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This chapter provides background for the multiple regression methods that are 
presented in the remainder of the book. First, we discuss some of the poten-
tial advantages of quantitative research in the social sciences, along with some 
important cautions to heed. Second, we review some core statistical ideas, 
including descriptive statistics, hypothesis tests, correlation, and simple (bivari-
ate) regression, which together form a foundation for understanding multi-
ple regression. We illustrate those ideas with a full example and an exercise. 
Although we expect readers to have been exposed to these statistical concepts 
before, the material in this chapter will be a helpful refresher.

1.1 Quantitative Research
Social scientists engage in various kinds of research using different research 
methods, and the quantitative approach explored in this book does not charac-
terize all of social science. However, this approach has proven helpful in investi-
gating a wide variety of questions in social science and has been the main mode 
of inquiry in fields such as sociology, psychology, criminology, political science, 
and public health for many years. Before diving into the statistical material that 
makes up the remainder of this chapter, it is useful to discuss in brief some of 
the main attributes that make quantitative research approaches attractive as 
tools for social science research. Although this list is not exhaustive, we hope 
that it gives readers a sense of why the effort to learn these methods is worth-
while. We will also provide some cautions, as it is important to understand the 
limitations of these tools along with their strengths.

Introduction
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2  Multiple Regression

1.1.1 Benefits of Quantitative Research
One of the most appealing features of quantitative research is its openness to 
the scrutiny of others. When we disseminate a report or article describing a 
research study that we have conducted, critics can examine all parts of our 
work, including the decisions we made in preparing our data for analysis, our 
choices of analytic methods, and the interpretations we drew from our analytic 
results. They can attempt to verify our findings by repeating our analysis and 
confirming that we made no errors in applying the analytic methods that we 
used, or argue for alternative analyses and see if those lead to the same scientific 
conclusions about our research question. Critics can even look further back in 
the research process and challenge the methods that we, or others, used to col-
lect data, or take issue with the overall design of the study. Even if this scrutiny 
does not suggest any problems with our study in isolation, other researchers can 
also check if our findings hold up when they analyze new data.

All of this can be uncomfortable for the researchers whose work is being 
examined; naturally no one enjoys being criticized, and it is hard not to take 
academic criticism personally. But this scrutiny is an essential part of an aca-
demic discipline’s journey toward understanding, and a field’s progress is held 
back if conclusions from flawed research are accepted as accurate. Note that this 
is not simply an issue for academic debates, because there can also be important 
consequences in the larger world when research is used to craft policy initia-
tives. Of course it is not always easy in practice for a field to carry out intensive 
scrutiny of the research that it produces. Researchers may resist requests to share 
their data with others, or research reports may not be clear enough for others to 
be sure as to precisely what methods were used to collect or analyze data. Still, 
even with these practical obstacles, quantitative research is more amenable to 
this scrutiny than are other types of research that do not rely on formalized pro-
cedures for collecting and analyzing data, or for which researchers do not have 
a well-defined data set that can be shared with others. Although there surely is 
also critical examination of academic work that relies on other kinds of research 
approaches, the nature of quantitative research makes this scrutiny especially 
possible and productive.

Along with facilitating critical examination of our research, quantitative 
methods can act as a check on ourselves when drawing conclusions from our 
research. Even if our intent is to be completely accurate and fair in our analy-
sis and interpretations, human nature sometimes gets in the way. People are 
inclined to perceive patterns in data even when there really are not any, or put 
greater emphasis on observations that support what they already believe than 
on observations that contradict their beliefs. Although conscious misrepresen-
tation of data or analytic results can occur, cases of that sort of intentional 
fraud or deception are likely rare. The bigger concern is that researchers who 
are honestly trying to be accurate and fair are still subject to these human flaws 
and biases.

Quantitative research, with its formal procedures for analyzing data and inter-
preting results, helps guard against these dangers. Patterns and relationships in 
data are deduced from formal analysis, rather than informal synthesis of observa-
tions, and researchers need to justify any decisions to exclude observations from 
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Chapter 1 ● Introduction  3

their quantitative analysis. Of course researchers still need to make a wide variety 
of decisions when collecting data and choosing analytic methods, and some 
choices could potentially serve to push final results in a direction desired by the 
researchers. Likewise, interpretations of results are not always straightforward 
even when standard analytic procedures are used and therefore are subject 
to these dangers as well. So these threats cannot be completely eliminated  
even in carefully executed quantitative research. Nonetheless, quantitative 
research goes much further in addressing these concerns than research that 
essentially relies on the unaided human mind to carry out analysis and inter-
pretation. We should be skeptical of such research no matter how intelligent the 
researchers are.

Another beneficial aspect of quantitative research is that quantitative mea-
surement forces us to be as precise as possible about the social scientific concept 
that we intend to measure and how we can or cannot effectively measure it. 
Of course in any kind of empirical research we need to think carefully about 
the logic of research design, and all research likewise requires us to link broad 
concepts to the actual observations that are used in our study. Still, this linkage 
is especially salient in quantitative research, as we directly confront the issue of 
expressing theoretical concepts through concrete measurements. Some quanti-
tative studies fall short in this regard, and the failure of a measure to adequately 
capture its intended concept is often a point of criticism when research projects 
are evaluated. But even if a measure is lacking in this way, the criticism will 
point to improvements that can be incorporated in further research. Formal 
measurement is therefore a key mechanism through which researchers can col-
lectively work toward a better understanding of the world. When measurement 
is informal, it is much more difficult to even begin that conversation.

In practice, a good deal of social science research is done with at least some 
intent that the research will contribute to the development of effective public 
policy around some social problem or goal. The numerical findings that sum-
marize the results of quantitative research can be especially helpful in this 
respect, as they can facilitate cost/benefit calculations that attempt to weigh the 
potential beneficial impact of a policy initiative against the expense required 
to implement it. For example, quantitative studies could help estimate the 
expected impact that a given increase in a school district's number of teachers 
may have on its high school graduation rate. Community members could then 
use this estimate as one element in deciding whether it will be worthwhile to 
direct more funds toward hiring teachers and, by implication, away from other 
programs supported by those funds. Even with quantitative estimates available, 
the ultimate decision will of course still require the school district to assess 
its priorities and make hard decisions about the services that it can realisti-
cally offer in light of its fiscal constraints, so the decision to add teachers surely 
involves much more than a single cost/benefit calculation. But relevant research 
results can be part of the debate in a much more helpful way than would be pos-
sible if the research findings could not be expressed numerically.

Another benefit of quantitative research is that it positions social scientists 
to take advantage of the ongoing development of new methods in the field 
of statistics. Even though there are important examples through the years 
of quantitative methods that were originally developed by social scientists, 
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4  Multiple Regression

a substantial portion of the analytic methods that practicing social scien-
tists use every day actually began in other academic fields, especially statis-
tics. Statistical research focuses on developing and refining such methods and 
on understanding the conditions under which methods do or do not work as 
expected. By importing these methods and interpretations when required, 
social scientists can instead focus their intellectual energy on the formulation 
of social scientific research questions and how to add to our knowledge of the  
social world and improve our theories about it. Naturally a book like ours focuses 
on “workhorse” methods that have come to be the most widely used by social 
scientists over many years, rather than new methods that are at the cutting edge 
of statistical development. But the quantitative approach to research facilitates 
the eventual absorption of what are now cutting-edge methods into standard 
social scientific practice.

Finally, quantitative research is fun. Students often find that learning quan-
titative methods feels like coming upon an entirely new set of tools that can, if 
used appropriately, yield tremendous insight into many of the most important 
questions in social science. We hope that readers of this book will share this 
feeling of excitement.

1.1.2 Some Cautions
Quantitative methods offer tremendous promise, but researchers also need to be 
cautious in applying the methods and interpreting results. Some of these cau-
tions will be mentioned in the context of specific methods introduced in later 
chapters, but it is helpful to highlight a few general issues here.

First, it is important to be clear that statistical analysis of quantitative data, 
even if highly sophisticated, technically advanced, and executed by knowledge-
able researchers, typically cannot compensate for fundamental problems in 
the research design and data collection efforts underlying the data set being 
analyzed. In this book, we do not give much attention to all the parts of the 
research process that precede data analysis. But that is due only to limits of 
scope and space; careful attention to research design and data collection is abso-
lutely crucial to carrying out successful and meaningful research. There are lim-
ited circumstances in which analytic methods have some ability to compensate 
for “bad” data after they have been collected, but such circumstances should be 
viewed as the exception, not the rule. The old adage “garbage in, garbage out” 
is usually pretty accurate. Although we focus here on quantitative analysis, in 
no way do we intend to minimize the vital importance of appropriate research 
design and data collection as discussed in social science research methods texts 
and courses.

A broad theme is that we need to guard against overinterpreting our research 
findings, or believing that they tell us more, and more definitively, than they 
really do. This general warning can take many specific forms. For instance, we 
must recognize that there will always be some uncertainty in the results that we 
report, at least if we intend to somehow generalize our findings beyond descrip-
tion of the particular sample used in our analysis. Some aspects of uncertainty 
will be addressed by statistics that we can report in our analysis, such as stan-
dard errors or hypothesis tests. But there is also an important sense in which a 
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Chapter 1 ● Introduction  5

single study can rarely be truly conclusive, and a finding needs to be replicated 
in data from other samples or other contexts before we can begin to really trust 
it. Literal replication can be difficult for much research in the social sciences. 
Research may be situated in a historical setting that cannot be revisited, or in 
a population from which repeated sampling is unrealistic. But even if identical 
conditions cannot be repeated, and literal replication is impossible, we still will 
find research results more compelling if they seem to hold up in similar settings 
or populations. It is also crucial to acknowledge uncertainty in research findings 
when communicating with policymakers.

Another kind of overinterpretation is the ecological fallacy. As typically dis-
cussed in research methods texts and courses, the ecological fallacy refers to the 
distinction between the aggregate and individual level of analysis. The aggre-
gate level refers to units like cities, states, or nations, representing collections of 
individuals and for which we can collect aggregated information like the per-
centage of the population that is unemployed or the average years of education 
for its adults. Individual-level units are, as the name suggests, the individuals 
themselves rather than collections of them. Then we could collect information 
about each individual, such as whether or not an individual is unemployed or 
the number of years of education that a person has completed. Distinctions 
between levels sometimes are not obvious. For instance, for some purposes 
a multiperson household may seem like an aggregate-level unit composed of 
a set of individuals, but for other purposes we envision a household making 
decisions and otherwise behaving as if it were an individual unit. For now, we 
will ignore this and suppose that there is a clear line between individual- and 
aggregate-level units.

On one hand, it is often easier for a researcher to obtain data on aggregate-
level rather than individual-level units. Although many of the statistics that are 
reported for cities, counties, or states are ultimately based on surveys of indi-
viduals, or collected from official records that governments maintain on indi-
viduals, the aggregate-level information may be distributed in a way that makes 
it more accessible to researchers than the original individual-level survey data or 
records. And while data from many individual-level surveys are publicly avail-
able, a researcher may find that none of them include all of the desired informa-
tion. (Because the same individuals generally do not appear in different surveys, 
it is usually not feasible to obtain data from more than one survey.) Sometimes 
individual-level measures can be obtained only by launching a new survey, but 
often that would be quite difficult and expensive. On the other hand, many of 
the theories and research questions that most interest social scientists actually 
lie at the individual level. For instance, the individual-level question of whether 
a person’s employment status predicts their criminal behavior may seem more 
interesting than the aggregate-level analogue asking whether a city's unemploy-
ment rate predicts its crime rate.

The main objective is for the level of analysis implicit (or explicit) in the 
research question being studied to match the level of analysis at which the data 
used to address the research question were actually collected. That is, an indi-
vidual-level research question should be considered in light of individual-level 
data. But noting the often greater accessibility of aggregate-level data alongside 
the attractiveness of individual-level research questions, it is not surprising that 
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6  Multiple Regression

there is sometimes a mismatch. (The mismatch can be in the opposite direction 
too, with individual-level data being used to address an aggregate-level research 
question, but that is a less common problem.)

The ecological fallacy, then, refers to attempts to answer individual-level 
research questions via aggregate-level data. Using the example above, a finding 
of a relationship between city-level unemployment and crime rates cannot be 
taken as evidence that unemployed people are more likely to commit crime. 
It could be instead that within each city there is no pattern of unemployed 
people committing disproportionately many crimes, but rather that in places 
with higher unemployment, more crime is committed by both employed and 
unemployed people. Even if aggregate-level data should not be used to address 
individual-level questions or draw individual-level conclusions, researchers may 
find it very hard to resist doing so. The ecological fallacy is therefore a specific 
instance of the more general threat of overinterpretation of analytic results.

Naturally these few cautions do not exhaust the threats that one must be 
aware of when applying quantitative research methods. As we explore various 
specific techniques in the chapters that follow, we will sometimes warn of pos-
sible misinterpretations or common errors. These warnings should not dampen 
the excitement of working with quantitative research, but they do remind us that 
an analyst must always strive to exercise good judgment in using these tools.

1.2 Review of Basic Statistics
We conclude this chapter by reviewing some of the core ideas that are taught 
in typical beginning statistics courses for students of social science. We assume 
that readers have already been exposed to this material through a formal course 
or self-study. This brief review thus will be a refresher that leads into the new 
material covered in the rest of the book.

1.2.1 Descriptive Statistics
Descriptive statistics summarize the values of the variables for which informa-
tion on the cases (the units of analysis) in a sample is available. The simplest 
description of a variable is the frequencies of the different values it takes in the 
sample. A frequency distribution or table typically reports the number and per-
centage (or relative frequency) of sample cases that take on each observed value 
of the variable.

Frequencies will be most appropriate for use with categorical variables (such 
as political affiliation) in which the values indicate category membership, or 
with discrete numerical variables for which there is a limited range of observed 
numerical values (for instance, the number of children that a person has). 
Frequencies can be impractical for use with continuous numerical variables (like 
height), which may take on very many different values among the sample’s 
cases. Such a variable could even have a unique value for every case in the sam-
ple, especially if it is measured with great precision.

For a numerical variable that was measured on the sample cases, we can 
instead start by reporting the mean (usually denoted by a bar over the variable’s 
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Chapter 1 ● Introduction  7

label, such as    ̄  X  ) value of that variable. The mean is just a different name for the 
commonsense idea of an average: we simply add up the variable’s values across 
all of the cases and divide by the number of cases N. The mean is interpreted as 
the typical value of X in the sample, so it is sometimes called a measure of cen-
tral tendency. The median is an alternative measure of central tendency and is 
defined as the middle value after rewriting the sample values of X in order from 
lowest to highest. (If N is an odd number, it is clear which value is in the middle 
of the list; if N is even, one could take the average of the two middle values.) 
The median is especially appealing when the sample includes a small number 
of very high or low values that might distort the mean, but the mean is more 
important for the statistics that we discuss in this book.

Along with describing the typical value of a variable in a sample, it is impor-
tant to also know how spread out the variable’s values are. One way to measure 
this is the range, or simply the minimum and maximum values that the variable 
takes across the cases in the sample, along with the difference between those. 
The range is straightforward and informative, but one or two extreme values 
can of course have a big impact on it. The variance (usually denoted by s2) is a 
more comprehensive measure of spread. It is based on the squared deviation 
from the mean of each case’s value on the variable; these squared deviations are 
then summed over all cases and the sum is divided by N or (N – 1). For interpre-
tation, the variance is usually transformed into the standard deviation (denoted 
by s) by taking its square root. The standard deviation can be interpreted as 
roughly the typical absolute (that is, ignoring positive and negative signs) devia-
tion from the mean of the variable for cases in the sample.

1.2.2 Hypothesis Tests
In classical hypothesis testing, the analyst attempts to decide which of two dis-
tinct propositions, the null hypothesis (denoted H0) and the alternative hypothesis 
(H1), about some aspect of the population seems more plausible in light of the 
sample data. In this framework, the null hypothesis expresses current knowl-
edge or belief about this population characteristic, while the alternative hypoth-
esis is thought to hold if the null is not correct. (Note that in practice, the null 
may just be a convenient starting point for the research, rather than actually 
reflecting genuine knowledge or belief.) The analyst uses the sample data to 
decide whether or not to reject the null, where rejecting the null means that the 
alternative was found to be more plausible. One might see failure to reject the 
null as logically equivalent to “accepting” it, but researchers usually avoid that 
language; in principle, future research could lead to rejection of the null even if 
that did not occur in this study, so “accepting” seems too strong.

When the null indicates a particular value for some population character-
istic, the hypothesis test is based on a comparison of the hypothesized value to 
its estimate in the sample. For example, if the null hypothesis is that the mean 
age in a population is 41 years, the mean age in the sample is compared to the 
hypothesized value 41. This comparison takes into account some assessment 
of sampling variability in the sample statistic; in the case of a single mean, 
the standard error of the mean represents sampling variability and is typically 
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8  Multiple Regression

estimated by  s/ √ 
_

 N   . A test statistic formalizes the comparison, using the form  

   
 (  Sample value − Hypothesized value )  

    ______________________________   
Standard error

   . For a single mean, with the hypothesized 

population mean denoted by μ0, this test statistic becomes ( )− µ( ) / s / NX 0 .

If the null hypothesis is correct, statistical theory will indicate a particular 
probability distribution for the test statistic (in our example of a single mean, 
this will be a t-distribution). This allows calculation of a p-value, defined some-
what loosely as the probability, under the assumption that the null is correct, of 
obtaining a sample value that is as discrepant (or more) from the hypothesized 
value as was the statistic that we calculated in our sample. In the example of 
a single mean, suppose that μ0 = 41 and our sample yielded a mean    ̄  X   = 45. 
Then the p-value, calculated by assuming that the population mean really is 41, 
reports the probability of obtaining a sample mean as far (or farther) from 41 as 
was our sample mean 45.

A small p-value pushes us toward rejecting H0, because it suggests that either 
(a) the null really is true, but we happened by chance to get quite an unusual 
sample, or (b) our estimate in the sample just seems unusual because we cal-
culated its probability under an incorrect premise in H0. If the p-value is small 
enough, we will follow the logic of (b) and reject H0, but we do that with a rec-
ognition that (a) could actually be what happened. The cutoff for deciding what 
is a “small” p-value is a statement of how concerned we are about incorrectly 
rejecting H0 under scenario (a). The more worried we are about that possibility, 
the smaller the cutoff we would use, because a smaller cutoff leaves us less vul-
nerable to incorrectly rejecting H0. In practice, there is a long tradition of using 
0.05 as the cutoff for a “small” p-value, so that we reject H0 if p ≤ 0.05, and do 
not reject if p > 0.05. But it is important to recognize that the choice of 0.05 is 
essentially arbitrary, even though there is a long history of its use.

When H0 indicates a particular value for the population (like μ0 = 41 in our 
example), we need to note whether the alternative is one-sided or two-sided (also 
known as one-tailed or two-tailed). This distinction refers to whether the alter-
native hypothesis proposes values that are only on one side of the hypothesized 
value, or on both sides. In our example of a single mean, a one-sided H1 would 
indicate μ > 41, or perhaps μ < 41; either way, the alternative states that conceiv-
able values of μ lie only above, or only below, the hypothesized value. A two-
sided alternative accommodates both of these possibilities; in our example, this 
would be μ ≠ 41. The choice of a one-sided or two-sided H1 does make a differ-
ence when calculating the p-value. The two-sided p-value is twice the one-sided 
p-value, because in the two-sided case we are asking about the probability that 
a sample statistic will be so discrepant from the hypothesized value in either 
direction. If we have enough understanding of the research topic to absolutely 
rule out the possibility of population values on one side of the hypothesized 
value, then it is good to use the one-sided alternative. But often we do not have 
such strong understanding that we can rule out these values, and the two-sided 
alternative would be appropriate.
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Chapter 1 ● Introduction  9

Continuing with our example, suppose that we set up a two-sided alternative 
hypothesis, so that the null and alternative hypotheses were

 • H0: µ = 41

 • H1: µ ≠ 41.

Suppose also that along with calculating    ̄  X   = 45 from the data in a sample of 

125 individuals, we calculated the standard error of    ̄  X   ( s/ √ 
_

 N    from above) to be 
2.62. Then the test statistic is (45 – 41) / 2.62, or 1.53. We obtain the tail prob-
ability associated with the value 1.53 for a t-distribution with (125 – 1) = 124 
degrees of freedom (df) from a table or online calculator. When using a table or 
online calculator, we need to note whether the alternative hypothesis is one-
sided or two-sided. If we are using an online calculator that provides one-sided 
probabilities only, t = 1.53 corresponds to probability 0.064. Because H1 was two-
sided, we need to use both the upper and lower tails, which doubles the prob-
ability. Our p-value is therefore 0.064 × 2 = 0.128. However, we would obtain the 
value 0.128 directly if the online calculator provides two-sided probabilites. As 
this p-value is > 0.05, we do not reject H0. Our conclusion is that the sample data 
are not so discrepant from the null hypothesis as to convince us that the null 
is implausible, and for now we believe that the hypothesis that the population’s 
mean age is 41 remains reasonable.

When the null hypothesis is more complicated than simply indicating the 
value of a single population characteristic, the development of a test statistic 
and in turn the determination of a p-value will be more involved. But even if 
getting to the p-value is more complicated, the final step of comparing it to a 
cutoff (usually 0.05) to decide whether or not to reject H0 will still apply. The 
chapters to follow will include various tests of hypotheses that are relevant in 
multiple regression analysis.

1.2.3 Correlation
Pearson’s correlation or correlation coefficient (rxy) 
allows us to assess the direction and strength (as 
defined below) of a relationship in our sample data 
between two numerical variables X and Y. (We do 
not explore any other types of correlation in this 
book, so for convenience we will drop the name 
“Pearson’s” when discussing rxy.) The direction of 
the relationship can be positive or negative, or there 
could be no relationship at all. In a positive relation-
ship, the general tendency is for cases that have a 
high value of X to also have a high value of Y, and, 
conversely, for cases that have a low value of X to 
also have a low value of Y. High values of the two 
variables tend to be seen together, and likewise for 
low values. Figure 1.1 shows a scatterplot of values 
of X and Y for a hypothetical sample with 12 cases: 
a point is plotted at the (X, Y) values for the case it 
represents.

Y

X

FIGURE 1.1 ●  A Scatterplot of Values 
of  X and Y (Positive Relationship)
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10  Multiple Regression

Figure 1.1 illustrates a positive relationship. Cases that have high values of 
X—toward the right side of the plot—also tend to have high values of Y, and 
cases with low values of X—toward the left of the plot—tend to have low values 
of Y. The cloud of points has a general shape that goes from lower left to upper 
right in the plot.

In a negative relationship, cases with low values of X tend to have high values 
of Y, and cases with high values of X tend to have low values of Y. That is, high 
and low values tend to be opposite for the two variables across cases. Figure 1.2 
illustrates a negative relationship.

In Figure 1.2, cases on the left, with low values of X, tend to have high values 
of Y, and cases on the right, with high values of X, tend to have low values of Y. 
The cloud of points has a general shape of upper left to lower right. Compared 
with Figure 1.1, however, the pattern seems a bit less distinct here. For instance, 
the cases with the lowest values of Y in the figure are only average or slightly 
above average on X, rather than having especially high values of X. Still, the over-
all pattern is that of a negative relationship.

When there is no relationship between X and Y, the cloud of points does not 
exhibit either of the general shapes that indicates a positive or negative relation-
ship. There is no tendency for cases with high (or low) values of X to have either 
high or low values of Y. Figure 1.3 shows a sample in which there is no apparent 
relationship between X and Y when we consider all points jointly.

As a result of the method by which the correlation coefficient rxy is calcu-
lated, its value can range between −1 and 1. Its sign—positive or negative—indi-
cates the direction of the relationship between X and Y. A positive value of rxy 
corresponds to a positive relationship, and a negative value of rxy corresponds 
to a negative relationship. If there is no relationship between X and Y, the value 
of rxy will be zero.

Y

X

FIGURE 1.2 ●  A Scatterplot of Values 
of  X and Y (Negative Relationship)

Y

X

FIGURE 1.3 ●  A Scatterplot of Values 
of  X and Y (No Relationship)
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Chapter 1 ● Introduction  11

The magnitude of rxy is also informative. It indicates the strength of the rela-
tionship between X and Y, in which a stronger relationship means that the points 
in the scatterplot are closer to lying on a single straight line. If the points are close 
to lying on a straight line, then for any particular value of X there is a very nar-
row range of Y values that appears along with it in the sample (and vice versa). In 
that situation, knowing what value a case had on one of the variables will give a 
very good idea of the likely values of the other variable. But if the points are far 
from lying on a straight line, then knowing the value of one of the variables is not 
so informative about the likely value of the other variable. In that situation the 
variables have a weaker relationship.

As mentioned above, rxy can be no bigger than 1 and no smaller (more nega-
tive) than −1. Either of these extreme values indicates a perfect relationship 
between X and Y in the sample, with the points in the scatterplot exactly form-
ing a straight line. (The perfect relationship is negative or positive depending on 
the sign of rxy.) With a perfect correlation, one can precisely determine a case’s 
value of one variable from its value on the other.

As rxy gets closer to 0, indicating a weaker relationship between X and Y 
in the sample, the cloud of points looks less and less like a straight line. The 
sign still shows the direction of the relationship, but values close to 0 indicate 
a weak relationship, in which a case’s value on one variable is not very infor-
mative about its value on the other. Figure 1.2 shows a somewhat less distinct 
relationship than Figure 1.1. That is borne out by the correlation coefficients 
for the data in the two figures. The data of Figure 1.1 result in rxy = 0.70, sug-
gesting a fairly strong positive relationship between X and Y. However, the data 
of Figure 1.2 result in rxy = −0.50, a more moderate negative relationship. The 
points in Figure 1.1 are therefore closer to lying on a straight line than those 
in Figure 1.2. (The data of Figure 1.3 result in rxy = 0.00, corresponding to no 
relationship.)

It is important to note that when we discuss the relationship between X 
and Y in terms of rxy, we are actually referring only to a straight line, or linear, 
relationship. It is possible for a scatterplot to show a discernible pattern of how 
X and Y values go together in the sample but still give an rxy close to 0 because 
that pattern is not consistent with a straight line. Usually a low rxy genuinely 
does indicate no relationship between X and Y, but we should keep in mind that 
a more complicated nonlinear relationship could at least theoretically be present 
even when rxy is close to 0.

1.2.4 Linear Regression
We can describe the relationship between X and Y further by performing a 
simple (or bivariate) linear regression. In the correlation, X and Y played equiva-
lent roles, so we could haphazardly label one variable as X and the other as Y 
and it would not make a difference. But when we move to regression, we need 
to designate one variable as the dependent variable and one as the indepen-
dent variable. The dependent variable is the outcome that we are attempting to 
explain or predict, while the independent variable is the factor that we believe 
predicts or, to be a bit bolder, determines the value of the dependent variable. 
The convention is that the dependent variable is labeled Y and the independent 

                                                                   Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



12  Multiple Regression

variable is labeled X. “Simple” linear regression refers to this situation of a single 
independent variable X influencing Y, but linear regression can be extended 
to include more than one independent variable, and that will be the focus of 
the rest of the book. For the moment, however, we will consider only analyses 
involving a single X. Our setup for the (simple) linear regression therefore can 
express a primitive theory in which X influences Y, even though we will often 
recognize that our research design does not allow us to convincingly say that 
the value of X truly “causes” the value of Y.

Linear regression fits a straight line (the “regression line”) to the cloud of 
points in the scatterplot. This line is the best (in a certain sense, to be discussed 
below) possible straight-line summary of the relationship between X and Y that 
is observed in the sample. In the discussion in Section 1.2.3, we saw that when 
rxy is closer to 1 or −1, the summary provided by the line becomes a more accu-
rate description of how X relates to Y in the sample data. That is because a high 
correlation indicates that the cloud of points is itself closer to being a straight 
line. As we mentioned with the correlation, the relationship between X and Y 
could be more complicated than can be represented by a straight line. Although 
linear regression inherently focuses on straight-line relationships, in later chap-
ters we will see how the regression framework can actually accommodate vari-
ous more complicated situations too.

Figures 1.4 and 1.5 show the same plots of 12 points displayed in Figures 1.1 
and 1.2, but with the regression line added to each. In Figure 1.4, we see that 
the line has a positive slope (lower left to upper right), which agrees with our 
informal inspection of the cloud of points before, and is consistent with the sign 
of the correlation that we reported earlier. In Figure 1.5, the line has a negative 
slope (upper left to lower right).

Y

X

FIGURE 1.4 ●  Regression Line With a 
Positive Slope

Y

X

FIGURE 1.5 ●  Regression Line With a 
Negative Slope
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Chapter 1 ● Introduction  13

We can think of the line as representing a prediction of the value of Y for any 
value of X. That is, for any value of X that interests us, we can trace a vertical 
line from that place on the X-axis up or down to the regression line. The level of 
Y at which our vertical tracing meets the regression line is the predicted Y value 
for that X value. We can of course make such predictions for all of the cases in 
our sample, and see how the predicted Y for each case compares to its actual Y 
value. We call the differences between actual and predicted Y values the errors 
or residuals. In any sample there will be both positive and negative errors, unless 
rxy is exactly 1 or −1 and all points are precisely on the line. The regression line 
is chosen to make these errors, as a group, as small as possible; that is the sense 
in which the line best represents the pattern of points. Because positive and 
negative errors would cancel each other out when summing the raw errors, the 
goal of making the errors as small as possible is interpreted in practice as making 
the sum of squared errors as small as possible. This is the least squares principle for 
choosing a regression line.

The line drawn on the scatterplot is informative, but for many purposes we 
need to instead work with the actual equation representing the line. The line is 
defined by its slope (the change in the predicted value of Y per unit change in X) 
and its intercept, the place at which it crosses the Y-axis, so those two numbers 
need to be indicated in the equation. We write the equation for the line in terms 
of predicted Y (or Ŷ, spoken as “Y hat,” where the hat indicates the predicted 
value). The general form of the equation for the regression line with a single X 
is then Ŷ = a + b X, and the formulas that statistical software packages use to 
calculate numerical values of a and b from the sample data are determined by 
the least squares principle. Once we have numerical values for a and b, we can 
obtain the predicted value of Y for any X value by plugging that X value into the 
equation. For example, if our software calculated the regression equation for our 
sample data as Ŷ = 5,320 + 300 X, then the predicted Y when X = 10 is 5,320 + 
(300 × 10), or 5,320 + 3,000 = 8,320.

The slope b is the main object of interest in the regression equation, as it 
is directly providing information about the relationship between X and Y in 
our sample. That is, it tells how the predicted Y changes as we change the X 
value that we are plugging into the equation. Adding one unit to the plugged-
in X value will change Ŷ by b units: X is multiplied by b in the equation, and 
b (X + 1) = b X + b, so the calculated value of Ŷ now differs by b units from what 
it was before adding 1 to the value of X. For example, if Y represents dollars of 
income and X represents years of age, b would tell us how the predicted dollars 
of income change when we plug in a value for age that is 1 year older than we 
plugged in before. For the regression equation above, in which b = 300, our sum-
mary of the information on X and Y in our sample data is that predicted income 
increases by $300 as the age we plug in increases by 1 year. If b were negative, 
then the change in Ŷ would be a decrease. If b were −400, then the predicted 
income decreases by $400 as the age we plug in increases by 1 year. Because the 
regression equation refers to a straight line, this change in Ŷ applies whether we 
are thinking about age 25 vs. age 26, or age 32 vs. 33, and so on. Note that when 
we refer to a one-unit increase in X, we mean this sort of interpretation of what 
happens when we plug an X value into the regression equation, not that we are 
altering our original sample data in some way.
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14  Multiple Regression

In this way b gives us very specific information on how Ŷ relates to X in the 
sample, and b is often described as the effect of X on Ŷ. The line is steeper when 
the absolute value of the slope b is larger, and flatter when the absolute value of 
b is smaller. If b = 0, then the line is perfectly flat, and our prediction of Y would 
be unaffected by the X value. In the equation, b = 0 would make the (b X) part 
of the equation zero no matter what X value we plugged in, leaving Ŷ = a for any 
X value. That would occur when there is no relationship between X and Y in the 
sample. Although this language of “effect” is convenient, we should remember 
that it does not necessarily imply a true causal effect of X on Y.

In the social sciences, the intercept a in the regression equation is usually 
of much less interest to researchers than the slope b is. Of course the intercept 
must be included when calculating predicted values of Y, so it is certainly a 
necessary part of the equation. But it does not speak to the question of how Y 
relates to X like b does, and that relationship is usually the researchers’ main 
concern. One specific interpretation of a is as the predicted Y when X = 0: if we 
plug in X = 0, then (b X) will be zero even if b is not, and we obtain Ŷ = a. In 
some cases it will be interesting to determine the predicted Y when X = 0, but in 
practice many variables used in social science do not have zero as a legitimate 
value. For instance, survey data on income will not include data on infants, and 
when X represents age, X = 0 will not occur in the sample data. Then even if the 
calculation is straightforward, there is not any meaningful reason to ask what 
the predicted income is for someone at X = 0. In any event, the direct informa-
tion on the relationship between X and Y that is provided by b in the regres-
sion equation makes it our main focus for interpretation. Note too that in the 
regression output from most software, the column labeled "b" will include the 
value of a. a can be distinguished in the output by a term such as "intercept" or 
"constant" rather than a variable name.

We can calculate the regression equation no matter what the value of rxy may 
be in our sample, but, as mentioned above, we regard the regression equation as 
a better representation of the sample data when rxy is large (in absolute value). 
When rxy is close to zero, the quality of the predictions for cases in the sample 
generally will be poor, and we will have many large errors or residuals relative to 
the overall variability in Y. In terms of the plot, there will be many points that 
have a large vertical distance from the regression line, so the regression line will 
not be a good fit to the cloud of points. Therefore, the value of rxy is important 
context that we need to keep in mind when interpreting the specific informa-
tion provided by the regression equation on the relationship between Y and X.

Note too that for most actual research questions, we will quickly recognize 
that surely more than just one independent variable would be helpful in pre-
dicting Y. In the example of age and income, we immediately think of educa-
tion as another independent variable that would improve our ability to predict 
Y. Simple (bivariate) linear regression will therefore seem rather unrealistic in 
many research settings. Throughout the rest of the book we mainly focus on 
multiple regression, with more than one X included in the regression equation 
and hypothesized to have an effect on Y. In most social science applications, 
the richer multiple regression framework will be preferable to simple regression.
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Chapter 1 ● Introduction  15

1.3 Example: State-Level Mental Stress in the 
United States

Throughout this book we have many fully worked-out and discussed examples 
that apply the methods to data, as well as many exercises meant to reinforce 
readers’ understanding of the analytic techniques. We hope that readers will 
not only read the examples but also try to reproduce the examples’ actual analy-
ses as well as work through the exercises. Reproducing the examples or working 
on the exercises will require access to some statistical software. As noted in the 
Preface, any of the software packages that are commonly used in the social sci-
ences R— for example, SPSS, Stata, SAS, or R— can be used for all of the analyses 
discussed in the book (and many more).

Our first example reviews descriptive statistics, correlation, and simple (or 
bivariate) regression. It involves a researcher who collected aggregate-level data 
on mental distress (the percentage of adults who reported that their mental 
health was not good for 14 or more of the past 30 days), median income (in 
thousands of dollars), and the percentage of single-parent households from the 
50 U.S. states. She also categorized states into five geographical regions (MW, 
NE, SE, SW, and W). The state-level data collected from the Census Bureau and 
Centers for Disease Control are as follows:

Data:

(Continued)

State ID State Name
Percentage 

Mental Distress
Median Income 

(in $1,000s)
Percentage Single-
Parent Households Region

1 Alabama  14.4  44.8  11.9 SE

2 Alaska  10.2  74.4  11.6 W

3 Arizona  11.7  51.3  11.6 SW

4 Arkansas  16.4  42.3  11.4 SE

5 California  10.6  63.8  11.5 W

6 Colorado  10.6  62.5  9.5 W

7 Connecticut  10.7  71.8  10.2 NE

8 Delaware  11.1  61.0  11.5 SE

9 Florida  11.4  48.9  10.7 SE

10 Georgia  12.6  51.0  13.0 SE

11 Hawaii  9.2  72.0  9.6 W

12 Idaho  10.7  49.2  9.4 W

13 Illinois  10.0  59.2  10.5 MW

14 Indiana  13.2  50.4  11.2 MW
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16  Multiple Regression

State ID State Name
Percentage 

Mental Distress
Median Income 

(in $1,000s)
Percentage Single-
Parent Households Region

15 Iowa  10.0  54.6  9.4 MW

16 Kansas  9.8  53.6  10.0 MW

17 Kentucky  14.7  44.8  11.3 SE

18 Louisiana  13.1  45.7  14.0 SE

19 Maine  12.6  50.8  9.2 NE

20 Maryland  10.1  76.1  11.6 SE

21 Massachusetts  11.9  71.0  9.7 NE

22 Michigan  13.4  50.8  10.6 MW

23 Minnesota  9.3  63.2  9.3 MW

24 Mississippi  14.1  40.5  15.2 SE

25 Missouri  13.2  49.6  10.6 MW

26 Montana  10.4  48.4  8.5 W

27 Nebraska  9.5  54.4  9.7 MW

28 Nevada  14.2  53.1  12.0 W

29 New 
Hampshire  12.7  68.5  8.7 NE

30 New Jersey  10.7  73.7  10.3 NE

31 New Mexico  12.5  45.7  12.9 SW

32 New York  10.6  60.7  11.1 NE

33 North Carolina  12.1  48.3  11.5 SE

34 North Dakota  9.0  59.1  8.4 MW

35 Ohio  12.9  50.7  11.2 MW

36 Oklahoma  14.3  48.0  11.6 SW

37 Oregon  13.0  53.3  9.6 W

38 Pennsylvania  12.6  54.9  9.8 NE

39 Rhode Island  13.5  58.4  11.3 NE

40 South Carolina  13.7  46.9  12.1 SE

41 South Dakota  8.3  52.1  10.1 MW

42 Tennessee  13.7  46.6  11.3 SE

43 Texas  10.6  54.7  12.8 SW

44 Utah  11.5  62.5  9.0 W
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Chapter 1 ● Introduction  17

State ID State Name
Percentage 

Mental Distress
Median Income 

(in $1,000s)
Percentage Single-
Parent Households Region

45 Vermont  11.9  56.1  8.8 NE

46 Virginia  10.9  66.1  10.2 SE

47 Washington  11.4  62.8  9.3 W

48 West Virginia  16.5  42.6  9.6 SE

49 Wisconsin  11.6  54.6  9.7 MW

50 Wyoming  12.1  59.1  9.3 W

After entering the above data in statistical software, the researcher ran the 
appropriate descriptive analyses for mental distress, median income (in thou-
sands), percentage of single-parent households, and geographical region. Because 
mental distress, median income, and single-parent households are continuous 
numerical variables, the mean, median, standard deviation/variance, and range 
(minimum to maximum values) are all appropriate descriptive statistics. On the 
other hand, frequencies and percentages are appropriate descriptive statistics for 
region, because it is a categorical rather than numerical variable. Note that the 
squared standard deviations in the table do not quite match the corresponding 
variances, but that is simply due to rounding. Statistical software output will usu-
ally include more decimal places when giving these descriptive statistics.

Mean Median
Standard Deviation 

(Variance) Range (Min-Max)

Percentage mental 
distress 11.9 11.8 1.8 (3.4) 8.2 (8.3–16.5)

Median income in 
$1,000s 55.7 54.0 9.2 (84.3) 35.6 (40.5–76.1)

Single-parent 
households 10.7 10.6 1.4 (2.1) 6.8 (8.4–15.2)

Region Frequency (f) Percentage (%)

MW 12  24.0

NE 9  18.0

SE 14  28.0

SW 4  8.0

W 11  22.0

Total 50  100.0
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18  Multiple Regression

After running the descriptive statistics and becoming familiar with the data 
set, the researcher decided to explore the possibility that median income in a 
state influences, or at least predicts, the state’s level of mental distress. In this 
case, median income is the independent variable (X) and mental distress is the 
dependent variable (Y). Correlation and (simple) linear regression are appropri-
ate tools for examining the relationship between two numerical variables. The 
results of correlation and simple regression analysis are summarized below, in 
the output from statistical software:

Correlation Analysis

Median Income in 
$1,000s (X)

Percentage Mental 
Distress (Y)

Median income in $1,000s 
(X)  1.000  −0.600

Percentage mental distress 
(Y)  −0.600  1.000

Simple linear Regression Analysis

b
Standard 
Error of b t p-Value

Intercept (constant) 18.625 1.309 14.227 0.000 (<0.001)

Median income in 
$1,000s (X) −0.121 0.023 −5.202 0.000 (<0.001)

The correlation between median income (X) and mental distress (Y) is −0.600, 
indicating a negative and moderately strong linear relationship between those 
two variables. The simple regression results show a value of 18.625 for the inter-
cept a and −0.121 for the slope b. The regression equation for the relationship 
between median income (X) and mental distress (Y) in this sample is therefore 
Ŷ = a + b X = 18.625 + (−0.121) X. The b value shows that, from the data in this 
sample, predicted mental distress (Ŷ) will decrease by 0.121 units (0.121% of the 
state’s adults) as the value of median income (in $1,000s) increases by one unit 
(or, said more naturally, the value of median income increases by $1,000). The 
negative value of b corresponds with the negative correlation, as both indicate 
a negative relationship between median income and states’ levels of mental dis-
tress. Note that the software also produced several other statistics that for now 
we are not interpreting, including the standard error of b, t, and the p-value. We 
will explain those statistics in Chapter 2.

The researcher also believes that the percentage of single-parent households 
may predict the state’s level of mental distress. To explore that, the percentage 
of single-parent households is set as the independent variable (X), and mental 
distress remains the dependent variable (Y).
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Chapter 1 ● Introduction  19

Correlation Analysis

Percentage Single-
Parent Households 

(X)

Percentage 
Mental Distress 

(Y)

Percentage single-parent house-
holds (X)  1.000  0.379

Percentage mental distress (Y)  0.379  1.000

(Continued)

Prefecture 
ID Prefecture Name Region Suicide

Older Adult 
Population

Clear Days 
per Year

1 Aichi Chubu  19.35  20.13 23

2 Akita Tohoku  32.97  29.47 9

3 Aomori Tohoku  29.35  25.71 7

4 Chiba Kanto  21.38  21.24 30

Simple Regression Analysis

b
Standard 
Error of b t p-Value

Intercept (constant)  6.701  1.851  3.621  0.001

Percentage single- 
parent households (X)  0.488  0.172  2.836  0.007

The correlation between the percentage of single-parent households (X) and 
mental distress (Y) is 0.379, indicating that there is a positive but somewhat 
weak linear relationship between those two variables. According to the simple 
regression results, with intercept a = 6.701 and slope b = 0.488, the regression 
equation predicting mental distress is Ŷ = a + b X = 6.701 + (0.488) X. That is, 
the sample data can be summarized as indicating that a state’s predicted level 
of mental distress (Ŷ) increases by 0.488 (0.488% of its adults) for each one unit 
(one percentage point) increase in the percentage of single-parent households.

1.4 Exercise: Suicide Rates in Japanese 
Prefectures

Japan is known for its high suicide rates compared with other industrialized 
countries. A government official wanted to investigate possible demographic 
and environmental factors related to suicide rates. He collected data on the 
suicide rate per 100,000 population, older adult (65 years and older) popula-
tion percentage, and the average number of clear weather days per year for 
47 Japanese prefectures (administrative units that are roughly like American 
states), which he also categorized by region. The data collected from the Japan 
Statistical Yearbook are as follows:
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20  Multiple Regression

Prefecture 
ID Prefecture Name Region Suicide

Older Adult 
Population

Clear Days 
per Year

5 Ehime Shikoku  20.89  26.48 26

6 Fukui Chubu  19.85  24.94 21

7 Fukuoka Kyushu/
Okinawa  23.13  22.14 27

8 Fukushima Tohoku  25.04  24.84 14

9 Gifu Chubu  20.47  23.98 37

10 Gunma Kanto  25.30  23.46 34

11 Hiroshima Chugoku  21.22  23.66 25

12 Hokkaido Hokkaido  25.30  24.66 8

13 Hyogo Kansai  22.48  22.92 17

14 Ibaragi Kanto  23.60  22.39 40

15 Ishikawa Chubu  22.31  23.50 13

16 Iwate Tohoku  32.03  27.07 8

17 Kagawa Shikoku  21.59  25.40 25

18 Kagoshima Kyushu/
Okinawa  24.27  26.38 32

19 Kanagawa Kanto  20.89  20.11 26

20 Kochi Shikoku  25.79  28.53 34

21 Kumamoto Kyushu/
Okinawa  24.82  25.48 31

22 Kyoto Kansai  22.15  22.99 18

23 Mie Kansai  18.92  24.10 37

24 Miyagi Tohoku  22.70  22.19 9

25 Miyazaki Kyushu/
Okinawa  27.05  25.64 49

26 Nagano Chubu  23.28  26.44 18

27 Nagasaki Kyushu/
Okinawa  25.79  25.86 41

28 Nara Kansai  19.06  23.84 25

29 Niigata Chubu  28.43  26.16 9

30 Oita Kyushu/
Okinawa  22.22  26.48 26

31 Okayama Chugoku  20.67  24.94 29

32 Okinawa Kyushu/
Okinawa  25.34  17.30 15
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Chapter 1 ● Introduction  21

Prefecture 
ID Prefecture Name Region Suicide

Older Adult 
Population

Clear Days 
per Year

33 Osaka Kansai  23.64  22.14 18

34 Saga Kyushu/
Okinawa  25.88  24.47 39

35 Saitama Kanto  22.82  20.36 51

36 Shiga Kansai  21.83  20.48 26

37 Shimane Chugoku  25.66  28.87 17

38 Shizuoka Chubu  22.68  23.69 42

39 Tochigi Kanto  24.65  21.81 29

40 Tokushima Shikoku  19.36  26.75 23

41 Tokyo Kanto  21.48  20.08 31

42 Tottori Chugoku  24.62  26.15 15

43 Toyama Chubu  22.78  26.08 18

44 Wakayama Kansai  24.85  27.05 25

45 Yamagata Tohoku  26.26  27.54 8

46 Yamaguchi Chugoku  24.05  27.91 28

47 Yamanashi Chubu  27.00  24.57 33

 1. After entering the above data in statistical software, use the software to 
calculate appropriate descriptive statistics for region, suicide rate, older 
adult population, and the number of clear days per year.

 2. Use the software to perform correlation and simple linear regression 
analyses investigating the relationship between the older adult popula-
tion and the suicide rate. Interpret the results as fully as possible.

 3. Use the software to perform correlation and simple linear regression 
analyses investigating the relationship between the number of clear 
days per year and the suicide rate. Interpret the results as fully as  
possible.
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