Σigma Freud and Descriptive Statistics

There are two variables in this data set:

Variable Definition

Income Annual income in thousands of dollars

Education Level of education measured in years

COMPUTING THE CORRELATION 
COEFFICIENT BY ENTERING DATA
To compute the Pearson correlation coefficient, follow these steps:

1. Enter the data from ch7ds1 by hand for Income and Education. We’re using 
the c function to concatenate or combine the data that follow.

> Income <- c(36577, 54365, 33542, 65654, 45765, 24354,

43233, 44321, 23216, 43454, 64543, 43433, 34644, 33213,

55654, 76545, 21324, 17645, 23432, 44543)

> Education <- c(11, 12, 10, 12, 11, 7, 12, 13, 9, 12, 

12, 14, 12, 10, 15, 14, 11, 12, 11, 15)

>

When you enter a command into R and don’t complete it (you might have forgot a 
parenthesis, for example, like this . . .)

x <- c(3, 5

RStudio will let you know that you have more to enter by placing an empty line 
rather than the usual RStudio > prompt. RStudio is telling you that it needs more 
to complete the operation.

2. Calculate the correlation coefficient using the cor function.

> cor(Income, Education)

>

3. Press the Enter key.
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Chapter 7 ■ Computing Correlation Coefficients  147

The results [1] (0.5744407) are as shown in the R syntax for this whole example:

> Income <- c(36577, 54365, 33542, 65654, 45765, 24354,

+             43233, 44321, 23216, 43454, 64543, 43433,

+             34644, 33213, 55654, 76545, 21324, 17645,

+             23432, 44543)

> Education <- c(11, 12, 10, 12, 11, 7, 12, 13, 9, 12,

+                12, 14, 12, 10, 15, 14, 11, 12, 11, 15)

> cor(Income, Education) # Calculate correlation

[1] 0.5744407

>

R Output

The output shows the correlation coefficient to be equal to .574, and that’s all the out-
put shows. Nothing about the statistical significance of the correlation coefficient or 
sample size and other useful information, but we’ll get to all that in Chapter 18. For 
now, we just want to compute the correlation coefficient, which cor does quite nicely.

The R Console output shows that the two variables are related to one another 
(directly) and that as level of income increases, so does level of education. Similarly, 
as level of income decreases, so does level of education (again, directly).

As for the meaningfulness of the relationship, the coefficient of determination is 
.5742 or .33, meaning that 33% of the variance in one variable is accounted for by 
the other. According to our eyeball strategy, this is a relatively moderate relationship. 
Once again, remember that low levels of income do not cause low levels of education, 
nor does not finishing high school mean that someone is destined to a life of low 
income. That’s causality, not association, and correlations speak only to association.

COMPUTING THE CORRELATION 
COEFFICIENT BY IMPORTING A FILE
We can also read a data set into RStudio by using the Import Dataset option on the 
file menu as you have seen earlier in Statistics for People Who (Think They) Hate Statis-
tics Using R. See Chapter 3 if you need a refresher on how to do this.

Once the file is imported, use the cor() function to compute the correlation coef-
ficient as you see below. Here the $ sign was used to reference the RStudio object 
(ch7ds1 separated from the vector names such as Income and Education). The com-
mand takes the following form:

> cor(data1$Income, data1$Education)

[1] 0.5744407

>
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148  Part III ■ Σigma Freud and Descriptive Statistics

Creating a Scatterplot (or Scattergram  
or Whatever You Want to Call It)

To use RStudio to create a scatterplot, follow these steps. This is a really easy proce-
dure and the same function we used to plot X and Y. Be sure that Income and Educa-
tion are both objects in the workspace by looking in your Global Environment on the 
Environment/History pane or using the ls() command to check their availability. 
If they are not available, add them.

1. At the RStudio prompt, enter the following command.

> plot(Income, Education)

2. Press the Enter key.

The R syntax above produces the plot you see below in Figure 7.6, although minus the 
attractive axis labels. We learned how to fancy up plots in Chapter 6.

FIGURE 7.6  A scatterplot of Income and Education.
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Another Scatterplot

Remember way back in Chapters 2 and 3 that we talked about the many different 
ways R and RStudio can be used to accomplish a similar task? Well, take a look at 
Figure 7.7, where we used the scatterplot function from the car package (we had to 
download this package because it is not a part of R base). It provides the same visual 
information (and much more). Remember that with R, there are many different ways 
to accomplish the same goal.

Here is the syntax we used to install and reference the car package and then use the 
scatterplot() function:
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Chapter 7 ■ Computing Correlation Coefficients  149

> install.packages(“car”)

> library(car)

> scatterplot(Income, Education)

>
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FIGURE 7.7   A scatterplot using the scatterplot function from the car 
package.

In addition to the data points, the line representing the correlation is the solid line 
running from the bottom left to the top right. We will talk about the dotted and 
dashed lines in the next paragraph. What is really different is the rectangular boxes 
on the x-axis and y-axis. They are boxplots with the middle line at the median.

Things Don’t Have to Be Linear Part 2

Above, we mentioned that the relationship between two variables is not always 
linear. One way to investigate how linear the relationship is? Use the scatterplot 
function to get a line that follows the data, called a lowess line. Lowess stands for 
Locally Weighted Scatterplot Smoothing. In this case, for income below 30,000, 
the relationship appears negative and weak. For income from 30,000 to 50,000, the 
relationship appears positive and strong. For income above 50,000, the relationship 
appears positive and weak. The dashed lines above and below represent a confidence 
interval allowing us to show how uncertain we are about the lowess line. Meaning, 
if we collected another sample of 20 observations and created a scatterplot, its lowess 
line is probably (95% of the time) somewhere between the two dashed lines.

OTHER COOL CORRELATIONS
There are different ways in which variables can be assessed. For example, nominal-level 
variables are categorical in nature; examples are race (Black or White) and political 
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150  Part III ■ Σigma Freud and Descriptive Statistics

affiliation (Independent or Republican). Or, if you are measuring income and age, 
you are measuring interval-level variables, because the underlying continuum on 
which they are based has equally appearing intervals. As you continue your studies, 
you’re likely to come across correlations between data that occur at different levels of 
measurement. And to compute these correlations, you need some specialized tech-
niques. Table 7.6 summarizes what these different techniques are and how they differ 
from one another.

TABLE 7.6  Correlation Coefficient Shopping, Anyone?

Level of Measurement and Examples

Variable X Variable Y Type of Correlation Example

Nominal (voting preference, 
such as Republican or 
Democrat)

Nominal (sex, such as 
male or female)

Phi coefficient The correlation 
between voting 
preference and sex

Nominal (social class, such 
as high, medium, or low)

Ordinal (rank in high 
school graduating 
class)

Rank biserial 
coefficient

The correlation 
between social class 
and rank in high school

Nominal (family 
configuration, such as two-
parent or single-parent)

Interval (grade point 
average)

Point biserial The correlation 
between family 
configuration and 
grade point average

Ordinal (height converted 
to rank)

Ordinal (weight 
converted to rank)

Spearman rank 
coefficient

The correlation 
between height and 
weight

Interval (number of 
problems solved)

Interval (age in years) Pearson correlation 
coefficient

The correlation 
between number of 
problems solved and 
age in years

Using RStudio to Compute Other Correlations

As you already know, the command for computing a simple correlation coefficient 
is cor(). And the default here is to compute the Pearson correlation coefficient. 
But you can also compute other kinds of correlations by defining a method. So, if 
you wanted to compute Kendall’s tau correlation coefficient (and that would be 
used for the correlation between two ordered variables such as finishing first, 
second, etc. in a race), you would enter this command at the RStudio prompt—and 
remember the quotes!

> cor(x, y, method = “kendall”)

where x and y represent the two variables you want to correlate. You can do the 
same with the Spearman rank correlation coefficient.
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Chapter 7 ■ Computing Correlation Coefficients  151

PARTING WAYS: A BIT ABOUT 
PARTIAL CORRELATION
Okay, now you have the basics about simple correlation, but there are many other 
correlational techniques that are specialized tools to use when exploring relationships 
between variables.

A common “extra” tool is called partial correlation, where the relationship between 
two variables is explored, but the impact of a third variable is removed from the relation-
ship between the two. Sometimes that third variable is called a confounding variable.

For example, let’s say that we are exploring the relationship between level of depres-
sion and incidence of chronic disease and we find that, on the whole, the relationship 
is positive. In other words, the more chronic disease is evident, the higher the likeli-
hood that depression is present as well (and of course vice versa).

Now remember, one variable does not “cause” the other, and the presence of one vari-
able does not mean that the other will be present as well. The positive correlation is 
just an assessment of the relationship between these two variables, the key idea being 
that they share some variance in common.

And that’s exactly the point—it’s what they share in common that we want to control 
and, in some cases, remove from the relationship.

For example, how about level of family support? Nutritional habits? Severity or length 
of illness? These and many more variables can all be responsible for the relationship 
between these two variables, or they may at least account for some of the variance.

And think back a bit. That’s exactly the same argument we made when focusing on 
the relationship between consumption of ice cream and level of crime. Once outside 
temperature (the mediating or confounding variable) is removed from the equation . . .  
boom! The relationship between consumption of ice cream and crime level plum-
mets. Let’s take a look.

USING R TO COMPUTE 
PARTIAL CORRELATIONS
Let’s use some data and R to illustrate the computation of a partial correlation. Here 
are the raw data we mentioned earlier about ice cream and crime.

City
Ice Cream 

Consumption Crime Rate
Average Outside 

Temperature

1 3.4 62 88

2 5.4 98 89

3 6.7 76 65

4 2.3 45 44

(Continued)
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152  Part III ■ Σigma Freud and Descriptive Statistics

City
Ice Cream 

Consumption Crime Rate
Average Outside 

Temperature

5 5.3 94 89

6 4.4 88 62

7 5.1 90 91

8 2.1 68 33

9 3.2 76 46

10 2.2 35 41

Here are the steps in computing a partial correlation coefficient using R.

1. Create three vectors using the data in the above table as shown here.

> IceCreamConsumption <- c(3.4, 5.4, 6.7, 2.3, 5.3, 4.4, 

5.1, 2.1, 3.2, 2.2)

> CrimeRate <- c(62, 98, 76, 45, 94, 88, 90, 68, 76, 35)

> AverageTemperature <- c(88, 89, 65, 44, 89, 62, 91, 

33, 46, 41)

One was named IceCreamConsumption, the second was named CrimeRate, and the 
third was named AverageTemperature. You can, of course, name them what you want, 
and these are a bit long, but we wanted to use highly descriptive names to make this 
exercise easy to follow.

2. Create a data frame (named IceCream) that combines these three vectors or 
variables into a data frame.

> IceCream <- data.frame(IceCreamConsumption, CrimeRate, 

AverageTemperature)

>

3. Using the cor() function, enter the following command to compute the 
simple correlation on the whole data frame to get a correlation matrix on the 
three variables.

> cor(IceCream)

          IceCreamConsumption CrimeRate AverageTemperature

IceCreamConsumption 1.0000000 0.7429317          0.7038434

CrimeRate             0.7429317     1.0000000                       0.6552779

AverageTemperature      0.7038434    0.6552779                    1.0000000

>

(Continued)
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Chapter 7 ■ Computing Correlation Coefficients  153

Computing the Correlation Between Three Variables

As you can see by these values, there’s a pretty healthy relationship between ice 
cream consumption and outside temperature (.703) and between crime rate and out-
side temperature (.655). We’re interested in the question, “What’s the correlation 
between ice cream consumption and crime rate with the effects of outside tempera-
ture removed or partialed out?”

That’s what partial correlation does. It looks at the relationship between two variables 
(in this case, consumption of ice cream and crime rate) as it removes the influence 
of a third (in this case, outside temperature). And, the all-important relationship 
between consumption of ice cream and crime rate is .7429. This too (remember, 
at this point, it is a simple correlation coefficient) is a pretty healthy relationship, 
accounting for more than 50% of the variance between the two variables (.74292 = 
.5519 or 55%). Pretty respectable (but not to be trusted!—read on).

4. If you have not already, install the package named ppcor using the Install 
tab on the Files, Plots . . . pane in RStudio. If you have questions about how 
to install packages, see the section on Installing Packages in Chapter 2.

Making Packages Work

Remember that when you install a package, the functions in that package 
do not become active and available until you enter the following command 
library(package name), such as

> library(ppcor)

>

Otherwise, RStudio will not be able to find and execute any of the functions.

5. Enter the following command at the RStudio prompt to compute the partial 
correlations for all three variables.

> pcor(IceCream)

You will see the results of the partial correlation analysis as shown below. The vari-
able that is partialed out is AverageTemperature (the farthest column to the right), 
so the first two columns and rows represent the correlation without the influence of 
AverageTemperature.

> pcor(IceCream)

$estimate

           IceCreamConsumption   CrimeRate  AverageTemperature

IceCreamConsumption  1.0000000   0.5250130           0.4291989

CrimeRate            0.5250130   1.0000000           0.2783881

AverageTemperature   0.4291989   0.2783881           1.0000000
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Understanding the R Output for Partial Correlation

As you can see in the R output, the correlation of IceCreamConsumption and  
CrimeRate with AverageTemperature removed or controlled is .5250. If you look 
back at the results of the simple correlation obtained from the cor() function, you 
can see that the removal of that one variable (AverageTemperature) reduced the cor-
relation from .74 to .53. In terms of the way we interpret correlations (remember the 
coefficient of determination), the amount of variance accounted for goes from 54% 
(that’s .742) to 27% (that’s .522)—it’s quite a difference in explanatory power.

Our conclusion? With the removal of the confounding variable of outside tempera-
ture, the relationship decreases and much less variance is accounted for. In fact, 
removing the variable of AverageTemperature decreases the amount of explained 
variance by 100% (it’s just about reduced by half). Yikes—that’s a big difference.

And, the most important implication of this analysis is that we don’t need to stop 
selling ice cream to try to reduce crime. Breathe easy.

Other Ways to Compute the Correlation Coefficient

Package Function What It Tells You

Hmisc rcorr The correlation between x and y, the number of 
pairs of data, and the statistical significance of r.

> rcorr(X, Y)

               x     y

x 1.00        0.69

y   0.69      1.00

n = 10

P

  x      y

x        0.0266

y 0.0266

REAL-WORLD STATS
Nicholas Derzis and his colleagues examined the relationship between career 
thoughts and career interests in a group of incarcerated males as part of a reentry 
program for prisoners in their last 90 days in a medium-security prison.

Negative career thoughts were assessed on three subscales, decision-making confu-
sion, external conflict, and commitment anxiety, that make up the Career Thoughts 
Inventory. Career interests were assessed by the Self-Directed Search, which gauges 
likes and dislikes in six career domains: realistic, investigative, conventional, artistic, 
enterprising, and social.

Career Thoughts Inventory scores were converted to T scores (something you will 
learn about in Chapter 10), and means on the subscales and overall ranged from 
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54.20 to 57.19. Self-Directed Search results indicated that the most popular jobs were 
those in which people prefer to work with things rather than other people (realistic).

The researchers used Kendall’s tau to examine the relationship between normal 
scores on the Career Thoughts Inventory and categories on the Self-Directed Search. 
Looking at Table 7.5, all correlations would be rated as weak or no relationship with 
values that ranged from .08 to .18.

Want to know more? Go online or to the library and find . . .

Derzis, N. C., Meyer, J., Curtis, R. S., & Shippen, M. E. (2017). An analysis 
of career thinking and career interests of incarcerated males. Journal of 
Correctional Education, 68(1), 52–70.

Summary

The idea of showing how things are related to one another and what they have in common is a 
very powerful one, and the correlation coefficient is a very useful descriptive statistic (one used in 
inference as well, as we will show you later). Keep in mind that correlations express a relationship 
that is only associative and not causal, and you’ll be able to understand how this statistic gives us 
valuable information about relationships between variables and how variables change or remain 
the same in concert with others. Now it’s time to change speeds just a bit and wrap up Part III with a 
focus on reliability and validity. You need to know about these ideas because you’ll be learning about 
how to determine what differences in outcomes, such as scores and other variables, represent.

Time to Practice

1. Use these data to answer Questions 1a and 1b. These data are saved in Chapter 7 Data Set 2 
(ch7ds2.csv).

a. Compute the Pearson product-moment correlation coefficient by hand and show all your 
work.

b. Construct a scatterplot for the following 10 pairs of values by hand. Based on the 
scatterplot, would you predict the correlation to be direct or indirect? Why?

Number Correct (out of a possible 20) Attitude (out of a possible 100)

17 94

13 73

12 59

 (Continued)
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Number Correct (out of a possible 20) Attitude (out of a possible 100)

15 80

16 93

14 85

16 66

16 79

18 77

19 91

2. Use Chapter 7 Data Set 3 (ch7ds3.csv) to answer Questions 2a and 2b.

a. Using either a calculator or a computer, compute the Pearson correlation coefficient.

b. Interpret these data using the general range of very weak to very strong. Also compute the 
coefficient of determination. How does the subjective analysis compare with the value of r2?

Speed (to complete a 50-yard swim) Strength (number of pounds  
bench-pressed)

21.6 135

23.4 213

26.5 243

25.5 167

20.8 120

19.5 134

20.9 209

18.7 176

29.8 156

28.7 177

3. Rank the following correlation coefficients on strength of their relationship (list the weakest 
first).

.71

+.36

−.45

.47

−.62

 (Continued)
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4. For the following set of scores, calculate the Pearson correlation coefficient and interpret the 
outcome. These data are saved in Chapter 7 Data Set 4 (ch7ds4.csv).

Achievement Increase Over 12 Months Classroom Budget Increase Over 12 Months

0.07 0.11

0.03 0.14

0.05 0.13

0.07 0.26

0.02 0.08

0.01 0.03

0.05 0.06

0.04 0.12

0.04 0.11

5. For the following set of data, use R to correlate minutes of exercise with GPA. What  
do you conclude given your analysis? These data are found in Chapter 7 Data Set 5  
(ch7ds5.csv).

Exercise GPA

25 3.6

30 4.0

20 3.8

60 3.0

45 3.7

90 3.9

60 3.5

0 2.8

15 3.0

10 2.5

 (Continued)
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6. Calculate the correlation between hours of studying and grade point average for these honor 
students. Why is the correlation so low?

Hours of Studying GPA

23 3.95

12 3.90

15 4.00

14 3.76

16 3.97

21 3.89

14 3.66

11 3.91

18 3.80

9 3.89

7. The coefficient of determination between two variables is .64. Answer the following questions:

a. What is the Pearson correlation coefficient?

b. How strong is the relationship?

c. How much of the variance in the relationship between these two variables is unaccounted for?

8. Here is a set of three variables for each of 20 participants in a study on recovery from a head 
injury. Create a data frame (and name it what you want) and create the correlation matrix for 
each pair of variables. These data are found in Chapter 7 Data Set 6 (ch7ds6.csv).

Age at Injury Level of Treatment 12-Month Treatment Score

25 1 78

16 2 66

8 2 78

23 3 89

31 4 87

19 4 90

15 4 98

31 5 76

21 1 56

 (Continued)
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Chapter 7 ■ Computing Correlation Coefficients  159

Age at Injury Level of Treatment 12-Month Treatment Score

26 1 72

24 5 84

25 5 87

36 4 69

45 4 87

16 4 88

23 1 92

31 2 97

53 2 69

11 3 79

33 2 69

 9. Look at Table 7.4. What type of correlation coefficient would you use to examine the relationship 
between sex (defined as male or female) and political affiliation? How about family configuration 
(two-parent or single-parent) and high school GPA? Explain why you selected the answers you 
did.

10. When two variables are correlated (such as strength and running speed), they are associated 
with one another. But if they are associated with one another, then why doesn’t one cause the 
other?

11. Provide three examples of an association between two variables where a causal relationship 
makes perfect sense conceptually but, since correlations do not imply causality, makes little 
sense statistically until further examination.

12. Why can’t correlations be used as a tool to prove a causal relationship between variables, 
rather than just an association?

13. When would you use partial correlation?

Student Study Site

Get the tools you need to sharpen your study skills! Visit edge.sagepub.com/salkindshaw to access 
practice quizzes and eFlashcards, watch R tutorial videos, and download data sets!
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