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ABOUT THE DATA AND VARIABLES
The data used throughout this book come from a selection of variables in the 2016  General 
Social Survey (GSS) (Smith, Davern, Freese, & Morgan, 2019). The full GSS dataset con-
sists of 2867 responses to 208 variables and are made available for public use. If you have 
questions regarding the variables or the coding, we recommend that you download the 
General Social Survey codebook as a supplemental resource to use as you work through 
this book’s examples. The full codebook can be downloaded from the following website: 
http://gss.norc.org/documents/codebook/GSS_Codebook.pdf

STRUCTURE AND ORGANIZATION OF 
CLASSIC “WIDE” DATASETS 
Now that we have learned the basics of R/RStudio, we will cover some of the important 
features of the data, including the structure of the dataset, which can be either wide or long. 
A wide dataset is organized in a way that a row of responses will be associated with a single 
participant (respondent). If there are repeated measures for the participant, they will be in 
separate columns. For example, if a participant were asked their age, gender, birth state, 
how many hours they slept for three nights in a row, and employment status, the responses 
would look something like Figure 2.1. Notice that the repeated measures of number of 
hours slept are in individual columns, and that the respondents—with a respondent iden-
tification number—each have their own row. The alternative structure of a dataset can 
be seen in a long dataset. This is when repeated measures are listed in the rows instead of 
across the columns. This results in multiple rows for a single participant, thus causing the 
physical structure of the dataset to be longer. The same data seen in Figure 2.1 as a wide 
dataset is shown in Figure 2.2; however, the figure is shortened to only show 10 of the 
21 entries that existed.

DATA, VARIABLES, 
AND DATA MANAGEMENT
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26  A Guide to R for Social and Behavioral Science Statistics

Please note that the unit of analysis and distribution of the data change depending on the 
structure of the data. For instance, if we were to consider the distribution for hours of sleep 
in the wide dataset, each day would have its own column of values. However, in the long 
dataset, the distribution would display each measure of hours of sleep as separate rows 
repeated for the same individual. 

We will be working with a wide dataset throughout this book. However, it is important to 
know what structure of dataset you are working on since statistical procedures will differ 
for each type. It is also important to have a clear understanding of your units of analysis, 
distributions, and how they are derived from the dataset with which you are working.

FIGURE 2.1   SCREENSHOT OF DATA FROM A WIDE DATASET STRUCTURE

FIGURE 2.2    SCREENSHOT OF PARTIAL DATA FROM A LONG DATASET 
STRUCTURE
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Chapter 2   ■   Data, Variables, and Data Management  27

THE GENERAL SOCIAL SURVEY
The GSS (Smith et al., 2019) has typically been administered biennially (every two years) 
since 1972. The survey collects data on Americans’ demographics, behaviors, and attitudes. 
These data can be used by social scientists to provide cross-sectional or “snapshot” observa-
tions of social trends that represent the population. In order to become familiar with and 
obtain data from the GSS, it is as easy as doing an Internet search for the “general social 
survey” or go to gss.norc.org.

The survey is conducted through face-to-face interviews with participants over 18 years old 
and takes roughly 90 minutes. Since 2006, the GSS has been conducted in Spanish as well 
as English. The sampling has changed from its earlier years of modified probability sam-
pling to the more current full probability sampling (see the GSS Codebook). Additionally, 
the research team aims to reach a representative population by sampling in both rural and 
urban geographical units.

The full dataset for the GSS has over 950+ variables that are responses to questions about 
respondents’ demographics, such as age, race, income, and marital status, as well as the 
respondents’ feelings about social matters such as Internet use, national politics, and other 
personal preferences. It is possible to download all years or specific years, but for the pur-
pose of this book, we will be working with the provided subset of 208 variables from 2016. 
This gives us more than enough data to become familiar with using R/RStudio and navi-
gating the GSS for research purposes. However, at the website (gss.norc.org), click on the 
tab for “Get the Data” and you can acquire much more than the subset of data we use in 
this book.

Since we will be working with the data in R/RStudio, it is best for the data to be saved as a 
“comma separated values” or CSV file, which can be uploaded into R/RStudio pretty easily.

Tip: While working through this book, we recommend having a folder on your desktop 
titled CSV (or something else) for the storage of all your files. This will be convenient for 
loading your data into R/RStudio when you want to practice. You will be able to set the same 
working directory for your projects (setwd(‘C:/users/username/Desktop/CSV’)  
because they will be in this folder. Just be sure the code has your filepath and working 
directory information to access the correct file.

The first thing we want to do after saving the GSS data to a CSV file is to open our work-
ing directory, followed by uploading the CSV document using the read.csv command. 
After this is completed and the CSV file appears in the environment window, you can 
consider if you are ready to open any libraries, or just begin analysis and load any libraries 
as they are needed.

setwd(‘C:/Users/username/Desktop/CSV’)# Setting the working 
directory.
GSS2016 <- read.csv(‘GSS2016.csv’, header=TRUE) # Uploading the 
CSV file of the data.
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28  A Guide to R for Social and Behavioral Science Statistics

If the packages for the libraries have already been installed in the RStudio program 
on the computer you are working on, then the libraries will open with the command 
library(libraryname). If the packages have not already been installed, then they 
need to be installed, and the opening of the library re-run.

Tip: To install a package go to the lower right window of RStudio (the viewer window) 
and click on the Packages tab. Select Install and a new window will appear (Figure 2.3).

FIGURE 2.3   WHERE TO FIND “PACKAGES” AND “INSTALL”

FIGURE 2.4   THE SCREENS FOR INSTALLING PACKAGES

The install packages window will open in the center of all four RStudio windows. Start 
typing the package you need in the empty packages bar and RStudio will start to generate 
possibilities for you to choose. Select the one you want and click on Install (Figure 2.4). 
Next, go back to the script window and re-run the library.

After the working directory is set, the dataset is loaded, and the libraries installed, it is time 
to start becoming familiar with the data. By looking at the environment window, we can 
see that there are 208 variables and 2867 respondents. This is where we can double-check 
that our data has been loaded correctly into the program. After establishing that our data 
and our RStudio is set up properly, we can begin some data work. For the rest of this book, 
we will be performing all analyses on this subset of data from the GSS survey.

Tip: It is always a good idea to look at the dataset after you have loaded it into R/RStudio 
to make sure your values and labels are there. Double-check that you are about to 
work with the dataset you anticipated, and that it has loaded correctly. You can do this 
by clicking on the dataset in the environment window and it will appear in the console 
(Figures 2.5 and 2.6).
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Chapter 2   ■   Data, Variables, and Data Management  29

When using GSS data, keep in mind that there are different ways that it can be loaded into 
R (e.g., through Stata or SPSS) that may require you to alter a script slightly from what you 
have learned here. Also, be sure to pay attention to spacing and capitalization because R is 
sensitive to cases and spacing.

VARIABLES AND MEASUREMENT
In statistics, we are often looking to see if there is a relationship between variables beyond 
what we would see due to chance. These variables can be independent variables, dependent 
variables, or control variables depending on the statistical analysis chosen to address the 
research question.

FIGURE 2.5    SCREENSHOT OF THE ENVIRONMENT WINDOW SHOWING 
THE DATASET HAS BEEN UPLOADED

FIGURE 2.6    SCREENSHOT OF THE SCRIPT WINDOW SHOWING THE 
ACTUAL VALUES (SPREADSHEET) OF THE DATASET
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30  A Guide to R for Social and Behavioral Science Statistics

An independent variable (IV), also known as the X variable, is the variable in which its 
responses are independent of the dependent variable. The IV can be manipulated (or con-
trolled) by the researcher. Whereas, the dependent variable (DV), also known as the Y 
variable is presumed to be dependent upon the independent variable. We often hypothesize 
that a dependent variable will change in response to a change in the independent variable. 
In other words, Y relies on—or responds to—X. Control variables are the variables that 
we, the researchers, hold constant in order to attempt to isolate the relationship between 
the IV and the DV.

The level of measurement for variables can be nominal, ordinal, interval, or ratio, depend-
ing on how the data are collected for each variable. Nominal and ordinal measurements 
both have categorical (or discreet) data attributes, while interval and ratio measures are 
referred to as continuous.

Nominal data can only fit into one classification and the categories are not ranked, not 
ordered, and not equidistant from each other. Ordinal data fit into one category but the cat-
egories can be ranked or ordered. Interval and ratio data are both continuous data that have 
responses that have measurable, equal distances between the (numeric) attributes. Interval 
data does not have a meaningful zero, and ratio data does have a meaningful zero. A mean-
ingful zero is such that if the response is zero, it represents an absence or lack of something.

Nominal data examples include individuals’ political party, marital status, or yes/no 
options. Ordinal data examples include grade level (freshman, sophomore, junior, senior); 
1st, 2nd, and 3rd places; or Likert scales (i.e., strongly agree, agree, neutral, disagree, 
strongly disagree). Interval data examples include degrees Celsius, year of birth, or IQ. 
Ratio data examples can include weight, length of time at a job, or number of children. For 
most of the analyses in this book, we will refer to interval and ratio variables together (i.e., 
interval/ratio variables).

It is extremely important to remember that the level of measurement is based on how the 
data are collected. For example, if we wanted to identify the level of measurement for age 
based on information from a survey, it would depend on how the question was asked. If 
respondents answered the question, “Are you over the age of 30?” with a yes or a no, the 
data reflect a dichotomous, or binary, nominal measure of age. If participants answered the 
question, “How old are you?” by picking from the following ordered options: 18.0–29.9 
years old, 30.0–39.9 years old, 40.0–49.9 years old, 50.0–59.9 years old, and 60.0-plus 
years old, we would consider the data ordinal. If the participants were to respond to the 
question, “How many years old are you?” by filling in their age in years, that would be 
interval/ratio data.

When working with the GSS dataset, remember to use the codebook to help inform 
you of what each code (number) represents. Please do not let the size of the codebook 
intimidate; a search of any term (using a Control + F) can get you quickly to the 
 variable you are interested in finding. For a small example of some of the variables 
we will be working with throughout the following chapters, see Table 2.1. We can 
also see that our subset of the GSS data contains a range of different levels of variable 
measurement.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 2   ■   Data, Variables, and Data Management  31

RECODING VARIABLES
Categorical variables (i.e., nominal, ordinal) have attributes, or categories, that are often rep-
resented by a numeric code for statistical analyses. These include variables with only two 
options (e.g., yes/no), which are special cases known as binary, or dichotomous, variables. 
Continuous variables (i.e., interval/ratio) are already represented by numeric values (e.g., age).

LOGIC OF CODING
Coding data is the process by which we apply a (typically) numeric code to raw data so 
that we can enter it into a computer program and run statistical analysis. An example of 
this is the variable for gender (sex), which has the attributes for male and female. Because 
this book is using the GSS2016 dataset, the codes have already been established and can 
be found in the GSS codebook. The code for male is 1 and the code for female is 2. If you 
are collecting your own data, you, as the researcher, will be the one to establish the codes 
for your data and the code for male could just as easily be 13 and female 99—they are just 
numerical representations of the attributes male and female.

When running analyses, we work with the numeric representation of the variable attributes 
and apply the value labels which are character based (also known as factor or string data). 
However, when working with many other datasets, or a dataset you have created on your 
own, you will need to create your own codes for your variable attributes. Just as an example, 
we will add the value labels to the variable gender (sex) in order to create the output for 
both the codes and the labels.

table(GSS2016$sex) # Generate a table with raw frequencies for gender.

This will be the first (top) output below.

GSS2016$sex <- factor(GSS2016$sex,

                   levels = c(1,2),

                   labels = c(“Male”, “Female”)) #Recode the 
value labels for attributes in the variable gender. 

TABLE 2.1    LEVELS OF MEASUREMENT FOR VARIABLES IN GSS 2016 
SAMPLE EXAMPLES

Nominal Ordinal Interval/Ratio

Race Degree Education

Gender Happiness level Number of siblings
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32  A Guide to R for Social and Behavioral Science Statistics

table(GSS2016$sex)

# Generate a table with count for sex attributes after adding value labels 
and changing variable to factor.

Outputs: Raw Frequencies for sex with codes and with value labels.

 1        2         ←  These are the codes for the attributes Male and Female
1276  1591

Male   Female ←  These are the value labels for the attributes Male and Female
1276    1591

Tip: During the process of adding the value labels, we convert the actual data 
to characters (factor/string) data, which may compromise future mathematical 
analysis we want to perform. It is best to do this after we have run our analysis.

INFORMATION BOX 2.1

Finding the Structure of the Data

If you are unsure of the structure of the data, you can always find out by running the 
command for structure (str). As an example, we can check the structure before 
we change the variable sex and after we change the variable sex and we can see the 
structure change from integer to factor.

str(GSS2016$sex)

int [1:2867] 1 1 1 2 2 2 1 2 1 1 . . . 

str(GSS2016$sex)

Factor w/2 levels “Male” , “Female”: 1 1 1 2 2 2 1 2 1 1 . . .

There are plenty of reasons why a researcher would want to recode some of their data, 
which is to change the attributes and/or numerical classifications of a variable. For exam-
ple, they might want to change a continuous variable into a categorical variable, create 
a dichotomous (or binary) variable from a categorical variable, change original values, 
aggregate (collapse) data, remove unnecessary data, or handle with missing data, to name 
a few.
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Chapter 2   ■   Data, Variables, and Data Management  33

One common reason to recode a variable is that a researcher might want to combine a 
variable’s multiple categories in a way that will result in two categories, also known as a 
dichotomous, or binary, variable. For instance, if we wanted to run an analysis with the 
variable health, which has seven categories (Excellent, Good, Fair, Poor, Don’t know, No 
answer, and Not applicable), but only wanted two categories (Good or better and Less than 
good), we would need to recode the variable.

The first thing we need to do is create a new variable that is a duplicate of the original so 
we can work with the new variable but retain the original variable (Figure 2.7). This gives 
us the girth to make a mistake and not damage our original data. It is also important to 
keep the original variable whenever we collapse or aggregate data in order to retain the most 
detailed level of information in case we want to work with it again later.

In order to create a new variable, let’s run a table on our old data to keep and use as a refer-
ence to make sure our new variable is created properly.

table(GSS2016$health)

Output: Raw frequencies of attributes for variable health before recoding.

    0       1       2       3        4      9
979  418  919  430  118  3

GSS2016$healthFact <-(GSS2016$health) # Create new (duplicate) 
variable.
table(GSS2016$healthFact)

Tip: Always take a quick look at either the frequencies, or the variable itself, to 
double-check that your new variable was created properly. In this case, you would 
want to run the same command you did on the original to be able to compare 
information.

Output: Raw frequencies of attributes of our new variable healthFact.

    0     1      2        3        4    9
979  418  919  430  118  3

After creating the new variable, we can add the value labels to the variable and run a 
frequency table of the variable with the labels. However, you may have noticed that we 
named this variable healthFact for health factor. This is done to show what will happen 
if we label variables as factors too soon. If we do this, our data become factors (string or 
characters), which can sometimes create problems with strict numerical analysis. This is a 
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34  A Guide to R for Social and Behavioral Science Statistics

compelling argument for always creating a new variable rather than making changes to the 
original variable.

Before recoding, we need to know what the codes actually represent. We can find 
this information by using the GSS codebook. This codebook is a very large PDF file 
that explains all 900+ variables and their attributes. We highly recommend the search 
function!

FIGURE 2.7     NOTE THE CHANGE IN THE ENVIRONMENT WINDOW FROM 
208 VARIABLES TO 209

INFORMATION BOX 2.2

Searching for a Variable

Using the Control + F shortcut to produce a search window is a quick way to 
search for a variable. After searching for the health variable, which is what 
this was  created from, you can see the variable attributes and their codes  
(refer to the screenshot below). As an example, Fair health responses were 
coded as 3.

GSS2016$healthFact <-factor(GSS2016$health,

                         levels=c(1,2,3,4,8,9,0),

                          labels=c(“Excellent”, “Good”, “Fair”, 

“Poor”, “Don’t know”, “No answer”, 

“Not applicable”))

table(GSS2016$healthFact)

Output: Raw frequencies of attributes of new variable healthFact with the labels  
created.
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Chapter 2   ■   Data, Variables, and Data Management  35

Excellent Good Fair Poor

418 919 430 118

Don’t know No answer Not applicable

0 3 979

In addition to looking at the frequencies, we can become familiar with all of the 
raw values by simply running the name of the data and variable with the dollar sign 
operator discussed earlier:

GSS2016$health

Output: Screenshot of a portion of the individual responses to the variable health.

        [1]   2   0   2   2   1   0   4   2   2   2   0   4   0   2   0   1   1   0   0   2   0   1   0   1   3   0   1   0   0
    [30]   2   0   2   2   3   3   0   0   2   1   0   2   2   0   2   0   3   0   2   1   0   0   1   0   2   1   0   0   0
    [59]   1   2   1   0   3   0   2   3   0   3   3   3   3   2   0   0   1   0   1   2   1   2   2   1   2   2   2   2   0
    [88]   3   2   3   0   3   2   2   2   0   0   0   2   2   2   0   3   1   3   3   2   3   3   2   3   1   2   0   0   2
[117]   2   0   2   0   1   1   1   3   0   0   1   2   0   2   0   1   2   4   4   2   0   3   1   2   4   2   3   2   0
[146]   0   2   0   0   2   1   0   2   3   2   1   2   2   0   1   0   2   3   3   0   4   4   0   1   2   0   3   0   1

GSS2016$healthFact

Output: Screenshot of a portion of the individual responses to the variable healthFact.

  [1]  Good                 Not applicable  Good                Good               Excellent     
  [6]  Not applicable   Poor                  Good                Good               Good          
 [11]  Not applicable  Poor                   Not applicable Good                Not applicable
 [16]  Excellent          Excellent            Not applicable Not applicable Good          
 [21]  Not applicable  Excellent            Not applicable Excellent          Fair          
 [26]  Not applicable Excellent            Not applicable Not applicable Good          
 [31]  Not applicable Good                  Good                Fair                  Fair          
 [36]  Not applicable Not applicable  Good                Excellent          Not applicable

We are able to see immediately that the labels have been successfully applied. Also notice-
able, from either the frequency outputs or the data boxes, is the large amount of No answer 
and Not applicable cases. The GSS sometimes skips certain question models for certain 
individuals. When we recode the data, we will want to account for that and remove these 
from the calculations. We will be combining the Good and Excellent responses in a single 
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36  A Guide to R for Social and Behavioral Science Statistics

category, “Good or better,” which has a code of 1, and Fair and Poor responses into the 
category “Less than good” to which we will apply the code 2.

When we gave labels to the variable healthFact we created the new variable as a factor 
variable (Figure 2.8). However, we need to have a numeric variable in order to recode, so 
we will be creating a new variable (healthBiNom) that will be a binary nominal variable; 
meaning it has only two attributes (1 = Good or better, 2 = Less than good).

GSS2016$healthBiNom <-(GSS2016$health) # Create new (duplicate) 
variable based on the original.

FIGURE 2.8    NOTE THE CHANGE IN THE ENVIRONMENT WINDOW FROM 
209 TO 210

table(GSS2016$healthBiNom)

Output: Raw frequencies of attributes for variable healthBiNom before recoding.

    0            1        2       3     4   9
979   418   919   430   118   3

GSS2016$healthBiNom

Output: Screenshot of a portion of individual responses of healthBiNom before 
recoding.

       [1]   2   0   2   2   1   0   4   2   2   2   0   4   0   2   0   1   1   0   0   2   0   1   0   1   3   0   1   0   0
   [30]   2   0   2   2   3   3   0   0   2   1   0   2   2   0   2   0   3   0   2   1   0   0   1   0   2   1   0   0   0
   [59]   1   2   1   0   3   0   2   3   0   3   3   3   3   2   0   0   1   0   1   2   1   2   2   1   2   2   2   2   0
   [88]   3   2   3   0   3   2   2   2   0   0   0   2   2   2   0   3   1   3   3   2   3   3   2   3   1   2   0   0   2
[117]   2   0   2   0   1   1   1   3   0   0   1   2   0   2   0   1   2   4   4   2   0   3   1   2   4   2   3   2   0
[146]   0   2   0   0   2   1   0   2   3   2   1   2   2   0   1   0   2   3   3   0   4   4   0   1   2   0   3   0   1
[175]   0   2   1   3   2   3   3   4   3   0   2   0   1   2   3   0   2   0   2   3   2   0   2   2   2   1   2   0   0

Now we will run the scripts for recoding the variable from the original seven possible 
categories to create only two categories. Then we will examine frequencies and a snapshot 
of the data to make sure the recoding was successful. After determining that the 8, 9, and 
0 codes are representing answers that need to be removed from the analysis, and that the 
strong positive responses of 1 and 2 (Excellent and Good) will be grouped and the neutral 
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Chapter 2   ■   Data, Variables, and Data Management  37

and negative responses of 3 and 4 (Fair and Poor) will be grouped, we will then recode the 
new variable using the script below.

GSS2016$healthBiNom[GSS2016$healthBiNom==0]=NA

GSS2016$healthBiNom[GSS2016$healthBiNom==8]=NA

GSS2016$healthBiNom[GSS2016$healthBiNom==9]=NA

GSS2016$healthBiNom[GSS2016$healthBiNom==1]=1

GSS2016$healthBiNom[GSS2016$healthBiNom==2]=1

GSS2016$healthBiNom[GSS2016$healthBiNom==3]=2

GSS2016$healthBiNom[GSS2016$healthBiNom==4]=2

GSS2016$healthBiNom

Output: Screenshot of a portion of responses to the variable healthBiNom after recoding.

  [1] 1 NA 1 1 1 NA 2 1 1 1 NA 2 NA 1 NA 1 1 NA NA
 [20] 1 NA 1 NA 1 2 NA 1 NA NA 1 NA 1 1 2 2 NA NA 1
 [39] 1 NA 1 1 NA 1 NA 2 NA 1 1 NA NA 1 NA 1 1 NA NA
 [58] NA 1 1 1 NA 2 NA 1 2 NA 2 2 2 2 1 NA NA 1 NA
 [77] 1 1 1 1 1 1 1 1 1 1 NA 2 1 2 NA 2 1 1 1
 [96] NA NA NA 1 1 1 NA 2 1 2 2 1 2 2 1 2 1 1 NA
[115] NA 1 1 NA 1 NA 1 1 1 2 NA NA 1 1 NA 1 NA 1 1
[134] 2 2 1 NA 2 1 1 2 1 2 1 NA NA 1 NA NA 1 1 NA
[153] 1 2 1 1 1 1 NA 1 NA 1 2 2 NA 2 2 NA 1 1 NA

table(GSS2016$healthBiNom)

Output: Raw frequencies of attributes for variable healthBiNom after recoding.

  1         2
1337  548

It is also possible to look at the structure of a variable by using the “str” script with the 
variable to indicate how the data is being read by R.

str(GSS2016$health)

str(GSS2016$healthFact)

str(GSS2016$healthBiNom)

Outputs: Structures of the three variables just recoded.

  int [1:2867] 2 0 2 2 1 0 4 2 2 2 . . .
Factor w/7 levels “Excellent” , ”Good”: 2 7 2 2 1 7 4 2 2 2 . . .
  num [1:2867] 1 NA 1 1 1 NA 2 1 1 1 . . .
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38  A Guide to R for Social and Behavioral Science Statistics

We can then generate a new factor variable that will be a factor variable with value labels 
for the binary health variable. We will add an L to the variable name to remind us that this 
health variable is the one with the NA and with the labels (Figure 2.9).

GSS2016$healthBiNomL <-factor(GSS2016$healthBiNom,

                           levels=c(1,2),

                            labels=c(“Good or better”, “Less 

than good”))

FIGURE 2.9   NOTE THE CHANGE IN THE ENVIRONMENT WINDOW

   [1] Good or better <NA>                  Good or better Good or better Good or better
   [6] <NA>               Less than good   Good or better Good or better Good or better
 [11] <NA>               Less than good   <NA>               Good or better <NA>          
 [16] Good or better Good or better    <NA>              <NA>                Good or better
 [21] <NA>               Good or better    <NA>               Good or better Less than good
 [26] <NA>               Good or better    <NA>              <NA>                Good or better
 [31] <NA>               Good or better    Good or better Less than good Less than good
 [36] <NA>               <NA>                  Good or better Good or better <NA>          
 [41] Good or better Good or better    <NA>               Good or better <NA>         

table(GSS2016$healthBiNomL)

Output: Raw frequencies of attributes of new variable healthBiNomL with the labels created.

    Good or better       Less than good 
          1337                         548 

GSS2016$healthBiNomL

Output: Screenshot of a portion of responses to the variable healthBiNomL after 
recoding.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 2   ■   Data, Variables, and Data Management  39

Tip: If you click on the data frame in our environment window (for this example it would 
be GSS2016), you can navigate to the end to see the new variables that have been cre-
ated (Figures 2.10 and 2.11).

FIGURE 2.10    SCREENSHOT OF THE LOCATION OF DATA FRAME AREA IN 
THE GLOBAL ENVIRONMENT TO BE CLICKED

FIGURE 2.11   SCREENSHOT OF THE LAST FEW COLUMNS OF DATASET

We can also recode the variable for respondents’ age at which first child was born  
(agekdbrn) using logical operations. First, we will need to run a table of the variable to 
see what responses exist.

table(GSS2016$agekdbrn)
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Output: Frequencies of age at which first child was born (agekdbrn).

 0   9 12 13 14 15 16 17  18  19  20    21   22    23  24  25  26

797  1  1  4 12 16 67 84 135 165 164 170 115 124 101 144 109

 27 28 29 30 31 32 33 34  35  36  37    38    39  40  41  42  43

 89 76 71 97 50 55 41 31  38  19  18    13    13  15   4  5   2

 44 45 46 47 98 99

  1  3  2  1 3  11

We then recode the values for Don’t know (98), No Answer (99), and Not applicable (0); 
to make them all NA.

GSS2016$agekdbrnNEW<-GSS2016$agekdbrn

GSS2016$agekdbrnNEW[GSS2016$agekdbrn==0]=NA

GSS2016$agekdbrnNEW[GSS2016$agekdbrn==98]=NA

GSS2016$agekdbrnNEW[GSS2016$agekdbrn==99]=NA

table(GSS2016$agekdbrnNEW)

Output: Frequencies of age at which first child was born(agekdbrnNEW)after recoding 
for NA.

 9 12 13 14 15 16  17  18  19   20     21     22     23  24  25  26 27

 1  1  4 12 16 67 84 135 165 164 170 115 124 101 144 109 89

28 29 30   31 32 33 34  35  36    37   38     39      40  41  42    43 44

76 71 97   50 55 41 31  38  19     18    13  13     15  4   5   2  1

45 46 47

 3     2 1

Now we can apply some logical operations to recode the variable into three age categories 
of less than 25, 25 to 35, and Over 35.

GSS2016$agekdbrnNEW[GSS2016$agekdbrn>35]= 1

GSS2016$agekdbrnNEW[GSS2016$agekdbrn>= 20 & 

GSS2016$agekdbrn<=35]= 2

GSS2016$agekdbrnNEW[GSS2016$agekdbrn<20]= 3

table(GSS2016$agekdbrnNEW)

Output: Frequencies of age at which first child was born(agekdbrnNEW)after recoding.

 1    2     3

110  1475  1282
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We can also create a new variable with value labels by writing the label directly into the 
script instead of having to write it independently. Here, we create another variable for the 
participant’s age at the birth of their first child and treat it as a categorical/factor variable.

GSS2016$agekdbrnNEW2[GSS2016$agekdbrn>35]= “Over 35”

GSS2016$agekdbrnNEW2[GSS2016$agekdbrn>=20 & 

GSS2016$agekdbrn<=35]= “25 to 35”

GSS2016$agekdbrnNEW2[GSS2016$agekdbrn<20]= “Less than 25”

table(GSS2016$agekdbrnNEW2)

Output: Frequencies of age at which first child was born(agekdbrnNEW2)after recoding.

    25 to 35   Less than 25      Over 35 

      1475         1282            110 

Tip: Similar to spreadsheets, it is also possible to see if a variable has been read by 
RStudio as a factor or as a number by looking at the actual data cases/observations in 
the script window. When the data in a column is right-side aligned, it is being read as 
numeric; however, if it is left-side aligned, it is being read as string information.

Output: Screenshot of left- and right-aligned data in the script window.
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Another reason to recode a variable is to remove any negative numbers that may be included 
in the coding—for example, to change some missing values (e.g., -999) into truly missing 
values (i.e., NA). This can influence statistical analysis. As an example, we can look at the 
variable chldidel, which includes the responses to the question, “What do you think 
is the ideal number of children for a family to have?” Table 2.2 shows how the variable is 
originally coded. If we do not recode the value 9 to missing, then statistical analyses will 
be run as though those individuals would like to have nine children instead of their actual 
response, “No Answer/Don’t Know.” The following steps will take you through the recod-
ing process.

TABLE 2.2    THE GSS CODES FOR VARIABLE chldidel

Original code Label

0 None

1 One

2 Two

3 Three

4 Four

5 Five

6 Six

7 Seven or more

8 As many as you want

9 No answer, don’t know

-1 Not applicable

table(GSS2016$chldidel)

Output: Raw frequencies of attributes of new variable chldidel.

 -1     0      1       2       3       4     5   6     7      8
980   13   36   844   477   194   35   6   11   271

GSS2016$chldidealNA <-(GSS2016$chldidel)

# Create new (duplicate) variable
table(GSS2016$chldidealNA)
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Output: Raw frequencies of attributes of new variable chldidealNA.

  -1      0      1        2       3        4      5     6     7        8
980    13    36    844    477    194    35    6    11    271

GSS2016$chldidealNA[GSS2016$chldidealNA==“-1”]=NA

GSS2016$chldidealNA[GSS2016$chldidealNA==9]=NA

table(GSS2016$chldidealNA)

Output: Raw frequencies of attributes of new variable chldidealNA after recoding.

  0      1        2        3        4      5    6      7        8
13    36    844    477    194    35    6    11    271

GSS2016$chldidealNA

Output: Screenshot of a portion of responses to the variable chldidealNA after recoding.

  [1] 3 2 NA 2 NA 2 3 NA 8 NA 4 3 8 NA 2 NA NA 2 2 3 3 NA 2
 [24] NA NA 4 3 3 2 NA 2 NA 3 NA 2 2 2 4 NA 3 NA 2 2 NA 2 NA
 [47] 2 2 NA 8 2 2 3 NA 4 3 3 2 NA 4 NA 5 NA 8 2 NA 3 5 2
 [70] 2 3 4 3 5 8 2 2 3 NA NA 2 NA 2 NA NA 2 8 2 NA NA 2 NA
 [93] 2 NA NA 2 2 2 NA NA NA 2 2 NA NA 4 NA 3 2 NA 2 NA 3 3 8
[116] NA NA 3 NA 2 2 NA NA 2 2 3 3 NA 2 2 4 3 NA 2 NA 2 2 NA

We can then create a new variable that is a factor variable of the labels for the number of 
ideal children after the recoding of the missing data.

GSS2016$chldidealNAL <-factor(GSS2016$chldidealNA,

levels=c(0,1,2,3,4,5,6,7,8),

labels=c(“No children”, “1 child”,

 “2 children” , “3 children” , “4 children”,

 “5 children” , “6 children” , “7 or more”,

 “As many as you want”))

table(GSS2016$chldidealNAL)

Output: Raw frequencies of attributes of new variable chldidealNAL after recoding.

No children  1 child  2 children  3 children  4 children
     13              36         844           477           194
5 children   6 children  7 or more  As many as you want
     35              6                11                    271
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Table 2.3 highlights the changes made from the codes for the variable chldidealNA 
to the new codes for variable chldidealNAL, which includes the labels and has 
changed the no answer, don’t know to a true missing response: NA. This was done in 
order to remove the -1 and 9 codes so that they are not included as meaningful answers 
in statistical calculations.

TABLE 2.3    THE GSS CODES FOR VARIABLE chldidealNA OR 
chldidealNAL

Original Code Label New Code New Label

0 None 0 No children

1 One 1 1 child

2 Two 2 2 children

3 Three 3 3 children

4 Four 4 4 children

5 Five 5 5 children

6 Six 6 6 children

7 Seven or more 7 Seven or more

8 As many as you want 8 As many as you want

9 No answer, Don’t know NA Not applicable

-1 Not Applicable NA Not applicable

In Chapters 3 and 4, you will learn different ways to generate descriptive statistics for your 
data. As with many operations in R and RStudio, there are several different ways to do 
this. However, one way to validate that your data recoding was successful is to run some 
descriptive statistics before and after to ensure the recoding did in fact take place. The 
following example uses the library package pastecs to produce descriptive statistics for 
comparisons on continuous variables. In order to run the stat.desc command you need 
to first open the library (pastecs).

library(pastecs) # Be sure to open the library for pastecs.
stat.desc(GSS2016$chldidealNA) # Running descriptive statistics.

Output: Descriptive statistics for variable childidealNA.
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     nbr.val     nbr.null       nbr.na          min          max        range 

1.887000e+03 1.300000e+01 9.800000e+02 0.000000e+00 8.000000e+00 8.000000e+00 

     sum       median      mean      SE.mean   CI.mean.0.95    var 

6.387000e+03 3.000000e+00 3.384738e+00 4.789750e-02 9.393765e-02 4.329099e+00 

     std.dev     coef.var 

2.080649e+00 6.147149e-01 

RECODING MISSING VALUES
There are entire books written on the topic of handling missing data. For the purpose of this 
book, most of the values of “Don’t know,” “No answer,” or “Not applicable” will be con-
verted to the value NA, which is understood by R to mean “truly missing.” Sometimes when 
working with large datasets, a researcher may decide to recode missing responses in the entire 
dataset prior to working with it, and not each time they run a calculation. There are a variety 
of other procedures for handling missing data but we will not discuss those in this book. 

If we are using a dataset that has already been coded, such as the GSS, and we simply need 
to recode a value as missing, we can do so by recoding the value so that it is interpreted by R 
as “truly missing” (NA) and thus not included in any calculations. For example, the codes 
for the variable zodiac include 1 through 12, each of which corresponds to one of the 
twelve astrological signs of the zodiac—but also “98” and “99”. Based on information in the 
codebook, we know that the latter two numbers represent “Don’t know,” and “No answer,” 
respectively. Accordingly, we need to recode the “98” and “99” values to NA so that they are 
not calculated as meaningful responses in statistical analyses. First, create a new variable and 
name it zodiac2.

GSS2016$zodiac2<-(GSS2016$zodiac) # Creating new variable.
table(GSS2016$zodiac2) # Observing frequencies of categories.

Output: Raw frequencies of attributes of new variable zodiac2 before recoding.

 1    2    3    4    5    6    7    8    9    10   11   12  98  99 

225  240  224  257  235  274  227  219  214  197  236  234   5  80 

GSS2016$zodiac2[GSS2016$zodiac2==98]=NA # Recoding the missing 
values as NA.
GSS2016$zodiac2[GSS2016$zodiac2==99]=NA

table(GSS2016$zodiac2) # Observing frequencies after recoding.
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Output: Raw frequencies of attributes of new variable zodiac2 after recoding.

 1    2    3   4    5    6   7    8    9    10   11   12

225  240  224  257  235  274  227  219  214  197  236  234

There are other ways to handle missing values that will depend on the data you are working 
with. In order to understand missing values a little better, we will start off with a sim-
ple example. Open a spreadsheet (e.g., Excel) and input the data exactly as it appears in 
Table 2.4. Title the spreadsheet “NotApp” and save it in your desktop folder.

Now we will open RStudio and load in the CSV file. Name the dataset “NOT”.

If you loaded the “NOT” file into the same folder as the one you are currently working in, 
you do not need to set the working directory a second time.

setwd(‘C:/Users/username/Desktop/CSV’) # Setting the working 
directory (In this code, the CSV file is saved in a desktop folder called 

CSV).
NOT <- read.csv(‘NotApp.csv’, 

header=TRUE) # Reading in the CSV file 
NotApp and calling it NOT.

Next we can identify the cases in the variable ABC, 
and in the variable XYZ that are NA:

is.na(NOT$ABC)
is.na(NOT$XYZ)

Outputs: Showing where the NA is TRUE for ABC 
and XYZ independently.

> is.na(NOT$ABC)
 [1]  FALSE FALSE FALSE FALSE TRUE 

FALSE FALSE FALSE FALSE FALSE

[11]  FALSE FALSE FALSE FALSE TRUE 
FALSE

> is.na(NOT$XYZ)
 [1]  FALSE FALSE FALSE FALSE FALSE 

FALSE FALSE TRUE FALSE FALSE
[11]  FALSE FALSE FALSE FALSE FALSE 

FALSE

is.na(NOT)

TABLE 2.4    DATA TO BE COPIED INTO A 
SPREADSHEET AND USED 
FOR THE NEXT EXAMPLE
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Output: Showing where “is NA” is TRUE for the dataset NOT.

      ABC   XYZ

 [1,] FALSE FALSE

 [2,] FALSE FALSE

 [3,] FALSE FALSE

 [4,] FALSE FALSE

 [5,]  TRUE FALSE
 [6,] FALSE FALSE

 [7,] FALSE FALSE

 [8,] FALSE  TRUE
 [9,] FALSE FALSE

[10,] FALSE FALSE

[11,] FALSE FALSE

[12,] FALSE FALSE

[13,] FALSE FALSE

[14,] FALSE FALSE

[15,]  TRUE FALSE
[16,] FALSE FALSE

If we add an exclamation point (!), this is the equivalent of indicating “is not”. The follow-
ing script indicates that all the values that are not NA should be considered TRUE.

!is.na(NOT)

Output: Showing where “is not NA” is TRUE for the dataset NOT.

      ABC    XYZ

 [1,]  TRUE  TRUE

 [2,]  TRUE  TRUE

 [3,]  TRUE  TRUE

 [4,]  TRUE  TRUE

 [5,] FALSE  TRUE
 [6,]  TRUE  TRUE

 [7,]  TRUE  TRUE

 [8,]  TRUE FALSE
 [9,]  TRUE  TRUE

[10,]  TRUE  TRUE

[11,]  TRUE  TRUE
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[12,]  TRUE  TRUE

[13,]  TRUE  TRUE

[14,]  TRUE  TRUE

[15,] FALSE  TRUE
[16,]  TRUE  TRUE

It is possible to remove the NAs from the dataset by using the na.omit command  
(Figure 2.12). This will remove the data for the entire row that contains the NA.

na.omit(NOT)

FIGURE 2.12    COMPARISON OF OUTPUT AFTER OMITTING NA DATA AND 
ORIGINAL DATA VALUES FOR NOT

We can create a new dataset with all of the rows with NA omitted (Figure 2.13).

newOMIT<-na.omit(NOT)

Tip: Keep in mind that eliminating all rows with missing values often removes many 
cases (and a great deal of additional data) so this practice is generally not advisable.

If we keep the NA cases in the data, which is preferred, then we use the na.pass command 
to ignore the NA cases without removing them from the dataset entirely. For example, if we 
wanted to compute a new variable (multiplied) of ABC multiplied with XYZ, we can 
tell R to compute the variables while passing over the NA responses (Figure 2.14, p. 50).

NOT$multiplied<-na.pass(NOT$ABC*NOT$XYZ)

R will not run some calculations (e.g., finding the mean) unless it has been told to remove the 
NA cases from its calculations. In order to remove the missing values from the calculations, 
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FIGURE 2.13    SCREENSHOTS OF THE NEW DATA FRAME WITHOUT THE  
NA CASES

use the na.rm = TRUE script. Let’s try it both ways to compare the different output. It 
is clear that without removing the NA cases, R will not calculate the mean properly. The 
na.rm command can be used in other calculations as well.

mean(NOT$ABC)

mean(NOT$ABC, na.rm = TRUE)

Outputs: Mean of the ABC variable with and without the NA cases.

> mean(NOT$ABC)

[1] NA

> mean(NOT$ABC, na.rm = TRUE)

[1] 4.214286

Imputation
If you are interested in imputation or inputting a value in place of the NA instead of 
removing the NA, that can be done, too. For instance, if you have the mean or median of 
the variable you can impute that instead of the missing value. Let’s try imputation with the 
multiplied variable. There are three different ways to go about getting the mean and 
median. The first is by removing the NA values; the second is by calling only the data that 
is not an NA value, using the “is not NA” command (!is.na); and the third is by using the 
package pastecs.
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mean(NOT$multiplied, na.rm = TRUE)

median(NOT$multiplied, na.rm = TRUE)

sd(NOT$multiplied, na.rm = TRUE) # Whenever you are obtaining a 
mean value, it is always a good idea to get the standard deviation as well.

Outputs: Mean, median, and standard deviation of the multiplied variable using 
na.rm.

> mean(NOT$multiplied, na.rm = TRUE)

[1] 15.92308

> median(NOT$multiplied, na.rm = TRUE)

[1] 8

> sd(NOT$multiplied, na.rm = TRUE)

[1] 21.15207

FIGURE 2.14    SCREENSHOT OF THE NEW VARIABLE COMPUTED 
(multiplied) USING THE NA.PASS
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mean(NOT$multiplied[!is.na(NOT$multiplied)])

median(NOT$multiplied[!is.na(NOT$multiplied)])

sd(NOT$multiplied[!is.na(NOT$multiplied)])

Outputs: Mean, median, and standard deviation of the multiplied variable using  
!is.na.

> mean(NOT$multiplied[!is.na(NOT$multiplied)])

[1] 15.92308

> median(NOT$multiplied[!is.na(NOT$multiplied)])

[1] 8

> sd(NOT$multiplied[!is.na(NOT$multiplied)])

[1] 21.15207

And the third is by using a command from the pastecs library: stat.desc.

library(pastecs) # You need to make sure you opened the package 
and loaded the library for “pastecs” (this can take a minute or two).
stat.desc(NOT$multiplied)

Outputs: Descriptive statistics for the multiplied variable using stat.desc.

 nbr.val      nbr.null       nbr.na          min          max 

13.000000     2.000000     3.000000       0.000000    72.000000 

      

range         sum         median         mean       SE.mean 

72.000000   207.000000     8.000000     15.923077     5.866530 

CI.mean.0.95          var         std.dev     coef.var 

12.782071        447.410256     21.152075     1.328391 

After obtaining the mean and median values for the variable, it is best to create a new 
second variable to work with. In this book, we have created two new variables mult1 and 
mult2 so that we can perform a mean imputation and a median imputation.

NOT$mult1<-NOT$multiplied

NOT$mult2<-NOT$multiplied

NOT$mult1[is.na(NOT$mult1)]<-mean(NOT$multiplied[!is.

na(NOT$multiplied)]) # Mean imputation
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Output: The mean imputation for mult1 using the!is.na command.

NOT$mult2[is.na(NOT$mult2)]<-median(NOT$multiplied, na.rm = 

TRUE) # Median imputation

Output: The median imputation for mult2 using the na.rm command.

stat.desc(NOT$mult1)
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Outputs: Descriptive statistics for mult1 after mean imputation.

 nbr.val     nbr.null       nbr.na          min          max 

16.000000     2.000000     0.000000     0.000000    72.000000 

  range          sum       median         mean      SE.mean 

72.000000   254.769231     9.000000    15.923077     4.729748 

CI.mean.0.95          var      std.dev       coef.var 

10.081218        357.928205    18.918991     1.188149 

If we compare the two descriptive statistics from before and after the mean imputation, 
we see that the number of observations has increased from 13 to 16, which makes sense 
because we imputed values where there used to be NAs for three cases. That means three 
additional observations are now in the data. The mean has remained the same as before the 
imputation because we used the mean as the value for imputation.

COMPUTING VARIABLES
Computing variables is the process in which we use (an) existing variable(s) with a mathe-
matical operation that result(s) in a new variable.

For example, if we wanted to create a measure of the total years of education for a par-
ticipant’s mother (maeduc) and father (paeduc) combined, we would compute a new 
variable with this information. The first thing that needs to be done is to recode the data 
to remove the “not applicable” (97), “don’t know” (98), “no answer” (99) cases for both 
variables.

table(GSS2016$maeduc)

Output: Frequencies of responses for maeduc before coding for NA.

  0    1   2   3    4   5    6   7   8    9   10  11

 59    5   11  27   16  32   77  29  182    61   98  86

 12   13   14  15   16  17   18  19   20    97   98  99

1055  100  236  53  302  20     89  10   33  101  180  5

table(GSS2016$paeduc)
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Output: Frequencies of responses for paeduc before coding for NA.

 0   1   2   3   4   5  6    7   8   9   10  11  12  13  14  15

43   8       11  40  26  24  80  32  157  60  74  65  774  72  147  35

16   17  18  19  20  97  98  99

274  28  67  16  59  550 221  4

GSS2016$maeduc[GSS2016$maeduc==97]=NA

GSS2016$maeduc[GSS2016$maeduc==98]=NA

GSS2016$maeduc[GSS2016$maeduc==99]=NA

GSS2016$paeduc[GSS2016$paeduc==97]=NA

GSS2016$paeduc[GSS2016$paeduc==98]=NA

GSS2016$paeduc[GSS2016$paeduc==99]=NA

table(GSS2016$maeduc)

Output: Frequencies of responses for maeduc after coding for NA.

 0   1   2   3   4   5   6   7   8   9   10  11  12  13

59   5   11  27  16  32  77  29  182  61  98  86  1055  100

14   15  16  17  18  19  20

236  53  302 20  89  10  33

table(GSS2016$paeduc)

Output: Frequencies of responses for paeduc after coding for NA.

 0 1  2  3  4  5  6  7  8   9 10 11 12  13 14  15 16

43 8  11 40 26 24 80 32 157 60 74 65 774 72 147 35 274

17 18 19 20

28 67 16 59

Next, we simultaneously create a new variable for parent education (parentEDUC) and 
compute the data for the variable by adding the data from highest year of school completed 
by the mother (maeduc) to the data from highest year of school completed by the father 
(paeduc) (Figure 2.15). Because both variables have a range of 20 with 0 as the minimum 
and 20 as the maximum, it is anticipated that the newly computed variable range cannot 
exceed 40 with a minimum of 0 and a maximum of 40. We can follow the computation of 
the variable with a frequency table to see if that is true.
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GSS2016$ParentEDUC<-(GSS2016$paeduc+GSS2016$maeduc)

table(GSS2016$ParentEDUC)

Output: Frequencies of responses for combined highest years of education (parentEDUC).

0  1  2  3  4  5  6   7  8  9  10 11  12 13 14 15 16

23 2  6  8  5  3 15   4 13  10 12 13  42  9 31 18 68

17 18 19 20 21 22 23  24 25 26  27 28  29 30 31 32 33

24 44 24 87 45 82 61 464 75 141 53 157 42 92 18 115 22

34 35 36 37 38 39 40

43  7 39 10 15 3  8

REMOVING OUTLIERS
An outlier is an extreme or unusual value within a variable which typically exists in contin-
uous (interval/ratio) data. The value at which a datapoint is considered an outlier is deter-
mined by the spread of the data for the variable and the researcher’s choice on what they 

FIGURE 2.15    SCREENSHOTS OF THE INDIVIDUAL VARIABLES (maeduc 
AND paeduc) THAT WERE ADDED TOGETHER TO COMPUTE 
THE NEW VARIABLE (ParentEDUC)

paeduc + maeduc = ParentEDUC
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consider to be extreme. Seeking to find if you have outliers in your data can often uncover 
mistakes. For example, if we have a variable that has 5000 participants’ ages and 4999 of 
them range between 18 and 97 but one is 333, logic suggests that this outlier is probably a 
mistake and we can mark it as missing. For the purpose of this section, we will use common 
practices to determine outliers for our variables.

Outliers have the ability to strongly influence the results of statistical analysis. For exam-
ple, if a researcher wanted to know the average price of a home in a neighborhood with 10 
homes and all 10 homes were somewhere between $250,000 and $350,000, they could 
expect the average to be somewhere between $250,000 and $350,000. But what if one 
house in the neighborhood was a newly built home worth $1.3 million? Or, what if one 
home had a kitchen fire and the owners abandoned it and let it become dilapidated and run 
down, so its value is low at $83,000? Could either of those unusual house prices influence 
the average cost of homes in the neighborhood enough to warrant a closer look at the data?

Although the scenarios above may seem exaggerated, it is indeed possible for an extreme 
value to skew an entire sample of observations. If we create a spreadsheet for the above three 
scenarios (Table 2.5), Scenario 2 (having one high outlier) increased the average home price by 
just over $100,000. Scenario 3, with the low-priced outlier, pulled down the average value of 
houses in the neighborhood by more than $20,000. However, if the outliers were not included 
in the calculation the average for the other nine homes was only roughly an $800 difference.

TABLE 2.5    AVERAGE HOME VALUE FOR THREE NEIGHBORHOOD 
SCENARIOS

Scenario 1 Scenario 2 Scenario 3

Home 1 256000 256000 256000

Home 2 342000 342000 342000

Home 3 267000 267000 267000

Home 4 296000 1302000 83000

Home 5 308000 308000 308000

Home 6 344000 344000 344000

Home 7 318000 318000 318000

Home 8 290000 290000 290000

Home 9 333000 333000 333000

Home 10 285000 285000 285000

Average (10) 303900 404500 282600

Average (9) 304777 304777

First, we need to determine if there are any outliers in the data for this variable. One com-
mon way to determine if a variable has any outliers is to create a boxplot or histogram figure 
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representation of the variable which can help in determining which datapoints are visually 
unusual or extreme (these are discussed in more detail in Chapter 5). A frequency table can 
also be run to determine if there are data values that are extreme. After determining that 
there are outliers, we decide how to deal with them (e.g., whether we need to remove them 
or transform the variable measurement in some way).

If we determine that the outliers should be removed, the next step is to create a new vari-
able where we will recode the outliers. For this example, we are going to use the variable 
emailhr in the GSS data. This variable is made up of responses to the question about 
how many hours per week do you spend sending and answering electronic mail or 
e-mail? First, we will remove the No answer, Don’t know, and Not applicable responses by 
recoding them to NA.

GSS2016$emailhr[GSS2016$emailhr==‘-1’]=NA

GSS2016$emailhr[GSS2016$emailhr==998]=NA

GSS2016$emailhr[GSS2016$emailhr==999]=NA

hist(GSS2016$emailhr)

Output: Histogram for emailhr before removing outliers.

0

0
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0
80

0
F
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20 40 60
GSS2016$emailhr

Histogram of GSS2016$emailhr

80 100

boxplot(GSS2016$emailhr, horizontal = FALSE)

boxplot(GSS2016$emailhr, horizontal = TRUE) # Horizontal = 
FALSE will produce a vertical boxplot, while Horizontal = TRUE will 
produce a horizontal boxplot.

Output: Vertical and horizontal boxplots for emailhr before removing outliers.
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100806040200
0

20
40

60
80

boxplot.stats(GSS2016$emailhr)

Output: Boxplot Statistics for emailhr before removing outliers.

$stats

[1] 0 0 2 8 20

# Lower whisker, lower hinge, median, upper hinge, upper whisker.

$n

[1] 1649

# Number of observations (not including NA) in the variable.

$conf

[1] 1.68873 2.31127

# Lower and upper extreme of the notch.

$out

  [1] 40 25 60 45 25 60 44 40 60 50 40 30 50 40 30

 [16] 25 42 90 75 25 22 50 50 40 25 24 32 21 30 30

 [31] 22 30 40 30 50 28 25 56 35 45 40 60 30 60 32

 [46] 30 30 22 21 45 22 70 50 30 40 50 25 25 30 30

 [61] 40 40 35 30 30 47 40 30 40 40 25 40 40 25 35

 [76] 25 35 70 48 28 25 40 30 30 40 40 50 50 25 30

 [91] 30 25 40 30 60 50 25 35 45 35 40 25 30 30 40

[106] 25 30 40 22 30 35 25 35 36 25 50 25 72 30 21

[121] 30 21 40 30 30 50 25 60 100 21 25 48 30 25 42

[136] 50 30 25 30 30 40 30 40

# The suspected outliers—fall beyond the whiskers.

table(GSS2016$emailhr)
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Output: Frequency table for emailhr before removing outliers
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dataframe$NewVariable<-dataframe$OldVariable[set level or 

parameter]

GSS2016$emailhrNoOUT<-GSS2016$emailhr # Creating the new 
variable emailhrNoOUT from the original variable emailhr.
GSS2016$emailhrNoOUT[GSS2016$emailhrNoOUT>26]= NA # Note that 
we chose to remove values larger than 26, instead of exact values.
hist(GSS2016$emailhrNoOUT) # A histogram of the new variable to 
compare to the original variable histogram.

Output: Histogram for emailhrNoOUT after removing outliers from emailhr.
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This second histogram gives a much more accurate depiction of the data spread for the 
majority of the responses.

boxplot(GSS2016$emailhrNoOUT, horizontal = F) # Note that the 
uppercase T or F can be used instead of writing out TRUE or FALSE.
boxplot(GSS2016$emailhrNoOUT, horizontal = T)
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Output: Vertical and horizontal boxplots for emailhrNoOUT after removing outliers 
from emailhr.

2520151050

0
5

10
15

20
25

boxplot.stats(GSS2016$emailhrNoOUT)

Output: Boxplot statistics for emailhrNoOUT after removing outliers.

$stats

[1] 0 0 2 6 15

$n

[1] 1541

$conf

[1] 1.758506 2.241494

$out

  [1]  25 20 25 20 20 20 20 25 20 20 25 20 22 20 20 25 24 21 

20 22 20

 [22]  20 25 20 20 20 20 20 20 22 21 20 20 22 20 20 20 20 20 

20 20 20

 [43]  25 25 20 20 20 20 17 20 25 20 25 20 20 20 25 20 20 25 20 

20 20

 [64]  20 20 16 20 20 25 25 20 20 25 25 20 20 20 25 20 22 20 

20 25 16

 [85]  20 20 25 20 20 25 20 20 20 21 20 21 20 25 20 20 20 21 

25 20 20

[106] 20 25 20 25 16 18 20 20 20 20 20
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Tip: Keep in mind that when we remove outliers, our variable measure of central ten-
dency and measure of variability will change. Then, there can be new outliers. So, be 
attentive when deciding what you choose to remove and why.

table(GSS2016$emailhrNoOUT)

Output: Frequency table for emailhrNoOUT after removing outliers from email.

 0   1  2   3  4  5  6  7  8 9 10  12 14 15 16 17 18

416 306 183 77 62 92 27 44 42 4 100 27  9 36  3 1  1

 20  21 22  24 25

 76  5  5   1  24

If we did not want to make a new variable of the emailhr without the outliers, we could 
also create a new index of the emailhr without the outliers (Figure 2.16). This can be 
useful for immediate analysis of an individual variable, but will not be as helpful when con-
ducting more advanced statistical analyses. The index cannot be saved “within” the dataset 
because it will have fewer rows. When the number of rows does not match, R cannot join 
them. All of the same univariate analyses discussed in later chapters, such as frequency 
tables, histograms, boxplots, and descriptive statistics can be run using this variable that we 
have created “outside” of the dataset as a separate object. 

Emailhrwithout26<-(GSS2016$emailhr[GSS2016$emailhr <26])

FIGURE 2.16    SCREENSHOT OF NEW INDEX emailhrwithout AFTER 
REMOVING OUTLIERS

Looking at the environment window, we can observe a difference in observation numbers 
(rows). There are 108 responses that have been removed from the data. Those are the 108 
outlier responses that were over 26 hours. A second way to deal with outliers is to “top code” 
the data and impute a “highest value”. For example, a researcher might top code emailhr 
at 25 by imputing all values of 26 and over to 25 and referring to the top code simply as 
“25 or more hours”.
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Try the process of selecting out portions of the data. Remove or impute any responses above 
15 hours. Then, create a histogram and table to double-check.

GSS2016$emailhrwithout15<-(GSS2016$emailhr)

GSS2016$emailhrwithout15[GSS2016$emailhr > 15]=NA

hist(GSS2016$emailhrwithout15)

table(GSS2016$emailhrwithout15)

boxplot(GSS2016$emailhrwithout15, horizontal = F)

boxplot(GSS2016$emailhrwithout15, horizontal = T)

boxplot.stats(GSS2016$emailhrwithout15)

Emailhrwithout15<-(GSS2016$emailhr[GSS2016$emailhr <15])

A third way to deal with outliers is to “transform” the data so that the outliers will not be 
lost, but the transformation can help get the data closer to a normal distribution. This is 
often done when the data are very skewed. Data can be transformed by performing a math-
ematical computation on the original data. The most common transformations involve 
polynomials and log transformations. See Chapter 12 to learn how to transform data in 
RStudio.

CONCLUSION
This chapter offered a review of types of datasets (long vs. wide structures) and levels of 
variable measurement. We introduced some background of the GSS dataset and codebook, 
which will be used throughout the rest of the book. We discussed some common proce-
dures in R/RStudio for modifying data, including recoding variables and computing a sin-
gle value based on responses across multiple variables. We also focused on handling missing 
data. Other, more advanced techniques for handling of missing data are beyond the scope 
of this chapter but are discussed more in Chapter 12.
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Exercises

1. Use the variable grass from the GSS2016 dataset.

A. Identify what the variable represents.

B. Run a table of the variable to get the frequencies for each of the attributes.

C. Create a new variable grassrecode from the existing variable.

D. Recode new variable to remove all the Don’t knows, No answers, and Not applicable responses.

E. Run an updated table of the variable.

2. Open an Excel spreadsheet. Use the picture below to create a csv.file and save as “sample1.csv.”

Name Age Gender Height

Daniel 25 M 72

Cammi 24 F 61

Tammy 35 F 68

Angela 33 F 64

Shannon 30 F 0

Ben NA M 74

Bill 42 M 69

Elizabeth 56 F 66

Susan 28 F 62

Rick 39 M 72

Becky 63 F 67

3. Now practice bringing the sample1 dataset into R using the read.csv command.

A. First, set your working directory.

B. Next, upload the newly created .csv file.

C. Check the data by clicking on it in the environment window.

**Note the missing data for Ben’s age and the 0 for Shannon’s height.

2. For the variable age, fill in (impute) the missing data with the mean of the variable.

A. Calculate the mean of the variable.

B. Then fill in the data using the impute command.
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C. Now check your data again to see if the missing data has been filled in. You should see the mean 
for the age of Ben.

5. Create a new variable named height1 from the existing variable of height.

6. Remove the 0 response from your data by recoding it to be missing data, or NA.

A. Calculate the median of the variable height1.

B. Fill in the missing data using the impute command.

C. Now check your data to make sure that the height for Shannon has been filled in using the 
median for the height variable.

Supplementary Digital Content

Download datasets and R code at the companion website at https://study.sagepub.com/
researchmethods/statistics/gillespie-r-for-statistics
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