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CHAPTER 1

1.1 INTRODUCTION

In everyday use, statistics can refer to specific pieces of numerical information, such as average 
income for all employed persons in the United States. In science and technical fields, the term 
statistics more often describes techniques for analyzing and interpreting numerical information. 
Readers should not assume that all published numerical information is correct. Numeracy skills 
are needed to understand and evaluate how numerical information is collected, analyzed, and 
presented.

1.2 GUIDELINES FOR NUMERACY

A report published by the American Statistical Association’s Committee on Guidelines for 
Assessment and Instruction in Statistics Education (GAISE College Report ASA Revision 
Committee, 2016) described numeracy skills as follows:

Students should become critical consumers of statistically-based results reported 
in popular media, recognizing whether reported results reasonably follow from 
the study and analysis conducted. To be a critical consumer of statistically-based 
results, it is necessary to understand the components that produced them: the 
design of the investigation, the data, its analysis, and its interpretation. Identifying 
the variables in a study, which includes consideration of the measurement units, is 
a necessary step to inform judgments or comparisons. Identifying the subjects (cases, 
observational units) of a study and the population to which the results of an analysis 
can be generalized helps the consumer to recognize whether the reported results 
can reasonably support the conclusions claimed for an analysis. Being able to 
interpret displays of data (tables, graphs, and visualizations) and statistical analyses 
also informs the consumer about the reasonableness of the claims being presented. 
(Italics added)

Italicized terms in the preceding quotation identify components of the research and data 
analysis process; these are discussed further in Chapter 2 and research methods courses. This 
chapter briefly considers other fundamental issues in the communication of numerical infor-
mation: (a) sources (or communicators), (b) types of evidence, (c) questions about generaliz-
ability and causal inference, (d) quality control mechanisms, (e) ethical responsibilities, and 
(f) degrees of belief.

EVALUATING NUMERICAL INFORMATION
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2   APPLIED STATISTICS I

1.3 SOURCE CREDIBILITY

1.3.1 Self-Interest or Bias

Communicators can be motivated by self-interest or bias. Self-interest is often clear in 
mass media; messages are often intended to influence audience beliefs or behaviors (such as 
voting or product purchases). Science communicators can also be motivated by self-interest; 
for instance, some researchers receive funding from alcohol or pharmaceutical companies, 
and their future funding may depend on research results. Many science journals require 
authors to declare potential conflicts of interest.

Self-interest of information providers is not always obvious. Many webpages offer “spon-
sored content”: paid messages from advertisers that look like news articles but in fact promote 
the interests of advertisers. For instance, a new diet pill might be presented as “news” when 
in fact the article is an advertisement. Communicator self-interest raises concerns about credibility 
of messages.

1.3.2 Bias and “Cherry-Picking”

Communicators generally cannot (or do not) present all available information.  Selection 
of information by communicators can be influenced by confirmation bias, a preference 
for information that confirms preexisting beliefs or ideas. Biased selection of evidence can 
be informally called cherry-picking. Information and ideas that are excluded may be as 
 important as information that is included.

As an example of cherry-picking, suppose 20 studies show no association between 
consuming meat and cancer risk, and 3 studies do show an association. A journalist might 
report only the 3 studies that showed an association or might report only the single most 
recent study. Whether the bias was intentional or not, the article will not provide an accurate 
 summary of research results.

When scientists write literature reviews (reviews of past research), they are expected to 
discuss all past relevant research.1 Literature reviews are included in the introductions to most 
primary source research reports; literature reviews can also be stand-alone papers or books.

1.3.3 Primary, Secondary, and Third-Party Sources

An old game called “telephone” illustrates the problem of distance from a source. People 
form a line; the first person whispers a message to the second person, the second person 
whispers it to the third, and so forth. When the final message is compared with the original 
message, there are changes and distortions. Transmission of information can introduce errors 
because of each person’s biases or misunderstandings.

In science, a primary source is a research report written by a researcher who has first-
hand knowledge of behaviors and events in a study. Primary source reports (sometimes called 
articles or papers) are published in science journals.2 Primary source data may also appear in 
books written for science audiences.

A secondary source is a description or summary of past research, created by some-
one who did not experience the reported data collection or observations firsthand. In many 
disciplines, secondary sources are scholarly books. Some journal articles are also secondary 
sources because they only review past research and do not present new data about which their 
authors have firsthand knowledge. Literature reviews in the introductions to science journal 
articles are secondhand discussions of past studies. (In the sciences, literature refers to past 
published research.)

Unfortunately, primary source reports are usually long and difficult to read (particularly 
for readers unfamiliar with statistics and technical terms). Language in research reports is 
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ChAPTER 1 • EvALuATING NuMERICAL INFORMATION   3

sometimes unnecessarily obscure. Some full-length science research reports are published 
on the web as open-access materials; anyone can view these. However, many publishers 
require fees or subscriptions for access. The consequence is that many people can’t easily 
understand most primary source information in science and sometimes cannot even gain 
access to it.

Much content on websites for news organizations is third-party content. This is con-
tent written by someone who may have examined only secondary sources or other thirdhand 
content, such as news reports or press releases. Often, third-party content is authored by 
someone who has no technical knowledge of the research field and statistical methods. Exam-
ples include articles published by news organizations. These articles usually don’t provide 
complete or accurate information about research results.

In the past, editors of prestigious newspapers required reporters to fact-check claims 
carefully. Increasingly, news reports on the web are paraphrases of, or uncritical reposting 
of, third-party content from other news sources. Some mass media news sources specifically 
disclaim responsibility for accuracy. Here is an example; many other news organizations post 
similar disclaimers:

CNN is a distributor (and not a publisher or creator) of content supplied by third 
parties and users. . . . Neither CNN nor any third-party provider of information 
guarantees the accuracy, completeness, or usefulness of any content. . . . (CNN, 2018)

Communicators can provide better quality information when they are closer to original sources of 
information, and they are likely to provide better quality information when they assume responsibility 
for accuracy.

In everyday life, most of us rely on thirdhand information most of the time. Because so 
much of what we think we know is based on thirdhand information, we should not be overly 
confident about things we think we know.

1.3.4 Communicator Credentials and Skills

Communicators are more believable when they have training and background related to 
information in the message. Researchers generally have credentials that provide evidence of 
this training and background, including advanced degrees such as a PhD or MD, affiliations 
with respected organizations such as universities, and publications in high-quality science 
journals. Some journalists have strong credentials in science, but many do not. People who do 
not have training in statistics can easily misunderstand studies that use statistical terms such 
as logistic regression and odds ratios.

Celebrity status is not a meaningful credential. Famous media personalities, such as 
Dr. Oz3 and other self-appointed lifestyle or health experts, may base recommendations on 
incomplete or incorrect information.

Scientific research reports include source information (authors, university affiliations, 
and so forth). News reports and websites sometimes do not include source information; they 
provide no basis to evaluate self-interest, distance from information source, and creden-
tials. Guidelines for evaluation of websites are provided by Kiely and Robertson (2016) and 
 Montecino (1998).

1.3.5 Track Record for Truth-Telling

There are independent, nonpartisan organizations that evaluate communicator track 
records for truth-telling in journalism, for example, the Pulitzer Prize–winning site www 
.politifact.com. PolitiFact rates statements as true, mostly true, half true, mostly false, false, 
and “pants on fire” (extremely false). Other respected fact-checking sites are www.snopes.com 
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4   APPLIED STATISTICS I

and www.factcheck.org. These fact-checkers do the work that information consumers usually 
don’t have the time to do.

Information published in scientific journals can be incorrect because of fraud; fraud in 
science is rare, but it has occurred. A notorious example was a claim by Andrew Wakefield 
that vaccines cause autism (discussed by Godlee, Smith, & Marcovitch, 2011). There are 
severe penalties for fraud or plagiarism in science, including forced retraction of publica-
tions, withdrawal of research funds, loss of reputation, and job dismissal. Rare instances of 
fraud in science can be identified by a web search for the researcher name and terms such 
as fraud. Information consumers should be skeptical of information from sources with poor records for 
truth-telling.

1.4 MESSAGE CONTENT

1.4.1 Anecdotal Versus Numerical Information

Anecdote means “story,” often about an individual person or situation. First-person 
accounts are often called testimonials. Audiences may find narrative stories or anec-
dotes more persuasive and memorable than numerical information. There are many 
potential problems with anecdotes (anecdotal evidence). Sometimes individual situ-
ations are not reported accurately (for example, advertisements for weight loss prod-
ucts often include falsified before and after photos). Even when anecdotal evidence is 
accurate, it is difficult to know whether the experience shown is generalizable: Has this 
experience happened to many other people, or was this a unique situation? Diet prod-
uct advertisers are required to acknowledge this and typically do so in a tiny footnote: 
“Individual results may vary.”

In science, a detailed report of an individual person or situation is called a case study. 
The study of unique cases, such as the brain damage suffered by railway worker Phineas Gage 
(Kihlstrom, 2010; Twomey, 2010) can be valuable. However, generalizability concerns are still 
relevant.

Anecdotal evidence can dramatize genuine problems. However, anecdotal evidence can 
also dramatize and promote incorrect beliefs. It is obviously easy to cherry-pick anecdotes. 
Supporting evidence in the form of systematic numerical information can provide a more 
accurate overview of evidence than anecdotal reports.

1.4.2 Citation of Supporting Evidence

In science, identification of outside sources of evidence is done by citation. Author 
names and years of publication are included in the text (to identify sources of ideas and evi-
dence), and complete information to locate each source is included in a reference list. Cita-
tion has two purposes. First, it gives credit to others for their ideas and evidence; this avoids 
plagiarism, which occurs if authors present ideas or contributions of other people as if they 
were the authors’ own new contributions. Second, it shows how the present study builds upon 
an existing body of evidence.

A message is more believable when it includes or refers to specific supporting evidence. 
In science, the most complete and detailed supporting evidence appears in primary source 
research reports in science journals. Documentation of information sources is typically less 
detailed and systematic in journalism and mass media. (The best science journalists provide 
references or links to primary source research reports.)

It is possible for a writer or an advertiser to claim a spurious air of authority by citing 
numerous sources. However, a long list of references does not guarantee accuracy. On closer 
examination, readers may find that communicators have cherry-picked, misinterpreted, or 

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



ChAPTER 1 • EvALuATING NuMERICAL INFORMATION   5

misrepresented evidence; cited sources that are not relevant to the topic; or referred only to 
opinion pieces that do not actually contain evidence.

To evaluate the quality of evidence, we need to know how it was collected. Collection 
of evidence in science is systematic; that is, there are rules and procedures that specify what 
researchers should do to gather evidence and limit the kinds of interpretations they are 
 permitted to make. Rules for statistical analysis are an important part of this.

1.5 EVALUATING GENERALIZABILITY

Researchers and journalists usually want to generalize about their findings. In other words, 
instead of just saying: “45% of the respondents I talked to said they plan to vote for candidate 
X,” they want to say something like “45% of all registered voters plan to vote for candidate X.” 
Generalizability of results is the degree to which a researcher can claim that results obtained 
in a specific sample would be the same for a population of interest. Results from a sample can 
be generalized to an actual population of interest if the sample is representative of the popula-
tion; representativeness can often be obtained using random or systematic methods to select 
the sample. Results from an accidental or a convenience sample may be generalizable to a hypo-
thetical population if the sample resembles that hypothetical population. Results from a biased 
sample are not generalizable. In experiments, generalizability also depends on similarity of type 
and dosages of experimental treatment to real-world experiences with the treatment variable, 
setting, and other factors.

Polling organizations, such as Gallup, collect public opinion information in ways that 
provide a good basis for generalization. They use large samples (usually at least 1,000 indi-
viduals) and obtain these samples using combinations of random and systematic selection 
so that the people who responded to the survey resemble the larger population (such as all 
registered voters) in terms of age, income, and so forth (Gallup, n.d.).

When journalists report information from polls and demographic studies, they are (once 
again) in a position to cherry-pick. Because of differences in procedures and types of people 
contacted, various polling organizations may report different predictions about presidential 
candidate preference. A journalist who wants to make a case to support Candidate X may 
report only the poll in which Candidate X had the highest approval ratings.

In behavioral and social science, the problem of generalizability can have a different 
form. A researcher may want to know whether cognitive behavioral therapy (CBT) reduces 
depression. Typically, studies examine small to moderate numbers of cases, for instance,  
35 patients who receive CBT and 35 who do not. To generalize results about effects of CBT 
to a large hypothetical population of “all depressed persons,” ideally, we would want a random 
sample drawn from that population. However, participants are often convenience samples, 
that is, people who were easy to recruit.

It is important to know what kinds of people were (and were not) included in a study. For 
example, if a drug study finds evidence that a new medication is effective and safe for healthy 
young men, that does not necessarily mean that the drug is also effective and safe for women, 
elders, children, and other kinds of people not included in the study.

Be careful not to overgeneralize results, particularly when there is little information 
about the types and numbers of people (or cases) included. It makes sense to generalize infor-
mation from a small group to some larger population only when people in the group resemble the 
population of interest. This is discussed further in Chapter 2 in sections about samples and 
populations.

In science communication, authors are expected to discuss limitations that must be con-
sidered before drawing any conclusions. Limitations include the number and kinds of people 
(or cases) included in a study. Science writing should make limitations of evidence clear; media 
reporting often does not.
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6   APPLIED STATISTICS I

1.6 MAKING CAUSAL CLAIMS

In everyday life, and in science, we often want to know about causal connections. Consider a ques-
tion raised by Wootson (2017). Do diet (artificially sweetened) soft drinks cause weight gain? If you 
are concerned about weight gain, and if artificially sweetened soft drinks cause weight gain, then you 
might consider avoiding diet soft drinks to avoid weight gain. However, it is possible that the asso-
ciation reported in some studies did not arise because of any direct causal impact of diet soft drinks 
on weight. Perhaps when people drink diet soft drinks, they feel free to indulge in other high-calorie 
foods, and perhaps it is those other high-calorie foods, not the soft drinks in and of themselves, that 
cause weight gain. If that is the correct explanation, then what you need to do to avoid weight gain 
is to avoid consuming high-calorie foods (rather than reduce diet soda consumption).

Causal explanations are attractive because they tie events together in meaningful ways. 
This is useful in science as well as everyday life. Sometimes when a cause–effect relationship 
is known, it suggests what we can do to change outcomes.

Demonstrating that two events are causally connected can be difficult, because there are 
often rival possible explanations. Well-controlled experiments can rule out many rival expla-
nations. In everyday life, people sometimes jump to conclusions about causality on the basis 
of insufficient evidence.

1.6.1 The “Post Hoc, Ergo Propter Hoc” Fallacy

News commentators frequently offer causal explanations for events (e.g., the stock mar-
ket went down because of a blizzard the previous day). This explanation is often just an opin-
ion of the news commentator. The stock market might have gone down for other reasons 
(including random variations). This is an example of a common logical fallacy called “post 
hoc, ergo propter hoc.” This Latin phrase means “after this, therefore, because of this.” This 
(incorrect) reasoning goes like this: If Event A happens, and then Event B happens, then A 
must have caused B. Before we can conclude that Event A caused Event B, additional condi-
tions are required. Here is another example. If you have a cold, take a large dose of vitamin 
C, and then the cold goes away, you might conclude that vitamin C cured the cold. However, 
the cold might have gone away on its own, whether you took vitamin C or not. Post hoc, ergo 
propter hoc reasoning uses one instance of co-occurrence (vitamin C, end of cold) to draw 
a causal conclusion. That is poor-quality reasoning that often leads to mistaken beliefs in 
causality. To conclude that vitamin C cures colds, you would need an experiment to evaluate 
whether the duration of colds was less in a group that took vitamin C than in a group that did 
not (controlling for other factors, such as placebo effects).

1.6.2 Correlation (by Itself) Does Not Imply Causation

You may have frequently heard the warning that correlation does not imply causation. This 
warning should be stated more precisely. It is more accurate to say, Existence of a statistical relation-
ship, such as a correlation, between variables X and Y, is needed to make claims that X causes Y. However,  
the mere existence of a statistical relationship does not prove that X causes Y. Alternative explanations 
for the statistical relationship between X and Y must be ruled out before we can believe that X causes Y.

Let’s examine this idea carefully.
The word correlation has two meanings. First, sometimes people use the term correla-

tion to refer to a specific statistic: the Pearson product–moment correlation, also called 
Pearson’s r. Second, the term correlation can be used in a broader sense; we can say that 
variables are correlated if they are statistically related using some statistical analysis. The sta-
tistical analysis can be something other than Pearson’s r. For example, if we compare average 
height for male and female groups and find that men are taller than women, we can say that 
sex (X) is statistically related to height (Y) or that sex is correlated with height.
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ChAPTER 1 • EvALuATING NuMERICAL INFORMATION   7

We cannot claim that an X variable “causes” a Y variable if there is no statistical relation-
ship of any kind between X and Y. In other words, the existence of a statistical relationship 
between X and Y is a necessary condition before we can consider causal inference.

However, existence of a statistical association is not enough evidence by itself to prove 
causality. Sometimes variables are statistically related (correlated) just by chance, or because 
the X and Y variables are related to some third variable Z, and Z may be the real “cause.”

Consider this example: If we measure ice cream sales (X) and number of homicides (Y) 
once a month for a year, there is a correlation between them. Months that have the most ice 
cream sales also have the largest number of homicides (Peters, 2013). Does eating ice cream 
cause people to commit homicide? That idea is obviously silly. A more plausible explanation 
is that temperature is related to both ice cream consumption and homicide. During hotter 
months, people may buy more ice cream; homicide rates are higher in hotter months (perhaps 
because people hang around outside more, or perhaps heat makes people more irritable).

Correlation (statistical association) is a necessary but not sufficient condition for 
making causal inference. Statistical association is necessary because we can’t conclude that 
X causes Y unless X and Y go together or co-occur. Statistical association is not sufficient by 
itself to prove causation because, even if X and Y covary, this co-occurrence may be due to the 
influence of one or more other variables; one of those other variables might be the real cause 
of X, or of Y, or both. In this example, heat or temperature might cause (or at least predict) 
ice cream purchase and homicide.

The effects of rival explanatory variables can be reduced or eliminated in well-controlled 
experiments and reduced by statistical controls. Mere co-occurrence is not enough evidence 
to make a causal inference.

Sometimes the need to look for a different explanation is obvious (as in the ice cream/
homicide example). It would be absurd to argue that ice cream causes homicide. However, the 
need to consider rival explanations also arises in situations that are not so obviously silly. In 
the diet soft drink/weight gain example, it is conceivable that artificial sweeteners have causal 
effects on appetite or metabolism that really do lead to weight gain, even though the artificial 
sweeteners contain zero (or negligible) calories. However, the other explanation (that drink-
ing diet beverages leads people to indulge in other high-calorie foods) is also plausible. (It 
is also conceivable that both these explanations are partly correct.) Both experimental and 
nonexperimental studies, with humans and nonhuman animals, would be helpful in sorting 
out the relations among variables and whether any of the associations are causal.

1.6.3 Perfect Correlation Versus Imperfect Correlation

Perfect co-occurrence (perfect correlation or statistical association) is rare. Consider the 
genetic mutation for hemophilia (Table 1.1). If a male child inherits this genetic mutation, 
he will have hemophilia. Most other heritable diseases do not show this perfect association. 
(For female children, effects of the hemophilia gene are ruled out by information on the other  
X chromosome.)

Table 1.1  Example of Perfect Co-occurrence or Perfect Correlation  
(Between Gene and Disease)

Male Child Has 

Hemophilia

Male Child Does Not 

Have Hemophilia

Hemophilia gene is present 100% 0%

Hemophilia gene is absent 0% 100%
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8   APPLIED STATISTICS I

If a male child does not inherit the gene for hemophilia, he will not have hemophilia. 
In logical terms, the mutated gene is both necessary and sufficient for the disease. The 
mutated gene is necessary for hemophilia because a person can’t get hemophilia without it. 
The mutated gene is sufficient for hemophilia, because if a person has it, he always has hemo-
philia. In other words, hemophilia always occurs when the mutated gene is present and never 
occurs when the mutated gene is absent.

Most associations in behavioral and social sciences and medicine are not perfect. Con-
sider this hypothetical example for a behavior (washing or not washing hands) and a disease 
outcome (getting sick).

Table 1.2 shows an imperfect association. Only 25% of regular hand washers got sick, while 
67% of the those who don’t regularly wash their hands got sick. While most people who washed 
their hands did not get sick, hand washing did not guarantee that they could avoid getting sick.

The association between lung cancer and smoking is also not perfect. The risk for getting 
lung cancer is much higher for smokers than for nonsmokers. However, a few nonsmokers  
do get lung cancer, and many smokers do not get lung cancer.

In situations where associations are not perfect, it is likely that other variables are 
involved. Behaviors or conditions that sometimes (but not always) precede disease are often 
usually called “risk factors” rather than causes. Smoking is a risk factor for lung cancer. Some 
diseases have numerous risk factors (for example, risk for heart disease is related to smoking, 
body weight, sex, age, high blood pressure, and other factors).

We call behaviors that reduce risk for a negative outcome “protective factors.” For 
example, hand washing is a protective factor against getting sick.

1.6.4 “Individual Results Vary”

Unless there is a perfect correlation (as in the hemophilia example), statistical associations 
or correlations between variables do not predict exact outcomes for all individuals. Consider 
the results of a study by Judge and Cable (2004), informally reported in Dittman (July/ August 
2014). They reported that taller persons tend to earn more money (that is, height is correlated 
with salary). This is not a perfect correlation. If you are short, that does not necessarily mean 
that you will earn very little. Mark Zuckerberg (the founder of Facebook) is reported to be 
5’7”, but that did not prevent him from becoming one of the wealthiest men in the world. If 
you think about the implications correlations might have for your own  outcomes, realize that 
individual outcomes differ when correlations are not perfect.

1.6.5 Requirements for Evidence of Causal Inference

Training in research methods and statistics provides the skills scientists need to think 
carefully about the evidence needed to support causal claims. Mass media journalists often 
rely on secondary sources or third-party content. By the time information filters through 
multiple communication links, details about the nature of the evidence and concerns about 

Table 1.2  Association Between Hand Washing and Getting Sick  
(Imperfect Association)

Person Does Not Get Sick Person Gets Sick

Person washes hands regularly 75% 25%

Person does not wash hands 
regularly

33% 67%
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ChAPTER 1 • EvALuATING NuMERICAL INFORMATION   9

limitations that affect the ability to generalize and make causal inferences are often lost. 
Third-party content often does not provide accurate information about generalizability and 
potential causality.

1.7 QUALITY CONTROL MECHANISMS IN SCIENCE

1.7.1 Peer Review

The science research process has mechanisms for information quality control. The most 
important mechanism is peer review. Researchers submit research reports to science journals 
(also called academic journals) for consideration (see note 2). The editor sends papers to peer 
reviewers (peers are expert researchers in the same field). Reviewers provide detailed criticism 
of studies, including evaluation of their research methods. On the basis of reviews, editors 
decide whether to reject a paper as inadequate, ask authors to revise the paper to correct errors 
or deficiencies, or (very rarely) accept the paper with only minor corrections. Papers are rarely 
accepted in their initially submitted form. Rejection rates for some journals are 80% or higher.

Peer review is fallible. Reviewers can also be subject to confirmation bias (they are more 
likely to favor conclusions consistent with their own beliefs). Reviewers may not notice all of 
the problems in a research report. However, peer review weeds out much poorly conducted 
research and improves the quality of published papers. The community of scientists in effect 
systematically polices the work of all individual scientists.

1.7.2 Replication and Accumulation of Evidence

A second important mechanism for data quality control in academic research is 
replication. Replication means repeating or redoing a study. This can be an exact replication 
(keeping all methods the same) or a conceptual replication (changing elements of the study, 
such as location, measures, or type of participants, to evaluate whether the same results occur 
in different situations). We should not treat findings from any one study as a conclusive answer 
to a research question. Any single study may have unique problems or flaws. In an ideal world, 
before we accept a research claim, we should have a substantial body of good-quality and 
consistent evidence to back up that claim; this can be obtained from replications.

Peer review and replication in science are fallible. However, they provide the best ongo-
ing quality control checks we have. In contrast to science, there are few quality control 
 mechanisms for most mass media communication.

1.7.3 Open Science and Study Preregistration

There are recent initiatives to improve the reproducibility and quality of research 
results in biomedicine, psychology, and other fields (Begley & Ioannidis, 2015; Open Science  
Collaboration, 2015). The Open Science model includes components such as preregistration 
of research plans and sharing details of data and methods. For further discussion, see 
Cumming and Calin-Jageman (2016).

1.8 BIASES OF INFORMATION CONSUMERS

1.8.1 Confirmation Bias (Again)

Information consumers or receivers also tend to select evidence consistent with their 
preexisting beliefs. Media consumers need to be aware that they can systematically miss kinds 
of information (which may be of high or low quality) when they select news sources they 
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10   APPLIED STATISTICS I

like. Ratings of many web news sources on a continuum from left/liberal to right/conser-
vative, along with assessment of accuracy, are provided at https://mediabiasfactcheck.com/ 
politifact/. News sources that are extremely far left or far right tend to be less accurate.

Because of confirmation bias, people can get stuck: They continue to believe “facts” that 
aren’t true, and ideas that are wrong, because they never expose themselves to information 
that might prompt them to consider different possibilities. Consumers of mass media usually 
avoid evidence that challenges their beliefs. Philosopher of science Karl Popper argued that 
scientists also need to examine evidence that might falsify their beliefs. Scientists and people 
in general should consider evidence that challenges their beliefs.

1.8.2 Social Influence and Consensus

Should we believe something simply because many people, particularly those whom we 
know and respect, believe it? Not necessarily. Some incorrect beliefs are widely reported in 
mass media and held by millions of people. My personal favorite conspiracy theory is that 
alien reptiles control U.S. politics. Bump (2013) reported that more than 12 million people, 
or 4%, of the U.S. population said that they believed this theory in 2012–2013. To be clear,  
I strongly disbelieve that we are ruled by alien reptiles. (I am also not sure whether to believe 
Bump’s report that 12 million people really believe this; surveys are not always accurate.)

Consensus among science researchers can enhance the believability of a claim. However, 
even in science, consensus does not always guarantee accuracy. Experts can turn out to be 
wrong. For example, there was a consensus among nutrition researchers that eggs are bad for 
health because of their cholesterol content. Some recent research suggests that this widely held 
belief may be incorrect4 (Gray & Griffin, 2009), but the issue continues to be  controversial.

A belief shared by millions of people is not necessarily wrong. However, consensus is neither 
 necessary nor sufficient evidence that information is correct.

1.9 ETHICAL ISSUES IN DATA COLLECTION AND ANALYSIS

1.9.1 Ethical Guidelines for Researchers: Data Collection

Ethical issues arise when collecting data about people and nonhuman animals. For psy-
chologists, the American Psychological Association has codes of ethics that protect the well-
being of subjects (Campbell, Vasquez, Behnke, & Kinscherff, 2009). Research that involves 
human participants is evaluated by an institutional review board; research that involves 
nonhuman animals is evaluated by an institutional animal care and use committee. Ethical 
codes govern research in other areas such as biomedicine. Data collection cannot begin until 
ethics board approval of procedures has been obtained. Adherence to those rules is an ethical 
obligation for researchers. We should not harm the people or entities we study.

As an example of potential harm to a research participant, suppose that a study reveals 
that a person has a history of addiction. If that information gets into the hands of potential 
landlords or employers, it could have an impact on that person’s search for housing and jobs. 
Researchers must keep such records confidential.

Researchers also have an ethical responsibility to think about the potential impact of 
their research (both positive and negative) on public policy and the behavior of organizations 
and individuals.

1.9.2 Ethical Guidelines for Statisticians: Data Analysis and Reporting

The GAISE report states, “Students should demonstrate an awareness of ethical 
issues associated with sound statistical practice” (GAISE College Report ASA Revision 
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Committee, 2016). A separate document (American Statistical Association, 2015) discusses 
ethical issues in detail. Here is a list of ethical practices for data analysts, paraphrased from 
the American Statistical Association’s ethics document. You will be reminded about these 
issues as you  continue through the book.

1. Ensure that numbers are accurate. Fully disclose data handling procedures (such as 
deletion of cases or replacement of missing values) that could alter conclusions.

2. Make the limitations of the type of statistical analysis clear. (As each new analysis is 
introduced, you will learn about its limitations.)

3. Avoid behaviors that can lead to errors (including, but not limited to, cherry-picking 
a few results).

4. Avoid misleading presentations (such as “lying graphs”; see Section 1.10).

5. Avoid language that obscures results.

6. Do not overgeneralize. Do not make strong claims about characteristics of a 
population when your sample does not resemble that population.

Real-world problems in applications of data analysis are often not clear in introduc-
tory courses; students learn to do one analysis at a time using one small set of numbers. In 
actual practice, data analysts often work with large sets of messy data. Data analysts need 
to make many choices that involve difficult judgment calls. This book points out differ-
ences between the ideal use of statistics in artificially simplified situations and the actual 
application of statistics to real-world data. Sometimes decisions about “best practice” are 
difficult.

As Harris (2001) said, “Statistics is a form of social control over the professional behav-
ior of researchers. The ultimate justification for any statistical procedure lies in the kinds of 
research behavior it encourages or discourages.” Science has rules and standards about good 
practice in collection, analysis, and presentation of evidence. These are discussed throughout 
this book.

Researchers should be aware that press releases from universities sometimes overhype 
research findings (Resnick, 2019).

This book discusses good practices in applied statistics that can potentially improve the 
clarity and honesty of research reports. When communicators present information in mis-
leading, unclear, or dishonest ways, they risk loss of credibility, trust, and respect, not just for 
themselves but for the professions of statistics and science. When information consumers rely 
on incorrect information, they may make poor decisions.

1.10 LYING WITH GRAPHS AND STATISTICS

The most extreme form of lying with statistics is fabrication or falsification of data; this is rare. 
However, some common research practices slant information presentation in ways that can be 
called “lying with statistics.” The classic book How to Lie With Statistics (Huff, 1954) presented 
numerous examples.

Deceptive bar graphs are among the most common ways information communica-
tors mislead information consumers. If you will be an information producer, you need to 
know how to set up “honest” bar graphs. When you are an information consumer, you 
need to know how to examine graphs to make sure that they are not misleading. Chapter 5  
provides examples of clear versus misleading graphs and guidelines for evaluation of 
graphs.
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1.11 DEGREES OF BELIEF

People rarely have time to collect all necessary information. Even for questions in science, 
we often do not have enough information to be confident about conclusions. Uncertainty is 
more common than people realize, even in areas such as medicine. There are many questions 
in medicine (such as what causes autoimmune disorders) for which medical research does not 
have good answers (Fox, 2003).

It is useful to think about scientific knowledge in terms of degree of belief instead of 
certainty. The philosopher David Hume said that “a wise [person] . . . proportions his [or 
her] belief to the evidence” (Schmidt, 2004). Degree of belief should be based on the quantity 
of consistent and good-quality, systematically collected supporting evidence. When there is little 
evidence (for example, results from only one study), people should not have strong belief in a 
claim. As additional good-quality evidence accumulates, degree of belief can increase. People 
should revise degree of belief upward or downward as new (good-quality) evidence becomes 
available.

This rating scale illustrates the concept of degree of belief. The use of a five-point scale 
and the exact verbal descriptions for each numerical rating are arbitrary.

1 2 3 4 5

Probably 
untrue

May be untrue Not sure; insufficient 
evidence

May be true Probably true

Fairly often, the best answer to research or public policy questions is that we do not have 
enough high-quality evidence to be confident that we know the correct answer. We should 
never assume that numerical results of one single study or mass media report are conclusive.

1.12 SUMMARY

Here are some questions to keep in mind when evaluating numerical (and other) information.

1. Is there evidence of communicator bias or self-interest?

2. Is evidence cherry-picked to fit the communicator’s argument?

3. Is the communicator far from the information source or not well qualified to evaluate the 
information?

4. Does the communicator have a good record for truth-telling?

5. What types of evidence are included. Anecdotes? Citations of specific, credible sources?

6. Have you considered your own possible biases as an information consumer? Do you accept 
information uncritically because it confirms when you already believe? Are you influenced by 
what other people believe?

7. Do data come from people (or cases) who resemble the population of interest? Are results 
generalizable?

8. Are causal inferences drawn when there is not enough information to prove a causal 
association? Remember that imperfect correlation or co-occurrence does not indicate 
causation.

9. Has information been subjected to quality control? (In science, this includes peer review and 
replication.)
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10.  Is the presentation of information deceptive (e.g., lying graphs)?

11.  What ethical issues are at stake in the conduct and application of the research?

12.   Is your degree of belief proportional to the quantity of good quality and consistent 
evidence? (You should never believe a claim on the basis of just one scientific study or one 
journalism report.)

Sometimes the best answer to questions such as “Are eggs harmful to cardiovascular health?” 
is that we don’t have enough evidence yet to answer the question. Unfortunately, lack of evidence 
does not prevent some communicators from making premature claims. When claims are made on 
the basis of limited evidence, contradiction and confusion often arise. It is better to reserve judg-
ment until a large quantity of good-quality evidence is available. One single media report, or one 
single science report, is not “proof.”

Even if you do not plan to be a researcher, you can benefit from thinking like a scientist and 
statistician about numerical evidence you encounter in everyday life. Some decisions have high 
stakes. For example, you may need to decide whether to undertake a risky but potentially benefi-
cial medical treatment. Ideally, you should have accurate information about potential outcomes. 
The higher the stakes, the more you need to know how to obtain trustworthy information.

The take-home message from this chapter is: We all know a lot less than we think we do, 
because most of us rely heavily on third-party content that has little or no information quality 
control. All of us (scientists, journalists, and information consumers) should be cautious 
about degree of belief. Sometimes the best answer to a question is: We don’t have enough 
good quality evidence. Courses in statistics and research methods teach you good practice in 
evaluation and presentation of evidence.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



COMPREHENSION QUESTIONS

1. What is cherry-picking of evidence, and why is it deceptive? (Can you think of a book or 
media report that seems to present cherry-picked evidence?)

2. Give examples of self-interest that might make a communicator less believable.

3. Why is distance to original source of information an important factor when you evaluate 
message credibility?

4. What does it mean to say that a correlation (or association) between variables is imperfect?

5. Give an example of a risk factor, and a protective factor, not discussed in the chapter.

6. Why is the existence of a correlation (existence of co-occurrence or association) between  
X and Y not enough evidence for us to say that X causes Y ?

7. What is the post hoc, ergo propter hoc fallacy? (Give an example you have seen, different 
from the one in this chapter.)

8. What is confirmation bias?

9. What quality control mechanisms are used in science?

10.   What is peer review? How can it improve the credibility of science reporting?

11.    What is research replication? How can this improve the quality of evidence in science? How 
do exact replication and conceptual replication differ?

12.   A researcher might say “the results of this one study prove” something. Is this justified?

13.   What (approximate) degree of belief should you have on the basis of only one study?

NOTES

1 Scientists are expected to be objective when they select information to report. However, scientists 
tend to focus selectively on information consistent with the most widely accepted existing theories; 
Kuhn and Hacking (2012) called this “selection of significant fact.”

2 Numerous predatory, for-profit online journal publishers have emerged in recent years. It has 
become more difficult to determine whether online publications are credible. Research reports 
published in predatory journals are not valued by professional colleagues and universities. Beall’s 
List of Predatory Journals and Publishers names many publishers that are almost certainly preda-
tory (https://beallslist.weebly.com). Additional warning signs that a publisher may be predatory:

• The journal invites you to submit your undergraduate or graduate thesis for publication 
(particularly if the journal title is not in your discipline or field).

• The journal offers to publish your paper without peer review.

• The journal asks you to pay for publication. (However, many legitimate publishers charge 
author fees to make journal articles open access on the web; therefore, a request for payment 
is not always an indication that a journal is predatory.)

If you are not sure whether a journal or publisher is predatory, search <journal name> or <pub-
lisher name> along with the term predatory. You can also ask mentors, advisers, or colleagues.
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3 About half of Dr. Oz’s medical advice is not supported by medical research (Belluz, 2014). Dr. Oz 
was investigated in a congressional hearing and paid large settlements in lawsuits for false advertis-
ing (Cohen, 2015).

4 This video about an imaginary time-traveling dietician makes fun of changes in dietary recom-
mendations across the decades: https://www.youtube.com/watch?v=5Ua-WVg1SsA.

DIGITAL RESOURCES

Find free study tools to support your learning, including eFlashcards, data sets, and web 
resources, on the accompanying website at edge.sagepub.com/warner3e. 
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