
out to be [.3071, .4975]. The 97.5% CI for πsh is [.1815, .3525] and the CI
for πhb is [.0853, .2231]. From Formula 4.8, the lower limit of the CI for
T(A) is .1815 and the upper limit is .3525. Whereas the lower limit differs
substantially from 0, the upper limit suggests that this set is at most mod-
erately fuzzy.

5. SIMPLE RELATIONS
BETWEEN FUZZY SETS

5.1 Intersection, Union, and Inclusion

This chapter focuses on three of the elementary relationships offered by
fuzzy set theory that are arguably distinctive but unfamiliar members of the
family of bivariate associations (e.g., correlation, odds-ratio). These are
fuzzy intersection, union, and inclusion. As explained in Chapter 2, the con-
ventional rules for evaluating the membership of x in the intersection and
union of fuzzy sets A and B are

Likewise, the rule stipulating that the fuzzy set A includes B (A⊃B) is
that for all x,

Intersection and union are distinct from addition because they are not
compensatory, whereas addition is. For example, for any x from Formula
5.1, we can see that a high degree of membership mA(x) in A will not com-
pensate a low membership mB(x) in B regarding membership mA∩B(x) in
A∩B. Inclusion is distinct from correlation both because of its asymmetry
(i.e., the extent to which A includes B tells us little about the extent to which
B includes A) and its direct relationship with the logical concepts of neces-
sity and sufficiency.

As mentioned in Chapter 3, one of the chief requirements for evaluating
intersection, union, or inclusion empirically is property ranking (e.g., does
Japan have higher membership in the set of “Asian countries” than in the
set of “capitalist economies”?). Accordingly, we shall be concerned not

50

mA∩B(x) = min(mA(x), mB(x)) and

mA∪B(x) = max(mA(x), mB(x)). [5.1]

mA(x) ≥ mB(x). [5.2]
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only with the level of measurement but also with property ranking when
considering techniques for evaluating fuzzy intersection or inclusion. For
the remainder of this section, however, we will explore two illustrative
examples in which property ranking may reasonably be assumed. Smithson
(2005) goes over additional examples in detail.

� EXAMPLE 5.1: Attitudes Toward Immigrants

Fuzzy set inclusion is a generalization of crisp set inclusion and thereby
conceptually related to Guttman, Mokken, and Rasch scaling. Although the
inequality in Formula 5.2 seldom is perfectly satisfied, real examples may
be found where it holds to quite a high degree. Figure 5.1 shows one such
instance, in which 84 second-year psychology students at the Australian
National University rated their degree of agreement with the propositions
A = “Australia should permit immigrants to enter the country” and B =
“Boat people should be allowed to enter Australia and have their claims
processed.” There are only three exceptions to the inclusion relationship
A⊃B, in the upper right-hand corner of the scatterplot.

This example illustrates an important connection between intersection,
union, and inclusion. If A⊃B, then A∩B is identical to the smallest set A or
B, and A∪B is identical to the larger of the two sets. In Figure 5.1, we can
see that the membership assignments for A∩B will be mA∩B(x) = mB(x) in
all but the three cases where mB(x) = 1 and mA(x) = 5/6. Likewise, we can
see that the membership assignments for A∪B will be mA∪B(x) = mA(x) in
all but the same three cases. The nearer the distribution of membership
values mA∩B(x) to those of the smallest of A or B, the closer the relationship
between A and B to a true inclusion relationship. The same is true regard-
ing the distribution of mA∪B(x) and those of the largest of A or B. Of course,
computing intersections and unions depends on property ranking. Without
good reason, it is unwise simply to assume that property ranking holds. We
feel comfortable with it here because the response scale for each item is the
same and the items are of the same form.

The example in Figure 5.1 also highlights a connection between fuzzy
inclusion and the logical concepts of necessity and sufficiency. A predictive
interpretation of the scatterplot in Figure 5.1 is that a high membership in
Set A is necessary but not sufficient to predict high membership in Set B (or
conversely, high membership in B is sufficient but not necessary to predict
high membership in A). These asymmetric logical or predictive relations
are not assessable by symmetric measures of association such as correla-
tion. To characterize the pattern in Figure 5.1 by saying that the two
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variables have a correlation of .299 would surely miss the point. Even
pointing out heteroscedasticity would not be specific enough.

Finally, it is noteworthy that inclusion, necessity, and sufficiency are
special cases of a very useful and broad class of relations called fuzzy
restrictions. A third interpretation of Figure 5.1 is that the joint distribution
of A and B almost strictly satisfies the inequality mA(x) – mB(x) ≥ 0. Fuzzy
restrictions are generalizations of such inequalities.

� EXAMPLE 5.2: Decisions to Disclose or Withhold Information

In an occupational survey (Bopping, 2003), 229 respondents were pre-
sented with a dilemma over whether to disclose information confided to
them by a colleague. The respondents rated each of these statements on two
identical 7-point scales:

I = “It is important to provide information to others”
T = “It is important to maintain the trust of a confidant”
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Figure 5.1 Example of Fuzzy Set Inclusion
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We will demonstrate the application of fuzzy sets to investigating the
hypothesis that respondents produced high ratings on I or T or both.

This hypothesis may be interpreted as saying that membership in the
fuzzy union I∪T should be strongly skewed toward 1. A “stronger” version
would predict that T⊃~I (or equivalently, I⊃~T), i.e., mI(x) ≥ 1 – mT(x). An
equivalent fuzzy restriction is mI(x) + mT(x) ≥ 1. The scales for I and T have
identical response formats, so for the sake of illustration, we will assume
that the property ranking issue is resolved. The data in the upper part of
Table 5.1 show that the strong version of this hypothesis is true for all but
nine cases.

A comparison of the observed I∪T distribution with its expected-
values counterpart if I and T are assumed independent (bottom part of
Table 5.1) suggests that it is more strongly negatively skewed than would
be expected under independence. A chi-square test may be used to com-
pare the two distributions, and the squared standardized residuals consti-
tuting the chi-square statistic are shown in the third row of the bottom
table. The chi-square test yields χ2(6) = 13.2, p = .04, thereby supporting
the skew hypothesis. As in Example 5.1, the bivariate hypothesis investi-
gated here would be rather difficult to evaluate using the usual concepts and
measures of association but is readily accessible via fuzzy sets.
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TABLE 5.1

Cross-Tabulation of I and T

mI

0 1/6 2/6 3/6 4/6 5/6 1 Total

1 9 4 5 8 4 6 23 59
5/6 8 9 7 11 22 5 62
4/6 2 14 4 15 1 36

mT 3/6 1 7 6 10 9 33
2/6 1 1 4 8 3 17
1/6 1 1 5 4 11
0 1 1 9 11

Total 10 16 30 22 31 66 54 229

I∪T

0 1/6 2/6 3/6 4/6 5/6 1 Total

observed pdf 1 1 2 8 32 95 90 229
expected pdf 0.48 2.02 7.04 15 26.9 78.5 99.1 229
sq. std. resid. 0.56 0.51 3.61 3.26 0.97 3.47 0.83 13.2
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TABLE 5.2

Inclusion Relation and Impostors

Independence + Skew

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1 Total

0 4 3 1 1 1 0 0 10
mNA(2) 5 4 2 2 1 1 0 15
mNA(3) 6 4 3 2 1 1 0 17

mNA(4) 7 5 3 2 1 1 1 20
mNA(5) 20 13 8 6 4 2 2 55
mNA(6) 33 23 12 10 6 4 3 91
1 55 38 21 17 11 6 4 152

Total 130 90 50 40 25 15 10 360

5.2 Detecting and Evaluating Fuzzy Inclusion

The task of detecting and evaluating fuzzy inclusion raises three questions.
First, how do we assess the degree to which the fuzzy inclusion mA(x) ≥
mB(x) rule is satisfied? Second, how can we distinguish fuzzy inclusion
from “impostors” such as the bivariate distribution of two independent
skewed variables? And third, when do we have grounds for preferring a
fuzzy set interpretation of our findings to rival interpretations?

Beginning with the first question, a number of fuzzy set theorists (e.g.,
Dubois & Prade, 1980, p. 22) have criticized the mA(x) ≥ mB(x) rule as
too inflexible, and not sufficiently fuzzy. Smithson’s (1987, pp. 31–32,
101–104) review of alternative proposals for evaluating fuzzy inclusion
finds that they fall into two groups. One approach is to “fuzzify” the mA(x)
≥ mB(x) rule (e.g., Dubois & Prade, 1980; Ragin, 2000). The other is to
construct an index of the degree of inclusion based on fuzzy set operators
or other appropriate concepts. Both approaches hinge on the level of mea-
surement possessed by the membership scales. We defer the discussion of
this issue to the next section. Instead, we turn to the questions of distin-
guishing inclusion from impostors and deciding whether a bivariate rela-
tionship is better described as inclusion or some other kind of association.
Table 5.2 makes this point by showing three impostors (the first, third, and
fourth tables) and a genuine inclusion relationship (the second table).

� EXAMPLE 5.3: Realistic Job-Seeking/Avoiding Example

The second table is taken from real data (Smithson & Hesketh, 1998),
namely 360 respondents’ responses to two items on the Holland vocational
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Inclusion Relationship

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1 Total

0 8 3 2 1 1 1 0 16
mNA(2) 8 4 3 2 0 0 0 17
mNA(3) 17 11 7 10 1 0 0 46

mNA(4) 13 11 22 30 6 0 1 83
mNA(5) 5 7 12 23 3 2 0 52
mNA(6) 1 5 10 25 19 9 1 70
1 3 3 2 16 13 13 26 76

Total 55 44 58 107 43 25 28 360

Positive Correlation

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1 Total

0 47 0 0 0 0 0 0 47
mNA(2) 0 47 5 0 0 0 0 52
mNA(3) 0 0 47 10 4 0 0 61
mNA(4) 0 0 0 45 10 0 0 55
mNA(5) 0 0 0 0 46 5 0 51
mNA(6) 0 0 0 0 0 47 0 47
1 0 0 0 0 0 0 47 47

Total 47 47 52 55 60 52 47 360

Negative Correlation

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1 Total

0 16 16
mNA(2) 4 4
mNA(3) 14 14

mNA(4) 87 87
mNA(5) 92 92
mNA(6) 92 92
1 55 55

Total 55 92 92 87 14 4 16 360
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interest inventory. One item has them rate the extent to which they would
seek a job that involves “realistic” tasks, and another asks them to rate the
extent to which they would avoid this kind of job. Both scales were identi-
cal (ranging from not at all to very strongly), and the “avoid” scale has been
reverse-scored to convert it into a “not avoid” scale. The hypothesized rela-
tionship is that seeking this kind of job is sufficient but not necessary to also
not avoid it, because one could decide not to avoid it for other reasons as
well. So “seeking” is included in “not avoiding.”

All four two-way tables have a very similar proportion of cases
obeying the fuzzy inclusion rule mA(x) ≥ mB(x). Excluding the zero-
membership cases on the included set, the proportions are .887, .889,
.891, and .889 for the first, second, third, and fourth tables, respectively.
However, the uppermost table was generated by cross-tabulating two
independent skewed distributions. A chi-square test for this table yields
χ2(36) = 3.669, which is a very good fit with the independence model.
The apparently strong inclusion relationship in this table is due solely to
the skew in both distributions.

Moving now to the other three tables in Table 5.2, a chi-square test yields
χ2(36) = 234.036 for the second table, χ2(36) = 1781.344 for the third
table, and χ2(36) = 3625.220 for the fourth table, all indicating large depar-
tures from independence. However, the third and fourth tables show very
strong correlation patterns rather than an inclusion relationship, even
though the proportion of cases obeying the fuzzy inclusion rule is nearly
identical to the second table. Many researchers would prefer to describe the
third and fourth tables in terms of this correlation, which measures the
strength of a one-to-one association between two variables, as opposed to
the one-to-many of necessity. We could readily imagine (and find) “inter-
mediate” situations in which there is both a moderately strong correlation
and a reasonably strong inclusion relationship.

Which description should we prefer, and why? This problem is more
difficult than merely detecting independence, because more judgments
are required. For instance, even if correlation provides a “good” description
of the relationship (i.e., all assumptions and requirements such as homo-
scedasticity are satisfied), the inclusion interpretation might still be the
more theoretically relevant. On the other hand, inclusion is a one-to-many
relation and thus is a less precise proposition than a one-to-one relationship
such as correlation or stronger measures of association.

Let us dispense with independence + skew first. Independence + skew
cannot be a genuine inclusion relation because there is no association
between two statistically independent random variables. Nevertheless, it is
easy to make examples of skewed statistically independent random vari-
ables that seem to satisfy fuzzy inclusion, as our example demonstrates.
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When two variables are statistically independent, their joint distribution is
completely determined by the marginal distributions because the joint dis-
tribution is just the product of the marginals. The marginals, in turn, depend
on the assignment of membership. As we have already seen in Chapter 3,
assignment of membership is a very difficult task. It is wise to rest one’s
conclusions on the assignment process as little as possible because it is
almost always possible to argue that a given assignment is wrong. For dis-
crete membership scales, as in this example, the conventional chi-square
test of independence usually will suffice. For continuous membership
scales, the Kolmogorov-Smirnov test is the most well-known, and it com-
pares the observed joint cumulative distribution function (JCDF) against
the expected JCDF under independence. For alternative approaches, see
D’Agostino and Stephens (1986).

Association + skew raises other issues. We take the view that if the
bivariate distribution satisfies the relevant assumptions and the researcher is
primarily interested in predicting one variable from the other, then a corre-
lation-regression description may be preferable to a fuzzy set perspective.
Better still would be a GLM that models location and dispersion simulta-
neously. On the other hand, particular kinds of heteroscedasticity, a strong
inclusion rate combined with a marked difference in the sizes of the two
sets, and/or research questions that are expressed in set-like terms should
motivate a serious consideration of fuzzy inclusion as a description of the
patterns. The next two sections present techniques for investigating inclu-
sion relations in detail.

5.3 Quantifying and Modeling Inclusion:
Ordinal Membership Scales

In many circumstances, we may wish to evaluate how robust a claim about
an inclusion relationship is against alternative membership value assign-
ments. For both the mA(x) ≥ mB(x) rule and any inclusion index, the joint
ordering of membership values for the two sets crucially determines the
result, so it is essential to explore what happens to inclusion rates and index
values when the joint ordering is modified. A reasonable approach to
assessing how dependent our results are on the joint ordering of member-
ship values is to stipulate a benchmark inclusion rate before seeing the data,
and then ascertain the collection of paths whose confidence intervals (CIs)
include that rate or higher. One way to determine the relevant “collection”
is to begin with a specific joint ordering of the values that yields a path
whose inclusion CI contains the prescribed rate, and then ascertain which
neighboring paths’ CIs also include that rate.
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To see how this works, let us return to the job-seeking example using a
criterion inclusion rate of .9. As mentioned earlier, the proportion of cases
obeying the mA(x) ≥ mB(x) rule for the diagonal path is 271/305 = .889. A
95% CI for this path is [.848, .922], so it is compatible with an inclusion
rate of .9. In fact, it can be shown that any path with a proportion as low as
264/305 has a CI that includes .9.

The second table from Table 5.2 is reproduced in Table 5.3. The shaded
region denotes the collection of paths involving one alteration in the origi-
nal values’ joint ordering whose inclusion proportions are at least 264/305.
The joint ordering of memberships corresponding to the diagonal path is
0 < mS(2) = mNA(2) < mS(3) = mNA(3) < mS(4) = mNA(4) < mS(5) = mNA(5) <
mS(6) = mNA(6) < 1. The collection of paths forms a region that begins only
slightly beneath the diagonal path. For example, the path deviating from the
diagonal once by following the cells with frequencies {8, 4, 22, 30, 3, 9, 26}
corresponds to the joint ordering 0 < mS(2) = mNA(2) < mNA(3) < mS(3) <
mS(4) = mNA(4) < mS(5) = mNA(5) < mS(6) = mNA(6) < 1.

In the absence of an inclusion rate criterion, we may use the single alter-
ation in the joint-ordering criterion for exploring the sensitivity of inclusion
rates to membership assignments. Again starting with the inclusion rate of
.889 for the diagonal path, the largest possible change in this rate incurred
by one alteration of the joint ordering is the exclusion of the 30 cases in the
{mS(4) = mNA(4)} cell. Excluding them by “lowering” the path decreases
the inclusion rate from .889 to (271 − 30)/305 = .790. The biggest increase
of the inclusion rate by one alteration in joint ordering is the inclusion of
the 10 cases in the {mS(4) = mNA(3)} cell, resulting in a rate of (217 +
10)/305 = .921. Neither the proportion of cases obeying the mA(x) ≥ mB(x)

58

TABLE 5.3

Paths With Inclusion Rate CI Containing 0.9

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1 Total

0 8 3 2 1 1 1 0 16
mNA(2) 8 4 3 2 0 0 0 17
mNA(3) 17 11 7 10 1 0 0 46

mNA(4) 13 11 22 30 6 0 1 83
mNA(5) 5 7 12 23 3 2 0 52

mNA(6) 1 5 10 25 19 9 1 70

1 3 3 2 16 13 13 26 76

Total 55 44 58 107 43 25 28 360
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rule nor the inclusion indexes do a good job of distinguishing between
negative correlation and genuine inclusion because they are strongly influ-
enced by the marginal distributions. The tests proposed in Ragin (2000)
based on the mA(x) ≥ mB(x) rule implicitly assume that the marginal distri-
butions are uniform. To avoid making strong assumptions about the mar-
ginal distributions, we must turn to models of inclusion based on localized
inclusion relations in tables and scatterplots.

One way of modeling inclusion throughout a scatterplot or table is via
level sets, which were introduced in Chapter 2. We may establish the inclu-
sion rate for any cell in a table (or point on a scatterplot) by constructing
the joint cumulative distribution function (JCDF). The first table in Table 5.4
shows the JCDF from Table 5.3, which accumulates frequencies starting in
the {1,1} cell at the lower right and moving upward and to the left. That cell
contains 26 cases, so moving up one cell accumulates 1 more to give 26 +
1 = 27, whereas moving one cell to the left accumulates 13 cases to give
26 + 13 = 39, moving one cell up and to the left accumulates 1 + 13 + 9
cases to give 26 + 1 + 13 + 9 = 49, and so on.

The second table shows the local inclusion rate for each cell. These are
determined by dividing the cumulative frequency in that cell by the column
cumulative total, located in the first row of the table. For the lower-right
cell, we have 26/28 = .929, for the next cell to the left we have 39/53 =
.736, and so on. We may regard these proportions as local inclusion rates
because each of them is the proportion of cases that obeys the mA(x) ≥
mB(x) rule for the level set that corresponds to its cell. Consider the {.83,
.83} cell, which has a JCDF of 49 cases. There are 53 cases for which mem-
bership in Seek is .83 or above, and 49 of those obey the mA(x) ≥ mB(x) rule
because their membership in Not Avoid also is .83 or above. The proportion
is therefore 49/53 = .925, the entry for that cell in the second table.

The level set and JCDF approach enables researchers to examine patterns
of local inclusion rates. Notice that the inclusion rates for the cells on the
diagonal path are very similar to one another. This path arguably has a con-
stant inclusion rate along it, and we shall see shortly how to test a constant
inclusion model for this path. The inclusion rate pattern in Table 5.4 con-
trasts vividly with that for the negative correlation example, shown in
Table 5.5. The inclusion rates along the diagonal path clearly are not con-
stant, but instead jump suddenly from 0 to quite high levels as we move
upward and to the left along that path. This comparison demonstrates that
local inclusion models can distinguish between relationships that a global
inclusion rate or inclusion index cannot.

Now let us test a constant inclusion model for the diagonal path in the
job-seeking example. It turns out that the average inclusion rate along this
path is .947. We will test whether the local inclusion pattern along the
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diagonal path is consistent with a constant inclusion rate of .947. There are
several methods for doing this, but the most familiar and perhaps simplest
is to use a chi-square test. The principle is to generate expected frequen-
cies for the JCDF along the diagonal path, obtain expected frequencies for
that path by taking the differences between adjacent cells, and then com-
pare those with the observed frequencies for the same path using a one-way
chi-square test.

The first table in Table 5.6 shows how to obtain the observed frequencies
for each cell in the diagonal path by taking differences between adjacent
cells, starting at the lower right. The second table shows how the expected
frequencies are computed, using an inclusion rate of .947 and the marginal
observed frequencies in the first row of the first table. The expected fre-
quency for the upper-leftmost cell, 71.165, is computed by subtracting the
sum of the other expected frequencies from the total sample size, 360.
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TABLE 5.4

JCDF and Local Inclusion Rates for Example 5.3

Local Inclusion Rates

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0
mNA(2) 0.956 0.974 0.981 0.985 0.979 0.981 1.000
mNA(3) 0.908 0.944 0.962 0.975 0.979 0.981 1.000
mNA(4) 0.781 0.849 0.893 0.921 0.969 0.981 1.000
mNA(5) 0.550 0.620 0.667 0.739 0.896 0.962 0.964
mNA(6) 0.406 0.466 0.513 0.601 0.844 0.925 0.964
1 0.211 0.239 0.268 0.335 0.542 0.736 0.929

Joint Cumulative Distribution

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0 360 305 261 203 96 53 28
mNA(2) 344 297 256 200 94 52 28
mNA(3) 327 288 251 198 94 52 28
mNA(4) 281 259 233 187 93 52 28
mNA(5) 198 189 174 150 86 51 27
mNA(6) 146 142 134 122 81 49 27
1 76 73 70 68 52 39 26
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Joint Cumulative Distribution

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0 360 305 213 121 34 20 16
mNA(2) 344 289 197 105 18 4 0
mNA(3) 340 285 193 101 14 0 0
mNA(4) 326 271 179 87 0 0 0
mNA(5) 239 184 92 0 0 0 0
mNA(6) 147 92 0 0 0 0 0
1 55 0 0 0 0 0 0

Because there are seven cells, we have 6 degrees of freedom and so,
using a significance criterion of .05, the critical chi-square value is 12.592.
The observed chi-square turns out to be χ2(6) = 3.257, which is well below
the critical value and indicates a rather good fit between the constant inclu-
sion model and the data. There are inclusion rates other than .947 that we
could not reject using the chi-square test. It is not difficult to obtain a 95%
confidence interval for the constant inclusion rates, although it should be
borne in mind that the chi-square version is conservative, and the resulting
CI is [.888, 1]. Likewise, it is possible to find the collection of all paths that
are compatible with a constant inclusion model, whether for a prespecified
rate or in general. However, a full exploration of this topic is beyond the
scope of this chapter.

Now let us test a constant inclusion model for the diagonal path in the
negative correlation example. Table 5.7 shows the observed frequencies.
It turns out that no matter what inclusion rate is used, the chi-square test

61

TABLE 5.5

JCDF and Local Inclusion Rates for Negative Correlation Example

Local Inclusion Rates

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0
mNA(2) 0.956 0.948 0.925 0.868 0.529 0.200 0.000
mNA(3) 0.944 0.934 0.906 0.835 0.412 0.000 0.000
mNA(4) 0.906 0.889 0.840 0.719 0.000 0.000 0.000
mNA(5) 0.664 0.603 0.432 0.000 0.000 0.000 0.000
mNA(6) 0.408 0.302 0.000 0.000 0.000 0.000 0.000
1 0.153 0.000 0.000 0.000 0.000 0.000 0.000
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rejects a constant inclusion model for this table. The lowest chi-square
obtainable (for an inclusion rate of 1) is χ2(6) = 40.959, substantially
higher than the critical chi-square value of 12.592. The constant inclusion
model successfully distinguishes between the job-seeking and negative
correlation examples.
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Expected Frequencies

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0 71.165 44 58 107 43 25 28

mNA(2) .947× 44 =
41.668

mNA(3) .947× 58 =
54.926

mNA(4) .947× 107 =
101.329

mNA(5) .947× 43 =
40.721

mNA(6) .947× 25 =
23.675

1 .947× 28=
26.516

Observed Frequencies

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0 360 − 305 = 44 58 107 43 25 28
55

mNA(2) 297 − 251 =
46

mNA(3) 251 − 187 =
64

mNA(4) 187 − 86 =
101

mNA(5) 86 − 49 =
37

mNA(6) 49 − 26 =
23

1 26

TABLE 5.6

Constant Inclusion Model
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Likewise, it can be readily proved that the only constant inclusion paths
for two statistically independent fuzzy sets are horizontal. For ordinal cat-
egorical membership functions and contingency tables, this property fol-
lows from the same argument behind the formula for computing expected
frequencies when independence is assumed. The horizontal inclusion path
result underscores our reasons for not considering the independence +
skew inclusion pattern as a genuine inclusion relation.

5.4 Quantified and Comparable Membership Scales

When mA(x) and mB(x) are quantified and comparable, the fuzzy set tool
chest opens up. This concluding section to Chapter 5 presents a brief sur-
vey of the possibilities that await the researcher in this situation.

� EXAMPLE 5.4: Fear and Loathing in the Tropics

The data set that will be used for illustrations here was collected from
262 psychology undergraduates (from James Cook University in a tropical
region in Australia). The data comprise their self-reported feelings about
31 noxious stimuli, such as snakes or vomit. They were asked to rate their
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Observed Frequencies

Seek

Not Avoid 0 mS(2) mS(3) mS(4) mS(5) mS(6) 1

0 360 − 289 = 92 92 87 14 4 16
71

mNA(2) 289 − 193 =
96

mNA(3) 193 − 87 =
106

mNA(4)
87

mNA(5)
0

mNA(6)
0

1 0

TABLE 5.7

Frequencies for the Negative Correlation Example
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degree of fear, disgust, and dislike for each stimulus, using a 4-point rating
scale ranging from 0 = not at all to 3 = very much. The 31 ratings of fear,
disgust, and dislike were summed and divided by 31 to obtain fuzzy mem-
bership scales for each. For our purposes here, we will treat these as quan-
tified comparable membership scales. The chief object in this study was
a hypothesis that the “phobic”-style responses fear and disgust are subsets
of dislike, which is considered to be a much broader emotional response. A
subsidiary question was the “comorbidity” issue raised often in clinical and
health psychology; that is, to what extent respondents simultaneously fear
and are disgusted by noxious stimuli.

5.4.1 Cardinality of Intersections and Unions

Starting with the comorbidity issue, a traditional approach would use cor-
relation (we shall explore this issue in greater detail in Chapter 6). Table 5.8
shows that all three fuzzy sets are significantly and moderately correlated.
However, the correlations cannot tell us whether one set strongly includes
another, nor do they provide meaningful estimates of the relative sizes of
these sets or their intersections.

We may measure the cardinality (size) of fuzzy set intersections and
unions, thereby enabling us to directly address comorbidity. The upper
subtable in Table 5.9 shows the mean memberships of Fear, Dislike, and
Disgust on the diagonal and the mean memberships of their pairwise inter-
sections in the off-diagonal cells. The lower subtable shows the proportion
of each set accounted for by its intersection with another set. For instance,
the intersection between Fear and Dislike has average membership .229.
Because the average membership in Fear is .231 and in Dislike is .563, the
proportion of Fear accounted for in the intersection is .229/.231 = .991 and
the proportion of Dislike accounted for is .229/.563 = .407.

The comorbidity picture presented by fuzzy intersections differs vividly
from the correlational perspective. It is evident that the comorbidity rate for
Fear and Disgust is quite high (78.4% of Fear and 84.2% of Disgust are
accounted for by their intersection). Dislike clearly includes most of Fear
and Disgust (99.1% and 99.5% respectively), but only 38.0% of Dislike is
accounted for by its intersection with Disgust and only 40.7% is accounted
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TABLE 5.8

Correlations Among Fear, Disgust, and Dislike

Fear
.434 Dislike
.747 .410 Disgust
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for by its intersection with Fear. The finding that Dislike strongly includes
Fear and Disgust is supported by their scatterplots in Figure 5.2.

Even though Dislike subsumes most of Fear and Disgust, is the union of
Fear and Disgust sufficient to include most of Dislike? The average mem-
bership in Fear∪Disgust turns out to be .266, which is less than half the
size of Dislike (.563). In fact, the average membership in the intersection
(Fear∪Disgust)∩Dislike is .263, so Dislike includes 100(.263/.266) =
98.7% of Fear∪Disgust. These findings indicate that Dislike is a much
broader category than the union of Fear and Disgust. Even in this quick
exploration of intersections and unions, we have gone far beyond anything
that correlation or regression could tell us.

5.4.2 Inclusion Coefficients

We now turn to inclusion coefficients as a way of quantifying the degree
to which one set includes another. The simplest index of inclusion is just
the proportion of cases satisfying the mA(x) ≥ mB(x) rule, the “Classical
Inclusion Ratio” presented in Chapter 2. While attractive for its simplicity,
its main limitation is that a “near miss” is counted as strongly as a drastic
counterexample. We present two coefficients that overcome this limitation,
namely, the “Inclusion 1” and “Inclusion 5” indexes discussed in Smithson
(1994). The first inclusion index is defined by

IAB is the proportion of Set B in the intersection of Sets A and B (Sanchez,
1979). It is clearly based on fuzzy set-theoretic concepts. We already used
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TABLE 5.9

Mean Membership of Fear, Disgust, Dislike, and Their Intersections

Mean Membership

Fear Dislike Disgust

Fear 0.231
Dislike 0.229 0.563
Disgust 0.181 0.214 0.215

Intersection Proportions

Fear 0.407 0.842
0.991 Dislike 0.995
0.784 0.380 Disgust

IAB =
∑

mA∪B(xi)
/ ∑

mB(xi). [5.3]
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Figure 5.2 Scatterplots of Disgust × Dislike and Fear × Dislike
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this coefficient in Table 5.9, where we discussed the proportion of one set
accounted for by its intersection with another.

There is an important link between the JCDF and local inclusion
approach from the previous section and IAB. Summing the JCDF values
along the diagonal path in Table 5.4 and dividing by the number of cells
gives (26 + 49 + 86 + 187 + 251 + 297)/6 = 149.333. This is the cardi-
nality of the intersection between the Seek and Not Avoid sets, if we are
willing to regard the membership scale as taking values of k/K, for k = 0,
1, 2, . . . , K, where K is the number of nonzero membership levels. Sum-
ming the column CDF and dividing that by 6 yields (28 + 53 + 96 + 203
+ 261 + 305)/6 = 157.667, the size of the Seek set. So the inclusion index
IAB = 149.333/157.667 = .947, and it may be thought of as the sum of the
JCDF along the path divided by the sum of the CDF of the included set if
we are willing to regard the membership values as taking values of k/K,
where K is the number of cells in the path. This argument was the basis for
choosing to test a constant inclusion model with a rate of .947.

The “Inclusion 5” coefficient is defined by

CAB is the proportion of deviations from equality between mA(x) and
mB(x) that are in the appropriate direction. It is actually a generalization of
the proportion of observations with unequal membership obeying the strict
inequality mA(x) > mB(x).

Which of these indexes is preferable depends on the researcher’s goals.
To start with, cases of 0-valued membership for either set do not affect the
value of IAB, but they do affect CAB. Second, cases where mA(xi) = mB(xi)
do not affect CAB, but do affect IAB. Third, CAB = 1 – CBA but this does not
hold for IAB. Finally, neither coefficient is defined casewise, an attractive
property for estimation purposes (Smithson, 1987, 1994 review others
that are).

As with any coefficient designed to measure a particular kind of rela-
tionship and no other, inclusion coefficients have their limitations. First,
neither of the inclusion coefficients tells us whether independence holds.
Additionally, as mentioned previously, they are strongly influenced by the
marginal distributions; an inclusion index that is free of the margins in the
same way that the odds ratio is for 2 × 2 tables would be highly useful.
Table 5.10 shows inclusion coefficients for the four tables in Table 5.2.
For the independence example (the first table in Table 5.2), IAB = .914 and
CAB = .962, both of which appear impressive unless we know about
independence.
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CAB =
∑

max(0, mA(xi) − mB(xi))∑ |mA(xi) − mB(xi)| . [5.4]
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