CHAPTER 1

THE NEW STATISTICS

1.1 REQUIRED BACKGROUND

This book begins with analyses that involve three variables, for example, an independent vari-
able, a dependent variable, and a variable that is statistically controlled when examining the
association between these, often called a covariate. Later chapters describe situations that
involve multiple predictors, multiple outcomes, and/or multiple covariates. The bivariate analy-
ses covered in introductory statistics books are the building blocks for these analyses. Therefore,
you need a thorough understanding of bivariate analyses (i.e., analyses for one independent and
one dependent variable) to understand the analyses introduced in this book.

The following topics are covered in Volume I (Applied Statistics I: Basic Bivariate Techniques
[Warner, 2020]) and most other introductory statistics books. If you are unfamiliar with any
of these topics, you should review them before you move forward.

e  The use of frequency tables, histograms, boxplots, and other graphs of sample data
to describe approximate distribution shape and extreme outliers. This is important
for data screening.

¢  Understanding that some frequently used statistics, such as the sample mean, are not
robust against the impact of outliers and violations of other assumptions.

¢  Computing and interpreting sample variance and standard deviation and the
concept of degrees of freedom (df).

e Interpretation of standard scores (z scores) as unit-free information about the
location of a single value relative to a distribution.

®  The concept of sampling error, indexes of sampling error such as SE, , and the
way sampling error is used in setting up confidence intervals (CIs) and statistical
significance tests.

¢  Choice of appropriate bivariate statistics on the basis of types of variables involved
(categorical vs. quantitative and between-groups designs vs. repeated measures or
paired or correlated samples).

¢ The most commonly used statistics, including independent-samples #, between-S
analysis of variance (ANOVA), correlation, and bivariate regression. Ideally, you
should also be familiar with paired-samples 7 and repeated-measures or paired-
samples ANOVA. The multivariate and multivariate analyses covered in this book
are built on these basic analyses.

e The logic of statistical significance tests (null-hypothesis statistical testing [NHST]),
interpretation of p values, and limitations and problems with NHST and p values.
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e Distributions used in familiar significance tests (normal, #, F, and %°) and the use of
tail areas to describe outcomes as unusual or extreme.

e The concept of variance partitioning. In correlation and regression, 72 is the
proportion of variance in Y that can be predicted from X, and (1 —#?) is the
proportion of variance in ¥ that cannot be predicted from X. In ANOVA, SS,
provides information about proportion of variance in Y that is predictable from

group membership, and SS_, . provides information about variance in " that is not

predictable from group membership.
e  Effectsize.
e The difference between statistical significance and practical or clinical importance:

e  Factors that influence statistical power, particularly effect size and sample size-

1.2 WHAT IS THE “NEW STATISTICS”?

In the past, many data analysts relied heavily on statistical significance tests to evaluate results
and did not always report effect size. Even when used correctly, significance tests do not
tell us everything we want to know; misuse and misinterpretation are common (Greenland
etal., 2016). Misuse of significance tests has led to selective publication of only results with
p < .05; publication of these selected results has sometimes led to widespread reports of
“findings” that are not reproduced when replication studies are performed. The focus on
“new” and “statistically significant” outcomes means that we sometimes don’t discard incor-
rect results. Progress in science requires that we weed out mistakes, as well as make new
discoveries.

Proponents of the “New Statistics” (such as Cumming, 2014) do not claim that their
recommendations are really new.. Many statisticians have called for changes in the way results
are evaluated and reported, at least since the 1960s (including but not limited to Cohen, 1988,
1992, 1994; Daniel, 1998; Morrison & Henkel,1970; and Rozeboom, 1960). However, prac-
titioners of statistics are often slow to respond to calls for change, or to adopt new methods
(Sharpe, 2013).

The main changes called for by New Statistics advocates include:

1.  Understanding the limitations of significance tests.

2. [ Theneed to report effect sizes and Cls.

3. Greater use of meta-analysis to summarize effect size information across studies.

All introductory statistics books I know of cover statistical significance tests and Cls,
and most discuss effect size. Adopting the New Statistics perspective does not require you
to learn anything new. New Statistics advocates only ask you to think about topics such as
statistical significance tests from a more critical perspective. Even though you have probably

studied CIs and effect size before, review can be enlightening. This chapter also includes a
brief introduction to meta-analysis.

1.3 COMMON MISINTERPRETATIONS OF p VALUES

Advocates of the New Statistics have pointed out that misunderstandings about interpretation
of p values are widespread. In a survey of researchers that asked which statements about p values
they believed to be correct, large numbers of them endorsed incorrect interpretations (Mittag &
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Thompson, 2000). Statistics education needs to be improved so that people who use NHST
understand its limitations.
There are numerous problems with p values that lead to misunderstandings.

1. A pvalue cannot tell us what we want to know. We would like to know, on the basis
of our data, something about the likelihood that a research hypothesis (usually an
alternative hypothesis) is true. Instead, a p value tells us, often very inaccurately,
about the probability of obtaining the values of M and # we found using our sample
data, given that the null hypothesis is correct (Cohen, 1994).

2. Common practices, such as running multple tests and selecting only a few to report
on the basis of small p values, make p values very inaccurate information about risk
for Type I decision error.

3. Even if we follow the rules and do everything “right,” there will always be risk for
decision error. Ideal descriptions of NHST require us to obtain a random sample
from the population of interest, satisfy all the assumptions for the test statistic, have
no problems with missing values or outliers, do one significance test, and then stop.
Even if we could do this (and usually we can’t), there would still be nonzero risks
for both Type I and Type II decision errors. Because of sampling error, there is an
intrinsic uncertainty that we cannot get rid of.

4. 'There is a fairly common misunderstanding that p values tell us something about
the size, strength, or importance of an effect. Published papers sometimes include
statements like “with p <.001, the effect was highly significant.” In everyday
language, significant means important, large, or worthy of notice. However,
small p values can be obtained even for trivial effects if sample N is large enough.
We need to distinguish between p values and effect size. Chapter 9 in Volume I
(Warner, 2020) discusses this further.

From Volume I (Warner, 2020), here are examples of some things you should not say
about p values. A more complete list of misconceptions to avoid is provided by Greenland
et al. 2016).

Never make any of the following statements:

e p=.000 (the risk for Type I error can become very small, but in theory, it is
never 0).

e pwas “highly” significant. This leads readers to think that your effect was
“significant” in the way we define significant in everyday language: large, important,
or worthy of notice. Other kinds of effect size information (not p values) are required
to evaluate the practical or clinical significance of the outcome of a study.

e _ pwas “almost” significant (or synonymous terms such as close to or marginally
significant). This language will make people who use NHST in traditional ways, and
New Statistics advocates, cringe.

e  For “small” p values, such as p = .04, we cannot say:

Results were not due to chance or could not be explained by chance.

(We cannot know that!)
Results are likely to replicate in future studies.
The null hypothesis (H,) is false.

We accept (or have proved) the alternative hypothesis.
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We also cannot use (1 — p), for example (1 —.04) = .96, to make probability statements
such as:

There is a 96% chance that results will replicate.

There is a 96% chance that the null hypothesis is false.
e  For p values larger than .05, we cannot say, “Accept the null hypothesis.”

The language we use to report results should not overstate the strength of the evidence,
imply large effect sizes in the absence of careful evaluation of effect size, overgeneralize the
findings, or imply causality when rival explanations cannot be ruled out. We should never
say, “This study proves that. . . .” Any one study has limitations. As suggested in Volume I
(Warner, 2020): It is better to think about research in terms of degrees of belief. As we-obtain
additional high-quality evidence, we may become more confident of a belief. If high-quality
inconsistent evidence arises, that should make us rethink our beliefs.

We can say things such as:

¢  The evidence in this study is consistent with the hypothesis that.. . .
e The evidence in this study was not consistent with the hypothesis that.. ..
Hypothesis can be replaced by similar terms, such'as prediction.

Misunderstandings of p values, and what they can.and cannot tell us, have been one of
several contributing factors in a “replication crisis.”

1.4 PROBLEMS WITH NHST LOGIC

The version of NHST presented in statistics textbooks and used by many researchers in social
and behavioral science is an amalgamation of ideas developed by Fisher, Neyman, and Pearson
(Lenhard, 2006). Neyman and Pearson strongly disagreed with important aspects of Fisher’s
thinking, and probably none of them would endorse current NHST logic and practices. Here
are some commonly identified concerns about NHST logic.

1. NHST turns an uncertainty continuum into a true/false decision. Cohen
(1994) and Rosnow and Rosenthal (1989) argued that we should think in terms of
a continuum of likelihood:

A successful piece of research doesn’t conclusively settle an issue, it just makes some
theoretical proposition to some degree more likely. . .. How much more likely this
single research makes the proposition depends on many things, but not on whether
pis equal to or greater than .05: .05 is not a cliff but a convenient reference point
along the possibility-probability continuum. (Cohen, 1994)

Surely, God loves the .06 nearly as much as the .05. (Rosnow & Rosenthal, 1989)

One way to avoid treating .05 as a cliff is to report “exact” p values, as
recommended by the American Psychological Association (APA) Task Force

on Statistical Inference (Wilkinson & Task Force on Statistical Inference, APA
Board of Scientific Affairs, 1999). The APA recommended that authors report
“exact” values, such as p = .032, instead of a yes/no judgment of whether a result
is significant or nonsignificant on the basis of p < .05 or p > .05. The possibly
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annoying quotation marks for “exact” are meant as a reminder that in practice,
obtained p values often seriously underestimate the true risk for Type I error.

2. INHST cannot tell us what we want to know. We would like to know something
like the probability that our research or alternative hypothesis is true, or the
probability that the finding will replicate in future research, or how strong the
effects were. In fact, NHST can tell us only the (theoretical) probability of obtaining
the results in our data, given that H is true (Cohen, 1994). NHST does not even do
this well, given problems with its use in actual research practice.

3. Some philosophers of science argue that progress in science requires us to
discard faulty or incorrect evidence. However, when researchers reject H,, this is
not “falsification” in that sense.!

4. NHST is trivial because H is always false. Any nonzero difference (between y,
and p,) can be judged statistically significant if the sample size is sufficiently large
(Kline, 2013).

5. NHST requires us to think in terms of double negatives (and people aren’t very
good at understanding double negatives). First, we set up a null hypothesis (of no
treatment effect) that we almost always do not believe, and then we try to obtain
evidence that would lead us to doubt this hypothesis. Double negatives are confusing
and inconsistent with every day “psycho-logic” (Abelson & Rosenberg, 1958). In
everyday reasoning, people have a strong preference to seek confirmatory evidence.
People (including researchers) are confused by double negatives.

6. INHST is misused in many research situations. Assumptions and rules for proper
use of NHST are stringent and are often violated in practice (as discussed in the next
two sections). These violations often invalidate the inferences people want to make
from p values.

Despite these criticisms, an argument can be made that NHST serves a valuable
purpose when it is not misused. It can help assess whether results obtained in a study would
be likely or unlikely to occur just because of sampling error when H, is true (Abelson,
1997; Garcia-Pérez, 2017). However, information about sampling error is also provided
by Cls, in a form that may be:less likely to lead to misunderstanding and yes/no thinking
(Cumming, 2012).

1.5 COMMON MISUSES OF NHST

In actual practice, applications of NHST often do not conform to the ideal requirements for
their use. Three sets of conditions are important for the proper use of NHST. I describe these
as assumptions, rules, and handling of specific problems such as outliers. (These are fuzzy
distinctions.)

In actual practice, it is difficult to satisfy all the requirements for p to be an accurate
estimate of risk for Type I error. When these requirements are not met, values of p that
appear in computer program results are biased; usually they underestimate the true risk
for Type I error. When the true risk for Type I error is underestimated, both readers
and writers of research reports may be overconfident that studies provide support for
claims about findings. This can lead to publication and press-release distribution of false-
positive results (Woloshin, Schwartz, Casella, Kennedy, & Larson, 2009). Inconsistent
and even contradictory media reports of research findings may erode public trust and
respect for science.
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1.5.1 Violations of Assumptions

Most statistics textbooks precede the discussion of each new statistic with a list of for-
mal mathematical assumptions about distribution shapes, independence of observations and
residuals, and so forth. The list of assumptions for parametric analyses such as the indepen-
dent-samples # test and one-way between-S ANOVA include:

¢ Data on quantitative variables are assumed to be normally distributed in the
population from which samples were randomly drawn.

e Variances of scores in populations from which samples for groups were randomly
drawn are assumed to be equal across groups (the homogeneity of variance
assumption)

®  Observations must be independent of one another. (Some textbooks:do not explain
this very important assumption clearly. See Chapter 2 in Volume I [Warner, 2020].)

For Pearson’s 7 and bivariate regression, additional assumptions include:

e The relation between X and Yis linear.
e  The variances of Y scores at each level of X are equal.

e  Residuals from regression are uncorrelated with one another.

Advanced analyses often require additional assumptions.

"Textbooks often provide information about evaluation of assumptions. However, most
introductory data analysis exercises do not require students to detect or remedy violations
of assumptions. The need for preliminary data screening and procedures for screening aren’t
clear in most introductory books. For NHS'T results to be valid, we need to evaluate whether
assumptions are violated. However, journal articles often do not report whether assump-
tions were evaluated and whether remedies for violations were applied (Hoekstra, Kiers, &
Johnson, 2012).

1.5.2 Violations of Rules for Use of NHST

I use the term 7ules to refer to other important guidelines about proper use of NHST.
These are not generally included in lists of formal assumptions about distribution and inde-
pendence of observations. These rules are often implicit; however, they are very important.
These include the following:

¢ . Select the sample randomly from the (actual) population of interest (Knapp,
2017). This is important whether you think about NHST in the traditional or classic
manner, as a way to answer a yes/no question about the null hypothesis, or in terms
of the New Statistics, with greater focus on Cls and less focus on p values. Bad
practices in sampling limit generalizability of results and also compromise the logic
of procedures of NHST.

e In practice, researchers often use convenience samples. When they want to
generalize results, they imagine hypothetical populations similar to the sample in
the study (invoking the idea of “proximal similarity” [Trochim, 2006] as justification
for generalization beyond the sample). The use of convenience samples does not
correspond closely to the situations the original developers of inferential statistics
had in mind. For example, in industrial quality control, a population could be all
the objects made by a factory in a month; the sample could be a random subset of
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these objects. The logic of NHST inferential statistics makes more sense for random
sampling. Studies based on accidental or convenience samples create much more
difficult inference problems.

¢ Select the statistical test and criterion for statistical significance (e.g., o < .05,
two tailed) prior to analysis. This is important if you want to interpret p values
as they have often been interpreted in the past, as a basis to make a yes/no decision
about a null hypothesis. This rule is often violated in practice. For example, data
analysts may use asterisks that appear next to correlations in tables and report that
for one asterisk, p < .05; for two asterisks, p < .01; and for three asterisks, p < .001.
Using asterisks to report a significance level separately for each correlation could
be seen as implicitly setting the o criterion after the fact. On the other hand, many
authorities recommend that instead of selecting specific o criteria, you should
report an exact p value and not use the p value to make a yes/no decision about the
believability of the null hypothesis. In other words, do not use p values as the basis
to make statements such as “the result was statistically significant” or “reject H,.”
Advocates of the New Statistics recommend that we should not rely on p values to
make yes/no decisions.

e  Perform only one significance test (or at most a small number of tests). The
opposite of this is: Perform numerous statistical tests, and/or numerous variations of
the same basic analysis, and then report only a few “statistically significant” results.
"This practice is often called p-hacking. Other names for p-hacking include data
fishing, “the garden of forking paths” (Gelman & Loken, 2013), or my personal
favorite, torturing the data until they confess (Mills; 1993).

Introductory statistics books usually discuss the problem of inflated risk for Type I error
in the context of post hoc tests for ANOVA. They do not always make it clear that this prob-
lem is even more serious when people run dozens or hundreds of 7 tests or correlations.

1.5.3 Ignoring Artifacts and Data Problems That Bias p Values

Many artifacts that commonly-appear in real data influence the magnitude of parameter
estimates (such as M, SD, r, and b, among others) and p values. These include, but are not
limited to:

e Univariate, bivariate, and multivariate outliers.
e  Missing data thatare not missing randomly.

®  Measurement problems such as unreliability. For example, the obtained value of |
is attenuated (reduced) by unreliability of measures for X and V.

e - Mismatch of distribution shapes (for Pearson’s 7 and regression statistics) that
constrain the range of possible  values.

1.5.4 Summary

Consider an F ratio in a one-way between-S ANOVA. The logic for NHST goes some-
thing like this: If we formulate hypotheses and establish criteria for statistical significance and
sample size prior to data collection, and if the null hypothesis is true, and if we take a random
sample from the population of interest, and if all assumptions for the statistic are satisfied, and
if we have not broken important rules for proper use of NHST, and if there are no artifacts
such as outliers and missing values, then p should be an unbiased estimate of the likelihood
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of obtaining a value of F as large as, or larger than, the F ratio we obtained from our data.
(Additional ifs could be added in many situations.)

"This is a long conditional statement. The point is: Values of statistics such as F and p can
provide the information described in ideal or imaginary situations in textbooks only when all
of these conditions are satisfied. In actual research, one or many of these assumptions about
conditions are violated. Therefore, statistics such as F and p rarely provide a firm basis for the
conclusions described for ideal or imaginary research situations in textbooks. Problems with
any of these (assumptions, rules, and artifacts) can result in biased p values that in turn may
lead to false-positive decisions.

In real-life applications of statistics, it may be impossible to avoid all these problems.
For all these reasons, I suggest that most p values should be taken with a very large grain of
salt. P values are least likely to be misleading in simple experiments with a limited number of
analyses, such as ANOVA with post hoc tests. They are highly likely to be misleading in stud-
ies that include large numbers of variables that are combined in different ways using many
different analyses.

It is difficult to prioritize these problems; my guess is that violations of rules (such as run-
ning large numbers of significance tests and p-hacking) and neglect of sources of artifact (such
as outliers) often create greater problems with p values in practice than violations of some of
the formal assumptions about distributions of scores in populations (such as homogeneity of
variance).

It requires some adjustment in thinking to realize that, to a very great extent, the
numbers we obtain at the end of an analysis are strongly influenced by decisions made
during data collection and analysis (Volume I [Warner, 2020]). Beginning students may
think that final numerical results represent some “truth” about the world. We need to
understand that with different data analysis decisions, we could have ended up with quite
different answers. Greater transparency in reporting (Simmons, Nelson, & Simonsohn,
2011) helps readers understand the degree to which results may have been influenced by
a data analyst’s decisions.

1.6 THE REPLICATION CRISIS

Misuse and misinterpretation of statistics (particularly p values) is one of many factors that has
contributed to rising concerns about the reproducibility of high-profile research findings in
psychology. To evaluate reproducibility of research results, Brian Nosek and Jeff Spies founded
the Center for Open Science in 2013 (Open Science Collaboration, 2015). Their aim was to
increase openness, integrity, and reproducibility of scientific research. Participating scientists
come from many fields, including astronomy, biology, chemistry, computer science, educa-
tion, engineering, neuroscience, and psychology. Results reported for the first group of studies
evaluated were disturbing. They conducted replications of 100 studies (both correlational and
experimental) published in three psychology journals, using large samples (to provide adequate
statistical power) and original materials if available. The average effect sizes were about half as
large as the original results. Only 39 of the 100 replications yielded statistically significant out-
comes (all original studies were “statistically significant”). This was not quite as bad as it sounds,
because many original effect sizes associated with nonsignificant outcomes were within 95 %
CIs on the basis of replication effect sizes (Baker, 2015; Open Science Collaboration, 2015).
These results attracted substantial attention and concern.

Failures to replicate have also been noted in biomedical research. Ioannidis (2005) exam-
ined 49 highly regarded medical studies from 13 prior years. He compared initial claims
for intervention effectiveness with results in later studies with larger samples; 7 (16%) of
the original studies were contradicted, and another 7 (16%) had smaller effects than the
original study. Later studies have yielded even less favorable results. Begley and Ellis (2012)
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reported that biotechnology firm Amgen tried to confirm results from 53 landmark studies
about issues such as new approaches to targeting cancers and alternative clinical uses for
existing therapeutics. Findings were confirmed for only 6 (11%) studies. Baker and Dolgin
(2017) noted that early results from the Cancer Reproducibility Project’s examination of 6
cancer biology studies were mixed.

Do these replication failures indicate a “crisis”? That is debatable. Only a small sub-
set of published studies were tested. Some of the original studies were chosen for replica-
tion because they reported surprising or counterintuitive results. Examination of p values is
not the best way to assess whether results have been reasonably well replicated; p values are
“fickle” and difficult to reproduce (Halsey, Curran-Everett, Vowler, & Drummond, 2015). It
may be better to evaluate reproducibility using effect sizes or Cls instead of p values. Critics
of the reproducibility projects argue that the replication methods and analyses were flawed
(Gilbert, King, Pettigrew, & Wilson, 2016). It would be premature to conclude that large pro-
portions of all past published research results would not replicate; however, concerns raised
by failures to replicate should be taken seriously.

A failure to reproduce results does not necessarily mean that the original or past study
was wrong. The replication study may be flawed, or the results may be context dependent
(and might appear only in the specific circumstances in an earlier study, and not under the
conditions in the replication study).

Concerns about reproducibility have led to a call for new approaches to reporting results,
often called the New Statistics, along with a movement toward preregistration of study plans
and Open Science, in which researchers more fully share information about study design and
statistical analyses.

Many changes in research practice will be needed to improve reproducibility of research
results (Wicherts et al., 2016). Misuse and misinterpretation of statistical significance tests (and
p values) to make yes/no decisions about whether studies are “successful” have contributed to
problems in replication. Some have even argued that NHS T and p values are an inherently flawed
approach to evaluation of research results (Krueger, 2001; Rozeboom, 1960). Cumming (2014)
and others argue that a shift in emphasis (away from statistical significance tests and toward
reports of effect size, Cls, and meta-analysis) is needed. However, many published papers stll do
not include effect size and Cls for important results (Watson, Lenz, Schmit, & Schmit, 2016).

1.7 SOME PROPOSED REMEDIES FOR PROBLEMS WITH NHST

1.7.1 Bayesian Statistics

Some authorities argue that we got off on the wrong foot (so to speak) when we adopted
NHST in the early 20th century. Probability is a basic concept in statistical significance test-
ing. The examples used to explain probability suggest that it is a simple concept. For example,
if you draw 1 card at random from a deck of 52 cards with equal numbers of diamonds, hearts,
spades;and clubs, what is the probability that the card will be a diamond? This example does
not even begin to convey how complicated the notion of probability becomes in more com-
plex situations (such as inference from sample to population).

NHST is based on a “frequentist” understanding of probability; this is not the only pos-
sible way to think about probability, and other approaches (such as Bayesian) may work better
for some research problems. A full discussion of this problem is beyond the scope of this chap-
ter; see Kruschke and Liddell (2018), Little (2006), Malakoff (1999), or Williamson (2013).

Researchers in a few areas of psychology use Bayesian methods. However, students typi-
cally receive little training in these methods. Whatever benefits this might have, a major shift
toward the use of Bayesian methods in behavioral or social sciences seems unlikely to happen
any time soon.

CHAPTER 1 « THE NEW STATISTICS 9

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



1.7.2 Replace 0 = .05 with a0 = .005

It has recently been suggested that problems with NHST could be reduced by setting
the conventional a criterion to .005 instead of the current .05 (Benjamin et al., 2017). This
would establish a more stringent standard for announcement of “new” findings. However,
given the small effect sizes in many research areas, enormous sample sizes would be needed
to have reasonable statistical power with a = .005. This would be prohibitively costly. Bates
(2017) and Schimmack (2017) argued that this approach is neither necessary nor sufficient
and that it would make replication efforts even more unlikely. A change to this smaller o level
is unlikely to be widely adopted.

1.7.3 Less Emphasis on NHST

The “new” statistics advocated by Cumming (2012, 2014) calls for a shift of focus. He
recommended that research reports should focus more on

e  confidence intervals,
e  effect size information, and

e  meta-analysis to combine effect size information across studies.

How “new” is the New Statistics? As noted by Cumming (2012) and others, experts have
been calling for these changes for more than 40 years (e.g.;Morrison & Henkel, 1970; Cohen,
1990, 1994; Wilkinson & Task Force on Statistical Inference, APA Board of Scientific Affairs,
1999). Cumming (2012, 2014) bolstered these arguments with further discussion of the ways
that Cls (vs. p values) may lead data analysts to