
1

Introduction

T his chapter takes a look back at systems analysis and design as a discipline
that emerged primarily from another related discipline, computer science.
It is argued here that systems analysis and design’s origins led to the current

orientation in university circles toward in-house automation as an approach to
organizational improvement using information systems. This, in turn, led to a
corresponding neglect of business process redesign and other alternatives, such as
customization of off-the-shelf packages and business process outsourcing. This
chapter calls for a change in the practice and teaching of systems analysis and
design—a call that this book aims at answering.

Even though computers have been around since the 1940s, the birth of computer
science as an independent discipline dates back only to the 1960s. The foundations
of this new discipline came from the related fields of mathematics and electrical
engineering. Mathematics was the source of one of the key ideas that led to the
development of the computer, which is that data can be represented in a binary way
by sequences of zeroes and ones (called bits). Electrical engineering provided the
basic technologies necessary to support the development of electronic devices and
circuits that would store and operate on bits.

In the years that followed its emergence as an independent discipline, computer
science was primarily concerned with the development and teaching of ideas
aimed at the solution of early problems associated with large computers, called
mainframes. With the increasing use of mainframes in organizations, one of the key
problems at the time was the reduction of the cost of using mainframes. One
solution was to allow more than one user to exploit a mainframe’s computing
power and storage resources at the same time. Another was to make it easier for
users to provide sequences of instructions to be executed by mainframes. This

Computer Science as a New Discipline

CHAPTER 1

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 1

context provided the impetus for the development of a variety of operating systems
and programming languages.

Many subdisciplines have sprung up from the computer science discipline.
Those subdisciplines specialized in certain areas such as operating systems, com-
puter programming, computer architectures, artificial intelligence, database design,
computer networking, language processing, and data encryption—just to name a
few, some with broader scopes than others. The many developments in connection
with computer programming are particularly relevant for our understanding of the
emergence and current state of the discipline of systems analysis and design.

In the absence of higher-level programming languages, early computer pro-
grammers had to write instructions for the execution of computer-based tasks
using what is known as “machine language.” This fundamentally numeric language
can be understood and executed directly by a computer, without the need for any
conversion or translation. However, machine language is difficult for humans to
use. It consists of sequences of zeroes and ones representing operation codes and
computer memory addresses.

Because of the difficulties associated with the use of machine language, assem-
bly language was devised to provide computer programmers with slightly greater
convenience. Assembly language enabled computer programmers to express
machine language instructions in alphabetic symbols, also called mnemonic codes
(e.g., AD, SUB, OR), instead of sequences of bits. Assembly language was easier to
use than machine language but still far removed from the way humans normally
communicate with each other.

Machine and assembly languages are often referred to, respectively, as first- and
second-generation computer languages. The birth of third-generation computer
languages begins with FORTRAN (a name that stands for Formula Translation),
which many believe to have been invented in 1956. FORTRAN was developed
mainly to be used by scientists and mathematicians, and its notation was similar to
mathematical notations. This presented some difficulty for it to be used in com-
mercial applications, which in turn led to the development a few years later (in
about 1960) of another programming language, known as COBOL (an acronym
that stands for Common Business-Oriented Language). Later, yet other program-
ming languages were developed, some more user-friendly than others, including
the widely popular BASIC (Beginner’s All-Purpose Symbolic Instruction Code), as
well as the also popular Pascal and C programming languages.

As the use of programming languages increased, so did the complexity of
programming projects. This ushered a new discipline into existence, generally
called software engineering. This new discipline was primarily concerned with tools
and techniques aimed at improving productivity and quality in large computer
programming projects. In the late 1970s, Tom DeMarco, one of the pioneers in the
fields of software engineering and systems analysis and design, wrote a seminal
book in which he argued in favor of structured methods for software development.
The methods proposed by DeMarco included several ideas on how to effectively
document the systems development process so that the correction of software
errors (a.k.a. bugs) could be accomplished in a timely and cost-effective way.

2——SYSTEMS ANALYSIS AND DESIGN FUNDAMENTALS

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 2

DeMarco’s ideas found a willing audience since it was clear then that most
computer systems ended up having many bugs when they were finally delivered to
the users. That was particularly true for large computer systems. The correction of
those bugs was seen as a part of what became known as maintenance costs of com-
puter systems. Maintenance costs have always been quite high, sometimes as high
as 80% or more of all of the computer systems development costs.

In the 1980s, a new set of computer tools emerged to automate key tasks associ-
ated with programming projects, which tended to reduce maintenance costs by
reducing the need to develop computer code. Those tools were generally referred to
as CASE (computer-aided software engineering) tools.

The Origins of Systems Analysis and Design

J. Daniel Couger authored a seminal article in 1973 that discussed the origins of
systems analysis and design. The article was titled “Evolution of Business System
Analysis Techniques” and was published in the journal Computing Surveys. According
to Couger, the origins of systems analysis and design date back to the 1900s, when
Frederick Taylor developed techniques for business process flow analysis. However,
Couger also recognized that Taylor’s techniques placed emphasis on the flow of
materials through business process, a general trend that persisted until the 1950s,
when techniques aimed at the analysis of business processes and related design of
computer-based systems to automate those processes began to appear.

Other authors argue that the origins of systems analysis and design are more
recent, and rooted in the need to cope with computer system complexity. The argu-
ment goes more or less like this. As computer programs have become more com-
plex, so has the realization that advanced specification, careful planning, and the
generation of related documentation were “necessary evils” to ensure the success of
complex computer systems development projects. And so systems analysis and
design was born, at least as we know it today. That is, systems analysis and design
emerged from the need to perform certain activities around, and particularly prior
to, the steps involved in developing a computer system using software engineering
tools and techniques.

Why refer to tasks such as advanced specification, careful planning, and the
generation of related documentation as “necessary evils”? The reason is how those
activities are likely to be perceived by people who write computer code for a
living—something that many of the early software engineers did, day in and day
out. From a computer programmer’s point of view, those tasks are, well, fairly bor-
ing. Many of those who have been full-time computer programmers for a few years
view computer programming as a fun, albeit somewhat solitary, activity. It is safe to
say that most programmers prefer to start programming right away when a busi-
ness process–related problem is posed to them. Specification, planning, and docu-
mentation are not nearly as fun as computer programming, at least not in the eyes
of the people who ultimately develop software.

Introduction——3

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 3

One of the key reasons why preparatory tasks such as specification, planning,
and documentation became very important in complex software development
projects was the recognition that the cost of fixing mistakes increases sharply as a
project moves from preparatory tasks to system implementation and operation
(or use). This is illustrated in Figure 1.1, where the relationship between the cost of
fixing mistakes and the stage of a computer system development project is shown
as being an exponential relationship. Most of the traditional literature on systems
analysis and design is consistent with this depiction of the relationship.

Figure 1.1 also suggests that for the majority of systems development projects,
particularly the ones where not a lot of emphasis is placed on pre-programming
activities, most of the costs tend to be associated with fixing problems in the sys-
tems after they are being used. That is, most of the costs tend to be maintenance
costs that are incurred after the system is under operation.

The above conclusion is consistent with a notion that has often been called by
software developers the “software crisis,” which many argue persists to this day. The
idea behind the software crisis is that the quality of most of the computer systems
developed is way below what it could be if proper precautions were taken. However,
it has been difficult to identify exactly what can be done to provide a solution to the
crisis. One of those who pointed out the existence of a software crisis in a high-
profile manner was Roger Pressman, a software engineering and systems analysis
and design pioneer and author of the seminal book Software Engineering: A
Practitioner’s Approach.

The software crisis is characterized by a few key statistics that stand out among
others. Only about a third of all system development projects are considered

4——SYSTEMS ANALYSIS AND DESIGN FUNDAMENTALS

Figure 1.1 Costs of Fixing Bugs at Different System Development Stages

PlanningSpecification Programming Operation

System Development Stage

C
o

st
 o

f
F

ix
in

g
 M

is
ta

ke
s

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 4

successful by the users of the system. Only about half of all the system functions
incorporated during development are utilized by the final users of the system;
examples of system functions would be a file encryption option of an accounting
system and a charting feature of a sales forecasting system. More than two thirds of
all system development costs are maintenance costs; that is, those costs are associ-
ated with fixing problems in systems that are already under operation.

The Software Development Life Cycle Model

Early ideas in connection with systems analysis and design led to the development
of the waterfall model of systems development, which is also known as the software
development life cycle model. It is called the “waterfall” model because its graphi-
cal representation reminded its developers of a waterfall. Some may say that this is
a little bit of a stretch, but with some effort, one can indeed see some similarity with
a waterfall (see Figure 1.2). While sometimes depicted in different ways by different
authors, it can be generally seen as comprising the following main steps: require-
ments definition; analysis; design; specification; database analysis; database design
and specification; coding, testing, and implementation; and operation and mainte-
nance. Table 1.1 shows a brief description of each of these steps.

Introduction——5

Database
analysis

Specification

Design

Analysis

Requirements
definition

Coding, testing, and
implementation

Database design and
specification

Operation and
maintenance

Figure 1.2 The Waterfall, or Software Development Life Cycle, Model

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 5

As it can be seen in Table 1.1, the software development life cycle model of
systems analysis and design is aimed at automating business processes. So much so
that it starts with the generation of a textual description of a business process and
related problems. The automation through a computer program is aimed at solv-
ing the problems identified and associated with the business process in question.
However, the software development life cycle model does not address the issue of
business process redesign—an omission that has led to criticism from systems
analysts and information technology managers. The problem with this lack of
concern with business process redesign is that often computer systems end up being
used to automate disorganized and inefficient business processes, something that

6——SYSTEMS ANALYSIS AND DESIGN FUNDAMENTALS

Table 1.1 Software Development Life Cycle Steps

Step

Requirements
definition

Analysis

Design

Specification

Database analysis

Database design and
specification

Coding, testing, and
implementation

Operation and
maintenance

Brief Description

Interviews are conducted, and a textual description of a business process and
related problems are generated.

The business process is graphically represented through data flow diagrams.
Data flow diagrams are standardized representations of the flow of data in a
business process.

A computer program depiction called a structured chart is developed.
Structured charts are standardized representations of the flow of data
between computer program modules.

A high-level specification of the computer program modules, using structured
English, is developed. Structured English is a midpoint representation that
looks like a computer program, but without all the details that a computer
program must have to be understood by a computer program compiler
or interpreter (e.g., program lines do not have to end with a specific
symbol such as the “;” used to signal the end of a line of code in the
C programming language).

Entity-relationship diagrams are developed. Entity-relationship diagrams
represent the different structured files in a database and their relationships
with each other.

Database files (also called tables) are designed and specified, which essentially
means that the structure of the tables, the names of their fields, and the data
types of those fields (e.g., numeric, date) are specified in detail. Also in this
step, the data tables are normalized—a task whereby duplication of data in
different files of the database is minimized.

The computer program is finally implemented, often using computer-aided
software engineering tools and/or computer programming environments.

The computer system is used, and errors in the system are corrected. Also in
this step, new features are added to the computer system due to business
process–related changes brought about by new market demands.

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 6

could be reasonably avoided if a business process redesign step were incorporated
into the software development life cycle. This theme will be picked up later in this
chapter and also in other chapters of this book.

The software development life cycle description provided in Table 1.1 is some-
what database oriented. That is, it assumes that the computer program generated
will be used primarily to maintain a database. This is why the steps that follow the
“specification” step are called “database analysis” and “database design and specifi-
cation.” The reason for this focus on databases is that most commercial systems fol-
low it. On the other hand, this does not mean that all projects conducted according
to the software development life cycle will be database oriented. So, there may be
variations in the software development life cycle from project to project.

Also, certain steps of the software development life cycle, as described in Table 1.1,
are somewhat dated. Good examples are the “design” step, which has traditionally
employed structured charts; and the “specification” step, which has traditionally
made use of structured English. Structured charts usually show how computer
program modules relate to each other. Structured English is a computer program
specification that uses English, looks a lot like the Pascal programming language,
and is produced as an intermediate step before software coding. Systems analysts have
traditionally utilized the design and specification steps to communicate to computer
programmers some of the details of a computer system, as far as its code is concerned,
without the systems analysts having to actually write any computer code.

The design and specification steps of the software development life cycle lost
much of their usefulness to systems analysts and computer programmers as a result
of the development of computer-aided software engineering tools. Those tools gen-
erate computer programs automatically, and often transparently, based on higher-
level representation of the computer system. That is, when using computer-aided
software engineering tools, the computer programmer may never even see the
underlying computer program, as he or she may design the system by manipulat-
ing only high-level elements such as icons and diagrams.

Computer-aided software engineering tools have been evolving over the years,
leading to what some refer to as computer-aided systems engineering tools. Often,
the same acronym, namely CASE, is used for both types of tools. This may lead to
some confusion because computer-aided systems engineering tools tend to support
substantially more systems analysis and design steps than computer-aided software
engineering tools. For example, computer-aided systems engineering tools may
incorporate project management features such as visualization and tracking of sys-
tems analysis and design tasks through Gantt charts. Such charts allow a project to
be depicted as a series of interrelated tasks, which are usually shown on the chart as
horizontal bars.

The waterfall, or software development life cycle, model was developed based on
early and pioneering ideas in connection with systems analysis and design. Later, an
alternative to the software development life cycle model was proposed. That alter-
native model became generally known as object-oriented analysis and design,
which followed in the footsteps of the highly popular notion of object-oriented
programming.

Introduction——7

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 7

Object-oriented programming is a generic term used to refer to computer
software development approaches in which computer program modules are devel-
oped as part of what are known as software objects. The central component of a
software object is its data definition, which usually includes a set of variables.
A distinctive characteristic of object-oriented programming is that only special
program modules can modify the content of the variables that make up a software
object. Those program modules share one special characteristic, which is that they
are part of the software object whose variables they can modify. A widely popular
object-oriented programming language is C++, which itself is an adaptation for the
also popular structured programming language C.

Apparently due to the success of object-oriented programming, the 1990s saw
the emergence of object-oriented analysis and design as a widely touted approach
for business process analysis, as well as computer systems design and specifi-
cation. Object-oriented analysis and design (discussed in more detail later in
this book) has apparently been presented as an approach that allows computer
systems developers to move swiftly from analysis and design to coding using
object-oriented programming techniques. And it seems that object-oriented analy-
sis and design has been reasonably triumphant in connection with that arguably
narrow goal. However, unlike its object-oriented programming cousin, object-
oriented analysis and design has been only modestly successful from a more
general perspective.

The Industry–University Gap

Mathematicians, engineers, and computer scientists have been a key force behind
the technological achievements from the development of the first modern com-
puter to the emergence of the Internet. And those technological developments have
deeply affected organizations, large and small, for profit and not. This has led to the
view that organizations need mathematicians, engineers, and computer scientists
to run their information technology operations. This view is also reflected in how
universities have designed their information technology courses and academic
program offerings over the years.

As discussed before in this chapter, systems analysis and design emerged within
the context above as an attempt to bring organization and planning to the craft of
computer systems development. As such, systems analysis and design has often
been seen as a management-oriented discipline inserted into computer science
programs. And, since computer science programs have tended to be more technol-
ogy oriented than business oriented, it has been a natural consequence that the
initial emphasis of systems analysis and design has been on the application of
computing technologies to automate business processes.

Moreover, the association with computer science programs has led many
systems analysis and design instructors, sometimes due to sheer pressure from
technophile students interested in learning how to build computer applications, to
place strong emphasis on the development of computer applications.

8——SYSTEMS ANALYSIS AND DESIGN FUNDAMENTALS

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 8

The above state of affairs has led to a number of problems, of which two are
particularly relevant for the arguments presented in this book, to some extent
because they have been exacerbated by universities and their difficulty adapting to
change driven by industry needs.

Among the problems mentioned, the first that comes to mind is that current
approaches to systems analysis and design, because of their inherited emphasis on
the application of computing technologies to automate business processes, do not
address the issue of business process redesign. The second problem is that the
strong emphasis on the development of computer applications in current systems
analysis and design has led many to be blindsided by what has become a reality in
the 1990s and 2000s. That reality is that the vast majority of information technology–
enabled projects are implemented through either customization of off-the-shelf
computer packages or business process outsourcing.

A good example of customization of off-the-shelf packages (i.e., software pack-
ages that can be purchased in a box or as part of an Internet download package) has
been the enterprise systems craze of the 1990s. Several Fortune 500 companies
purchased and installed large systems (e.g., SAP/R3) to automate many of their
activities in an integrated way. In many cases, the activities automated cut across the
entire supply chain of the company, going from order taking to product delivery.

Many information technology executives firmly believe in the following motto:
If you can buy a software solution, don’t even think about building it yourself.
There are exceptions to the rule of thumb implied by the motto, which will be
discussed later in this book. Nevertheless, it is pretty clear that the proliferation of
software development companies in the United States and around the world, par-
ticularly since the 1980s, almost guarantees that just about any software need has an
off-the-shelf software package developed to address it.

A good example of business process outsourcing is the hiring, again by several
Fortune 500 companies, of outside information technology service providers to
run help desk operations (e.g., support to office computer applications) for those
Fortune 500 companies. These providers of help desk support are sometimes
located in different countries and accessible through a toll-free number. Their
telephone support, in connection with generic applications such as word process-
ing and spreadsheets, is sometimes better than the support previously provided
internally by the companies that outsourced the support.

The advent of the Internet made it increasingly easier to implement business
process outsourcing in connection with a variety of support areas. For example,
many companies routinely outsource the hosting of their Web sites to other com-
panies, usually known as Internet service providers (or ISPs). Another example of
business process outsourcing enabled by the Internet is the farming out by several
companies of the software asset management process to specialized service providers,
which conduct regular software audits on the companies’ application servers
through the Internet. Software asset management is the business process whereby
companies keep track of their installed software applications and respective
licenses. This tracking is aimed at helping them avoid heavy fines in the event that
any of their installed software is pirated.

Introduction——9

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 9

The Need for a New Approach

Systems analysis and design is often seen as a course on how to design computing
solutions to business problems. Whether the problems are fictitious or not, this
emphasis on the development of computer applications is inconsistent with two
key realities. The first is that business process redesign should precede computer-
based automation; in fact, in some cases, only business process redesign, without
any computer-based automation, leads to significant productivity gains for organi-
zations. The second is that emphasizing computer application development, as
possibly the main component of systems analysis and design, creates a narrow
perception that is inconsistent with the reality that the vast majority of computer
technology–enabled projects are implemented through either customization of
off-the-shelf computer packages or business process outsourcing.

This book’s solution to the notorious difficulty in teaching systems analysis and
design is a simple one. It essentially entails teaching systems analysis and design
with an emphasis on business process redesign and with an eye on industry trends
and practical needs of organizations.

The above orientation is well aligned with the widespread adoption of enter-
prise systems since the 1990s. Those systems are often called “enterprise resource
planning,” or ERP, systems. The reason why the above orientation is well aligned
with the widespread adoption of enterprise systems is that it in fact addresses a key
problem almost always faced by organizations deploying those systems. Although
enterprise systems can lead to major gains in productivity, by integrating informa-
tion from different organization areas (e.g., sales, production, accounts receivable),
they often require that key organizational processes be redesigned before they are
deployed. Many examples exist in the business literature of organizations that have
spent millions of dollars implementing enterprise systems, only to see those imple-
mentations fail due to incompatibilities between the organizational processes and
the functionality provided by the enterprise systems.

The organizational revolution brought about by the advent of the Internet also
supports the view that systems analysis and design should be taught and practiced
with an emphasis on business process redesign. The Internet allows the streamlin-
ing of key business processes, such as order and production processes, so as to bring
the customer much closer to the organization. It also enables the dramatic reduc-
tion of traditional supply-chain costs and order-to-delivery times, as exemplified by
companies such as Dell and Amazon.com. However, those improvements can only
be realized when traditional business processes are redesigned to take advantage of
the new public information-sharing infrastructure provided by the Internet.

Summary and Concluding Remarks

This chapter looks at how systems analysis and design evolved as a discipline.
Such evolution is complex and arguably closely intertwined with the evolution of

10——SYSTEMS ANALYSIS AND DESIGN FUNDAMENTALS

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 10

computing. A key argument is put forth, namely that the evolution of systems
analysis and design led the discipline to inherit a preference toward business
process automation through in-house systems development as a way to improve
organizations through the use of information technology. This has arguably led to
a corresponding neglect of business process redesign and other alternatives, such as
customization of off-the-shelf packages and business process outsourcing. The
problem, as more and more organizations are finding out, is that those alternatives
are often preferable to business process automation through in-house systems
development.

This chapter resorts to some history to justify a key argument for a transformation
of systems analysis and design, which is perhaps long overdue. Essentially, the argu-
ment is that modern systems analysis and design should be practiced and taught with
an emphasis on business process redesign. This chapter calls for a related change in
the practice and teaching of systems analysis and design, a change for which this book
is presented as an initial answer, though a partial one that needs to be complemented
by broader initiatives. Among those broader initiatives are accreditation standards for
educational institutions, firms, and individuals selling systems analysis and design
training and services—a theme that is picked up later in this book.

The aforementioned discussion is seen as important for the purposes of this
book for two reasons. The first reason is that it gives the reader an overview of how
systems analysis and design has evolved, which provides the basis on which the
reader can understand how systems analysis and design is perceived by many today.
The second reason is that the discussion provides the basis on which the reader
can understand where the author is coming from, so to speak, which hopefully will
clarify from the outset why the book covers the topics that it does, and why it
covers those topics in the way that it does.

Review Questions

1. Computer science is not:
(a) An independent discipline that dates back to the 1960s.
(b) A discipline that emerged from the need to use assembly language.
(c) A discipline that is taught in universities.
(d) A discipline that encompasses several other important subdisciplines.

2. Systems analysis and design has:
(a) Traditionally placed little emphasis on business process redesign.
(b) Traditionally been hailed as the most exciting computer-related disci-

pline by students.
(c) Often been associated with the marketing discipline, particularly in

schools of business.
(d) Originated the discipline of object-oriented programming, through the

language C++.

Introduction——11

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 11

3. It is incorrect to say that the software development life cycle is:
(a) An approach to systems analysis and design.
(b) Seen as an abstraction resembling a waterfall-like structure.
(c) An object-oriented methodology.
(d) A byproduct of earlier ideas, including software engineering ideas.

4. Which of the following activities is not part of one of the steps in the tradi-
tional software development life cycle?
(a) Generating textual description of a business process and related

problems.
(b) Graphically representing a business process through data flow diagrams.
(c) Developing a high-level specification of the computer program modules,

using structured English.
(d) Developing a set of object-oriented representations of a business process.

5. It is incorrect to say that:
(a) Systems analysis and design has traditionally been seen as a software

development-oriented discipline.
(b) Object-oriented programming has been very successful.
(c) Systems analysis and design has traditionally placed little emphasis on

business process redesign.
(d) The software development life cycle disappeared in the 1990s.

Discussion Questions

1. Let’s assume that medical doctors developed systems analysis and design
primarily to address their professional needs. What would their version of systems
analysis and design look like? Illustrate your answer through the development of a
software development scenario where it is clear that the needs addressed are related
to the medical profession.

2. As mentioned earlier in this chapter, the software development life cycle
usually involves the design and specification of one or more databases. This implies
that databases are a fundamental component of most (if not all) computer systems.
Is this really the case today? Come up with a business software development
scenario that illustrates a possible project in which database design and specifica-
tion plays a minor role (if any). The scenario developed by you should be as
realistic as possible.

12——SYSTEMS ANALYSIS AND DESIGN FUNDAMENTALS

01-Kock-4943.qxd 6/3/2006 9:58 AM Page 12

