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Chapter 2

THE MATHEMATICS OF  
CORRELATION MATRICES

Numbers are basic mathematical elements. Most people have a good 
 intuition for what a number is. Seven is a number, as is −182.1. π (the ratio 
of a circle’s circumference to its diameter, approximately 3.14159) is also 
a number. There are different types of numbers, such as integer, rational, 
irrational, and real numbers. Algebra and more advanced number theory 
textbooks can be consulted to develop understanding of numbers.

Numbers have characteristics. For example, a number can be whole or a 
decimal. A number can be positive or negative, real or imaginary. The num-
ber 2 is even; the number 7 is prime. Integer numbers are either even or 
odd. Even integer numbers bigger than 2 cannot be prime. Knowing the 
characteristics of a number helps us better understand the number.

Matrices are mathematical elements, like numbers. Matrices are defined as 
a rectangular array of numbers (called “scalars” in matrix algebra) arranged 
into rows and columns. Several examples of a certain type of matrix— 
correlation matrices—have already been presented in Chapter 1. The scalars 
that compose the matrix rows and columns can be seen in those examples; 
for example, in Table 1.4 there are 25 scalars, each representing a correlation 
between variables that combine to define a 5 × 5 correlation matrix.

Like numbers, matrices also have characteristics. One characteristic of a 
matrix is its dimensions—how many rows and columns the matrix has. By 
convention, the number of rows is listed before the number of columns; a 
4 × 3 matrix is one that has four rows and three columns, for a total of  
4 × 3 = 12 scalar elements. Some matrices with special patterns of dimen-
sions have specific names. For example, a vector is a matrix that has either 
a single column or a single row; conceptually, the reader may imagine that 
the scalars are strung into a line horizontally (a “row  vector”) or vertically  
(a “column vector”). A square matrix is a matrix that has the same number 
of rows and columns; all correlation matrices are square matrices.

Each square matrix has a set of numbers associated with it called its 
eigenvalues that further characterize the matrix. Eigenvalues have different 
interpretations depending on the matrix (e.g., if it is a correlation matrix or 
some other type of matrix) and the field of study; they can be interpreted 
geometrically, whereby a matrix is related to an object in space, and they 
can be interpreted algebraically, whereby they relate to how the matrix 
changes when it is multiplied by itself many, many times. We will discuss 
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eigenvalues only as they relate to correlation matrices, as they tend to be 
used in social science data analysis.

To provide an example of eigenvalues, consider the correlation matrix shown 
in Table 1.2 of girls’ intelligence across development. The eigenvalues of this 
correlation matrix (there are 10, the same as the number of variables) are 7.63, 
0.64, 0.41, 0.38, 0.25, 0.22, 0.18, 0.12, 0.10, and 0.07. The correlation matrix 
describing racial composition of cities and their corresponding NBA teams 
(Table 1.5) has four eigenvalues: 2.18, 1.32, 0.49, and 0.01. Eigenvalues cannot 
be calculated from a single correlation, or a subset of the correlations in a cor-
relation matrix. The entire matrix is needed to determine what the eigenvalues 
of a correlation matrix are; they are determined using an eigenvalue formula.

In this chapter, we will describe why eigenvalues are an essential part of 
understanding correlation matrices. We will also refer to the practical signifi-
cance of eigenvalues for methods to test null hypotheses about eigenvalues 
(Chapter 3) and to analyze correlation matrices (Chapter 4). We cover eigenval-
ues only as they are relevant to an applied researcher who uses correlation 
matrices. We skip the details of the calculation of eigenvalues, leaving those for 
linear algebra textbooks and software systems such as R, SAS, SPSS, and Stata. 
Math packages or online utilities will also readily compute the eigenvalues for 
a given matrix. Although formulas are basic arithmetic, the eigenvalue formula 
for a large correlation matrix (even a 10 × 10 correlation matrix can be consid-
ered fairly large in this context) requires a great deal of computational effort. 
Thus, computer software is virtually always used to compute eigenvalues. In 
this chapter, we will also present a summary of several other important mathe-
matical features of a correlation matrix (some of these as they relate to eigen-
values), as well as notation that will be used throughout the rest of the book.

Requirements of Correlation Matrices

To understand a correlation matrix, it helps to start with the correlation coef-
ficients themselves, which collectively define a correlation matrix. Correla-
tions among a set of variables (e.g., X1, X2, . . ., Xp) are typically summarized 
in a correlation matrix, which we will generically call R. R will always be 
a square matrix of order p (“square” meaning that the matrix has the same 
number of rows as it has columns, and “order” here refers to the number of 
rows and columns, i.e., the number of variables); the rows and columns of 
R indicate the same p variables, those being correlated, and the entries in R, 
rij, are correlation coefficients between pairs of variables Xi and Xj. For 
example, if the element of R in the fourth row and seventh column is  
r47 = .24, that would indicate that the correlation between variables X4 and 
X7 is .24. Note that, because r47 necessarily equals r74 (i.e., the correlation 
coefficient is a symmetric measure), the correlation matrix is symmetric.
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The upper and lower triangles of a correlation matrix are defined in rela-
tion to the diagonal elements—that is, the elements in the rii positions in the 
matrix from the upper left to the lower right of the matrix. (Note that all 
diagonal elements, rii, in correlation matrices equal 1.0, because a variable 
correlates perfectly with itself.) The upper triangle consists of all elements 
in a correlation matrix that are above the diagonal; the lower triangle con-
sists of all elements below the diagonal.

Elements rij in a correlation matrix—the correlations themselves—are 
constrained in the following four ways. Any researcher who has seen a cor-
relation matrix, or studied the basic correlation coefficient, is likely familiar 
with the first three requirements:

1. rij = rji (i.e., R is symmetric; the correlation between Xi and Xj is the 
same as the correlation between Xj and Xi)

2. rij = 1 if i = j (i.e., the diagonal elements of R are 1; the correlation of 
a variable with itself is 1)

3. –1 ≤ rij ≤ 1 if i ≠ j (i.e., the off-diagonals of R are correlation  coefficients 
bounded inside the interval between −1 and +1)

It is important to emphasize that these features of the correlation coeffi-
cient are simply mathematical properties of the formula by which the Pear-
son (and other) correlation coefficients are computed. Algebraic treatment 
that is relatively simple (but which we do not present here) exists to show 
that each of these properties is necessarily a feature of the correlation coef-
ficient itself and, therefore, of all elements of a correlation matrix.

There is one final requirement for a correlation matrix that involves 
eigenvalues. The eigenvalues are related to the variances of the variables on 
which the correlation matrix is based; that is, the p eigenvalues are related 
to the variances of the p variables. True variances must be nonnegative, 
because they are computed from sums of squares, which themselves are 
each nonnegative. Thus, the final requirement for a correlation matrix is a 
check on its eigenvalues. Specifically, the fourth (and final) requirement is 
that all the eigenvalues of the correlation matrix are nonnegative:

4. λ1, λ2, … λp ≥ 0 where λi, i = 1, 2, …, p are the eigenvalues of R.

We will discuss eigenvalues of a matrix in conceptual detail in the next 
section. Here, it is worth mentioning that this fourth requirement is often 
framed in terms of another characteristic of matrices, the matrix determi-
nant, rather than eigenvalues. (Specifically, for readers with some matrix 
algebra background, this fourth property is equivalently ensured if the 
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determinant of R and all principal minor submatrices of R are nonnegative.) 
We prefer to frame the fourth property in terms of eigenvalues, because 
eigenvalues may be calculated directly from R; the determinant equiva-
lency requires the calculation of determinants from an increasingly large 
group of submatrices of R as p gets large.

Eigenvalues of a Correlation Matrix

Every square matrix has a set of eigenvalues and an associated set of eigen-
vectors. These are defined by mathematical definition, using specific formu-
las that can be found in any linear algebra text, or online (but which we do 
not present in any detail in this book). The eigenvalues and eigenvectors of 
a matrix are linked—each eigenvalue has a corresponding eigenvector, and 
vice versa. If a square matrix is of order p (i.e., p rows and columns), then 
the matrix has p eigenvalues and p eigenvectors. There may be repeating 
values among this set of eigenvalues, but the number of eigenvalues, with 
duplications, will still be p. Furthermore, the sum of the eigenvalues is equal 
to the sum of the diagonal elements of the matrix. Therefore, in the case of 
correlation matrices, in which the diagonal elements all equal 1 (and there-
fore the sum of the diagonal elements is p), the sum of the eigenvalues for 
the correlation matrix will also equal p. As examples of this property, in the 
fourth paragraph of this chapter where two sets of eigenvalues are presented, 
it is easy to verify that the first set of eigenvalues, from a 10 × 10 matrix, 
add to 10; the second set of eigenvalues, from a 4 × 4 matrix, add to 4.

Eigenvalues and eigenvectors are frequently invoked in fields that use 
statistical analysis. Readers don’t need to have deep understanding and 
appreciation of these mathematical terms to use correlation matrices, but 
some conceptual understanding is useful to explain why some matrices that 
appear to be correlation matrices are not correlation matrices. Furthermore, 
and of more substantive interest, eigenvalues and eigenvectors have geo-
metric interpretations that allow researchers to reduce complex information 
into simpler summaries. For example, facial recognition researchers use 
eigenvalues and eigenvectors to summarize similarities between many 
faces into a much smaller set of “eigenfaces”; audio recognition researchers 
can construct similar “eigenvoices” to break down complex speech into 
simpler dimensions. Intelligence researchers often summarize the informa-
tion in a whole battery of instruments measuring human abilities by using 
factor analysis to smooth out the redundancies (i.e., overlapping variance) 
across the many different measures. Methods such as PCA and factor 
analysis rely on eigenvalues and eigenvectors to develop component and 
factor models of a set of variables.
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In the previous section, we indicated that p eigenvalues are related to 
variances that underlie the correlation matrix. More specifically, eigenval-
ues, relative to p, are measures that are related to proportions of variance. 
In a correlation matrix with one or a few large eigenvalues, relative to p, 
substantial redundancy is indicated among the variables; that is, many of the 
variables share a great deal of variance and thus map into a central construct 
or dimension (technically, these dimensions are often called “principal com-
ponents”). For example, a correlation matrix of order 4 may have eigenval-
ues 2.8, 0.9, 0.2, and 0.1 (note that these four eigenvalues sum to four, as 
required). The presence of the relatively large first eigenvalue of 2.8 indi-
cates that the variables share substantial common variance—roughly  
2.8/4 = 0.7, or 70% of the variance among all the variables may be 
expressed with a single linear combination of the four variables. Next, 0.9/4 
= 23% of the variance is accounted for by a second dimension—this second 
dimension is constructed to be unrelated (uncorrelated) to the first dimen-
sion. Thus, underlying the four variables with these eigenvalues is one 
dominant dimension and a second uncorrelated, less dominant, dimension, 
with very little variance accounted for by the third and fourth dimensions 
(around 7%), which means that these four variables can be (almost 
 completely) summarized by two dimensions (or components, or factors).

Pseudo-Correlation Matrices and Positive Definite Matrices

The constraint on correlation matrices that all eigenvalues must be non-
negative occurs because eigenvalues are related to variances. As noted in 
the examples above, a given eigenvalue divided by the sum of all eigenval-
ues gives the proportion of variance associated with the particular direction 
or dimension defined by the associated eigenvector. The presence of a 
negative eigenvalue would therefore indicate a negative proportion of vari-
ance, which is conceptually and mathematically intractable for statistical 
settings. However, it is not unusual that a matrix may look like a correlation 
matrix because each element of the apparent correlation matrix meets the 
first three requirements of a correlation matrix, but the overall matrix fails 
to meet the fourth requirement of nonnegative eigenvalues. We call such 
matrices pseudo-correlation matrices.

For example, consider the (apparent) correlation matrix presented in 
Table 1.6. One would not be able to tell upon naive inspection that this cor-
relation matrix—constructed using real data and modified slightly1—is in 

1 Only one correlation was altered from the correlation matrix computed from real data using 
polychoric correlations: The correlation between ideal and expected children in 1979 was 
increased from .756 to .876.
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fact a pseudo-correlation matrix. The eigenvalues of this correlation matrix 
are 2.26, 1.59, 0.65, 0.50, and −0.0049. Because the correlation matrix has 
a negative eigenvalue, it is not a true correlation matrix.

Matrices that do satisfy all four requirements are called true correlation 
matrices. All true correlation matrices have nonnegative eigenvalues; in the 
language of matrix algebra, these are referred to as positive semidefinite 
(PSD) matrices. Correlation matrices that have strictly positive (i.e., no 
negative or zero) eigenvalues are positive definite (PD) matrices.  
Pseudo-correlation matrices are referred to in this language as indefinite 
matrices, indicating the presence of at least one negative and one positive 
eigenvalue.

If a correlation matrix has one or more eigenvalues that are exactly 0, 
this/these eigenvalues correspond to directions or dimensions (related to 
the corresponding eigenvectors) that explain zero proportion of the vari-
ance in the original variables. This circumstance may happen in practice if 
there is linear dependence among the variables in the correlation matrix. 
For example, a researcher may unintentionally create one variable that is a 
linear combination of one or more of the other variables, such as by includ-
ing as variables in the correlation matrix both the total score and the indi-
vidual items (which are summed to create the total score) in the same 
research setting. Correlation matrices that have one or more zero eigenval-
ues, even though a true correlation matrix, are problematic for most statisti-
cal software, and the researcher who tries to analyze such a correlation 
matrix may receive an error message from the computer program. In  
such cases, the researcher can check the data to ensure that they were 
entered correctly, or the researcher may be able to identify one or more 
variables that caused a linear dependence and that can be removed from  
the analysis.

Pseudo-correlation matrices are not just of theoretical interest; research-
ers often and regularly may have to diagnose and deal with such matrices. 
How do pseudo-correlation matrices exist? A pseudo-correlation matrix 
may look like a true correlation matrix, but there does not exist a set of 
complete quantitative variables to which the Pearson correlation formula 
can be applied in a pairwise fashion to produce the matrix. A pseudo- 
correlation matrix may arise from real data under one of several conditions. 
First, if there exist missing data among the variables, a correlation matrix 
created using pairwise complete cases (i.e., computed from correlations 
between pairs of variables, but because of missing data patterns using dif-
ferent subsets of the observations) may have one or more negative eigen-
values. The correlation matrix based on complete cases of numeric data 
using the Pearson product–moment correlation formula will necessarily be 
a true correlation matrix, but many researchers calculate correlations using 
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as many observations as possible for each pair of variables, resulting in 
correlations within a correlation matrix based on different sample sizes and 
based on different subsets of the total data set, which can lead to 
 pseudo-correlation matrices.

Second, a pseudo-correlation matrix may occur if the variables used to 
construct the correlation matrix are not numeric/quantitative but are rather 
binary or ordinal, in which case a researcher may choose to use polychoric 
or tetrachoric correlation formulas to form the correlation matrix. Poly-
choric and tetrachoric correlations are calculated by assuming that the 
binary/ordinal variables that are being correlated are attempting to measure 
traits that are inherently normally distributed; although these types of cor-
relations are recommended in many research settings, as the assumption of 
underlying normality is often reasonable, an entire correlation matrix popu-
lated by polychoric or tetrachoric correlations may not be PSD and may be 
a pseudo-correlation matrix.

Third, if the correlation matrix is the result of averaging more than one 
correlation matrix (such as may be done in two-stage meta-analysis), then 
there is no guarantee that the resulting correlation matrix is PSD. In all of 
these cases, if the correlation matrix is in actuality a pseudo-correlation 
matrix, warnings or errors are likely to be generated by the statistical soft-
ware system used to analyze the correlation matrix. The correlation matrix 
presented in Table 1.6, for example, is a pseudo-correlation matrix, and 
trying to analyze it will likely cause an error message in software.

Although problematic in substantive research settings, pseudo-correla-
tion matrices can inform quantitative methods. Recent work has focused on 
using pseudo-correlations to provide insight into a true correlation matrix 
of interest (Waller, 2016). Other work has dealt with statistical issues sur-
rounding pseudo-correlation matrices in real-data settings (Bentler & Yuan, 
2011; Higham, 2002), particularly with large correlation matrices where the 
relative risk of a correlation matrix being non-PSD is greater.

Smoothing Techniques

In cases where a pseudo-correlation matrix did not arise from error, and the 
researcher does not wish to remove variables or alter how the correlation 
matrix was calculated to amend the non-PSD matrix, smoothing techniques 
are recommended before proceeding with statistical analyses. The goal of a 
smoothing technique is to produce a true correlation matrix that closely 
approximates the pseudo-correlation matrix. Generally, programs that 
implement smoothing techniques take as input the pseudo-correlation 
matrix and allow the user to indicate their tolerance for how much change 
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is allowed to smooth the pseudo-correlation matrix into a true correlation 
matrix. The program will then output a smoothed, PD true correlation 
matrix that is “close” to the provided pseudo-correlation matrix.

There are a variety of smoothing techniques that can be broadly sorted into 
three categories: (1) shrinking techniques, (2) simultaneous-variable tech-
niques, and (3) single-variable techniques. Shrinking techniques simply 
reduce the magnitude of all correlations toward zero; after a sufficient 
amount of shrinking, the correlation matrix typically will be PSD or strictly 
PD. Simultaneous-variable techniques seek the true correlation matrix that 
minimizes the “distance” to the pseudo-correlation matrix, using a variety of 
definitions for how “distance” is measured. Most smoothing techniques are 
simultaneous-variable techniques, and several of these have been proposed 
(e.g., Rousseeuw & Molenberghs, 1993); however, techniques performed 
with comparable tolerance levels will provide similar smoothed correlation 
matrices (Kracht & Waller, 2018). Table 2.1 demonstrates two different 
simultaneous-variable smoothing techniques for the correlation matrix in 
Table 1.6. Both techniques were implemented in the free software program R 
and are functions in popular R packages. Finally, single-variable techniques 
focus on only shrinking rows and columns of the correlation matrix associ-
ated with one or a few “problem” variables (e.g., Bentler & Yuan, 2011).  

Table 2.1  Two Smoothed, PD Correlation Matrices Calculated From the 
Non-PSD Matrix in Table 1.6 Using the Software Package R

Variable 1 2 3 4 5

1.  Ideal number of children 
(1979) 1.000 .763 −.053 .473 .121

2.  Expected number of 
children (1979) .762 1.000 −.425 .374 .010

3.  Number of children (1980) −.053 −.425 1.000 .118 .429

4.  Ideal number of children 
(1982) .473 .374 .118 1.000 .207

5. Number of children (2004) .121 .010 .429 .207 1.000

Note: Correlations above the diagonal were smoothed with the nearPD() function in the 
Matrix package, and correlations below the diagonal were smoothed with the cor.smooth() 
function in the psych package. The eigenvalues of both true smoothed correlation matrices 
are the same to two decimals: 2.15, 1.57, .65, .49, and .14. The smoothed matrices are iden-
tical to the third decimal except for one correlation (italicized). The two smoothing algo-
rithms were implemented such that the smallest eigenvalue between the two procedures 
would be comparable. Correlations that have changed in magnitude by more than .10 from 
the corresponding element in the non-PSD matrix are bolded. PD = positive definite;  
PSD = positive semidefinite.
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Single-variable techniques leave larger portions of the  non-PSD  
correlation matrix unchanged but often result in greater change to the 
affected rows and columns compared with the simultaneous-variable 
methods.

Restriction of Correlation Ranges in the Matrix

We reiterate that a correlation matrix is not just a matrix filled with correla-
tions. Not every set of correlations, arbitrarily inscribed symmetrically in 
the p × p matrix, will produce a true correlation matrix. Once one correla-
tion coefficient in the matrix is known, or fixed, then other correlations in 
the matrix are constrained, or bounded, if a true correlation matrix is to be 
produced. Stanley and Wang (1969) derived the formula for the simple  
3 × 3 correlation matrix case showing how fixing two of the correlation 
coefficients constrains the third correlation coefficient. That is, if a 
researcher has three variables of interest—say X1, X2, and X3—and the val-
ues of r12 and r13 are known, the range of possible values for r23 can be 
mathematically derived and will generally be much tighter than the range 
of [−1, +1]. Hubert (1972) extended this formula for any number of 
 variables. In Chapter 6, we show how this restriction of correlation range 
can be directly observed using the geometric representation of the set of all 
pseudo-correlation matrices.

The Inverse of a Correlation Matrix

Another characteristic of a matrix is its inverse. The inverse of a matrix 
is conceptually similar to the reciprocal of a scalar, the types of numbers 
that we deal with on a regular basis. For example, the scalars 8 and 36.9 
have as reciprocals 1/8 = .125, and 1/36.9 = .02710 , respectively. Recip-
rocals or scalar inverses are the numbers that, when multiplied by the 
original number, produce the identity, 1.0. The identity scalar, 1.0, is  
the number that, when multiplied by any other number, returns the origi-
nal number.

Although many scalar operations have equivalent operations on matrices 
(e.g., matrices of “matching” or conformable sizes can be added, sub-
tracted, or multiplied), there is no matrix operation for division. For scalars 
a and b, you can simply calculate a

b
, unless b is zero, in which case the ratio 

is mathematically impossible to calculate; for matrices A and B, it is impos-
sible to calculate 

A
B, much like it is impossible to divide a scalar by 0. How-

ever, as for scalars, matrix inverses can be multiplied by other matrices as a 

substitute for division. For scalars, multiplying a
b

*
1  

or
 −a b* 1, where

 

b

1   
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or b–1 is the reciprocal of b, is the same as calculating a

b
. For matrices, it 

may be possible to calculate AB–1, where B–1 is the inverse of matrix B, 
even though A

B
 can never be calculated.

There is a matrix identity that, when multiplied by another matrix, 
returns that original matrix, and we can define the matrix inverse as the 
matrix that, when multiplied by the original matrix, will equal the iden-
tity. The details of actually computing matrix inverses are not important 
to studying correlation matrices, but it is important to know that in the 
computations used to do statistical analysis, the inverse of the correla-
tion matrix (R–1) is often used rather than R itself. R–1 has direct inter-
pretations in advanced statistical methods such as multiple regression, 
factor analysis, and discriminant analysis (Raveh, 1985) and, some-
times, also serves as a weight matrix in analysis. However, just as the 
scalar number zero has no reciprocal, certain matrices also do not have 
inverses, including, for example, pseudo-correlation matrices and PSD 
correlation matrices. Among correlation matrices, only true, strictly PD 
correlation matrices have inverses—which explains why many statisti-
cal programs will return an error message if the researcher tries to 
analyze a correlation matrix with one or more zero or negative 
 eigenvalues. A cryptic message that “the correlation/covariance matrix 
cannot be inverted,” or equivalently, “the correlation/covariance matrix 
is not full rank,” is referencing the absence of a valid inverse for the 
 correlation matrix.

The Determinant of a Correlation Matrix

The final characteristic of a matrix we find relevant to (briefly) discuss in 
this book is the determinant of a matrix. All square matrices have a deter-
minant (denoted as |R| for a given correlation matrix R), which is a single 
number equal to the product of all of the eigenvalues of the matrix. Com-
puter programs can readily calculate the determinant of a matrix, along 
with the eigenvalues and eigenvectors. Although inspecting the p eigenval-
ues of R is often useful, the determinant can provide some quick diagnosis 
for issues about the correlation matrix. For example, if |R| < 0, then one or 
more of the eigenvalues of R is negative, and R is therefore a pseudo- 
correlation matrix. If |R| = 0, then one or more of the eigenvalues of R is 
equal to 0, and there is linear dependence among the variables of the cor-
relation matrix. Finally, |R| > 0 for true correlation matrices that are PD and 
have eigenvalues that are strictly positive (although in some fairly unusual 
cases a pseudo-correlation matrix may have |R| > 0, such as if an even 
number of eigenvalues are negative). We discuss determinants primarily 
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because they appear in some test statistics for null hypotheses on correla-
tion matrices, which we discuss in Chapter 3.

Examples

Racial Composition of NBA and Sponsor Cities

The correlation matrix in Table 1.5 has four variables. For this correla-
tion matrix, X1 = number of Black teammates in 1983, X2 = number of 
Black teammates in 1989, X3 = percent Black of city residents in 1980, and 
X4 = percent Black of city residents in 1990. This correlation matrix is obvi-
ously of order 4 ( p = 4). Each entry in the correlation matrix is between  
[−1, 1], and each element is a correlation coefficient. For example, r12 = .41 
indicates that the correlation between the number of Black teammates on 
NBA teams between 1983 and 1989 is .41, or positively related at a moder-
ate level. The value r24 = .29 indicates that there is also a positive (but 
weaker) relationship between the percentage of Black city residents in 1990 
and the number of Black teammates on that city’s NBA team.

The eigenvalues of this correlation matrix are 2.18, 1.33, 0.49, and 0.01 
(which sum to 4 within rounding error). All the eigenvalues are positive, 
and so this matrix is strictly PD, and is therefore a true correlation matrix. 
The first eigenvalue, 2.18, is linked to an eigenvector that corresponds to a 
dimension accounting for 2.18/4 = .55, or about 55% of the total variance 
in the correlation matrix. The second eigenvalue corresponds to an eigen-
vector associated with an uncorrelated dimension that accounts for an 
additional 1.33/4 = .32 proportion of variance (and which is constrained to 
be uncorrelated with the first dimension). Therefore, two uncorrelated 
underlying dimensions corresponding to the first two eigenvectors have 
eigenvalues large enough to indicate that these two dimensions account for 
about 87% of the total variance among the four variables.

Girls’ Intelligence Across Development

The correlation matrix in Table 1.2 has 10 variables—girls’ intelligence 
measured each year from ages 8 to 17. The correlation matrix is obviously 
of order 10 (p = 10). The eigenvalues of this correlation matrix are 7.63, 
0.64, 0.41, 0.38, 0.25, 0.22, 0.18, 0.12, 0.10, and 0.07 (which sum to 10 
within rounding error). Because all the eigenvalues are positive, this cor-
relation matrix is strictly PD and is, therefore, a true correlation matrix. The 
first eigenvalue is relatively large compared with the other eigenvalues 
(7.63/10 = 0.763), indicating that the first dimension is associated with a 
large portion of the variance (around 76%) among intelligence scores 
 measured between ages 8 and 17.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



28   

Summary

Certain characteristics of correlation matrices are important for statistical 
applications. Correlation matrices contain correlations, but not all matrices 
that contain correlations are true correlation matrices. Those that appear to 
be correlation matrices by virtue of containing correlations, but are not true 
correlation matrices, are called pseudo-correlation matrices. How can we 
tell them apart? Pseudo-correlation matrices can be diagnosed by comput-
ing the eigenvalues that correspond to a particular correlation matrix (many 
software routines, or online computational applications, can be used to 
compute eigenvalues). True correlation matrices have eigenvalues that are 
only positive and/or zero. Pseudo-correlation matrices have at least  
one eigenvalue that is negative. Matrices with only positive eigenvalues are 
called PD matrices. Matrices whose eigenvalues are positive and/or zero 
are called PSD matrices. Matrices with at least one positive and one 
 negative eigenvalue are called indefinite matrices; all pseudo-correlation 
 matrices are indefinite. Smoothing techniques are algorithms that replace a 
pseudo-correlation matrix with the closest true correlation matrix, with 
“closest” defined differently across different techniques. In addition to 
eigenvalues, other important characteristics of the correlation matrix 
include its determinant and its inverse, both of which appear in statistical 
tests on correlation matrices described in the next chapter.

In the next chapter, we discuss a number of statistical procedures that 
have been developed to analyze correlation matrices. The material in the 
current chapter informs those analytic methods, because most of those 
approaches cannot be applied to pseudo-correlation matrices. The 
reader will see eigenvalues discussed in the next chapter (and also later 
in the book) and should by now be aware of their substantial value as 
diagnostic indices that reveal important features of both true and 
pseudo- correlation matrices.
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