CHAPTER 1. INTRODUCTION

A regression model describes how the distribution of a response (or
dependent) variable—or some characteristic of that distribution, typi-
cally its mean—changes with the values of one or more explanatory
(or independent) variables. Regression diagnostics are methods for deter-
mining whether a regression model that has been fit to data adequately
represents the structure of the data. For example, if the model assumes a
linear (straight-line) relationship between the response and an explana-
tory variable, is the assumption of linearity warranted? Regression
diagnostics not only reveal deficiencies in a regression model that has
been fit to data but in many instances may suggest how the model can
be improved.

This monograph considers two important classes of regression
models:

e The normal linear regression model, in which the response variable
is quantitative and assumed to have a normal (or Gaussian) dis-
tribution conditional on the values of the explanatory variables.
The observations on the response are further assumed to be inde-
pendent of one another, to be a linear function (i.e., a weighted
sum) of the parameters of the model, and to have constant condi-
tional variance. The normal linear model fit by the method of least
squares is the focus of the monograph both because it is often used
in practice and because it provides a basis for diagnostics for the
other regression models considered here.

Generalized linear models (GLMs), in which the conditional dis-
tribution of the response variable is a member of an exponential
Jfamily, such as the families of Gaussian, binomial, and Poisson dis-
tributions, and in which the mean of the response is transformed
to a linear function of the parameters of the model. The GLMs
include the normal linear model, logistic regression for a dichoto-
mous response, and Poisson regression for count data as important
special cases. GLMs can also be extended to nonexponential distri-
butions and to situations in which an explicit conditional response
distribution isn’t assumed.

As a preliminary example of what can go wrong in linear least-squares
regression, consider the four scatterplots from Anscombe (1973) shown
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in Figure 1.1 and dubbed “Anscombe’s quartet” by Edward Tufte in an
influential treatise on statistical graphics (Tufte, 1983). One of the goals
of statistical analysis is to provide an adequate descriptive summary of
the data. All four of Anscombe’s data sets were contrived cleverly to
produce the same standard linear regression outputs—slope, intercept,
correlation, residual standard deviation, coefficient standard errors, and
statistical tests—but, importantly, not the same residuals.

e In Figure 1.1(a), the least-squares line is a reasonable description
of the tendency for y to increase with x.

e In Figure 1.1(b), the linear regression fails to capture the obviously
curvilinear pattern of the data—the linear model is clearly wrong.

e In Figure 1.1(c), one data point (an outlier) is out-of line with
the others and has an undue influence on the fitted least-squares
line. A line through the other points fits them perfectly. Ideally
in this case, we want to understand why the outlying case differs
from the others—possibly it is special in some way (e.g., it is
strongly affected by a variable other than x, or represents an
error in recording the data). Of course, we are exercising our
imaginations here, because Anscombe’s data are simply made up,
but the essential point is that we should address anomalous data
substantively.

e In Figure 1.1(d), in.contrast, we are unable to fit a line at all but for
the rightmost data point; the least-squares line goes through this
influential point and through the mean of the remaining values of
y above the common x-value of 8. At the very least, we should be
reluctant to-trust the estimated regression coefficients because of
their-dependence on one unusual point.

Anscombe’s simple illustrations serve to introduce several of the
themes of this monograph, including nonlinearity, outlying data, influ-
ential data, and the effectiveness of graphical displays. The usual
numeric regression outputs clearly do not tell the whole story. Diagnostic
methods—many of them graphical—help to fill in the gaps.

The plan of the monograph is as follows:

e Chapter 2 reviews the normal linear regression model estimated by
the method of least squares.

e Chapter 3 introduces simple graphical methods for examining
regression data and discusses how to transform variables to deal
with common data analysis problems.
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Figure 1.1  Anscombe’s quartet: Four data sets with identical standard
regression outputs (e.g., the equation of the common least-squares
line and correlation coefficient are shown below the graphs).
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Source: Adapted from Anscombe (1973). Reprinted by permission of the American Statistical
Association, www.amstat.org.

e Chapter 4 describes methods for detecting unusual data in least-
squares regression, distinguishing among high-leverage cases, out-
liers, and influential cases.

e Chapter 5 takes up the problems of nonnormally distributed errors
and nonconstant error variance.

e Chapter 6 discusses methods for detecting and correcting
nonlinearity.
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e Chapter 7 describes methods for diagnosing collinearity.

e Chapter 8 extends the diagnostics discussed in the preceding
chapters to GLMs.

e Chapter 9 makes recommendations for incorporating diagnostics
in the work flow of regression analysis and suggests complemen-
tary readings.

My aim is to explain clearly the various kinds of problems that regression
diagnostics address, to provide effective methods for detecting these
problems, and, where appropriate, to suggest possible remedies. All'the
problems discussed in this monograph vary in degree from trivial to
catastrophic, but I view nonlinearity as intrinsically .the most serious
problem, because it implies that we're fitting the wrong equation to the
data.

The first edition of this monograph was published in 1991. This new
edition has been thoroughly revised and rewritten, partly reflecting more
recent developments in regression diagnostics, partly extending the cov-
erage to GLMs, and partly reflecting my evolving understanding of the
subject. I feel that it is only right to mention that I've addressed partially
overlapping material in Fox (2016) and (with Sanford Weisberg) in Fox
and Weisberg (2019). Although this monograph was written indepen-
dently of these other sources, I have adapted some of the examples that
appear in them and I’'m aware -that I may express myself similarly when
writing about similar subject matter.

I have prepared a website for the monograph, with data and R code for
the examples in the text at https://tinyurl.com/RegDiag. If you have diffi-
culty finding the website, there is also a link to the supporting materials
on the SAGE website at https://www.sagepub.com: After navigating to
the SAGE website, search for “John Fox” to locate the SAGE webpage
for the monograph.
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