
1.1 REQUIRED BACKGROUND

This book begins with analyses that involve three variables, for example, an independent vari-
able, a dependent variable, and a variable that is statistically controlled when examining the 
association between these, often called a covariate. Later chapters describe situations that 
involve multiple predictors, multiple outcomes, and/or multiple covariates. The bivariate analy-
ses covered in introductory statistics books are the building blocks for these analyses. Therefore, 
you need a thorough understanding of bivariate analyses (i.e., analyses for one independent and 
one dependent variable) to understand the analyses introduced in this book.

The following topics are covered in Volume I (Applied Statistics I: Basic Bivariate Techniques 
[Warner, 2020]) and most other introductory statistics books. If you are unfamiliar with any 
of these topics, you should review them before you move forward.

�� The use of frequency tables, histograms, boxplots, and other graphs of sample data 
to describe approximate distribution shape and extreme outliers. This is important 
for data screening.

�� Understanding that some frequently used statistics, such as the sample mean, are not 
robust against the impact of outliers and violations of other assumptions.

�� Computing and interpreting sample variance and standard deviation and the 
concept of degrees of freedom (df).

�� Interpretation of standard scores (z scores) as unit-free information about the 
location of a single value relative to a distribution.

�� The concept of sampling error, indexes of sampling error such as SEM, and the 
way sampling error is used in setting up confidence intervals (CIs) and statistical 
significance tests.

�� Choice of appropriate bivariate statistics on the basis of types of variables involved 
(categorical vs. quantitative and between-groups designs vs. repeated measures or 
paired or correlated samples).

�� The most commonly used statistics, including independent-samples t, between-S 
analysis of variance (ANOVA), correlation, and bivariate regression. Ideally, you 
should also be familiar with paired-samples t and repeated-measures or paired-
samples ANOVA. The multivariate and multivariate analyses covered in this book 
are built on these basic analyses.

�� The logic of statistical significance tests (null-hypothesis statistical testing [NHST]), 
interpretation of p values, and limitations and problems with NHST and p values.

CHAPTER 1

THE NEW STATISTICS

1
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2      APPLIED STATISTICS II

�� Distributions used in familiar significance tests (normal, t, F, and χ2) and the use of 
tail areas to describe outcomes as unusual or extreme.

�� The concept of variance partitioning. In correlation and regression, r2 is the 
proportion of variance in Y that can be predicted from X, and (1 – r2) is the 
proportion of variance in Y that cannot be predicted from X. In ANOVA, SSbetween 
provides information about proportion of variance in Y that is predictable from 
group membership, and SSwithin provides information about variance in Y that is not 
predictable from group membership.

�� Effect size.

�� The difference between statistical significance and practical or clinical importance.

�� Factors that influence statistical power, particularly effect size and sample size.

1.2 WHAT IS THE “NEW STATISTICS”?

In the past, many data analysts relied heavily on statistical significance tests to evaluate results 
and did not always report effect size. Even when used correctly, significance tests do not 
tell us everything we want to know; misuse and misinterpretation are common (Greenland  
et al., 2016). Misuse of significance tests has led to selective publication of only results with 
p < .05; publication of these selected results has sometimes led to widespread reports of 
“findings” that are not reproduced when replication studies are performed. The focus on 
“new” and “statistically significant” outcomes means that we sometimes don’t discard incor-
rect results. Progress in science requires that we weed out mistakes, as well as make new 
discoveries.

Proponents of the “New Statistics” (such as Cumming, 2014) do not claim that their 
recommendations are really new. Many statisticians have called for changes in the way results 
are evaluated and reported, at least since the 1960s (including but not limited to Cohen, 1988, 
1992, 1994; Daniel, 1998; Morrison & Henkel,1970; and Rozeboom, 1960). However, prac-
titioners of statistics are often slow to respond to calls for change, or to adopt new methods 
(Sharpe, 2013).

The main changes called for by New Statistics advocates include:

1.	 Understanding the limitations of significance tests.

2.	 The need to report effect sizes and CIs.

3.	 Greater use of meta-analysis to summarize effect size information across studies.

All introductory statistics books I know of cover statistical significance tests and CIs, 
and most discuss effect size. Adopting the New Statistics perspective does not require you 
to learn anything new. New Statistics advocates only ask you to think about topics such as 
statistical significance tests from a more critical perspective. Even though you have probably 
studied CIs and effect size before, review can be enlightening. This chapter also includes a 
brief introduction to meta-analysis.

1.3 COMMON MISINTERPRETATIONS OF p VALUES

Advocates of the New Statistics have pointed out that misunderstandings about interpretation 
of p values are widespread. In a survey of researchers that asked which statements about p values 
they believed to be correct, large numbers of them endorsed incorrect interpretations (Mittag &  
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chapter 1  •  The New Statistics      3

Thompson, 2000). Statistics education needs to be improved so that people who use NHST 
understand its limitations.

There are numerous problems with p values that lead to misunderstandings.

1.	 A p value cannot tell us what we want to know. We would like to know, on the basis 
of our data, something about the likelihood that a research hypothesis (usually an 
alternative hypothesis) is true. Instead, a p value tells us, often very inaccurately, 
about the probability of obtaining the values of M and t we found using our sample 
data, given that the null hypothesis is correct (Cohen, 1994).

2.	 Common practices, such as running multiple tests and selecting only a few to report 
on the basis of small p values, make p values very inaccurate information about risk 
for Type I decision error.

3.	 Even if we follow the rules and do everything “right,” there will always be risk for 
decision error. Ideal descriptions of NHST require us to obtain a random sample 
from the population of interest, satisfy all the assumptions for the test statistic, have 
no problems with missing values or outliers, do one significance test, and then stop. 
Even if we could do this (and usually we can’t), there would still be nonzero risks 
for both Type I and Type II decision errors. Because of sampling error, there is an 
intrinsic uncertainty that we cannot get rid of.

4.	 There is a fairly common misunderstanding that p values tell us something about 
the size, strength, or importance of an effect. Published papers sometimes include 
statements like “with p < .001, the effect was highly significant.” In everyday 
language, significant means important, large, or worthy of notice. However,  
small p values can be obtained even for trivial effects if sample N is large enough. 
We need to distinguish between p values and effect size. Chapter 9 in Volume I 
(Warner, 2020) discusses this further.

From Volume I (Warner, 2020), here are examples of some things you should not say 
about p values. A more complete list of misconceptions to avoid is provided by Greenland 
et al. (2016).

Never make any of the following statements:

�� p = .000 (the risk for Type I error can become very small, but in theory, it is 
never 0).

�� p was “highly” significant. This leads readers to think that your effect was 
“significant” in the way we define significant in everyday language: large, important, 
or worthy of notice. Other kinds of effect size information (not p values) are required 
to evaluate the practical or clinical significance of the outcome of a study.

�� p was “almost” significant (or synonymous terms such as close to or marginally 
significant). This language will make people who use NHST in traditional ways, and 
New Statistics advocates, cringe.

�� For “small” p values, such as p = .04, we cannot say:

Results were not due to chance or could not be explained by chance.  
(We cannot know that!)

Results are likely to replicate in future studies.

The null hypothesis (H0) is false.

We accept (or have proved) the alternative hypothesis.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



4      APPLIED STATISTICS II

We also cannot use (1 – p), for example (1 – .04) = .96, to make probability statements 
such as:

There is a 96% chance that results will replicate.

There is a 96% chance that the null hypothesis is false.

�� For p values larger than .05, we cannot say, “Accept the null hypothesis.”

The language we use to report results should not overstate the strength of the evidence, 
imply large effect sizes in the absence of careful evaluation of effect size, overgeneralize the 
findings, or imply causality when rival explanations cannot be ruled out. We should never 
say, “This study proves that. . . .” Any one study has limitations. As suggested in Volume I 
(Warner, 2020): It is better to think about research in terms of degrees of belief. As we obtain 
additional high-quality evidence, we may become more confident of a belief. If high-quality 
inconsistent evidence arises, that should make us rethink our beliefs.

We can say things such as:

�� The evidence in this study is consistent with the hypothesis that . . .

�� The evidence in this study was not consistent with the hypothesis that . . .

Hypothesis can be replaced by similar terms, such as prediction.
Misunderstandings of p values, and what they can and cannot tell us, have been one of 

several contributing factors in a “replication crisis.”

1.4 PROBLEMS WITH NHST LOGIC

The version of NHST presented in statistics textbooks and used by many researchers in social 
and behavioral science is an amalgamation of ideas developed by Fisher, Neyman, and Pearson 
(Lenhard, 2006). Neyman and Pearson strongly disagreed with important aspects of Fisher’s 
thinking, and probably none of them would endorse current NHST logic and practices. Here 
are some commonly identified concerns about NHST logic.

1.	 NHST turns an uncertainty continuum into a true/false decision. Cohen 
(1994) and Rosnow and Rosenthal (1989) argued that we should think in terms of 
a continuum of likelihood:

A successful piece of research doesn’t conclusively settle an issue, it just makes some 
theoretical proposition to some degree more likely. . . . How much more likely this 
single research makes the proposition depends on many things, but not on whether 
p is equal to or greater than .05: .05 is not a cliff but a convenient reference point 
along the possibility-probability continuum. (Cohen, 1994)

Surely, God loves the .06 nearly as much as the .05. (Rosnow & Rosenthal, 1989)

One way to avoid treating .05 as a cliff is to report “exact” p values, as 
recommended by the American Psychological Association (APA) Task Force 
on Statistical Inference (Wilkinson & Task Force on Statistical Inference, APA 
Board of Scientific Affairs, 1999). The APA recommended that authors report 
“exact” values, such as p = .032, instead of a yes/no judgment of whether a result 
is significant or nonsignificant on the basis of p < .05 or p > .05. The possibly 
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chapter 1  •  The New Statistics      5

annoying quotation marks for “exact” are meant as a reminder that in practice, 
obtained p values often seriously underestimate the true risk for Type I error.

2.	 NHST cannot tell us what we want to know. We would like to know something 
like the probability that our research or alternative hypothesis is true, or the 
probability that the finding will replicate in future research, or how strong the 
effects were. In fact, NHST can tell us only the (theoretical) probability of obtaining 
the results in our data, given that H0 is true (Cohen, 1994). NHST does not even do 
this well, given problems with its use in actual research practice.

3.	 Some philosophers of science argue that progress in science requires us to 
discard faulty or incorrect evidence. However, when researchers reject H0, this is 
not “falsification” in that sense.1

4.	 NHST is trivial because H0 is always false. Any nonzero difference (between μ1 
and μ2) can be judged statistically significant if the sample size is sufficiently large 
(Kline, 2013).

5.	 NHST requires us to think in terms of double negatives (and people aren’t very 
good at understanding double negatives). First, we set up a null hypothesis (of no 
treatment effect) that we almost always do not believe, and then we try to obtain 
evidence that would lead us to doubt this hypothesis. Double negatives are confusing 
and inconsistent with every day “psycho-logic” (Abelson & Rosenberg, 1958). In 
everyday reasoning, people have a strong preference to seek confirmatory evidence. 
People (including researchers) are confused by double negatives.

6.	 NHST is misused in many research situations. Assumptions and rules for proper 
use of NHST are stringent and are often violated in practice (as discussed in the next 
two sections). These violations often invalidate the inferences people want to make 
from p values. 

Despite these criticisms, an argument can be made that NHST serves a valuable 
purpose when it is not misused. It can help assess whether results obtained in a study would 
be likely or unlikely to occur just because of sampling error when H0 is true (Abelson, 
1997; Garcia-Pérez, 2017). However, information about sampling error is also provided 
by CIs, in a form that may be less likely to lead to misunderstanding and yes/no thinking  
(Cumming, 2012).

1.5 COMMON MISUSES OF NHST

In actual practice, applications of NHST often do not conform to the ideal requirements for 
their use. Three sets of conditions are important for the proper use of NHST. I describe these 
as assumptions, rules, and handling of specific problems such as outliers. (These are fuzzy 
distinctions.)

In actual practice, it is difficult to satisfy all the requirements for p to be an accurate 
estimate of risk for Type I error. When these requirements are not met, values of p that 
appear in computer program results are biased; usually they underestimate the true risk 
for Type I error. When the true risk for Type I error is underestimated, both readers 
and writers of research reports may be overconfident that studies provide support for 
claims about findings. This can lead to publication and press-release distribution of false-
positive results (Woloshin, Schwartz, Casella, Kennedy, & Larson, 2009). Inconsistent 
and even contradictory media reports of research findings may erode public trust and 
respect for science.
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6      APPLIED STATISTICS II

1.5.1 Violations of Assumptions

Most statistics textbooks precede the discussion of each new statistic with a list of for-
mal mathematical assumptions about distribution shapes, independence of observations and 
residuals, and so forth. The list of assumptions for parametric analyses such as the indepen-
dent-samples t test and one-way between-S ANOVA include:

�� Data on quantitative variables are assumed to be normally distributed in the 
population from which samples were randomly drawn.

�� Variances of scores in populations from which samples for groups were randomly 
drawn are assumed to be equal across groups (the homogeneity of variance 
assumption)

�� Observations must be independent of one another. (Some textbooks do not explain 
this very important assumption clearly. See Chapter 2 in Volume I [Warner, 2020].)

For Pearson’s r and bivariate regression, additional assumptions include:

�� The relation between X and Y is linear.

�� The variances of Y scores at each level of X are equal.

�� Residuals from regression are uncorrelated with one another.

Advanced analyses often require additional assumptions.
Textbooks often provide information about evaluation of assumptions. However, most 

introductory data analysis exercises do not require students to detect or remedy violations 
of assumptions. The need for preliminary data screening and procedures for screening aren’t 
clear in most introductory books. For NHST results to be valid, we need to evaluate whether 
assumptions are violated. However, journal articles often do not report whether assump-
tions were evaluated and whether remedies for violations were applied (Hoekstra, Kiers, &  
Johnson, 2012).

1.5.2 Violations of Rules for Use of NHST

I use the term rules to refer to other important guidelines about proper use of NHST. 
These are not generally included in lists of formal assumptions about distribution and inde-
pendence of observations. These rules are often implicit; however, they are very important. 
These include the following:

�� Select the sample randomly from the (actual) population of interest (Knapp, 
2017). This is important whether you think about NHST in the traditional or classic 
manner, as a way to answer a yes/no question about the null hypothesis, or in terms 
of the New Statistics, with greater focus on CIs and less focus on p values. Bad 
practices in sampling limit generalizability of results and also compromise the logic 
of procedures of NHST.

�� In practice, researchers often use convenience samples. When they want to 
generalize results, they imagine hypothetical populations similar to the sample in 
the study (invoking the idea of “proximal similarity” [Trochim, 2006] as justification 
for generalization beyond the sample). The use of convenience samples does not 
correspond closely to the situations the original developers of inferential statistics 
had in mind. For example, in industrial quality control, a population could be all 
the objects made by a factory in a month; the sample could be a random subset of 
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chapter 1  •  The New Statistics      7

these objects. The logic of NHST inferential statistics makes more sense for random 
sampling. Studies based on accidental or convenience samples create much more 
difficult inference problems.

�� Select the statistical test and criterion for statistical significance (e.g., α < .05, 
two tailed) prior to analysis. This is important if you want to interpret p values 
as they have often been interpreted in the past, as a basis to make a yes/no decision 
about a null hypothesis. This rule is often violated in practice. For example, data 
analysts may use asterisks that appear next to correlations in tables and report that 
for one asterisk, p < .05; for two asterisks, p < .01; and for three asterisks, p < .001. 
Using asterisks to report a significance level separately for each correlation could 
be seen as implicitly setting the α criterion after the fact. On the other hand, many 
authorities recommend that instead of selecting specific α criteria, you should 
report an exact p value and not use the p value to make a yes/no decision about the 
believability of the null hypothesis. In other words, do not use p values as the basis 
to make statements such as “the result was statistically significant” or “reject H0.” 
Advocates of the New Statistics recommend that we should not rely on p values to 
make yes/no decisions.

�� Perform only one significance test (or at most a small number of tests). The 
opposite of this is: Perform numerous statistical tests, and/or numerous variations of 
the same basic analysis, and then report only a few “statistically significant” results. 
This practice is often called p-hacking. Other names for p-hacking include data 
fishing, “the garden of forking paths” (Gelman & Loken, 2013), or my personal 
favorite, torturing the data until they confess (Mills, 1993).

Introductory statistics books usually discuss the problem of inflated risk for Type I error 
in the context of post hoc tests for ANOVA. They do not always make it clear that this prob-
lem is even more serious when people run dozens or hundreds of t tests or correlations.

1.5.3 Ignoring Artifacts and Data Problems That Bias p Values

Many artifacts that commonly appear in real data influence the magnitude of parameter 
estimates (such as M, SD, r, and b, among others) and p values. These include, but are not 
limited to:

�� Univariate, bivariate, and multivariate outliers.

�� Missing data that are not missing randomly.

�� Measurement problems such as unreliability. For example, the obtained value of rxy 
is attenuated (reduced) by unreliability of measures for X and Y.

�� Mismatch of distribution shapes (for Pearson’s r and regression statistics) that 
constrain the range of possible r values.

1.5.4 Summary

Consider an F ratio in a one-way between-S ANOVA. The logic for NHST goes some-
thing like this: If we formulate hypotheses and establish criteria for statistical significance and 
sample size prior to data collection, and if the null hypothesis is true, and if we take a random 
sample from the population of interest, and if all assumptions for the statistic are satisfied, and 
if we have not broken important rules for proper use of NHST, and if there are no artifacts 
such as outliers and missing values, then p should be an unbiased estimate of the likelihood 
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8      APPLIED STATISTICS II

of obtaining a value of F as large as, or larger than, the F ratio we obtained from our data. 
(Additional ifs could be added in many situations.)

This is a long conditional statement. The point is: Values of statistics such as F and p can 
provide the information described in ideal or imaginary situations in textbooks only when all 
of these conditions are satisfied. In actual research, one or many of these assumptions about 
conditions are violated. Therefore, statistics such as F and p rarely provide a firm basis for the 
conclusions described for ideal or imaginary research situations in textbooks. Problems with 
any of these (assumptions, rules, and artifacts) can result in biased p values that in turn may 
lead to false-positive decisions.

In real-life applications of statistics, it may be impossible to avoid all these problems. 
For all these reasons, I suggest that most p values should be taken with a very large grain of 
salt. P values are least likely to be misleading in simple experiments with a limited number of 
analyses, such as ANOVA with post hoc tests. They are highly likely to be misleading in stud-
ies that include large numbers of variables that are combined in different ways using many 
different analyses.

It is difficult to prioritize these problems; my guess is that violations of rules (such as run-
ning large numbers of significance tests and p-hacking) and neglect of sources of artifact (such 
as outliers) often create greater problems with p values in practice than violations of some of 
the formal assumptions about distributions of scores in populations (such as homogeneity of 
variance).

It requires some adjustment in thinking to realize that, to a very great extent, the 
numbers we obtain at the end of an analysis are strongly influenced by decisions made 
during data collection and analysis ( Volume I [Warner, 2020]). Beginning students may 
think that final numerical results represent some “truth” about the world. We need to 
understand that with different data analysis decisions, we could have ended up with quite 
different answers. Greater transparency in reporting (Simmons, Nelson, & Simonsohn, 
2011) helps readers understand the degree to which results may have been influenced by 
a data analyst’s decisions.

1.6 THE REPLICATION CRISIS

Misuse and misinterpretation of statistics (particularly p values) is one of many factors that has 
contributed to rising concerns about the reproducibility of high-profile research findings in 
psychology. To evaluate reproducibility of research results, Brian Nosek and Jeff Spies founded 
the Center for Open Science in 2013 (Open Science Collaboration, 2015). Their aim was to 
increase openness, integrity, and reproducibility of scientific research. Participating scientists 
come from many fields, including astronomy, biology, chemistry, computer science, educa-
tion, engineering, neuroscience, and psychology. Results reported for the first group of studies 
evaluated were disturbing. They conducted replications of 100 studies (both correlational and 
experimental) published in three psychology journals, using large samples (to provide adequate 
statistical power) and original materials if available. The average effect sizes were about half as 
large as the original results. Only 39 of the 100 replications yielded statistically significant out-
comes (all original studies were “statistically significant”). This was not quite as bad as it sounds, 
because many original effect sizes associated with nonsignificant outcomes were within 95% 
CIs on the basis of replication effect sizes (Baker, 2015; Open Science Collaboration, 2015). 
These results attracted substantial attention and concern.

Failures to replicate have also been noted in biomedical research. Ioannidis (2005) exam-
ined 49 highly regarded medical studies from 13 prior years. He compared initial claims 
for intervention effectiveness with results in later studies with larger samples; 7 (16%) of 
the original studies were contradicted, and another 7 (16%) had smaller effects than the 
original study. Later studies have yielded even less favorable results. Begley and Ellis (2012) 
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chapter 1  •  The New Statistics      9

reported that biotechnology firm Amgen tried to confirm results from 53 landmark studies 
about issues such as new approaches to targeting cancers and alternative clinical uses for 
existing therapeutics. Findings were confirmed for only 6 (11%) studies. Baker and Dolgin 
(2017) noted that early results from the Cancer Reproducibility Project’s examination of 6 
cancer biology studies were mixed.

Do these replication failures indicate a “crisis”? That is debatable. Only a small sub-
set of published studies were tested. Some of the original studies were chosen for replica-
tion because they reported surprising or counterintuitive results. Examination of p values is 
not the best way to assess whether results have been reasonably well replicated; p values are 
“fickle” and difficult to reproduce (Halsey, Curran-Everett, Vowler, & Drummond, 2015). It 
may be better to evaluate reproducibility using effect sizes or CIs instead of p values. Critics 
of the reproducibility projects argue that the replication methods and analyses were flawed 
(Gilbert, King, Pettigrew, & Wilson, 2016). It would be premature to conclude that large pro-
portions of all past published research results would not replicate; however, concerns raised 
by failures to replicate should be taken seriously.

A failure to reproduce results does not necessarily mean that the original or past study 
was wrong. The replication study may be flawed, or the results may be context dependent 
(and might appear only in the specific circumstances in an earlier study, and not under the 
conditions in the replication study).

Concerns about reproducibility have led to a call for new approaches to reporting results, 
often called the New Statistics, along with a movement toward preregistration of study plans 
and Open Science, in which researchers more fully share information about study design and 
statistical analyses.

Many changes in research practice will be needed to improve reproducibility of research 
results (Wicherts et al., 2016). Misuse and misinterpretation of statistical significance tests (and  
p values) to make yes/no decisions about whether studies are “successful” have contributed to 
problems in replication. Some have even argued that NHST and p values are an inherently flawed 
approach to evaluation of research results (Krueger, 2001; Rozeboom, 1960). Cumming (2014) 
and others argue that a shift in emphasis (away from statistical significance tests and toward 
reports of effect size, CIs, and meta-analysis) is needed. However, many published papers still do 
not include effect size and CIs for important results (Watson, Lenz, Schmit, & Schmit, 2016).

1.7 SOME PROPOSED REMEDIES FOR PROBLEMS WITH NHST

1.7.1 Bayesian Statistics

Some authorities argue that we got off on the wrong foot (so to speak) when we adopted 
NHST in the early 20th century. Probability is a basic concept in statistical significance test-
ing. The examples used to explain probability suggest that it is a simple concept. For example, 
if you draw 1 card at random from a deck of 52 cards with equal numbers of diamonds, hearts, 
spades, and clubs, what is the probability that the card will be a diamond? This example does 
not even begin to convey how complicated the notion of probability becomes in more com-
plex situations (such as inference from sample to population).

NHST is based on a “frequentist” understanding of probability; this is not the only pos-
sible way to think about probability, and other approaches (such as Bayesian) may work better 
for some research problems. A full discussion of this problem is beyond the scope of this chap-
ter; see Kruschke and Liddell (2018), Little (2006), Malakoff (1999), or Williamson (2013).

Researchers in a few areas of psychology use Bayesian methods. However, students typi-
cally receive little training in these methods. Whatever benefits this might have, a major shift 
toward the use of Bayesian methods in behavioral or social sciences seems unlikely to happen 
any time soon.
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10      APPLIED STATISTICS II

1.7.2 Replace α = .05 with α = .005

It has recently been suggested that problems with NHST could be reduced by setting 
the conventional α criterion to .005 instead of the current .05 (Benjamin et al., 2017). This 
would establish a more stringent standard for announcement of “new” findings. However, 
given the small effect sizes in many research areas, enormous sample sizes would be needed 
to have reasonable statistical power with α = .005. This would be prohibitively costly. Bates 
(2017) and Schimmack (2017) argued that this approach is neither necessary nor sufficient 
and that it would make replication efforts even more unlikely. A change to this smaller α level 
is unlikely to be widely adopted.

1.7.3 Less Emphasis on NHST

The “new” statistics advocated by Cumming (2012, 2014) calls for a shift of focus. He 
recommended that research reports should focus more on

�� confidence intervals,

�� effect size information, and

�� meta-analysis to combine effect size information across studies.

How “new” is the New Statistics? As noted by Cumming (2012) and others, experts have 
been calling for these changes for more than 40 years (e.g., Morrison & Henkel, 1970; Cohen, 
1990, 1994; Wilkinson & Task Force on Statistical Inference, APA Board of Scientific Affairs, 
1999). Cumming (2012, 2014) bolstered these arguments with further discussion of the ways 
that CIs (vs. p values) may lead data analysts to think about their data. Some argue that the 
New Statistics is not really “new” (Palij, 2012; Savalei & Dunn, 2011); CIs and significance 
tests are based upon the same information about sampling error. In practice, many readers 
may choose to convert CIs into p values so that they can think about them in more familiar 
terms. However, effect size reporting is critical; it provides information that is not obvious 
from examination of p values.

Unlike a shift to Bayesian approaches, or the use of α = .005, including CIs and effect sizes 
in research reports would not be difficult or costly. In general, researchers have been slow to 
adopt these recommendations (Sharpe, 2013). The Journal of Basic and Applied Social Psychology 
(Trafimow & Marks, 2015) now prohibits publication of p values and related NHST results.

The following sections review the major elements of the New Statistics: CIs and effect 
size. CIs and effect size are both discussed in Volume I (Warner, 2020) for each bivariate sta-
tistic. A brief introduction to meta-analysis is also provided.

1.8 REVIEW OF CONFIDENCE INTERVALS

A confidence interval is an interval estimate for some unknown population characteristic or 
parameter (such as μ, the population mean) based on information from a sample (such as M, 
SD, and N). CIs can be set up for basic bivariate statistics using simple formulas. Unfortunately 
SPSS does not provide CIs for some statistics, such as Pearson’s r. For more advanced statistics, 
CIs can be set up using methods such as bootstrapping, which is discussed in Chapter 15, on 
structural equation modeling, later in this book.

1.8.1 Review: Setting Up CIs

Consider an example of the CI for one sample mean, M. Suppose a data analyst has IQ 
scores for a sample of N = 100 cases, with these sample estimates: M = 105, SD = 15. In addition  
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chapter 1  •  The New Statistics      11

to reporting that mean IQ in the sample was M = 105, an interval estimate (a 95% CI) can 
be constructed, with lower and upper boundaries. The procedure used in this example can be 
used only when the sample statistic is known to have a normally shaped sampling distribution 
and when N is large enough that the standard normal or z distribution can be used to figure 
out what range of values lies within the center 95% of the distribution. (With smaller samples, 
t distributions are usually used.)

These are the steps to set up a CI:

�� Decide on C (level of confidence) (usually this is 95%).

�� Assuming that your sample statistic has a normally shaped sampling distribution, 
use the “critical values” from a z or standard normal distribution that 
correspond to the middle 95% of values. For a standard normal distribution, the 
middle 95% corresponds to the interval between zlower = –1.96 and zupper = +1.96.  
(Rounding these z values to –2 and +2 is reasonable when thinking about 
estimates.)

�� Find the standard error (SE) for the sample statistic. The SE depends on sample size 
and standard deviation. For a sample mean, SEM = SD/√N. Other sample statistics 
(such as r, b, and so forth) also have SEs that can be estimated.

�� On the basis of SD = 15, and N = 100, we can compute the standard error of the 
sampling distribution for M: SEM = 15/√100 = 15/10 = 1.5.

�� Now we combine SEM with M and the z critical values that correspond to the middle 
95% of the standard normal distribution to compute the CI limits:

Lower limit = M + zlower × SEM = 105 –1.96 * 1.5 = 105 – 2.94 = 102.06.

  Upper limit = M + zupper × SEM = 105 +1.96 * 1.5 = 105 + 2.94 = 107.94.

This would be reported as “95% CI [102.06, 107.94].”
This procedure can be generalized and used with many other (but not all) sample sta-

tistics. To use this procedure, an estimate of the value of SEstatistic is needed, and the sampling 
distribution for the statistic must be normal:

	 Lower limit = Statistic + zlower × SEstatistic.� (1.1)

	 Upper limit = Statistic + zupper × SEstatistic.� (1.2)

The statistic can be (M1 – M2), r, or a raw-score regression slope b, for example. In 
more advanced analyses such as structural equation modeling, it is sometimes not pos-
sible to calculate the SE values for path coefficients directly, and it may be unrealistic to 
expect sampling distributions to be normal in shape. In these situations, Equations 1.1 
and 1.2 cannot be used to set up CIs. The chapters that introduce structural equation 
modeling  and logistic regression discuss different procedures to set up CIs for these 
situations.

1.8.2 Interpretation of CIs

It is incorrect to say that there is a 95% probability that the true population mean μ lies 
within a 95% CI. (It either does, or it doesn’t, and we cannot know which.) We can make a 
long-range prediction that, if we have a population with known mean and standard deviation, 
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Mean
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affect

Daily servings of fruit and vegetables
524

N
per group:
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30
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Figure 1.1  Mean Positive Affect for Groups With Different Fruit and 
Vegetable Intake (With 95% CI Error Bars)

Source: Adapted from Warner, Frye, Morrell, and Carey (2017).

and set a fixed sample size, and draw thousands of random samples from that population, that 
95% of the CIs set up using this information will contain μ and the other 5% will not contain 
μ. Cumming and Finch (2005) provided other correct interpretations for CIs.

1.8.3 Graphing CIs

Upper and lower limits of CIs may be reported in text, tables, or graphs. One common 
type of graph is an error bar chart, as shown in Figure 1.1. (Bar charts can also be set up with 
error bars.) For either error bar or bar chart graphs, the graph may be rotated, such that error 
bars run from left to right instead of from bottom to top.

The data in Figure 1.1 are excerpted from an actual study. Undergraduates reported 
positive affect and the number of servings of fruit and vegetables they consumed in a typi-
cal day. Earlier research suggested that higher fruit and vegetable intake was associated with 
higher positive affect. Given the large sample size, number of servings could be treated as a 
group variable (i.e., the first group ate no servings of fruits and vegetables per day, the second 
group ate one serving per day, etc.) This was useful because past research suggested that the 
increase in positive affect might not be linear.

The vertical “whiskers” in Figure 1.1 show the 95% CI limits for each group mean. The 
horizontal line that crosses the Y axis at about 32.4 helps clarify that the CI for the zero serv-
ings of fruits and vegetables group did not overlap with the CIs for the groups of persons who 
ate three, four, or five servings per day.

In graphs of this type, the author must indicate whether the error bars correspond to a CI 
(and what level of confidence). Some graphs use similar-looking error bar markers to indicate 
the interval between –1 SEM and +1 SEM or the interval between –1 SD and +1 SD.
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1.8.4 Understanding Error Bar Graphs

A reader can make two kinds of inferences from error bars in this type of graph  
(Figure 1.1). First, error bars can be used to guess which group means differed significantly. 
Cumming (2012, 2014) cautioned that analysts should not automatically convert CI 
information into p values for significance tests when they think about their results. However, 
if readers choose to do that, it is important to understand the way CIs and two-tailed p values 
are related. In general, if the CIs for two group means do not overlap in graphs such as 
Figure 1.1, the difference between means is statistically significant (assuming that the level of 
confidence corresponds to the α level, i.e., 95% confidence and α = .05, two tailed). On the 
other hand, the difference between a pair of group means can be statistically significant even 
if the CIs for the means overlap slightly. Whether the difference is statistically significant 
depends on the amount of overlap between CIs (Cumming & Finch, 2005; Knezevic, 2008).

The nonoverlapping CIs for the zero-servings group and five-servings group indicates 
that if a t test were done to compare these two group means, using α = .05, two tailed, this dif-
ference would be statistically significant. There is some overlap in the CIs for the two-servings  
and three-servings groups. This difference might or might not be statistically significant 
using α = .05, two tailed.

The second kind of information a reader should look for is practical or clinical significance. 
Mean positive affect was about 34 for the five-servings group and 32 for the zero-servings  
group. Is that difference large enough to value or care about? Would a typical person be 
motivated to raise fruit and vegetable consumption from zero to five servings if that meant a 
chance to increase positive affect by two points? (Maybe there are easier ways to “get happy.”)

Numbers on the scale for positive affect scores are meaningless unless some context is 
provided. In this example, the minimum possible score for positive affect was 10 points, and 
the maximum was 50 points. A 2-point difference on a 50-point rating scale does not seem 
like very much. Also note that this graph “lies with statistics” in a way that is very common in 
both research reports and the mass media. The Y axis begins at about 30 points rather than 
the actual minimum value of 10 points. How different would this graph look if the Y axis 
included the entire possible range of values from 10 to 50?

In the final analyses in our paper (Warner et al., 2017), fruit and vegetable intake uniquely 
predicted about 2% of the variance in positive affect after controlling for numerous other 
variables that included exercise and sleep quality. That 2% was statistically significant. How-
ever, on the basis of 2% of the variance and a two-point difference in positive affect ratings 
for the low versus high fruit and vegetable consumption groups, I would not issue a press 
release urging people to eat fruit and get happy. Other variables (such as gratitude) have much 
stronger associations with positive affect. (It may be of theoretical interest that consumption 
of fruits and vegetables, but not sugar or fat consumption, was related to positive affect. Fruit 
and vegetable consumption is related to other important outcomes such as physical health.)

The point is: Information about actual and potential range of scores for the outcome 
variable can provide context for interpretation of scores (even when they are in essentially 
meaningless units). Readers also need to remember that the selection of a limited range of 
values to include on the Y axis creates an exaggerated perception of group differences.

1.8.5 Why Report CIs Instead of, or in Addition to, Significance Tests?

Cumming (2012) and others suggest these possible advantages of focusing on CIs rather 
than p values:

1.	 Reporting the CI can move us away from the yes/no thinking involved in 
statistical significance tests (unless we use the CI only to reconstruct the statistical 
significance test).
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2.	 CIs make us aware of the lack of precision of our estimates (of values such as 
means). Information about lack of precision is more compelling when scores on a 
predicted variable are in meaningful units. Consider systolic blood pressure, given 
in millimeters of mercury (mm Hg). If the 95% CI for systolic blood pressure 
in a group of drug-treated patients ranges from 115 mm Hg (not considered 
hypertensive) to 150 mm Hg (hypertensive), potential users of the drug will be 
able to see that mean outcomes are not very predictable. (On the other hand, if 
the CI ranges from 115 to 120 mm Hg, mean outcomes can be predicted more 
accurately.)

3.	 CIs may be more stable across studies than p values. In studies of replication 
and reproducibility, overlap of CIs across studies may be a better way to assess 
consistency than asking if studies yield the same result on the binary outcome 
judgment: significant or not significant. P values are “fickle”; they tend to vary 
across samples (Halsey et al., 2015). Asendorpf et al. (2013) recommended that 
evaluation of whether two studies produce consistent results should focus on CI 
overlap rather than on “vote counting” (i.e., noticing whether both studies had  
p < .05).

Data analysts hope that CIs will be relatively narrow, because if they are not, it indicates 
that estimates of mean have considerable sampling error. Other factors being equal, the width 
of a CI depends on these factors:

�� As SD increases (other factors being equal), the width of the CI increases.

�� As level of confidence increases (other factors being equal), the width of the CI 
increases.

�� As N increases (other factors being equal), the width of the CI decreases.

Despite calls to include CIs in research reports, many authors still do not do so (Sharpe, 
2013). This might be partly because, as Cohen (1994) noted, they are often “so embarrass-
ingly large!”

1.9 EFFECT SIZE

Bivariate statistics introduced in Volume I (Warner, 2020) were accompanied by a discussion 
of one (or sometimes more than one) effect size indexes. For χ2, effect sizes include Cramer’s 
V and f. Pearson’s r and r2 directly provide effect size information. For statistics such as the 
independent-samples t test, several effect sizes can be used; these include point biserial r (rpb), 
Cohen’s d, η, and η2. It is also possible to think about the (M1 – M2) difference as information 
about practical or clinical effect size terms if the dependent variable is measured in meaningful 
units such as dollars, kilograms, or inches. For ANOVA, η and η2 are commonly used. Rosnow 
and Rosenthal (2003) discussed additional, less widely used effect size indexes.

1.9.1 Generalizations About Effect Sizes

1.	 Effect size is independent of sample size. For example, the magnitude of Pearson’s r 
does not systematically increase as N increases.2

2.	 Some effect sizes have a fixed range of possible values (r ranges from –1 to +1), but 
other effect sizes do not (Cohen’s d is rarely higher than 3 in absolute value, but it 
does not have a fixed limit).
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3.	 Many effect sizes are in unit-free (or standardized) terms. For example, the 
magnitude of Pearson’s r is not related to the units in which X and Y are measured.

4.	 On the other hand, effect size information can be presented in terms of the 
original units of measurement (e.g., M1 – M2). This is useful when original units of 
measurement were meaningful (Pek & Flora, 2018).

5.	 Some effect sizes can be directly converted (at least approximately) into other effect 
sizes (Rosnow & Rosenthal, 2003).

6.	 Cohen’s (1988) guidelines for verbal labeling of effect sizes are widely used; these 
appear in Table 1.1. Alternative guidelines based on Fritz, Morris, and Richler (2012) 
appear in Table 1.2.

7.	 The value of a test statistic (such as the independent-samples t test) depends on both 
effect size and sample size or df. This is explained further in the next section.

8.	 Many journals now call for reporting of effect size information. However, many 
published research reports still do not include this information.

9.	 Judgments about the clinical or practical importance of research results should be 
based on effect size information, not based on p values (Sullivan & Feinn, 2012).

10.	 If you read a journal article that does not include effect size information, there 
is usually enough information for you to compute an effect size yourself. (There 
should be!)

11.	 Computer programs such as SPSS often do not provide effect sizes; however, effect 
sizes can be computed from the information provided.

Table 1.1  Suggested Verbal Labels for Cohen’s d and Other  
Common Effect Sizes

Verbal Label Suggested by 

Cohen (1988) Cohen’s d

r, rpb,a b, Partial r, 

R, or β r2, R 2, or η2

Large effect 0.8 .371 .138

(In-between area) 0.7 .330 .109

0.6 .287 .083

Medium effect 0.5 .243 .059

(In-between area) 0.4 .196 .038

0.3 .148 .022

Small effect 0.2 .100 .010

(In-between area) 0.1 .050 .002

No effect 0.0 .000 .000

Source: Adapted from Cohen (1988).

a. Point biserial r is denoted rpb. For an independent-samples t test, rpb is the Pearson’s r between the 
dichotomous variable that represents group membership and the Y quantitative dependent variable.
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12.	 In the upcoming discussion of meta-analysis, examples often focus on effect sizes 
such as Cohen’s d that describe the difference between group means for treatment 
and control groups. However, raw or standardized regression slope coefficients can 
also be treated as effect sizes in meta-analysis (Nieminen, Lehtiniemi, Vähäkangas, 
Huusko, & Rautio, 2013; Peterson & Brown, 2005).

13.	 CIs can be set up for many effect size estimates (Kline, 2013; Thompson, 2002b). 
Ultimately, it would be desirable to report these along with effect size. In the 
short term, just getting everyone to report effect size for primary results is 
probably a more reasonable goal.

1.9.2 Test Statistics Depend on Effect Size Combined With Sample Size

Consider the independent-samples t test. M1 and M2 denote the group means, SD1 and 
SD2 are the group standard deviations, and n1 and n2 denote the number of cases in each 
group. One of the effect sizes used with the independent-samples t is Cohen’s d (the standard-
ized distance or difference between the sample means M1 and M2). The difference between 
the sample means is standardized (converted to a unit-free distance) by dividing (M1 – M2) by 
the pooled standard deviation sp:

	 = −
Cohen s d

M M
s

' .
p

1 2 � (1.3)

Formulas for sp sometimes appear complicated; however, sp is just the weighted average 
of SD1 and SD2, weighted by sample sizes n1 and n2.

Sample size information for the independent-samples t test can be given as (√df/2), where 
df = (n1 + n2) – 2. The formula for the independent-samples t test can be given as a function of 
effect size d and sample size, as shown by Rosenthal and Rosnow (1991):

Table 1.2  Effect Size Interpretations

Research Question Effect Sizes

Minimum 

Reportable Effecta Moderate Effect Large Effect

Difference between two 
group means

Cohen’s d .41 1.15 2.70

Strength of association: 
linear

r, rpb, R, partial r, β, tau .2 .5 .8

Squared linear 
association estimates

r2, partial r2, R2, adjusted 
R2, sr2

.04 .25 .64

Squared association 
(not necessarily linear)

η2 and partial η2 .04 .25 .64

Risk estimatesb RR, OR 2.0 3.0 4.0

Source: Adapted from Fritz et al. (2012).

a. The minimum values suggested by Fritz et al. are much higher than the ones proposed by Cohen (1988).

b. Analyses such as logistic regression (in which the dependent variable is a group membership, such as alive vs. dead) provide information 
about relative or comparative risk, for example, how much more likely is a smoker to die than a nonsmoker? This may be in the form of 
relative risk (RR) and an odds ratio (OR). See Chapter 16.
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	 =t d
d f
2

. � (1.4)

Examining Equation 1.4 makes it clear that if effect size d is held constant, the absolute 
value of t increases as the df (sample size) increases. Thus, even when an effect size such as d is 
extremely small, as long as it is not zero, we can obtain a value of t large enough to be judged 
statistically significant if sample size is made sufficiently large. Conversely, if the sample size 
given by df is held constant, the absolute value of t increases as d increases. This dependence 
of magnitude of the test statistic on both effect size and sample size holds for other statistical 
tests (I have provided only a demonstration for one statistic, not a proof).

This is the important point: A very large value of t, and a correspondingly very small 
value of p, can be obtained even when the effect size d is extremely small. A small p value does 
not necessarily tell us that the results indicate a large or strong effect (particularly in studies 
with very large N’s).

Furthermore, both the value of N and the value of d depend on researcher decisions. 
For an independent-samples t test, other factors being equal, d often increases when the 
researcher chooses types of treatments and/or dosages of treatments that cause large dif-
ferences in the response variable and when the researcher controls within-group error vari-
ance through standardization of procedures and recruitment of homogeneous samples. Some 
undergraduate students became upset when I explained this: “You mean you can make the 
results turn out any way you want?” Yes, within some limits. When we obtain statistics in 
samples, such as values of M or Cohen’s d or p, these values depend on our design decisions. 
They are not facts of nature. See Volume I (Warner, 2020), Chapter 12, for further discussion.

1.9.3 Using Effect Size to Evaluate Theoretical Significance

Judgments about theoretical significance are sometimes made on the basis of the magni-
tude of standardized effect size indexes such as d or r. One way to think about the importance 
of research results is to ask, Given the effect size, how much does this variable add to our 
ability to predict some outcome of interest, or to “explain variance”? Is the added predictive 
information sufficient to be “worthwhile” from a theoretical perspective? Is it useful to con-
tinue to include this variable in future theories, or are its effects so trivial as to be negligible?

For example, if X and Y have rxy = .10 and therefore, r2 = .01, then only 1% of the variance 
in Y is linearly predictable from X. By implication, the other 99% of the variance is related to 
other variables (or is due to nonlinear associations or is inherently unpredictable). Is it worth 
expending a lot of energy on further study of a variable that predicts only 1% of the variance? 
When an effect size is this small, very large N’s are needed in future studies in order to have 
sufficient statistical power (i.e., a reasonably high probability of obtaining a statistically sig-
nificant outcome). Researchers need to make their own judgments as to whether it is worth 
pursuing a variable that predicts such a small proportion of variance.

There are two reasons why authors may not report effect sizes. One is that SPSS does 
not provide effect size information for some common statistics, such as ANOVA. This lack 
is easy to deal with, because SPSS does provide the information needed to calculate effect 
size information by hand, and the computations are simple. This information is provided for 
each statistic in Volume I (Warner, 2020). For example, an η2 effect size for ANOVA can be 
obtained by dividing SSeffect by SStotal. There may be another reason. Cohen (1994) noted that 
CIs are often embarrassingly large; effect sizes may often be embarrassingly small. It just does 
not sound very impressive to say, “I have accounted for 1% of the variance.”

A long time ago, Mischel (1968) pointed out that correlations between personality mea-
sures and behaviors tended to be no larger than r = .30. This triggered a crisis and disputes 
in personality research. Social psychologists argued that the power of situations was much 
greater than personality. Epstein and O’Brien (1985) argued that it is possible to obtain 
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higher correlations in personality with broader assessments and that typical effect sizes in 
social psychology were not much higher. However, at the time, r = .30 seemed quite low. This 
may have been because earlier psychological research in areas such as behavior analysis and 
psychophysics tended to yield much larger effects (stronger correlations). I wonder whether 
Cohen’s labeling of r = .3 as a medium to large effect was based on the observation that 
in many areas of psychology, effects much larger than this are not common. Nevertheless, 
accounting for 9% of the variance does not sound impressive.

Prentice and Miller (1992) pointed out that in some situations, even small effects may 
be impressive. Some behaviors are probably not easy to change, and a study that finds some 
change in this behavior can be impressive even if the amount of change is small. They cited 
this example: Physical attractiveness shows strong relationships with some responses (such as 
interpersonal attraction). It is impressive to note that even in the courtroom, attractiveness 
has an impact on behavior; unattractive defendants were more likely to be judged guilty and 
to receive more punishment. If physical attractiveness has effects in even this context, its 
effects may apply to a very wide range of situations.

Sometimes social and behavioral scientists have effect size envy, imagining that effect 
sizes in other research domains are probably much larger. In fact, effect sizes in much bio-
medical research are similar to those in psychology (Ferguson, 2009). Rosnow and Rosenthal 
(2003) cited an early study that examined whether taking low-dose aspirin could reduce the 
risk for having a heart attack. Pearson’s r (or f) between these two dichotomous variables was 
r = .034. The percentage of men who did not have heart attacks in the aspirin group (51.7%) 
was significantly higher than the percentage of men who did not have heart attacks in the pla-
cebo group (48.3%). Assuming that these results are generalizable to a larger population (and 
that is always a question), a 3.4% improvement in health outcome applied to 1 million men 
could translate into prevention of about 34,000 heart attacks. From a public health perspec-
tive, r = .034 can be seen as a large effect. From the perspective of an individual, the evaluation 
could be different. An individual might reason, I might change my risk for heart attack from 
51.7% (if I do not take aspirin) to 48.3% (if I do take aspirin). From that perspective, the 
effect of aspirin might appear to be less substantial.

1.9.4 Use of Effect Size to Evaluate Practical or  

Clinical Importance (or Significance)

It is important to distinguish between statistical significance and practical or clinical 
significance (Kirk, 1996; Thompson, 2002a). We have clear guidelines how to judge statistical 
significance (on the basis of p values). What do we mean by clinical or practical significance, 
and how can we make judgments about this? In everyday use, the word significant often means 
“sufficiently important to be worthy of attention.” When research results are reported as sta-
tistically significant, readers tend to think that the treatment caused effects large enough to 
be noticed and valued in everyday life. However, the term statistically significant has a specific 
technical meaning, and as noted in the previous section, a result that is statistically significant 
at p < .001 may not correspond to a large effect size.

For a study comparing group means, practical significance corresponds to differences 
between group means that are large enough to be valued (a large M1 – M2 difference). In 
a regression study, practical significance corresponds to large and “valuable” increases in 
an outcome variable as scores on the independent variable increase (e.g., a large raw-score 
regression slope b).

Standardized effect sizes such as Cohen’s d are sometimes interpreted in terms of clini-
cal significance. However, examining the difference between group means (M1 – M2) in their 
original units of measurement can be a more useful way to evaluate the clinical or practical 
importance of results (Pek & Flora, 2018). M1 – M2 provides understandable information 
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when variables are measured in meaningful and familiar units. Age in years, salary in dol-
lars or euros or other currency units, and body weight in kilograms or pounds are examples 
of variables in meaningful units. Everyday people can understand results reported in these 
terms.

For example, if a study that compared final body weight between treatment (1) and con-
trol (2) groups, with mean weights M1 = 153 lb in the treatment group and M2 = 155 lb in 
the control group, everyday folks (as well as clinicians) probably would not think that a 2-lb 
difference is large enough to be noticeable or valuable. Most people would not be very inter-
ested in this new treatment, particularly if it is expensive or difficult. On the other hand, if 
the two group means differed by 20 or 30 lb, probably most people would view that as a sub-
stantial difference. Similar comparisons can be made for other different treatment outcomes 
(such as blood pressure with vs. without drug treatment).

Unfortunately, when people read about new treatments in the media, reports often say 
that a treatment effect was “statistically significant” or even “highly statistically significant.” 
Those phrases can mislead people to think that the difference between group means (for 
weight, blood pressure, or other outcomes) in the study was extremely large.

Here are examples of criteria that could be used to judge whether results of studies are 
clinically or practically significant, that is, whether outcomes are different enough to matter:

�� Are group means so far apart that one mean is above, and the other mean is 
below, some diagnostic cutoff value? For example, is systolic blood pressure in 
a nonhypertensive range for the treatment group and a hypertensive range for a 
control group?

�� Would people care about an effect this size? This is relatively easy to judge 
when the variable is money. Judge and Cable (2004) examined annual salaries for 
tall versus short persons. They reported these mean annual salaries (in U.S. dollars): 
tall men, $79,835; short men, $52,704; tall women, $42,425, short women, $32,613. 
As always in research, there are many reasons we should hesitate to generalize their 
results to other situations or apply them to ourselves individually. However, tall men 
earned mean salaries more than $47,000 higher than short women. I am a short 
woman, and this result certainly got my attention.

In economics, value or “mattering” is called utility. Systematic studies could be done 
to see what values people (clients, clinicians, and others) attach to specific outcomes. For a 
person who earns very little money, a $1,000 salary increase may have a lot of value. For a 
person who earns a lot of money, the same $1,000 increase might be trivial. Utility of specific 
outcomes might well differ across persons according to characteristics such as age and sex.

�� How large does a difference have to be for most people to even notice or 
detect it? At a bare minimum, before we speak of an effect detected in a study as 
an important finding, it should be noticeable in everyday life (cf. Donlon, 1984; 
Stricker, 1997).

1.9.5 Uses for Effect Sizes

�� Effect sizes should be included in research reports. Standardized effect sizes (such 
as Cohen’s d or r) provide a basis for labeling strength of relationships between 
variables as weak, moderate, or strong. Standardized effect sizes can be compared 
with those found in other studies and in past research. Additional information, such 
as raw-score regression slopes and group means in original units of measurement, 
can help readers understand the real-world or clinical implications of findings (at 
least if the original units of measurement were meaningful).
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20      APPLIED STATISTICS II

�� Effect size estimates from past research can be used to do statistical power analysis to 
make sample-size decisions for future research.

�� Finally, effect size information can be combined and evaluated across studies using 
meta-analysis to summarize existing information.

1.10 BRIEF INTRODUCTION TO META-ANALYSIS

A meta-analysis is a summary of effect size information from past research. It involves evaluat-
ing the mean and variance of effect sizes combined across past studies. This section provides 
only a brief overview. For details about meta-analysis, see Borenstein, Hedges, Higgins, and 
Rothstein (2009) or Field and Gillett (2010).

1.10.1 Information Needed for Meta-Analysis

The following steps are involved in information collection:

1.	 Clearly identify the question of interest. For example, how does number of 
bystanders (X) predict whether a person offers help (Y)? What is the difference in 
mean depression scores (Y) between persons who do and do not receive cognitive 
behavioral therapy (CBT) (X)?

2.	 Establish criteria for inclusion (vs. exclusion) of studies ahead of time. Decide 
which studies to include and exclude. This involves many judgments. Poor-quality 
studies may be discarded. Studies that are retained must be similar enough in 
conception and design that comparisons make sense (you can’t compare apples and 
oranges). Reading meta-analyses in your own area of interest can be helpful.

3.	 Do a thorough search for past research about this question. This should include 
published studies, located using library databases, and unpublished data, obtained 
through personal contacts.

4.	 Create a data file that has at least the following information for each study:
a.	 Author names and year of publication for each study.
b.	 Number in sample (and within groups).
c.	 Effect size information (you may have to calculate this if it is not provided). The 

most common effect sizes are Cohen’s d and r. However, other types of effect 
size may be used.3

d.	 If applicable, group sizes, means, and standard deviations.
e.	 Additional information to characterize studies. If the number of studies included 

in the meta-analysis is large, it may be possible to analyze these variables as 
possible “moderators,” that is, variables that are related to different effect sizes. 
In studies of CBT, the magnitude of treatment effect might depend on number 
of treatment sessions, type of depression, client sex, or even the year when the 
study was done. There are also “study quality” and study type variables, for 
example, Was the study double blind or not? Was there a nontreatment control 
group? Was it a within-S or between-S design? It is a good idea to have more 
than one reader code this information and to check for interobserver reliability.

1.10.2 Goals of Meta-Analysis

�� Estimate mean effect size. When effect sizes are averaged across studies they are 
usually weighted by sample size (or sometimes by other characteristics of studies).
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�� Evaluate the variance of effect sizes across studies. The variation among effect 
sizes indicates whether results of studies seem to be homogeneous (that is, they all 
tended to yield similar effect sizes) or heterogeneous (they yielded different effect 
sizes). If effect sizes are heterogeneous and the number of studies is reasonably large, 
a moderator analysis is possible.

�� Evaluate whether certain moderator variables are related to difference in 
effect sizes. For example, are smaller effect sizes obtained in recent CBT studies 
than in those done many years ago?

The mechanics of doing a meta-analysis can be complex. For example, the analyst must 
choose between a fixed- and a random-effects model (for discussion, see Field & Gillett, 
2010); a random-effects model is probably more appropriate in many situations. SPSS does 
not have a built-in meta-analysis procedure; Field and Gillet (2010) provide free download-
able SPSS syntax files on their website, and references to software created by others, includ-
ing routines in R. See the following sources for guidelines about reporting meta-analysis: 
Liberati et al. (2009) and Rosenthal (1995).

1.10.3 Graphic Summaries of Meta-Analysis

Forest plots are commonly used to describe results from meta-analysis. Figure 1.2 
shows a hypothetical forest plot. Suppose that three studies were done to compare depression 
scores between a group that has had CBT and a control group that has not had therapy. For 
each study, the effect size, Cohen’s d, is the difference between posttest depression scores for 
the CBT and control groups (divided by the pooled within-group standard deviation). A 95% 
CI is obtained for Cohen’s d for each study.

The vertical line down the center of the table is the “line of no effect” that corresponds to 
d = 0. This would be the expected result if population means did not differ between CBT and 
control conditions. In this example, a negative value of d means that the treatment group had 
a better outcome (i.e., lower depression after treatment) than the control group.

Figure 1.2  Hypothetical Forest Plot for Studies That Assess Posttreatment Depression in Therapy 
and Control Groups

Source: Adapted with permission from the Royal Australian College of General Practitioners from: Ried K. “Interpreting and understanding 
meta-analysis graphs: A practical guide.” Australian Family Physician, 2006; 35(8):635–38. Available at www.racgp.org.au/afp/200608/10624.

Study CBT Therapy Group
N        mean (SD)

Control Group
N        mean (SD)

Cohen’s d and 95% CI Weight (%) Cohen’s d and 95% CI

Study 1, year     34         9.77 (2.93)           34        10.29 (3.43)                                                                     27.5                       –0.52 [–2.04, 1.00]

Study 2, year     36         8.40 (1.90)           36          8.90 (3.00)                                                                     46.9                       –0.50 [–1.66, 0.66]

Study 3, year     30       10.26 (2.96)           30 12.09 (3.24)                                                                     25.6 –1.83 [–3.40, –0.26]

Total (95% CI)   100 100 100.0 –0.85 [–1.64, –0.05]

Test for heterogeneity Chi-square = 2.03 df = 2 p = 036

Test for overall effect z = 2.09      p = .04

–4.0

Favors Intervention Favors Control

–2.0 2.0 4.00
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22      APPLIED STATISTICS II

Reading across the line for Study 1: Author names and year are provided, then N, mean, 
and SD for the CBT and control groups. The horizontal line to the right, with a square in 
the middle, corresponds to the 95% CI for Cohen’s d for Study 1. The size of the square is 
proportional to total N for that study. The weight given to information from each study in a 
meta-analysis can be based on one or more characteristics of studies, such as sample size. The 
final column provides the exact numerical results that correspond to the graphic version of 
the 95% CI for Cohen’s d for each study.

The row denoted “Total” shows the 95% CI for the weighted mean of Cohen’s d across 
all three studies, first in graphic and then in numerical form. The “Total” row has a diamond-
shaped symbol; the end points of the diamond indicate the 95% CI for the average effect size 
across studies. This CI did not include 0.

The values in the lower left of the figure answer two questions about the set of effect sizes 
across all studies. First, does the weighted mean of Cohen’s d combined across studies differ 
significantly from 0? The test for the overall effect, z = 2.09, p = .04, indicates that the null 
hypothesis that the overall average effect was zero can be rejected using α = .05, two tailed. 
The mean Cohen’s d that describes difference of depression scores for CBT compared with 
control group was –.87. This suggests that average mean depression was almost 1 standard 
deviation lower for persons who received CBT. That would be labeled a large effect using 
Cohen’s standards (Table 1.1); it lies in between “minimal reportable effect” and a moderate 
effect using the guidelines of Fritz et al. (2012) (Table 1.2).

Second, are the effect sizes sufficiently similar or close together that they can be viewed 
as homogeneous? The test for heterogeneity result was χ2 = 2.03, df = 2, p = .36. The null 
hypothesis of homogeneity is not rejected. If the χ2 test result were significant, this would 
suggest that some studies yielded different effect sizes than others. If the meta-analysis 
included numerous studies, it would be possible to look for moderator variables that might 
predict which studies have larger and which have smaller effects. An actual meta-analyses of 
CBT effectiveness suggested that effects were larger for studies done in the early years of 
CBT and smaller in studies done in recent years (Johnsen & Friborg, 2015). In other words, 
the year when each study was done was a moderator variable; effect sizes were larger, on aver-
age, in earlier years than in more recent years.

1.11 RECOMMENDATIONS FOR BETTER 
RESEARCH AND ANALYSIS

Extensive recommendations have been made for improvements in data analysis and research 
practices. These could substantially improve understanding of results from individual stud-
ies, reduce p-hacking, reduce the number of false-positive results, and improve replicability of 
research results.

Cumming (2012) recommended focusing more on CIs and effect sizes (and less on  
p values) in reports and interpretations of research results. In addition, meta-analyses should 
be used to summarize effect size information across studies. When effect size information 
is not examined, small p values are sometimes misunderstood as evidence of effects strong 
enough to be “worthy of notice,” in situations where treatment effects may be too small to be 
valued, and perhaps too small to even be noticed by everyday observation.

Use of language should be precise. It is unfortunate that the phrase “statistically signifi-
cant” includes a word (significant) that means “noteworthy and important” in everyday use. 
Authors should try to convey accurate information about effect size in a way that distinguishes 
between statistical and practical significance. If you describe p < .001 as “highly significant,” 
this leads many readers to think that the effect of a treatment or intervention is strong enough 
to be valuable in the real world and worthy of notice. However, p values depend on N, as well 
as effect size. A very weak treatment effect can have a very small p value if N is sufficiently large.
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Data analysts need to avoid p-hacking, “undisclosed flexibility,” and lack of transparency 
in research reports (Simmons et al., 2011). Authors also need to avoid HARKing: hypothesiz-
ing after results are known (Kerr, 1998). HARKing occurs when a researcher makes up an 
explanation for a result that was not expected. For a detailed p-hacking checklist (things to 
avoid) see Wicherts et al. (2016). When p-hacking occurs, reported p values can greatly under-
state the true risk for Type I error, and this often leads data analysts and readers to believe that 
evidence against the null hypothesis is much stronger than it actually is. This in turn leads to 
overconfidence about findings and perhaps publication of false-positive results.

The most extensive list of recommendations about changes need to improve replicability 
of research comes from Asendorpf et al. (2013). All of the following are based on their recom-
mendations. The entire following list is an abbreviated summary of their ideas; see their paper 
for detailed discussion.

1.11.1 Recommendations for Research Design and Data Analysis

�� Use larger sample sizes. Other factors being equal, this increases statistical power 
and leads to narrower CIs.

�� Use reliable measures. When measures have low reliability, correlations between 
quantitative measures are attenuated (i.e., made smaller), and within-group SS terms 
in ANOVA become larger.

�� Use suitable methods of statistical analysis.

�� Avoid multiple underpowered studies. An underpowered study has too few cases to 
have adequate statistical power to detect the effect size. Consider error introduced 
by multiple testing in underpowered studies.

The literature is scattered with inconsistent results because underpowered 
studies produce different sets of significant (or nonsignificant) relations between 
variables. Even worse, it is polluted by single studies reporting overestimated 
effect sizes, a problem aggravated by the confirmation bias in publication 
and a tendency to reframe studies post hoc to feature whatever results came out 
significant. (Asendorpf et al., 2013)

�� Do not evaluate whether results of a replication are consistent with the original 
study by “vote counting” of NHST results (e.g., did both studies have p < .05?). 
Instead note whether the CIs for the studies overlap substantially and whether the 
sample mean for the original study falls within the CI for the sample mean in the 
replication study.

1.11.2 Recommendations for Authors

�� Increase transparency of reporting (include complete information about sample size 
decisions, criteria used for statistical significance, all variables that were measured 
and all groups included, and all analyses that were conducted). Specify how possible 
sources of bias such as outliers and missing values were evaluated and remedied. If 
cases, variables, or groups are dropped from final analysis, explain how many were 
dropped and why.

�� Preregister research plans and predictions. For resources in psychology, see 
“Preregistration of Research Plans” (n.d.).

�� Publish materials, data, and details of analysis (e.g., on a webpage or in a repository; 
see “Recommended Data Repositories,” n.d.).
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24      APPLIED STATISTICS II

�� Publish working papers and engage in online research discussion forums to promote 
dialog among researchers working on related topics.

�� Conduct replications and make it possible for others to conduct replications.

�� Distinguish between exploratory and “confirmatory” analyses.

It is obvious that these are difficult for authors to do, particularly those at early stages in 
their careers. Publication of large numbers of studies that yield statistically significant results 
is a de facto requirement for getting hired, promoted, tenured, and grant-funded. Publication 
pressure can lower research quality (Sarawitz, 2016). Requirements to replicate studies and 
report more detail about data analysis decisions will make the process of publication far more 
time consuming. Efforts to adhere to these guidelines will almost certainly lead to publishing 
fewer papers. This could be good for the research field (Nelson, Simmons, & Simonsohn, 
2012). Changes in individual researcher behavior can only occur if researchers are taught bet-
ter practices and if institutions such as departments, universities, and grant-funding agencies 
provide incentives that encourage researchers to produce smaller numbers of high-quality 
studies instead of rewarding publication of large numbers of studies.

1.11.3 Recommendations for Journal Editors and Reviewers

�� Promote good research practice by encouraging honest reporting of less-than-
perfect results.

�� Do not insist on “confirmatory” studies; this discourages honest reporting when 
analyses are exploratory.

�� Publish null findings (those with p > .05) to minimize publication bias (provided that 
the studies are well designed). (Of course, a nil result should not be interpreted as 
evidence that the null hypothesis of no treatment effect is true. It is just a failure to 
find evidence that is inconsistent with the null hypothesis.)

�� Notice when a research report presents an unlikely outcome and raise questions 
about it. For example, Asendorpf et al. (2013) noted, “If an article reports 10 successful 
replications . . . each with a power of .60, the probability that all of the studies could have 
achieved statistical significance is less than 1%,” even if the finding is actually “true.”

�� Allow reviewers to discuss papers with authors.

�� Journals may give badges to papers with evidence of adherence to good practice such 
as study preregistration. Psychological Science does this; other journals are beginning 
to as well.

�� Require authors to make raw data available to reviewers and readers.

�� Reserve space for publication of replication studies, including failures to replicate.

1.11.4 Recommendations for Teachers of  

Research Methods and Statistics

To a great extent, textbooks and instructors teach what researchers are doing, and 
researchers, reviewers, and journal editors do what they have been taught to do. This 
discourages change. Incorporating issues such as the limitations of p values, the importance 
of reporting CIs and effect size, the risk for going astray into p-hacking during lengthy data 
analysis, and so forth, will help future researchers take these issues into account.
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�� Students need to understand the limitations of information from statistical 
significance tests and the problems created by inadequate statistical power, running 
multiple analyses, and selectively reporting only “significant” outcomes. In other 
words, they need to learn how to avoid p-hacking. Some of these ideas might be 
introduced in early courses; these topics are essential in intermediate and advanced 
courses. Many technical books cover these issues, but most textbooks do not.

�� Graduate courses should focus more on “getting it right” and less on “getting it 
published.”

�� Students need to know about a priori power analysis as a tool for deciding sample 
size (as opposed to the practice of continuing to collect data until p < .05 can be 
obtained, one of many forms of p-hacking). Some undergraduate statistics textbooks 
include an introduction to statistical power. Earlier chapters in this book provided 
basic information about power for each bivariate statistic.

�� The problems with inflated risk for Type I error that are raised by multiple analyses 
and multiple experiments should be discussed.

�� Transparency in reporting should be encouraged. Students need to work on projects 
that use real data set with the typical problems faced in actual research (such as 
missing values and outliers). Students should be required to report details about data 
screening and any remedies applied to data to minimize sources of artifact such as 
outliers.

�� Students can reanalyze raw data from published studies or conduct replication 
studies as projects in research methods and statistics courses.

�� Instructors should promote critical thinking about research designs and research 
reports.

1.11.5 Recommendations About Institutional Incentives and Norms

�� Departments and universities should focus on quality instead of quantity of 
publications when making hiring, salary, and promotion decisions.

�� Grant agencies should insist on replications.

1.12 SUMMARY

The title of an article in Slate describes the current situation: “Science Isn’t Broken. It’s Just a 
Hell of a Lot Harder Than We Gave It Credit For” (Aschwanden, 2015). Self-correction and 
quality control mechanisms for science (including peer review and replication) do not work 
perfectly, but they can be made to work better. Progress in science requires weeding out false-
positive results as well as generating new findings. Unfortunately, while generating new findings 
is incentivized, weeding out false positives is not. P-hacking without active intention to deceive 
is probably the most common reason for false-positive results.

Attempts to identify false-positive results (whether in one’s own work or in the work 
of others) can be painful. Ideally this will happen in a culture of cooperation and construc-
tive commentary, rather than competition and attack. Public abuse of individual researchers 
whose work cannot be replicated is not a good way to move forward. All of us have (at least 
on occasion) complained about nasty reviews. We need to remember, when we become upset 
about the “them” who wrote those nasty reviews, that “them” is “us,” and treat one another 
kindly. Criticism can be provided in constructive ways.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



26      APPLIED STATISTICS II

The stakes are high. Press releases of inconsistent or contradictory results in mass media 
may reduce public respect for, and trust in, science. This is turn may reduce support for 
research funding and higher education. If researchers make exaggerated claims on the basis 
of limited evidence, and claims are frequently contradicted, this provides ammunition for 
antiscience and anti-intellectual elements in our society.

Change in research practices does not have to be all or nothing. It is easy to report CIs 
and effect sizes (as suggested by Cumming, 2014, and others). Meta-analyses are becoming 
more common in many fields. We can make more thoughtful assessments of effect sizes and 
distinguish between statistical and practical or clinical importance (Kirk, 1996; Thompson, 
2002a). The many additional recommendations listed in the preceding section may have to be 
implemented more gradually, as institutional support for change increases.
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COMPREHENSION QUESTIONS

1.	 If Researcher B tries to replicate a statistically significant finding reported by Researcher A, 
and Researcher B finds a nonsignificant result, does this prove that Researcher A’s finding 
was incorrect? Why or why not?

2.	 What needs to be considered when comparing an original study by Researcher A and a 
replication attempt by Researcher B?

3.	 Is psychology the only discipline in which failures to replicate studies have been reported? (If 
not, what other disciplines? Your answer might include examples that go beyond those in this 
chapter.)

4.	 What does a p value tell you about:

a.	 Probability that the results of a study will replicate in the future?
b.	 Effect size (magnitude of treatment effect)?
c.	 Probability that the null hypothesis is correct?
d.	 What does a p value tell you?

5.	 “NHST logic involves a double negative.” Explain.

6.	 What does it mean to say that H0 is always false?

7.	 In words, what does Cohen’s d tell you about the magnitude of differences between two 
sample means? Does d have a restricted range? Can it be negative?

8.	 How does the value of the t ratio depend on the values of d and df?

9.	 How does the width of a CI depend on the level of confidence, N, and SD?

10.	 Review: What is the difference between SEM and SD? Which will be larger?

11.	 Consider Equation 1.4. Which term provides information about effect size? Which term 
provides information about sample size?

12.	 Describe violations of assumptions or rules that can bias values of p. Don’t worry whether to 
call something an assumption versus a rule versus an artifact; these concepts overlap.  

13.	 What are the major alternatives that have been suggested to the use of α < .05 (NHST)?

14.	 What is p-hacking? What common researcher practices can be described as p-hacking? What 
effect does p-hacking have on the believability of research results?

15.	 What is HARKing, and how can it be misleading?

16.	 How could p-hacking contribute to the problems that sometimes arise when people try to 
replicate research studies?

17.	 Is it correct to say that a study with p < .001 shows stronger treatment effects than a study 
that reports p < .05? Why or why not?

18.	 How does theoretical significance differ from practical or clinical significance? What kinds 
of information is useful in evaluating practical or clinical significance?

19.	 When people report CIs instead of p values, how might this lead them to think about data 
differently?

20.	 Can you tell from a graph or bar chart that shows 95% CIs for the means of two groups 
whether the t test that compares group means using α = .05 would be statistically significant? 
Explain your reasoning.
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21.	 If a computer program or research report does not provide effect size information, is there 
any way for you to figure it out?

22.	 Explain the difference between (M1 – M2) and Cohen’s d. Which is standardized? What kind 
of information does each of these potentially provide about effect size?

23.	 In addition to reporting effect size in research reports, discuss two other uses for effect size.

24.	 What three questions does a meta-analysis usually set out to answer?

25.	 Find a forest plot (either using a Google image search or by looking at studies in your 
research area). Unless you already understand odds ratios, make sure that the outcome 
variable is quantitative (some forest plots provide information about odds ratios; we have not 
discussed those yet). To the extent that you can, evaluate the following: Does the plot include 
all the information you would want to have? What does it tell you about the magnitude of 
effect in each study? The magnitude of effect averaged across all studies?

26.	 Describe three changes (in the behavior of individual researchers) that could improve future 
research quality. Describe two changes (in the behavior of institutions) that could help 
individuals make these changes. Do any of these changes seem easy to you? Which changes 
do you think are the most difficult (or unlikely)?

27.	 Has this chapter changed your understanding or thinking about how you will conduct 
research and analyze data in future? If so, how?

NOTES

1 The eminent philosopher of science Karl Popper (cited in Meehl, 1978) argued that to advance 
science, we need to look for evidence that might disconfirm our preferred hypotheses. NHST is not 
Popperian falsification. Meehl (1978) pointed out that NHST actually does the opposite. It is a search 
for evidence to disconfirm the null hypothesis (not evidence to disconfirm the research or alternative 
hypothesis). When we use NHST (with sufficiently large samples), our preferred alternative hypoth-
eses are not in jeopardy. Meehl argued that NHST is not a good way to advance knowledge in the 
social and behavioral sciences. It does not pose real challenges to our theories and is not well suited 
to deal with the sheer complexity of research questions in social and behavioral sciences. We make 
progress not only by generating new hypotheses and findings but also by discarding incorrect ideas 
and faulty evidence. Selective reporting of small p values does not help us discard incorrect ideas.

2 An exception is that if N, the number of data points, becomes very small, the size of a correlation 
becomes large. If you have only N = 2 pairs of X, Y values, a straight line will fit perfectly, and  
r will equal 1 or –1. For values of N close to 2, values of r will be inflated because of “overfitting.”

3 Odds ratios or relative risk measures, which can be obtained from logistic regression, are also 
common effect sizes in meta-analyses. See Chapter 16 later in this book.

DIGITAL RESOURCES

Find free study tools to support your learning, including eFlashcards, data sets, and web 
resources, on the accompanying website at edge.sagepub.com/warner3e. 
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