
 13

CHAPTER 2

BASIC TASKS IN R

This chapter introduces a number of basic skills you need to work in R. We start by
discussing how to assign and use objects—the foundation of object-oriented program-
ming. Then, we cover assigning vectors and creating, exporting, and importing data
frames. Finally, we address converting variables into a different data type (e.g., numeric
to factor).

CODING IN R: OBJECT-ORIENTED PROGRAMMING

R uses object-oriented programming. Essentially, you can assign data, values, output,
and functions to an object: a data structure that holds this information for later use.
This assignment uses the symbols < and - together as <-. In RStudio, this symbol can be
created using alt and - together.

We can use this symbol to assign a value on the right side of the symbol to an object
on the left side of the symbol. For example, we can assign the value 10 to the object x.

x <- 10

Remember: You will use ctrl + enter to run the line of code. You may also want to
use a comment (#) to write yourself a reminder.

After you successfully run the code, you can see the newly created object at the bot-
tom left of the screen in the Environment pane. This pane is helpful as you can refer to
it when recalling object names. Alternatively, you can request a list of objects: ls(). This
function returns all of the objects currently in the Environment.

Note: Throughout this book, periods are occasionally added to lines of code
because they are part of a sentence; however, the code will not work with the
period.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

14 AN R COMPANION FOR APPLIED STATISTICS I

Once you create an object, you can use or call that object, or you can remove (rm)
the object if you no longer need it. For example, we can call the object x, which should
return the value 10. We simply type x and hit ctrl + enter to run the line of code. You
should see the new line of code and the value associated with the object in the Console
pane.

We also can use the object. A simple example is to add the value 20 to the existing
object using this code:

x+20

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

CHAPTER 2 • BASIC TASKS IN R 15

We could assign this new value (i.e., x + 20) to a new object (z). We then need to
call object z to see the sum. Alternatively, you can see the value in the Environment
pane at the bottom right of the screen. Remember: The <- symbol is made using alt
and - together.

z <- x+20
z

If you want to remove an object, you can simply type rm(INSERT OBJECT).
For example, if we did not need the object z, we can remove it from the Environment.
Once you complete this action, you should see the object z is no longer listed in the
Environment pane: rm(z).

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

16 AN R COMPANION FOR APPLIED STATISTICS I

Note: If you want to clear the Console, you can hit ctrl + l at the same time.

CREATING DATA

Data come from a number of sources (e.g., Microsoft Excel®, IBM SPSS®) in several
 formats (e.g., CSV, DTA, SAV). You can easily import these files using the foreign
package, or you can use the Import Dataset button in the Environment pane, which
uses a built-in package. For the moment, we are going to focus on using data when
there is not an existing dataset already. As an example, if we had 24 individuals take an
intelligence test and wanted to enter their scores, we could directly enter the scores and
save them to an object (v1). This object then holds the list of numbers (called a vector)
for later use.

v1 <- c(100, 108, 109, 88, 79, 99, 95, 106, 103, 118, 115,
121, 130, 145, 132, 82, 93, 84, 82, 117, 98, 97, 96, 148)

v1

Note: Once you run the code, it appears in the Console pane, but there is no
additional output because the numbers were assigned to the object v1. We can
see the new object in the Environment pane along with the numbers assigned
to the vector, though. We could call the object (v1), which would result in the
values appearing in the Console pane.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

CHAPTER 2 • BASIC TASKS IN R 17

Once created, this vector of scores can be converted into a data frame (data1) using
the function as.data.frame. In the Console pane, v1 has a different orientation than
data1, which coincides with the shift from a vector of scores (v1) to a variable or column
in a data frame (data1). Similarly, in the Environment pane, the data frame focuses on
the number of observations and variables, and the vector presents individual scores.

data1 <- as.data.frame(v1)
data1

Note: You can highlight and run multiple lines of code to create the object and
call the object at the same time.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

18 AN R COMPANION FOR APPLIED STATISTICS I

We rarely work with a single variable. Create another vector (v2) with grade point
average (GPA) scores for 24 individuals. Then, combine the two vectors into a data frame
(data2).

v2 <- c(3.82, 3.60, 3.91, 2.58, 1.92, 2.02, 1.98, 3.20, 3.21,
3.80, 3.83, 3.90, 3.87, 3.20, 4.00, 2.68, 2.87, 2.00,
2.50, 1.80, 2.92, 3.20, 3.27, 3.87)

data2 <- data.frame(v1, v2)

You can View the new data frame in RStudio using the View function. This function
opens a new tab in the top left Source pane with data2 visible.

View(data2)

These variables are not labeled (i.e., named), which could cause problems if we look
at these data a few weeks from now or send the data to someone else. We can use the
script to add column labels (IQ, GPA) with the names function. These labels are infor-
mative and short, which will be useful when we look at the file at a later time or call the
variable later because the label is descriptive and quick to type. Alternatively, the labels
can be added as you create the new data frame with the data.frame function.

names(data2) <- c(“IQ”, “GPA”)
data2_Alt <- data.frame(IQ=v1, GPA=v2)

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

CHAPTER 2 • BASIC TASKS IN R 19

EXPORTING DATA

You probably want to save the data once you create the data frame and label the variables.
You can export the data in several formats. One possibility is to write the data frame to
a comma-separated values (CSV) file using the write.csv function. Once you run this
code, you should see a new file named IQ_GPA_example.csv in your project folder.

write.csv(data2, file=“IQ_GPA_example.csv”, row.names=FALSE)

Note: If you did not create a project, you will need to type out the file location:
write.csv(data2, file=“C:/Users/MrAwesome/Desktop/StatsPur-
gatory/RforNewbies/IQ_GPA_example.csv”). If you created a project, R
assumes you want to save the file in your project folder. You can easily see from
this example how starting a project folder saves time in the long run, and if you
want to save the file somewhere else, manually writing the new destination (i.e.,
write out the full location) will override the assumption you want to save to the
project folder.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

20 AN R COMPANION FOR APPLIED STATISTICS I

IMPORTING DATA

If we want to import the data at a later point, we simply go to the Environment pane,
click Import Dataset, select From Text (base)…, and select Browse….

Because we set a project file, the browser opens in the current project file, although
we could easily locate the file using the browser. Select the desired file (i.e., IQ_GPA_
example.csv) and click Open.

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

CHAPTER 2 • BASIC TASKS IN R 21

The data can be imported using this Import Dataset pane. Check the settings.
In this case, the defaults should work. I changed the Name to IQdata; a shorter name
makes it faster to reference the data frame later in your script. When you are ready, select
Import.

RStudio writes a code using the import settings and sends it to the Console pane.
This code creates the object IQdata and opens a viewer, seen on the left. We could man-
ually write the code with the read.csv function and make it shorter.

IQdata <- read.csv(“IQ_GPA_example.csv”)

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

22 AN R COMPANION FOR APPLIED STATISTICS I

CONVERTING VARIABLES

We can convert the quantitative IQ scores into a categorical variable. One option would
be to convert them into a dichotomous variable with two categories: (1) above 100 and
(2) equal to or below 100. First, add a new variable (IQcat) to the data frame (IQdata)
and fill the variable with zeros. Adding this variable should result in the IQdata object
showing 24 observations of three variables in the Environment pane.

IQdata$IQcat <- 0

Score ranges on the IQ variable (e.g., < 101) in the IQdata data frame can be used
to assign category labels (e.g., “Average or Below”) to the IQcat variable. Once the
code for the first category is complete, it can be modified to create the second category
(i.e., “Above average”). Then, we can specify that the variable is a categorical variable
using the factor function. This step associates a numerical value with each label. This
function also can be used to denote a variable is categorical and not quantitative, which
will allow functions like summary to present the data using the appropriate statistics.

IQdata$IQcat[IQdata$IQ<101] <- “Average or Below”
IQdata$IQcat[IQdata$IQ>100] <- “Above average”
IQdata$IQcat <- factor(IQdata$IQcat)

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

CHAPTER 2 • BASIC TASKS IN R 23

We can check that the categorical variable was created properly using the View
function. Once you are sure the data are correct, save the finished data frame to a file
(IQ_GPA_example2.csv) for future use with the write.csv function.

View(IQdata)
write.csv(IQdata, file=“IQ_GPA_example2.csv”, row.names=FALSE)

Occasionally, variables are incorrectly identified as quantitative (i.e., integer or
numeric) when they are categorical (i.e., factor) or vice versa. If you want to check how a
variable is classified, you can use the function class() and add the variable of interest in
parentheses. If this check shows the variable is classified incorrectly, you can specify the

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

24 AN R COMPANION FOR APPLIED STATISTICS I

level of measurement. For example, you can specify a variable as categorical using the fac-
tor function, and you can coerce a variable to be quantitative using the as.numeric and
as.character functions.

class(IQdata$IQ)
as.numeric(as.character(INSERT FACTOR VARIABLE))

Chapter 2 Summary of Key Functions (AKA: Function Cheat Sheet)

Function Call Package Description

ls Included in base Lists objects in Environment

rm Included in base Removes an object from Environment

c Included in base Concatenates (i.e., combines) elements

as.data.frame Included in base Coerces object to data frame

data.frame Included in base Creates a new data frame

View Included in utils Opens tab with object (e.g., data frame)

names Included in base Adds names to data frame or returns names

write.csv Included in utils Saves CSV file with object in project folder

read.csv Included in utils Assigns dataset from CSV file to data frame

factor Included in base Coerces object to factor class

class Included in base Returns class for object

as.numeric Included in base Coerces object to numeric class

as.character Included in base Converts object to a character vector

Copyright ©2021 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

