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2. AN OVERVIEW OF
FUZZY SET MATHEMATICS

In this chapter, we provide a nontechnical introduction to fuzzy set mathe-
matics. Rather than focusing on mathematical details, we will concentrate
on making the concepts as clear as possible. There are several useful tech-
nical introductions in engineering textbooks, the most comprehensive being
Zimmerman (1993) and Klir and Yuan (1995). Readers interested in more
information about the topics covered in this chapter should consult these
texts. Fuzzy set theory is a generalization of set theory. Although set theory
is the foundation of the modern approach to mathematics and would be
familiar to anyone with knowledge of, say, game theory or probability
theory, we cannot assume that everyone is familiar with it. Thus, we will
first start with a very brief overview of set theory and operations on sets.
Then we will proceed to consider fuzzy sets as a particular extension of
standard “crisp” set theory. Although “fuzzy” often carries a pejorative con-
notation, the mathematics of fuzzy set theory is precise. Its purpose is to
allow us to better model phenomena that exhibit a certain kind of uncer-
tainty, degree-vagueness.

2.1 Set Theory

The books mentioned above have reasonable introductions to set theory.
Any introductory text on probability theory, real analysis, graph theory,
logic, mathematical statistics, or linear algebra should also contain an
introduction. Classical set theory is a mathematical calculus for dealing
with collections of objects and certain relationships among these objects.
At its most basic, a set is simply a list of objects, such as A = {a, b, c, d, e}
or B = {orange, lemon, lime, grapefruit, tangerine}. But sets generally
become interesting by being connected with a rule that determines mem-
bership or nonmembership in the set. For instance, Set A can also be spec-
ified as the rule “first five letters of the alphabet” and Set B can be specified
by the rule “commonly available citrus fruits,” provided, of course, that
“common” can be given precise meaning. Clearly, in any use of sets for
modeling empirical reality or for testing real data, the rule connecting
objects to each other is of utmost importance and must be specified clearly.
In a location where kumquats and mandarins are grown in abundance but
limes and grapefruit are unknown, the rule “common citrus fruits” would
not specify Set B.
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There are four common operations on sets: union, intersection, nega-
tion, and inclusion, commonly denoted by the symbols U, N, ~, and C,
respectively (different notation for these operators is sometimes used by
other authors). With these operations, it is possible to piece together quite
complicated sets.

Union and intersection are known as connectives because they create a
new set from two (or more) other sets according to a specified procedure.
Union glues two sets together and corresponds to “or” in the inclusive sense,
often expressed in natural language as and/or. Using the sets above, AUB =
{a, b, c, d, e, orange, lemon, lime, grapefruit, tangerine}. Intersection is the
overlap between two sets and corresponds to “and.” The two sets above have
no elements in common and so their intersection is empty. We write ANB =
@, the symbol for the null or empty set, the set that has no elements at all.

Negation, corresponding to “not,” creates the complement of the set,
which contains all elements in the universal set that are not in the set. Its def-
inition requires that we define our universe of discourse, represented by the
“universal” set U. Without U, we cannot meaningfully find a complement,
and it is quite unclear whether we can make substantively meaningful state-
ments about the sets at all. Assume for the moment that for Set A defined
above, U = {all letters of the English alphabet}. Then ~A = {f, g, ..., z}.
Note that Au~A = U, which says in words, “everything that is A, and every-
thing that is not A, is everything.” Also note that An~A = &J: “Nothing is in
both A and not A at the same time.” This statement is known as the Law of
the Excluded Middle; it plays an important role in understanding fuzzy set
theory because fuzzy intersections do not generally obey the Law.

Inclusion concerns whether a set has elements in common with another
set. Set P is included in another set, Q, if all elements in P also are in Q. In
the case of A and B, it is clear that neither set includes the other. However,
given Set T = {a, b,...j}, A c T is read as “A is contained in 7" or “T
includes A.” As we shall see in Chapter 5, the asymmetry of inclusion is
exceptionally useful for examining relationships between empirical cases
that are quite different from the correlations typically employed by social
scientists. Inclusion and intersection have a special relationship. When
PcQ, then PNQ = P. When PcQ and QcP, then P = Q. See Table 2.1 for
more on key set-theoretic operations.

2.2 Why Fuzzy Sets?

We define Set V = {a, e, i, o, u}, the set of vowels. Logically, C = ~V,
the set of consonants, because a letter is either a consonant or a vowel.
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TABLE 2.1

Key Set-Theoretic Operations
Operation Symbol Notation Verbal Translation
Union ] AUB All elements in either A or B, or both
Intersection N ANB Elements that are in both A and B only
Complement ~ ~A Elements in U that are not in A
Inclusion c AcCB All elements in A are also in B

However, we know that in English, the letter y is sometimes a vowel and
sometimes a consonant. For example, in the word “my,” y is a vowel, but in
the word “yours,” it is not. Does y belong in Set V, or does it belong in C,
the set of consonants? The answer is unclear because y does not fit neatly
into either V or C, but rather into both. This means, of course, that the rule
separating vowels and consonants does not lead to a mutually exclusive
classification of letters suggested by the dichotomy between vowels and
consonants. The letter y violates the Law of the Excluded Middle that is
assumed when we define C = ~V.

It is difficult to think precisely about even this example familiar to
children, but the problem resembles those faced every day in the process of
constructing data sets and making inferences about objects in the data set.
Classical set theory is often not adequate for dealing with uncertainty in the
rule that assigns objects to sets. Mathematical objects generally can be
defined precisely; empirical objects often cannot be so defined.

Fuzzy sets are designed to handle a particular kind of uncertainty—
namely degree-vagueness—which results when we have a property that
can be possessed by objects to varying degrees. Vagueness is easiest to see
by referring to a classical paradox, the Sorites, an example of which we
describe now. Consider a truckload of sand. Clearly, this constitutes a heap
of sand. If we remove one grain of sand, the resulting pile is still a heap.
Arguing by a possibly fallacious appeal to mathematical induction, we can
remove another grain of sand and still have a heap. And so forth. Eventu-
ally, however, we have so little sand that no one would be willing to call
whatever is left a heap. Thus, the definition of heap is not precise. It is
subject to vagueness because nowhere in the process is there a point that
divides things into two distinguishable states: heap and not-heap.

Many concepts in the social sciences contain essential vagueness in the
sense that while we can define prototypical cases that fit the definition, it is
not possible to provide crisp boundaries between sets. Consider poverty.
Given a context, such as “single and lives in a college town in Midwestern
U.S.A.” (which provides an understanding of cost of living), we can define
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a poverty line relatively simply: “made less than $20,000 per year in 2003.”
Classical set theory would lead us to declare that a Midwesterner who made
exactly $20,000 per year is, therefore, not poor, even though everyone
would recognize that adding one extra dollar of income makes no material
difference in the life of the person in question. However, adding $10,000 a
year to the person’s income would probably make her not poor. Thus,
somewhere between an annual income of $20,000 and $30,000, the person
would cease to be poor. Where exactly? Given a proposed boundary, we can
almost always play the same game, noting that one more dollar does not
make one go from being poor to not poor. Fuzzy set theory provides a
mathematical toolbox for analyzing situations like this with precision, not
via a definite cutoff, but by defining a degree of membership between the
qualitatively different states of definitely poor and definitely not poor.

2.3 The Membership Function

A fuzzy set is based on a classical set, but it adds one more element: a
numerical degree of membership of an object in the set, ranging from O to 1.
Formally, the membership function m, is a function over some space of
objects = mapping to the unit interval [0, 1], and the mapping is denoted by

my(x): 8 — [0, 1].

This generates fuzzy set A. Note that a domain may refer to a “universal”
set, but it also can be defined in terms of some mathematical region such as
the real line or an interval representing the range of a scale.

The membership function is an index of “sethood” that measures the
degree to which an object x is a member of a particular set. Unlike proba-
bility theory, degrees of membership do not have to add up to 1 across all
objects, so many or few objects in the set could have high membership.
However, an object’s membership in a set and the set’s complement must
still sum to 1. The main difference between classical set theory and fuzzy
set theory is that the latter admits to partial set membership. A classical or
crisp set, then, is a fuzzy set that restricts its membership values to {0, 1},
the endpoints of the unit interval. Fuzzy set theory models vague phenom-
ena by assigning any object a weight given by the value of the membership
function, measuring the extent to which the rule “this object is in Set A” is
judged to be true.

We use two simple examples to illustrate a number of points. First, we
will construct a set of “common citrus fruits,” assigning membership values
subjectively by picking numbers from {0, .25, .50, .75, 1} based on our own
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TABLE 2.2
Common Citrus Fruits

Fruit Membership
Navel orange 1.00
Lemon 1.00
Red grapefruit 0.75
Lime 0.75
Tangerine 0.50
Kumquat 0.00
Mandarin 0.25

“expertise.” These assignments are displayed in Table 2.2. Assignment of
membership is a difficult problem that requires a lot of thought, and a great
deal more will be said about the task in Chapter 3. The procedure just
adopted is not all that different from the coding of objects as conducted by
many social scientists working outside the context of fuzzy sets, however.

A useful notation is to generalize the list of elements notation for standard
sets to a list of ordered pairs: {(Navel Orange, 1), (Lemon, 1), (Red Grape-
fruit, .75), (Lime, .75), (Tangerine, .5), (Kumquat, 0), (Mandarin, .25)}. The
list of ordered pairs notation is compact and useful for relatively small sets.

Our second example illustrates a rule that takes the domain into mem-
bership. Typically, this is done when the domain is defined in terms of a
quantitative construct. For instance, using the poverty example given above,
we might decide to use a linear filter over income. In the definition below,
membership in the set of poor people is O if annual income exceeds
$30,000, increases linearly for incomes ranging from $30,000 down to
$20,000, and equals 1 for any income below $20,000.

0 x > 30,000

_ 30000 =X o) 000 < x < 30,000,
30,000 — 20,000
1. 0 < x < 20,000

Poor(x) =

This seems simple. However, one dilemma we must face immediately
when constructing a fuzzy set (or indeed any set) is the definition of the uni-
versal set U. The observant reader may note that the fruit set defined above
is confounded in that it includes at least two properties, “common” and
“citrus.” (This was intentional.) What constitutes the universe of discourse?
Is it citrus fruits specifically, fruits in general, things found at a grocery
store, or something else? A membership value takes on different meanings
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for different universal sets. In the case of U = {citrus fruits}, the kumquat’s
zero membership value indicates it is quite uncommon, although it is cer-
tainly a citrus fruit. If, however, U = {fruits in general}, many other cases
would have zero membership by virtue of not being citrus fruits. Apples are
certainly common, but they are not citrus fruits at all and thus fail on that
criterion entirely. Even this seemingly trivial set is, in fact, rather compli-
cated. If a reader walks away with nothing else, it should be a reminder that
when constituting a population, clarity is essential.

2.4 Operations of Fuzzy Set Theory

Like classical set theory, fuzzy set theory includes operations union,
intersection, complement, and inclusion, but also includes operations that
have no classical counterpart, such as the modifiers concentration and
dilation, and the connective fuzzy aggregation. In this section, all formu-
las are written with the assumption that only two sets are considered, but
it is possible to extend all to three or more sets fairly easily by mathemat-
ical induction. To illustrate the fuzzy operations, we elaborate the fruits
example. We have constructed four fuzzy sets over the universe of dis-
course “fruits”; this is not an exhaustive list. Common represents a sub-
jective assessment of the degree of availability of fruits in an American
supermarket. Citrus is true if the fruit in question is classified botanically
as a citrus. Rose is true if the fruit in question is classified botanically as a
rose. Finally, Sour represents the subjective degree of sour taste. Citrus
and Rose are crisp sets because all membership values are either 0 or 1 (see
Table 2.3).

Membership in the fuzzy union is defined as the maximum degree of
membership in the sets. Membership in the union X UY may be written

Myyy = max(my, my).

Thus, the membership of an orange in the set Common UCitrus would
be max(1.00, 1.00) = 1.00, and its membership in Rose USour would be
max(.00, .25) = .25. Membership in the fuzzy intersection is defined as the
minimum degree of membership in the sets, that is,

Mxny = min(my, my).

Thus, an orange’s membership in the set “common and sour fruit” would
be min(1.00, .25) = .25. The fuzzy complement is defined as m_, = 1 —m,,.
Thus an orange’s membership in the set ~Souris 1 — .25 = .75.
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TABLE 2.3
Fruits Example With Membership of Two Derived Sets

Fruit Common Citrus  Rose  Sour  CitrusURose ~ CommonnSour
Navel orange 1.00 1.00 0.00 0.25 1.00 0.25
Lemon 1.00 1.00 0.00 1.00 1.00 1.00
Red grapefruit 0.75 1.00 0.00 0.75 1.00 0.75
Lime 0.75 1.00 0.00  0.75 1.00 0.75
Tangerine 0.50 1.00 0.00 0.25 1.00 0.25
Kumquat 0.00 1.00 0.00  0.00 1.00 0.00
Mandarin 0.25 1.00 0.00  0.00 1.00 0.00
Delicious apple 1.00 0.00 1.00  0.00 1.00 0.00
Star fruit 0.00 0.00 0.00  0.25 0.00 0.00
Banana 1.00 0.00 0.00  0.00 0.00 0.00
Red raspberry 0.75 0.00 1.00  0.75 1.00 0.75
Bing cherry 0.25 0.00 1.00  0.25 1.00 0.25
Strawberry 0.75 0.00 1.00  0.00 1.00 0.00
Coconut 0.50 0.00 0.00  0.00 0.00 0.00
Pineapple 0.50 0.00 0.00  0.50 0.00 0.50
Green grape 1.00 0.00 0.00 0.50 0.00 0.50

Unless otherwise noted, we use the max and min operators throughout
this book for fuzzy union and fuzzy intersection, respectively. However,
it is important to note that these are not the only definitions of the union
and intersection suited to fuzzy set theory. Smithson (1987, Chapter 1)
discusses this issue extensively, although most of the other books cited
also have useful discussions in their consideration of t-norms and co-norms.
In some contexts, alternative definitions of the operators are better able
to meet the needs of particular applications. For example, the product oper-
ators are my_, = my, + m, — mym, and m,_, = mym, These formulas
are, in fact, the same as the rules for compound independent events in
probability theory. Unlike the max-min operations, they are continuous;
changes in membership in one set are always reflected in the membership
of the union or intersection. By contrast, this is not true for the max-min
operators. This more continuous change may better reflect the underlying
conceptual space.

Despite discontinuity, max-min operations remain the “industry stan-
dard.” They are very easy to calculate, which is a virtue in some cases. Per-
haps most importantly, they are relatively resistant to perturbations in the
input membership values—which are often due more to measurement error
than real variation—and demand only ordinal measurement. The multiplic-
ity of operators is both a strength and a weakness of fuzzy set theory. As a
strength, many different operators provide options for modeling different
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concepts. As a weakness, there are many choices to make, and it is not
always clear which alternative is best. Of course, these operators all reduce
to the classical ones when membership is restricted to just O and 1.

It is possible to chain operators together, thereby constructing quite com-
plicated sets. In fact, much of the power of fuzzy set theory comes from
this, as it is possible to derive many interesting sets from chains of rules
built up from simple operators. The orange’s membership in the set ~Com-
monnNSour would be min(1 — 1.00, .25) = 0. Indeed, as the orange is nearly
prototypical of a sweet, common fruit, it should make sense that the mem-
bership in the set is low.

Fuzzy inclusion is somewhat more complicated. We introduce the Classi-
cal Inclusion Ratio (CIR) here, deferring a more complete discussion until
Chapter 5. For crisp sets, inclusion is an all-or-nothing matter. Either Set A
is included in Set B or it is not, and all it takes is one element in A not in B
for inclusion to fail. This is decidedly unfuzzy and furthermore does not
make sense from a data analytic standpoint, where we would expect to see
some errors from the general pattern simply due to chance. Because crisp
sets are just fuzzy sets with no membership values on the interior of the unit
interval, they also have membership functions. Therefore, inclusion can be
translated into a statement about membership: For B to include A, objects in
A must have membership no greater than objects in B. We can easily extend
this to continuous membership. Thus, the CIR simply counts the number of
such objects relative to the total number of objects. If there are n objects,

CIRucp = #(my < mp)/n. (2.1]

Because this is a proportion, it is possible to use the standard statistics
for proportions to form the basis of statistical tests about the CIR, which is
one of its main selling points. Another useful benchmark for inclusion of A
in B is to consider how similar m,_, is to m,, which can easily be seen by
plotting m, ., on m,. If identical, then they should form a straight line with
intercept 0 and slope 1. In the fruits example, CIR,, . =" — 15/16 =
9375, indicating that Sour is fuzzily included in Common.

Recall that fuzzy sets do not obey the Law of the Excluded Middle. Con-
sider the lime, which has .75 membership in Sour and therefore a member-
ship in ~Sour of .25. The membership in Sourm~Sour is min(.75, .25) =
.25. Given that we are considering a situation of vagueness, this seems sen-
sible. But genetic engineering aside, a plant cannot be both citrus and not
citrus at the same time, and the membership of the lime in “citrus and not
citrus” is min(1, 0) = 0, as it should be.

We mentioned three other operations on fuzzy sets that are important:
concentration, dilation, and aggregation. None of these operators has
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Figure 2.1 Concentration and Dilation

classical set parallels because all of them depend on membership values
between 0 and 1. Concentration and dilation modify one set, similar to the
complement, whereas aggregation is another connective between sets, sim-
ilar to union and intersection. Concentration and dilation modify member-
ship. Zadeh (1965) suggested that concentration corresponds to the phrase
“very X,” where X is the defining property, whereas dilation often is asso-
ciated with the phrase “sort of X.” The original concentration operator was
m., = m?, and the original dilation operator was m,_ = m . Generaliza-
tion to using powers greater than one for concentration and powers less than
one but greater than zero for dilation are straightforward.

The sense of these operators comes from the properties of power trans-
formations of the unit interval: Power transformations in the unit interval
map into the unit interval, which means that they can be interpreted as
membership values. Concentration reduces all the values except 0 and 1 by
squaring them, but the effect is weakest on those that are already small.
Conversely, dilation increases all membership values except O and 1, but the
effect is weakest on those that are already large. Figure 2.1 illustrates this,
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Figure 2.2 Concentration and Dilation for Membership Function Poor(x)

and Figure 2.2 shows concentration and dilation applied to the membership
function Poor(x) given above.

The suitability of fuzzy set theory to model natural language usages of
these terms, which are called linguistic hedges, has been questioned most
forcefully by Lakoff (1973), particularly the use of dilation to model the
hedge “sort of.” Smithson (1987, Chapters 1-2) offers an extensive discus-
sion drawing on the literatures in philosophy and cognitive science. How-
ever, we do not propose fuzzy set theory as a good model for natural
language, but as a formal language for scientists operating in a domain of
systematized logical reconstructions. The test of fuzzy set theory is whether
it provides useful results. We discuss some further issues regarding transfor-
mations of fuzzy set memberships in Chapter 3 (Section 3.5 on sensitivity
analysis) and present an example application of concentration and dilation
in Chapter 6. One argument against their broad use is that they demand a
high level of measurement, higher than most users will wish to assume.
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The final fuzzy set operator we will discuss here is fuzzy aggregation,
denoted by the symbol I' (Gamma). Thus, the aggregation of two sets X and
Y is denoted X T'Y, and the aggregation of sets X, ¥, and Z would be X 'Y
I'Z. Classical sets have two connectives, unions and intersections, and
these have extensions to fuzzy sets. As already discussed, membership in a
union is determined by the maximum of memberships in the input sets, but
membership in an intersection is determined by the minimum of member-
ships in the input sets. These are often described in terms of the strongest
link/weakest link metaphor, because membership in the union is deter-
mined by the strongest link in the chain whereas membership in the inter-
section is determined by the weakest link in the chain. In this sense, fuzzy
union is fully compensatory in that low membership values in Sets A, B,
and C are completely compensated by a high membership in Set D. Fuzzy
intersection is not at all compensatory, in that high membership values in
Sets A, B, and C cannot compensate at all for a low membership in Set D.
Alternatively, fuzzy union models redundant causation, whereas fuzzy
intersection models conjoint causation.

However, in many cases, theory says that several properties contribute
to overall membership in the aggregate, but that low values in one property
are not fully compensated for by high values in another, invalidating fuzzy
union. In fact, this is very similar to the assumption often used in scale
construction, where different components make up the whole by summing
together. There are many different aggregation operators, but we will discuss
two simple ones. The first is the geometric mean of membership functions

My = /My,

The geometric mean acts like an average for membership values near each
other but like the intersection when one of the membership values is close to
zero. The second is the arithmetic mean of the union and intersection

max(m,, my) + min(m,, m,)

> .
In the two-set case, this is just the arithmetic mean of the membership
values, but when three or more sets are considered, that is not necessarily
true. More sophisticated aggregation operators—of which the ones listed
above are special cases—are discussed in great detail in Zimmerman
(1993). If we wanted to aggregate Common and Sour via the geometric
mean, for the orange we would get

4/1.00 x 0.25 = .50,

mey =
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whereas the arithmetic mean would be (1.00 4+ .25)/2 = .675. Interpretation
of aggregations is, of course, a matter for substantive theory.

2.4.1 Level Sets

Level sets provide a useful connection between crisp sets and fuzzy sets.
Starting with a fuzzy set X, we introduce a level parameter, A € [0,1], and
define a setas ¥, = {x € X |m_> A}. Translating into words, Y, is the clas-
sical (dichotomous) set made from fuzzy set X with elements that have
membership greater than A. For instance, if X = {(a,0), (b,.2), (c,.3), (d,.6),
(e,.8), (f,1)}, then Y, = {a, b, c,d, e, f}, Y= {d, e, f}, and Y, = {f}. Notice
that if A > 6, then Y, C Y, as can be seen from the example as ¥, C Y5
Y,. One use of level sets is to generate contingency tables. Using the fruit
example, cross-tabulating Common 5 and Sour  produces Table 2.4. We will
use level sets extensively in Chapter 5.

TABLE 2.4
Cross-Classification Generated by Level Sets

Common ;=0 Common ; = 1
Sour ;=1 0 6
Sour ;=0 4 6

2.5 Fuzzy Numbers and Fuzzy Variables

Is “several” a number? It clearly specifies numerical information, but it
is vague. Instead, it specifies a range of possible integers, some of which
are more plausible than others as referring to “several.” “Several” does not
really apply to just one integer, instead it is vague. Verbal quantifiers such
as “several” can be made precise using fuzzy set theory by creating a fuzzy
number. Smithson (1987) provided the following data taken from a survey
of 23 undergraduates used to specify meaning for the term “several,” shown
in Figure 2.3, which plots the mean membership value and +2SE (trun-
cated to lie in the unit interval). Subjects were asked to give a numerical
membership rating for each number on a bounded response scale that was
subsequently mapped into the unit interval. Clearly, the peak is over 6, and
subjects judged that the numbers 5 to 8 are the most consistent with “sev-
eral.” Similarly, Budescu and his colleagues (e.g., Budescu, Karelitz, &
Wallsten, 2003) have used fuzzy numbers to elicit probability assessments.
This process is important in risk analysis and other areas where data from
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Figure 2.3 Fuzzy Number “Several”

judges are frequently stated in natural language, but it is desirable to have
a numerical answer with an understood degree of uncertainty. By making
more precise the typical understanding of a term like “highly unlikely,”
fuzzy variables provide a means to translate qualitative language into quan-
titative statements.

The idea can be generalized to the notion of a fuzzy variable. For
example, a survey question about sexual activity in teens might ask, “How
many days in the past month did you have sex?” The response options
might be {none, a few times, several times, many times}. The usual
approach would be to break these categories into disjoint intervals, as in
{0, [1,4], [5.,8], [9,30]}. Many others are possible, and the results of the
analysis could depend in nontrivial ways on the assignment of numerical
values to the qualitative responses. Instead, we could use an approach sim-
ilar to the one above for creating the fuzzy number “several” for the other
responses, which would give us a better idea of exactly how many days the
subjects had sex. Figure 2.4 shows a fuzzy variable constructed for this
response set by mapping to the integers O to 30. Note that the intervals over-
lap, indicating degrees of uncertainty about exactly what the terms mean.
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Figure 2.4 Fuzzy Variable “Number of Days in the Past Month”

2.6 Graphical Representations of Fuzzy Sets

Visualization is a key component of any data analysis, and data analysis
with fuzzy sets is no exception. The first step in any analysis should be to
graph the data. We will discuss graphs that consider only one fuzzy set at
a time, focusing on it and its domain, and then discuss bivariate graphs,
where we examine the membership of a domain of objects that are
members of two fuzzy sets. The usual caveats and guidelines for creating
good graphics apply. We refer readers to Jacoby (1997, 1998) or Cleveland
(1993) for useful discussions. Because a membership function is a numer-
ical value in the unit interval, we can graph it over its domain. Obviously,
if the domain set has more structure—for example, it is numerical—the plot
will have more structure, as in the plot for “several” (Figure 2.3) in the
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