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Chapter 2

SIMPLE RANDOM SAMPLING

Simple random sampling (SRS) provides a natural starting point for a 
 discussion of probability sampling methods, not because it is widely used, 
because it is not, but because it is the simplest method, and it underlies 
many of the more complex methods. As a prelude to defining SRS, we will 
introduce the notation that the sample size is denoted by n and the finite 
population size by N. Then, formally defined, SRS is a sampling scheme 
with the property that any of the possible subsets of n distinct elements 
from the population of N elements is equally likely to be the chosen sample. 
This definition implies that every element in the population has the same 
probability of being selected for the sample, but the definition is more 
stringent than this. As we will see later, more complex sampling methods 
are also often equal probability selection methods (epsem). However, with 
such designs, the probabilities of all subsets of the sampled elements of a 
given size being selected are not all equal, as they are with SRS.

We will illustrate SRS by means of an example. Suppose that a survey is 
to be conducted in a high school to find out about the students’ leisure 
habits. A list of the school’s 1872 students is available, with the list being 
ordered by the students’ identification numbers. These numbers range from 
0001 to 1917, with a few gaps in the sequence occurring because some of 
the students with allocated numbers have since left the school (i.e., they are 
blanks on the sampling frame). Suppose that an SRS of n  = 250 is required 
for the survey. (The choice of n is discussed in Chapter 13.)

One way to draw the required SRS would be by a lottery method. Each 
student’s name or identification number is recorded on one of a set of 1872 
identical discs. The discs are placed in an urn, they are thoroughly mixed, 
and then 250 of them are selected haphazardly. If these operations were 
executed perfectly, the selected discs would constitute an SRS of 250 
 students. Although conceptually simple, this method is cumbersome to 
execute, and it depends on the questionable assumption that the discs have 
been thoroughly mixed; consequently, it is not used in practice.

Another way of selecting the SRS is by means of a table of random 
 numbers. These tables have been carefully constructed and tested to ensure 
that in the long run, each digit, each pair of digits, and so on, appears with 
the same frequency. The volume by RAND (2001) reproduces a widely 
used random number table that contains a million random digits (originally 
produced in 1947) and describes how the digits were obtained using Monte 
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Carlo methods and the various statistical tests that were performed to 
check on any departures from randomness. Table 2.1 presents an extract 
from another table of random numbers, one produced by Kendall and 
Smith (1939).

Since the student identification numbers comprise four digits, we need to 
select the random numbers in sets of four. In practice, one should start at 
some casually chosen point in the table, but here for simplicity, we will start 
at the top left-hand corner. We will then proceed down the first set of four 
columns, down the second set of four columns, and so on. Numbers outside 
the range of the student numbers (0001−1917), and numbers within the 
range but not associated with a current student, are ignored. Since the first 
four numbers in the table (6728, 8586, 4010, and 9455) do not yield selec-
tions, the first student selected is 1163 (provided this student is still at the 
school). Continuing through the table, the only other selections from this 
part of the table are 0588 and 0385. It is already clear that the selection of 
250 students in this way is a tedious task, requiring a large selection of 
random numbers, most of which are nonproductive.

The rejection of so many random numbers can be avoided by associating 
each student with several random numbers instead of just one; provided 
that all the students are associated with the same number of random num-
bers, the sample remains an SRS. Here each student could be associated 
with 5 four-digit random numbers. A simple scheme is to associate student 
0001 also with 2001, 4001, 6001, and 8001; student 0002 also with 2002, 
4002, 6002, 8002; and so on through student 1917, who is associated also 
with 3917, 5917, 7917, and 9917. Then, again starting at the top left-hand 
corner of the table, the selected students are 6728, i.e., student 0728; 8586, 
i.e., student 0586; 4010, i.e., student 0010; 9455, i.e., student 1455; 1163, 
i.e., student 1163; and so on.

These days, random number tables have been largely replaced by 
 computer-generated random numbers. The tables can still sometimes be 

Table 2.1 Random Sampling Numbers

67 28 96 25 68 36 24 72 03 85 49 24

85 86 94 78 32 59 51 82 86 43 73 84

40 10 60 09 05 88 78 44 63 13 58 25

94 55 89 48 90 80 77 80 26 89 87 44

11 63 77 77 23 20 33 62 62 19 29 03

SOURCE: Kendall, M. G. and B. B. Smith, Tables of Random Sampling Numbers. Copyright © 
1939 by Cambridge University Press.
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useful when the list frame is not computerized but, with computerized lists, 
the use of a random number generator program makes the selection of a 
random sample less onerous. There are many random-number generators 
available, none of which produces truly random numbers, but their pseudo-
random numbers are generally adequate for the purpose (although well 
tested, tables of random numbers are also not perfect). One form of random- 
number generator creates random numbers from 0 up to, but less than, 1. In 
this case, one way of selecting a simple random sample is as follows: using 
the random generator program, assign a different random number to each 
element in the population, order the population elements by the values of 
their random numbers, and select the first n elements in the reordered list 
as the sample.

In drawing the sample using one version of the lottery method or using 
a table of random numbers, an element could be selected more than 
once. However, this possibility does not exist with the random-number 
generation method. With the lottery method, there is a choice of whether 
or not to replace the disc of an element selected at one draw before the 
next draw is made. If the disc is not replaced once selected, each element 
can be selected only once. However, if at each draw the selected disc 
were replaced in the urn before the next selection is made, elements 
could be selected more than once. A sample of n discs must contain n 
distinct elements if sampling is carried out without replacement, but the 
sample may contain fewer than n distinct elements if the sample is drawn 
with replacement. When the sampling procedures described here are 
conducted with replacement, the sampling method is known as unre-
stricted random sampling or SRS with replacement. When they are 
conducted without replacement, the method is known just as simple 
random sampling or SRS without replacement. Since sampling without 
replacement gives more precise estimators than sampling with replace-
ment, we will  concentrate on the without- replacement method.

Having selected the SRS of 250 students, we will now assume that the 
data have been collected from all those sampled (issues of nonresponse are 
taken up in Chapter 9). The next step is to summarize the individual 
responses in various ways to provide estimates of characteristics of interest 
for the population, for instance, the average number of hours of television 
viewing per day and the proportion of students currently reading a novel. 
At this point, we need to introduce some notation. Following a common 
convention in the survey sampling literature, capital letters are used for 
population values and parameters, and lowercase letters for sample values 
and estimators. Thus Y1, Y2, Y3, ..., YN denote the values of the variable y 
(e.g., hours of television viewing) for the N elements in the population, and 
y1, y2, y3, ..., yn denote the values for the n sampled elements. In general, 
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the value of variable y for the i-th element in the population is Yi (i =1, 2,..., N)  
and that for the i-th element in the sample is yi (i =1, 2,..., n). The population 
mean of the y-variable is given by

∑=
=

Y
N

Y1 ,i
i

N

1

and the sample mean by

∑=
=

y
n

y1 .i
i

n

1

The element variances of the y-variable in the population and in the 
sample are generally defined in the survey sampling literature as

∑=
−

−
=

S
N

Y Y1
1

( ) ,i
i

N
2 2

1

and

∑=
−

−
=

s
n

y y1
1

( ) .i
i

n
2 2

1

Sometimes, however, the population element variance is defined with  
a denominator of N rather than (N – 1), in which case it is denoted by

∑σ = −
=N

Y Y1 ( ) ,i
i

N
2 2

1

that is, σ −N S N= ( 1) /2 2 .
Suppose that we wish to use the data collected in the survey to estimate 

the mean number of hours of television viewing per day for all students in 
the school, Y . This raises the question: How good is the sample mean y  as 
an estimator of Y ? This question is unanswerable for a specific estimate y 
from a particular sample; instead, reliance has to be placed on the properties 
of the estimator on average over repeated applications of the sampling 
method. Observe here that the term estimate is used for a specific value, 
while estimator is used for the rule of procedure used for obtaining the 
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estimate. In the present example, an estimate of the average number of hours 
of television viewing may be computed by substituting the values obtained 
from the sampled students in the estimator y y n/ ,i= Σ  say y 2.192=  hours. 
The theory behind design-based inference provides a means of evaluating 
estimators but not estimates. The following paragraphs briefly review the 
design-based theory of statistical inference in the context of SRS.

The design-based properties of sample estimators are derived for a 
given sample design and form of the estimator. In the present example, 
suppose that the operations of drawing an SRS of 250 students from the 
1872 students and then calculating the sample mean for each sample were 
carried out an infinite number of times (replacing each sample in the 
population before drawing the next sample). The resulting set of sample 
means would have a distribution, known as the sampling distribution of 
the mean. With an SRS sample design, statistical theory shows that the 
mean of the sampling distribution of the sample mean is the population 
mean, Y . In general, if the mean of the individual sample estimates over 
an infinite number of samples of the given design equals the population 
parameter being estimated, then the estimator is said to be an unbiased 
estimator of that parameter. Thus, in the case of an SRS, y  is an unbiased 
estimator of Y . Statistical theory also shows that the sampling distribution 
of the  sample mean from a SRS closely approximates the normal distribu-
tion,  provided that the sample size is not too small (an n of 10 or 20 is 
often sufficient).

Although the sampling distribution of y  is centered on Y , any one esti-
mate will differ from Y ; hence, a measure of the variability of the individual 
estimates around Y  is needed. A common measure of variability is the 
standard deviation, the square root of the variance. In this case, the required 
standard deviation is that of the sample means in the sampling distribution. 
To avoid confusion with the standard deviation of the element values, 
standard deviations of sampling distributions are known as standard errors. 
We denote the sample mean of an SRS by y0 (with the subscript 0 to indi-
cate SRS), its standard error by SE y( ),0  and the square of the standard 
error, the variance of y ,0  by V y( ).0  For convenience, most sampling error 
formulas will be presented in terms of variances rather than standard errors. 
From sampling theory, the variance of a sample mean from an SRS of size 
n is given by

σ= −
−







V y N n
N n

( )
1

,0

2

or equivalently, and more conveniently, by
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 = −





= −V y N n
N

S
n

f S
n

( ) (1 ) ,0

2 2
 (2.1)

where f n N= /  is the sampling fraction.
These formulas show that V y( )0  depends on three factors:

• − −N n N( )/( 1) or f(1 ),−  either of which is called the finite 
 population correction (fpc)—there is a negligible difference between 
these terms when N is large;

• n, the sample size; and

• S 2 or σ 2, the alternative versions of the element variance of the  
y-values in the population.

The fpc term reflects the fact that sampling is conducted without replace-
ment and that the survey population is finite in size, unlike the infinite 
populations assumed in standard statistical theory. When sampling is con-
ducted with replacement or with an infinite population, there would be no 
fpc term, in which case Equation (2.1) reduces to the familiar form found 
in statistical texts, V y n( ) / .2σ=  The fpc term indicates the gains of sam-
pling without replacement over sampling with replacement. For samples of 
size 2 or greater, the fpc term is less than 1, which indicates that y0 calcu-
lated from an SRS is more precise—that is, has a smaller variance—than  
y calculated from an unrestricted sample of the same size. In many practi-
cal situations, populations are large and, even though the samples may also 
be large, the sampling fractions are small. In such situations, the difference 
between sampling with and without replacement is unimportant because, 
even if the sample were drawn with replacement, there would be little 
chance that an element would be selected more than once. This argument 
can also be expressed in terms of the fpc term. If the sampling fraction ( f  ) 
is say 1/10, the fpc term is 0.9, and its effect on the standard error is as  
a multiplier − =f1 0.95; if f 1/ 20,=  − =f(1 ) 0.95, and − =f1 0.97. 
Thus, if the sampling fraction is small, the fpc term is close to 1, and it has 
a  negligible effect on the standard error. The fpc term is often neglected 
(i.e., treated as 1) when the sampling fraction is less than 1 in 20, or even 
less than 1 in 10.

The second factor in the formula for V y( )0  is the sample size, n. As is 
intuitively obvious, the larger the sample, the smaller is V y( ).0  What is 
perhaps less obvious is the fact that, for large populations, it is the sample 
size rather than the sampling fraction that is dominant in determining the 
precision of survey results. As a consequence, estimates obtained from a 
sample of size 2000 drawn from a country with a population of 300 million 

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute
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are about as precise as those obtained from a sample of the same size drawn 
from a small city of 40,000 (assuming the element variances in the two 
populations are the same). It also follows from this line of argument that the 
gains from sampling are greatest with large populations. Indeed, for very 
small populations, the gains from sampling may not be worthwhile, even 
though the fpc term has an appreciable effect in such cases. For example, it 
may be more convenient to take all students in a school of 200, rather than 
sample 175 of them.

The third factor in the formula for V y( )0  is the element variance of the 
y-values in the population, either σ 2 or S .2  Clearly, if all the students watch 
approximately the same amount of television, the mean of any sample will 
be close to the population mean. However, if the students differ greatly in 
their viewing habits, there is a risk that the sample mean will differ  
considerably from the population mean. Note that σ 2 and S 2 are unknown 
population parameters. An estimate of the population element variance is 
needed to estimate V y( )0 . The advantage of using Equation (2.1)  
for V y( ),0  expressed in terms of S ,2  is that the familiar sample estimator 
s y y n( ) /( 1)i

2 2= Σ − −  is an unbiased estimator for S 2 (but not for σ 2). 
Thus V y( )0  and SE y( )0  may be simply estimated by

 v y f s n( ) (1 ) /0
2= −  (2.2)

and

 = −se y f s n( ) (1 ) / ,0
2  (2.3)

with lowercase letters for v y( )0  and se y( )0  to indicate sample estimators.
Having estimated the standard error, a confidence interval can be cal-

culated for the population mean. With a large SRS sample, the sampling 
error arising from replacing S 2  by s2 can be ignored. Then the 95% con-
fidence interval for Y  is ±y se y1.96 ( ),0 0  where the multiplier 1.96  
is taken from a table of the normal distribution (95% of the normal dis-
tribution falls within 1.96 standard deviations around the distribution’s 
mean). As an illustration, suppose that the mean hours watching televi-
sion per day for the 250 sampled students is =y 2.1920  hours, with an 
element variance of =s 1.008.2  A 95% confidence interval for Y  is then 
given by

± −





= ±2.192 1.96 1 250
1872

1.008
250

2.192 0.116.
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That is, we are 95% confident that the interval from 2.076 to 2.308 contains 
the population mean.

The use of the normal distribution for calculating confidence intervals  
applies for large samples in which the sample element variance s2   
estimates the population element variance S 2 with high precision. When the 
sample size is less than, say, 30, the normal distribution should be replaced 
by Student’s t distribution, thus widening the interval to take account of the 
sampling error in s2 (see, for example, Dietz & Kalof, 2009).

The proportion (or percentage) of the population with a particular attrib-
ute, for instance the proportion of students currently reading a novel, is a 
parameter of common analytic interest. Results for a proportion follow 
directly from those for a mean, since a proportion is just a special case of a 
mean that is obtained by setting =Y 1i  if the i-th element has the attribute 
and Y = 0i  if not. Then Y Y N= /iΣ  is simply P, the population proportion 
with the attribute, and the sample mean y is the sample proportion p.  
Thus, in general, the theoretical results obtained for a sample mean apply 
also for a proportion. In the case of SRS, since y0 is unbiased for Y , it fol-
lows that p0 is unbiased for P. The standard error and variance formulas 
given above for y0 can also be applied to p .0  However, since the  
y-variable takes values of only 0 or 1 for a proportion, the formulas for  
S 2 and s2  can be simplified to −NPQ N/( 1) and np q n/( 1),0 0 −  respectively, 
where −Q P= 1  and −q p= 1 .0 0  Using these simplifications,

 = −
−

V p f
NPQ

N n
( ) (1 )

( 1)0  (2.4)

and

 = −
−

v p f
p q

n
( ) (1 )

( 1)
.0

0 0  (2.5)

If the fpc term can be neglected, and if n is large, v p( )0  reduces as an 
approximation to the well-known formula p q n/ .0 0  These formulas also 
apply with P  and p0 expressed as percentages, with the modifications that 
Q P= 100 −  and −q p=100 .0 0

As an illustration, suppose that 165 of the 250 sampled students were 
reading a novel, i.e., =p 66.0%.0  Using the same approach as for the 
 sample mean, a 95% confidence interval for P  is then

± −





× = ±66.0 1.96 1 250
1872

66.0 34.0
249

66.0% 5.5%,
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that is, we are 95% confident that the interval 60.5% to 71.5% contains the 
population percentage.

Although widely used, this form of confidence interval for a  proportion―
known as a Wald interval―has the limitation that the standard error esti-
mate for a sample proportion is a function of that proportion. As a result, 
the coverage properties of the Wald interval can be seriously in error when 
the proportion is outside the middle of the range from 0 to 1. A number of 
alternative forms of the confidence interval for a proportion have been 
proposed in an attempt to address this problem (see Brown, Cai, & 
 DasGupta, 2001; Dean & Pagano, 2015; and Franco, Little, Louis, & Slud, 
2019, for evaluations of some alternatives). In this book, we apply the Wald 
interval, although in practice, the Wilson interval may better reflect the 
coverage properties of the interval when the proportion is ≤ 0.2 or ≥ 0.8.

The preceding discussion reviews the steps involved in estimating a 
population mean or proportion from an SRS and calculating an associated 
confidence interval. The same approach can also be used for the estimation 
of other population parameters. The only feature that distinguishes design-
based inference with an SRS sample from model-based inference is the 
inclusion of the fpc term, which can often be ignored. However, as shown 
in later chapters, model-based formulas should not be used to produce 
design-based inferences with other sample designs.
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