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In this chapter, we present some basic ideas about multiple, or multivariate, 
regression analysis, including an introduction to multiple regression focus-
ing on the difference between bivariate (simple) and multivariate regression, 
and interpretation of multiple regression results. We discuss predicting Y via a 
multiple regression equation and also the problem of collinearity. In addition, 
there are several examples of multiple regression analysis, as well as homework 
exercises. The chapter’s Appendix A also provides guidance on how to start a 
research project involving multiple regression analysis, how to evaluate research 
hypotheses, and how to organize a quantitative research paper using multiple 
regression.

2.1 Introduction to Multiple Regression
Bivariate, or simple, regression examines the effect of an independent variable 
(X) on the dependent variable (Y). Multiple regression extends this idea by con-
sidering the effects of multiple independent variables (X’s) on the dependent 
variable (Y). It is almost always more realistic for there to be multiple influences 
on a dependent variable than to suppose that truly only a single factor influ-
ences Y. For example, criminal behavior might be influenced by many factors 
such as economic hardship, lack of informal social control, and likelihood of 
getting caught and punished. Similarly, a person’s income could be influenced 
by multiple factors such as age, gender, race/ethnicity, education, and work 
experience. In some analyses we cannot include all factors that might plausibly 
influence Y, as there are technical reasons for preferring that the number of X’s 

Fundamentals of Multiple 
Regression

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

                                                                   Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



24  Multiple Regression

be relatively small compared to the number of observations (N) in our data, 
or because we simply do not have all those measures available in our sample. 
Usually, though, this restriction is not very confining, and we are able to con-
sider quite a few independent variables; we discuss the choice of variables later 
in this chapter.

Note that in both bivariate and multivariate regression, we decide whether 
an X influences Y, rather than the other way around. In making this decision we 
draw on theory, past research, or our common sense. We use our existing knowl-
edge to decide whether to proceed as if “variable one” influences “variable two” 
or as if “variable two” influences “variable one.” We label the variables X and Y 
based on this decision: in the first case, variable one is X and variable two is Y, 
while in the second case variable two is X and variable one is Y. Sometimes this 
can be quite difficult to decide, but in any case the direction of this influence 
will be assumed, not actually tested, in the methods we examine here.

Another point worth mentioning again is that we will often use the language 
of “effects” or “influence” of independent variables on the dependent variable 
even when, as noted in Chapter 1, the nature of the research design does not 
allow us to genuinely identify causal relations among the variables. Unless we 
are analyzing data from a true experiment, we are typically uncovering associa-
tions among variables rather than actual causal effects. Some formal methods 
attempt to draw causal inferences from nonexperimental data, but, except for a 
brief overview in Chapter 9 (Section 9.7, Causal Inference), those approaches 
are beyond the scope of this book. It is most convenient to simply speak of the 
effect of an X on Y, or X influencing Y, when discussing multiple regression 
results, but we should keep in mind that this is shorthand language, not neces-
sarily an indication of a true causal relationship.

A single multivariate regression analysis includes multiple X’s that might 
influence Y, and multiple regression aims to separate, or single out, the effect 
of each X on Y. Thus, the b (slope or coefficient) for a particular X in a multiple 
regression is interpreted as the effect of X on Y, expressed as how many units 
the prediction Ŷ increases or decreases for each additional unit of X, while hold-
ing other X’s constant or, in slightly different language, while controlling for other 
X’s. The idea of “holding other X’s constant” is the key conceptual element that 
distinguishes this interpretation of b from the interpretation made in bivariate 
regression. This is also why we cannot achieve the same results as a multiple 
regression by repeatedly applying bivariate regression (once for each indepen-
dent variable). A series of bivariate regressions will not incorporate this idea of 
control/holding constant, so we need to consider all of the independent vari-
ables together in the same analysis.

In a bivariate regression, the apparent effect of X on Y may actually also 
incorporate effects of other X’s that are related to it but are not included in the 
regression; although such a situation is also possible in multiple regression, it 
is especially likely in a bivariate regression that, by definition, includes only a 
single X. Suppose you are interested in finding the effect of age on income. It is 
easy to imagine that the variable “years in the labor force” also influences a per-
son’s income. Those two possible influences on income (age and years in labor 
force) are closely related conceptually, and will be correlated in any realistic 
data set: older people (those with higher ages) tend to also have more years in 
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Chapter 2 ● Fundamentals of Multiple Regression  25

the labor force. Thus, the effect of age on income that is obtained in a bivariate 
regression probably also reflects, to some extent at least, the influence of years 
in the labor force.

A multiple regression can include both age (X1) and years in the labor force 
(X2) in one analysis, and attempt to statistically separate the effects of age (X1) 
and years in the labor force (X2) on income (Y). Thus, the b for age (X1) from 
such a multiple regression analysis is interpreted as the effect of age (X1) on 
predicted income (Ŷ), holding years in the labor force (X2) constant (or, control-
ling for years in the labor force). In other words, we are trying to imagine what 
would happen if everyone in our data set had the same years in the labor force 
(X2)—which of course will not be true in our actual sample—but varied in age. 
(If somehow everyone in the sample did have exactly the same years in the 
labor force, then we would not be able to include that as an X in our multiple 
regression. There must be at least some variation in an X for it to be useful in 
predicting Y.) In that imaginary scenario, how would differences in age (X1) 
be reflected in differences in income (Y)? Similarly, the b for years in the labor 
force (X2) from this multivariate regression analysis is interpreted as the effect of 
an additional year in the labor force (X2) on predicted income (Ŷ), holding age 
(X1) constant. (Note that we will use “effect of X on Y” and “effect of X on Ŷ” 
interchangeably; the first may sound more natural, while the second is arguably 
more precise.) That is, if we imagine that everyone in the sample had the same 
age (X1), then b2 indicates how differences in years in the labor force would be 
reflected in differences in predicted income (Y). This statistical separation of 
the independent variables becomes more difficult the more closely they are cor-
related; we will return to this concern later.

A multiple regression equation with three X’s can be written in symbols as

  ̂  Y  = a +  b  1    X  1   +  b  2    X  2   +  b  3    X  3  ,  where 

 • Ŷ represents the predicted value of Y;

 • a represents the Y-intercept;

 • b1 represents the effect (slope) of X1 on Y, holding the other X’s (X2 and 
X3) constant;

 • b2 represents the effect (slope) of X2 on Y, holding the other X’s (X1 and 
X3) constant; and

 • b3 represents the effect (slope) of X3 on Y, holding the other X’s (X1 and 
X2) constant.

We often refer to the regression equation as a regression model, because it 
embodies some social scientific hypotheses about which factors affect Y, and we 
recognize that as a model we do not necessarily expect it to capture all of the 
particular nuances of the data in our sample. In this book we will not focus on 
the technical details of actually calculating a and the b’s from a particular data 
set; those details are covered in more advanced texts, and we will be relying 
on statistical software to do the calculations. It is enough to say that, as with 
simple regression in Chapter 1, these values are chosen under the least squares  
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26  Multiple Regression

principle. That is, the values of a and the b’s reported by our statistical software 
are chosen so as to make the predicted values Ŷ in the sample as close as pos-
sible to the actual values Y, in the sense of minimizing the sum of squared errors 
(or residuals, meaning differences between the actual and predicted values of 
Y among the N observations in our sample). We will revisit the sum of squared 
errors in Chapter 3.

The above regression equation with three X’s helps show why we interpret 
b1 as the effect of X1 on Y (or the change in Ŷ as X1 increases by one unit) while 
holding other X’s constant. If we compare the predicted Y for a case calculated 
before and after increasing its value of X1 by one unit, while holding its values 
of X2 and X3 constant, it is as if we changed the regression equation for that case 
from

  ̂  Y  = a +  b  1    X  1   +  b  2    X  2   +  b  3    X  3   

to

  ̂  Y  = a +  b  1    ( X  1   + 1)  +  b  2    X  2   +  b  3    X  3  ,    or    ̂  Y  = a +  b  1    X  1   +  b  1   +  b  2    X  2   +  b  3    X  3  . 

We can see, then, that the value of Ŷ changed by b1 as X1 increased by one 
unit and other X’s were held constant. This leads to the interpretation of b1 
as the effect of X1 on Y while holding other X’s constant. (Again, we will use 
the term “effect” for convenience even if our research design does not permit 
a genuinely causal interpretation.) If b1 is a positive number, then Ŷ increases 
when X1 increases; if b1 is negative, then Ŷ decreases when X1 increases. b1, b2, 
and b3 are often called regression coefficients, because they multiply the values of 
the X’s in the regression equation.

As in simple regression, we do not mean that we literally change our data by 
adding to the X values; our sample data do not change. Instead, we use this idea 
of a one-unit increase as a means of interpreting the results. Also as in simple 
regression, it may help to think of b1 as the difference in Ŷ between two cases 
that are equivalent except for a one-unit difference in their values of X1. In many 
contexts this will seem more natural than thinking about a one-unit increase 
in X1 for one case.

In a well-controlled lab experiment, the techniques of multiple regression 
would usually be less necessary. In that setting, it may be possible to focus on 
how changing a single factor affects Y, while controlling the research environ-
ment to such an extent that we are literally holding all the other influences on Y 
constant. For example, if we want to see how the amount of a specific chemical 
(X) in a solution influences the size of an explosion (Y), we can run the experi-
ment with varying amounts of the chemical while, for instance, keeping the 
temperature, size of the container, and other important factors the same every 
time. Then, to the extent that we have successfully held these other factors con-
stant, observed differences in the results (analogous to our Y) can logically be 
attributed to the changes that we made in the amount of the chemical.

However, in the social sciences there are a variety of practical and ethical  
reasons why it will be rare to have this degree of experimental control. Therefore 
multiple regression attempts to achieve statistically what we might be able to 
literally do in a science lab: distinguish the separate effects of different inde-
pendent variables by seeing how Y changes when only a single X changes. The 
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Chapter 2 ● Fundamentals of Multiple Regression  27

ability to do this when a lab experiment is impractical, or even logically impos-
sible, and when the independent variables correlated with each other in real 
data, makes multiple regression extremely important in a wide range of social 
science fields. (We will also examine difficulties that can arise when X’s are too 
highly correlated with each other; this is the problem of collinearity.)

2.2 Interpretation of Multiple Regression Results
We now know what multivariate regression is and how it differs from bivariate 
regression. In this section, we look at the core interpretations of multiple regres-
sion analysis results. We will need to pay attention to (a) R-squared (R2), (b) statis-
tical significance (obtained from p-values), and (c) slopes, regression coefficients, 
or effects (b’s). Note again that scientific conclusions drawn from the analysis of 
just one single data set are inherently somewhat tentative. We should keep that 
in mind as we focus on the technical interpretations of the results.

We should also be aware that researchers use a variety of terms to refer to the 
act of carrying out a multiple regression analysis. “Run a regression” is common 
but informal, while “estimate a regression model” highlights the fact that our 
analysis of the sample data is meant to estimate what we would find if we could 
actually analyze data on the entire population from which we drew the sample. 
(We discuss below how this sort of thinking can also apply to situations in 
which we have data on the whole population.) In any case, these different terms 
do not imply differences in the actual analysis being done.

2.2.1 R-squared—Overall Performance of Multiple 
Regression

One of the main purposes in carrying out a regression analysis is to predict val-
ues of Y. Therefore, it is important to know how well the regression is actually 
doing at predicting Y in our sample. How close are the predicted values of Y to 
the actual values for the sample cases? If the predicted values of Y closely match 
the actual values, the regression is performing well in one important respect, 
and the regression model has “good fit” to our data. If the predicted values of Y 
do not closely match the actual values, the regression is not performing well in 
this respect, and the regression model has “poor fit” to our data.

In bivariate regression, we can look at the scatterplot of X against Y and, 
more formally, the correlation rxy between X and Y to indicate the fit of the 
regression. If points in the scatterplot are generally close to the bivariate 
regression line, then the bivariate regression model has a good fit to the sample 
data. Remember that the correlation between X and Y will be high (in absolute 
value) in this situation, so rxy indicates the bivariate regression’s fit. As rxy gets 
closer to the extremes of 1 or −1, the fit of the regression gets better; as rxy gets 
closer to 0, the fit of the regression gets worse. It also can be shown that the 
absolute value of rxy is exactly equal to the correlation between Y and Ŷ (from 
the bivariate regression), which is another justification for interpreting rxy as a 
measure of how closely predicted and actual values of Y match in the sample. 
For example, if rxy = 0.90, the bivariate regression has a very good fit: in that 
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28  Multiple Regression

sample, predicted values of Y from the regression will be in general quite close 
to actual values of Y.

For multivariate regression, the situation is a little more complicated. Because 
we have to consider multiple X’s together when determining the fit of the 
multiple regression model, the correlation between any single X and Y is not by 
itself adequate for assessing the fit. But we can still use the idea of the correlation 
between actual and predicted values of Y in the multiple regression context, 
with the only difference from the bivariate case being that the predicted values 
are based on the multiple regression. The square of this correlation between 
Y and Ŷ is called “R-squared,” written as R2. It is the main indicator of the 
fit of a multiple regression model and is included in the regression output 
from any statistical software. R2 will range between 0 and 1: it is the square 
of a correlation, so a squared value cannot be negative, and with a maximum 
possible correlation of 1 (in absolute value), the square cannot exceed 1 either. 
If R2 is high (close to 1), then the multiple regression is predicting Y well, and 
the regression model has a good fit. If R2 is low (close to 0), then the multiple 
regression is not predicting Y well and has a poor fit.

Poor fit likely means that the multiple regression model is missing important 
X’s that are also related to Y and would help with predicting it. Therefore, a low 
R2 leads us to think about the possibility of including additional (or different) 
X’s in the regression model. Poor fit could also indicate that a straight-line 
regression does not effectively capture the relationship between the X’s and Y, 
but we will wait until later chapters to consider that sort of situation.

It is difficult to set hard cutoffs for what is a high or low value of R2, because 
the value of R2 is affected by many aspects of the data we are analyzing. For 
instance, in general it will be easier to achieve a high R2 in a small data set (that 
is, with a small N) than in a large data set. The same R2 value may therefore give 
a different impression depending on the sample size. Still, when R2 is not fairly 
close to 1, even in a large data set, we want to think about what important X’s 
may be left out. Note that R2 will always go up, at least a little, when we add any 
X’s to the regression. But if the added X’s do not really help much in predicting 
Y, the improvement in R2 will be small.

R2 is sometimes described as the proportion of variance (or variation) in Y 
that is explained, or accounted for, by the X’s in the multiple regression. If, for 
example, the value of R2 is 0.60, then we can say that 60% of the variance in Y 
is explained or accounted for by the set of X’s that we included in the multiple 
regression. We can think of the variance of Y as referring to the overall pattern 
of cases in our sample with high or low values of Y, and the regression model 
for Y estimates how the cases’ X values lead to these varying Y values. That 
means that the predicted values of Y reflect the X values through the regression 
equation. If the predictions generally match the actual Y values poorly, lead-
ing to a low R2, then there is a good deal of case-to-case variability in Y that is 
not represented in, or accounted for by, the regression equation. On the other 
hand, generally close matches between predicted and actual values of Y—giving 
a high R2—indicate that the regression equation does seem to represent the key 
sources of case-to-case variability in Y.
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Chapter 2 ● Fundamentals of Multiple Regression  29

2.2.2 p-Values: Statistical Significance of Each X’s 
Effect on Y

R2 indicates the multiple regression’s overall fit or performance in predict-
ing Y in the sample data. The assessment of statistical significance, from p-val-
ues, is the first step in investigating the importance of each X’s effect on Y  
(again, controlling for the other X’s that also appear in the regression model 
and not necessarily meaning a genuinely causal effect; we also could refer here 
to Ŷ instead of Y). In this section, we discuss how the general idea of statistical 
hypothesis testing applies to statistical significance in regression. As mentioned 
in the Preface, some aspects of the role of statistical significance in the interpre-
tation of regression results, and social science more broadly, are becoming more 
controversial. However, here we simply present it as typically used by social 
scientists now and in the published literature from recent decades.

In adapting statistical hypothesis testing to the situation of multiple regres-
sion, we are interested in the question of what the effect of an X on Y would 
be in the entire population, rather than what effect we find in the particular 
sample we have. Of course, sometimes we actually do have data on an entire 
population, for instance when we are doing an aggregate-level analysis using 
data from all 50 states. In such a situation, we can still view the data as being 
like a sample from a theoretical “superpopulation” that reflects the many ways 
that history could have played out differently for these 50 states. Although this 
image can sometimes seem a bit farfetched, the practical result is that we will 
treat such data as if it were a sample from a large population.

If we had the entire population or superpopulation, we could find the “true” 
effect of an X on Y, holding other X’s constant, and write it as β to distinguish it 
from b, the effect of this X on Y in our sample. That is, b is the estimate we obtain 
from our sample, while β is the value we would obtain if we could analyze data from 
the entire population. The true regression model would therefore be expressed with 
β’s, and the estimated model would be expressed with b’s. As usual in statistical 
hypothesis testing, we can frame our thinking in terms of two competing hypothe-
ses about the population: the null hypothesis H0 and the alternative hypothesis H1.

The most common null hypothesis in regression analysis, and the one that is 
assumed in the output from standard software packages, is “H0: X has no effect 
on Y in the true model,” or, stated in symbols, “H0: β = 0.” It is possible to con-
sider other null hypotheses that specify some other value of β, and those can be 
used in the general hypothesis test format that was discussed in Chapter 1, but 
other null hypotheses are not so common in social science research. In practice, 
most applications use a two-sided alternative hypothesis, and this will generally 
be the default for statistical software’s calculation of p-values. The alternative  
“H1: X has some effect on Y in the true model,” or equivalently “H1: β ≠ 0,” will 
then be paired with the usual null, so that the typical hypothesis test is set up as

H0: (null hypothesis): X has no true effect on Y, or β = 0;

H1: (alternative hypothesis): X has some true effect on Y, or β ≠ 0.

After setting up H0 and H1 this way, we need to calculate a test statistic—in 
this situation, it will be a t-statistic—from the sample information and use it 
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30  Multiple Regression

to determine a  p-value and decide whether we should reject or not reject H0. 
Rejecting H0 would mean that H1, the hypothesis that X does have some effect 
on Y, appears more reasonable from our sample data, so in that case the sample 
leads us to believe that there really is some effect of X on Y in the entire popu-
lation. If we do not reject H0, then H0—the hypothesis that X has no effect on 
Y—still appears plausible in light of the sample data. That is, if we do not reject 
H0 we are saying that the sample information does not allow us to confidently 
conclude that there actually is an effect of X on Y in the population. Of course 
we must always remember that, in any particular analysis, it is possible that we 
reached an incorrect conclusion of rejecting H0 or not, which is one reason why 
we are reluctant to rely too heavily on a single study of some research question.

The t-statistic follows the general format shown in Chapter 1 and can be 
calculated as follows:

 t =   
b −  β  0    ________________  

standard error of b
   

The standard error of b is an estimate of sampling variability in b; that is, it 
gives us a sense of how much b might vary across samples that we could have 
drawn from the population. Because we are most commonly testing the null 
hypothesis that β = 0, the above equation usually can be rewritten:

  
t
  
=

  
  b − 0  ________________  
standard error of b

  
    

 
  

=
  
  b ________________  
standard error of b

  
   

We can calculate this t-statistic for each of the X’s in our regression and 
then find p-values for the t-statistics from a t-table or an online t-calculator. 
Either will require us to know the proper degrees of freedom (df), and for this 
test df are calculated from the sample size as df = N – (the number of X’s in 
the regression) – 1. With a p-value (here two-sided) in hand, we can decide 
whether or not to reject H0, using the traditional (though again ultimately 
rather arbitrary) p-value cutoff of 0.05. With this cutoff, we do not reject H0 if 
the p-value is > 0.05. In that case we still believe that it is plausible that, in the 
entire population, X has no effect on Y, and we will say that “X does not have 
a statistically significant effect on Y.” On the other hand, if the p-value is less 
than (or exactly equal to, which could occur due to rounding) 0.05, we reject 
H0 in favor of H1, believing that we would find an effect of X on Y if we were 
to analyze the whole population. In this case (p ≤ 0.05), we say that “X has a 
statistically significant effect on Y.” The language of statistical significance is 
therefore a summary of the results of this particular hypothesis test. When we 
are working with a multiple regression, it is good to also include "controlling for 
other X's" or "holding other X's constant" in our statement of the results.

Fortunately, much of the actual arithmetic here is done for us when we use 
statistical software, because the software will report each b’s standard error and 
t-statistic, calculate the df, and find the p-value that corresponds to the value 
of the t-statistic. Our only work is to then use the p-values to decide whether 
each X has a statistically significant effect on Y. If the effect of an X on Y is 
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statistically significant, then we will go on to interpret the slope b for that X. 
If the effect is not statistically significant, then we generally do not want to 
interpret b further, as we are not sure that there is any true effect of that X at 
all. Again, though, 0.05 is a rather arbitrary cutoff, so it is hard to justify why we 
would interpret b when the p-value is just under 0.05, but not when the p-value 
is just over 0.05. When the p-value is above but close to the cutoff, we may want 
to consider this an instance of “borderline,” or “marginal,” significance. We 
probably want to go ahead with interpreting b for an X that shows a borderline 
significant effect, but we need to make clear that in doing so we are not strictly 
applying the usual cutoff and that our conclusion is therefore even more tenta-
tive than usual.

2.2.3 Interpreting b in the Multiple Regression Context
When the p-value indicates that an X has a statistically significant effect on 
Y, we next want to interpret its slope b. b could be positive or negative, with a 
positive b indicating a positive relationship between that X and Y, controlling 
for other X’s; as in the bivariate case, this means that X and Y tend to move in 
the same direction—as X increases, Y tends to also increase, and as X decreases, 
Y tends to also decrease—but now we also think of the other X’s as being held 
constant when making this interpretation. Likewise, a negative b indicates a 
negative relationship between X and Y, controlling for other X’s; as X increases 
(holding other X’s constant), Y tends to decrease, and as X decreases, Y tends to 
increase. Also as in the bivariate case, this logic applies to comparisons of Y val-
ues for cases that differ in their X values, and this will often be a more helpful 
way to understand a positive or negative relationship between X and Y.

As discussed in Section 2.1, the specific numerical value of b indicates the 
effect of that X on Ŷ (showing the increase in Ŷ associated with an additional 
unit of X), controlling for, or holding constant, the other X’s in the regression. 
Suppose that b = 3. Then we interpret the result as “Ŷ increases by three units 
as X increases by one unit, controlling for other X’s.” If b = −4, we could try to 
use similar language: “Ŷ increases by negative four units as X increases one unit, 
controlling for other X’s.” But this “negative increase” sounds very awkward. An 
increase of −4 is equivalent to a decrease of 4, so it is much more natural to say 
“Ŷ decreases by four units as X increases by one unit, controlling for other X’s.” 
We can also think of b as reflecting the difference in Ŷ between two cases that 
are identical in their values of other variables but differ by one unit on this X.

Let us consider a social science example. Suppose that we wanted to examine 
the influence of a person’s education and criminal history on their income, 
with education measured by years of schooling (X1), criminal history measured 
by lifetime number of arrests (X2), and income measured as annual income in 
dollars (Y). We then collected information on these variables from a sample of 
adults and analyzed the resulting data.

Suppose that the multiple regression output from our statistical software 
indicated that the effects of both education (X1) and arrests (X2) on income (Y) 
are statistically significant (p ≤ 0.05), with b1 (the slope for X1) = 2,580, and b2 
(the slope for X2) = −5,890. Then our interpretation of b1 is “predicted annual 
income (Ŷ) increases by $2,580 as years of education (X1) increase by 1 year, 
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controlling for the number of arrests (X2).” b2 is negative, so we could say “For 
each additional arrest (X2), predicted annual income (Ŷ) decreases by $5,890, 
holding years of education (X1) constant.”

Although it is accurate to say “predicted” annual income as we have here, 
and helpful to focus attention on the fact that these figures are estimates from 
a model for the predicted Y (Ŷ), in practice we may assume that our audience 
understands that the b’s refer to the predicted Y (Ŷ). If so, for convenience we 
could drop the “predicted” from this language, or use Y instead of Ŷ. Also, the 
data here came from a snapshot of the sample members at one point in time, 
rather than tracking individuals through time. Therefore this is an instance in 
which it may be more natural to view statements like “as education increases 
by 1 year, holding number of arrests constant” as referring to a comparison 
between people who differ by one year of education while having the same 
number of arrests.

2.2.4 Real-Life (Substantive) Significance
Real-life significance refers to an evaluation of whether the size of an X’s effect 
on Y is large enough to be meaningful. That is, when considered in light of 
the definitions and observed values of the X and Y variables in our sample, 
does the effect seem important, or rather trivial? We always need to consider 
this question of real-life significance, because sometimes an X’s effect is 
statistically significant (indicated by p ≤ 0.05), but the size of the b is not large 
enough to suggest any meaningful impact on Y in real terms. Suppose that X1 
is years of education and Y is annual income, the p-value indicates that years 
of education has a statistically significant effect on Y, and b1 is 25. This would 
mean that predicted annual income increases only $25 for each additional year 
of education, holding other X’s constant. Even 4 additional years of education 
would only increase predicted annual income by $100: each additional year 
of education increases predicted income by $25, so 4 additional years increase 
the predicted income by 4 × 25 = $100. If the data are contemporary rather 
than historical, and so come from a context in which full-time workers have 
annual incomes in the tens of thousands of dollars, this result would suggest 
that, in practical terms, there is no meaningful impact of education on income. 
This tiny difference in predicted income between people differing by 4 years of 
education would mean that income is effectively unrelated to education. In that 
case, the effect of education on income would have statistical significance, but 
not real-life significance. Alternative terms for “real-life” here include real-world, 
practical, and substantive.

There is no automatic numerical cutoff for determining real-life signifi-
cance. We might simply use our knowledge of social science, or our com-
mon sense, in deciding whether the effect of X on Y is large in real terms. 
However, it is better to examine descriptive statistics such as the mean, stan-
dard deviation, and range (minimum and maximum values) of the variables 
to determine whether the effect is large enough to have real-life significance. 
This requires examination of both X and Y. For X, it may be that the usual 
“one-unit change” is not the most suitable for this real-life assessment. For 
example, if X is public school spending per student, measured in dollars, a 
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one-unit change in X refers to a single dollar. If the average public school 
spending per student in our sample were $11,762, with a standard deviation 
of $5,891, a minimum value of $4,152, and a maximum value of $32,366, a 
change of $1 would appear extremely small. One additional dollar of spending 
per student will almost surely have virtually no effect on whatever Y we are 
studying, making it hard to assess real-life significance. In this case a larger 
change in X would be more interpretable, perhaps an increase of $500 or even 
$1,000 per student. Then the change in Ŷ would be 500 × b, or 1,000 × b,  
and we will be in a better position to assess whether the resulting change in 
Ŷ is large in real terms.

There could also be cases in which the usual one-unit change in X is too 
large. For example, the Gini index of income inequality in a society is usually 
presented as a number between 0 and 1. A “one-unit change” would be too 
large to sensibly consider for that variable, as it would be equivalent to a change 
from the theoretical minimum value to the theoretical maximum value of this 
index. Again the resulting change in Ŷ would be calculated as b multiplied by 
the change in the Gini index, and we might consider something like a change 
of 0.10 instead of 1.

When we are convinced that we are examining an appropriately sized 
change in X, we next assess the resulting change in Ŷ, based on Y's descriptive 
statistics. To illustrate this process, suppose that, for aggregate-level data, X1 
is unemployment rate (percentage unemployed) and Y is the suicide rate 
per 100,000 population. Suppose too that, from our software’s regression 
output, the p-value indicates that the unemployment rate has a statistically 
significant effect on suicide rate, and b1 is 4. If our descriptive statistics for 
percentage unemployment (X1) showed a mean of 5.5, a standard deviation of 
0.9, and a minimum to maximum range of 3.8 to 6.9 in our sample, we would 
probably decide that a 1% change in unemployment is indeed appropriate 
for evaluating real-life significance. The value of b1 means that the predicted 
suicide rate per 100,000 increases by 4 as the unemployment percentage 
increases by one unit (here, 1%). If suicide rates in the sample have mean 13.4 
and range between 10 (minimum) and 80 (maximum), an increase of 4 in the 
suicide rate seems to be large enough to suggest real-life significance. On the 
other hand, the same estimated effect (b1 = 4) may not seem to have real-life 
significance for a different dependent variable that had mean 1,200 and range 
1,000 to 1,500.

We can revisit the earlier example of public school spending per student as 
X. Based on the descriptive statistics for public school spending per student (X) 
(mean $11,762 with a standard deviation of $5,891, minimum of $4,152, and 
maximum of $32,366), it seems that a $1 increase in X is too small to be easily 
interpretable. We can instead consider the predicted change in Y when public 
school spending per student (X) increases by $1,000. In this case, the change in 
Ŷ is b × 1,000. If b is 0.003 and Y is high school graduation rate (%), then we can 
say that the predicted high school graduation rate increases 0.003 × 1,000 = 3% 
as public school spending (X) increases by $1,000, holding other independent 
variables constant. Then we can use the descriptive statistics for graduation rate 
(Y) to assess whether a 3% increase in graduation rate should be considered large 
enough to have real-life significance.
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We always need to consider this question of real-life significance before 
deciding that a statistically significant X has a meaningful impact on Y, so 
we should not be too impressed by the words “statistically significant” alone. 
We still need to check real-life significance by looking at the size of b and the 
descriptive statistics for X and Y to reach a judgment as to whether the effect of 
this X is large enough to have some real impact. Of course different researchers 
may not always agree on whether the magnitude of a particular X’s effect on Y 
is large enough to be called real-life significant, and there will be instances in 
which it is quite difficult to make this determination. Even so, attempts to assess 
the real size of any statistically significant effects are an important element in 
the full interpretation of regression results.

This is especially true when the sample size is very large. A large sample size 
(N) will tend to make the standard errors of b small, which will tend to make the 
t-statistics large and in turn tend to produce small p-values. It is, therefore, gen-
erally easier to find statistically significant effects of X’s in large data sets, even 
if those X’s actually have very small real-life impacts on Y. So it is especially 
important not to simply take statistical significance at face value when working 
with very large samples.

2.2.5 Other Notes on Interpretation
As in bivariate regression, we are usually not so interested in interpreting a, the 
Y-intercept. In the next section we look at calculation of the predicted value of 
Y, and a is certainly necessary for that. But in social science we rarely make a 
direct interpretation of a and usually do not discuss its value when interpreting 
results. We discuss this issue further in Section 2.3. Remember that, as we men-
tioned in Chapter 1, most software's regression output will provide the value of 
a in the "b" column, with a term like "intercept" or "constant" distinguishing a 
from the b's.

Note that along with “unstandardized coefficients,” which are the b1, b2, 
and b3 that we are discussing here, your statistical software may also present 
“standardized coefficients.” Throughout this text, we focus on unstandardized 
coefficients, and b always refers to those. You may encounter standardized 
coefficients when reading journal articles or other research reports, however, 
and they can be thought of as giving another approach to the assessment of 
real-life significance. Therefore Appendix B to this chapter includes a brief 
discussion (see Section 2.8.1).

Research reports and articles sometimes present confidence intervals for regres-
sion coefficients. A confidence interval takes the general form of a sample esti-
mate (of some population value) plus or minus a “margin of error” for that 
estimate. The confidence interval is reported with a numerical level of confi-
dence, typically 95%. The interpretation of the 95% confidence interval is that 
the method for constructing the interval means that 95% of the time the inter-
val will include the true population value. The analyst is therefore “95% confi-
dent” that the true value is somewhere in the interval.

A 95% confidence interval for a true regression coefficient like β1 is found by b1 
± margin of error. The margin of error reflects sampling variability in the estimate 
b1, so it is based on the standard error of b1. In particular, the margin of error is 
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calculated by t.025 (SE of b1). The value of t.025 is found in a t-table, using the usual 
df of t for assessing statistical significance of a regression coefficient (N – the num-
ber of X’s – 1), and is the value that leaves a tail of the t-curve with 2.5% of the 
total probability. For instance, if df = 30, then t.025 = 2.042. Together, then, the 
95% confidence interval for β 1 = b1 ± t.025 (SE of b1), or if written to highlight the 
two endpoints, as the interval (b1 – t.025 SE, b1 + t.025 SE). Note that t.025 gets closer 
to 1.96 as df increase, so a quick approximation for typical sample sizes is that t.025 
is about 2, and the margin of error is roughly twice the standard error.

This confidence interval is closely related to the hypothesis test. If the 
β hypothesized by H0 is within the 95% confidence interval, then the (two-
sided) p-value for that H0 is > 0.05. If that hypothesized value is outside the 
95% confidence interval, then the p-value is < 0.05. (A value precisely on the 
boundary of the 95% confidence interval corresponds to p = 0.05, but that will 
be unlikely when results are given with several decimal places.) So for the usual 
regression situation in which H0: β = 0, looking for 0 in the 95% confidence 
interval will give the same conclusion as assessing statistical significance in the 
usual way. But because the confidence interval does not require the notion of 
statistical significance or hypothesis testing to make sense, it may be appealing 
to researchers who are uncomfortable with the usual approach to statistical 
significance, even if it is closely related in a technical sense.

Confidence intervals are more popular in some fields than others, so we do 
not report them in the examples here. But the formula above is easy to execute, 
so confidence intervals can be constructed for any of the regression coefficients 
shown in the examples or exercises. The main difficulty with the confidence 
interval is that the commonsense interpretation that many people would make, 
that there is a “95% probability that β lies in the interval,” is not really justified. 
In particular, the statistical framework that underlies the analyses here views β 
as fixed, even if it is unknown. That is, the framework does not include a notion 
of probability of different values of β; randomness enters via sampling variability 
in b1, so we really want to say something like there is “a 95% probability that 
we obtain a value of b such that the resulting confidence interval includes β.” 
This is certainly less intuitive, but the more natural statement will be sensible 
only if we have adopted a “Bayesian” framework in which there explicitly is a 
probability distribution for β. We do not explore that framework here.

2.3 Prediction in Multiple Regression
2.3.1 Calculating the Predicted Value of Y From the Values 

of X’s
The process of obtaining predicted values of Y in multivariate regression is a 
straightforward extension of that in bivariate regression: to predict Y, we simply 
plug into the regression equation the values of the X’s that we are interested in 
using. For example, suppose we wanted to investigate the effects of age (X1), 
years of work experience (X2), and years of education (X3) on annual income (Y), 
and our analysis found a = −27,710, b1 = −975.85, b2 = 2,114.29, and b3 = 5,580.44. 
Then the regression equation would be:
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36  Multiple Regression

   Ŷ   = − 27, 710 − 975.85  X  1   + 2, 114.29  X  2   + 5, 580.44  X  3   

If we want to know the predicted annual income for a person who is 26 years 
old (X1 = 26), has 4 years of work experience (X2 = 4), and 16 years of education 
(X3 = 16), we simply plug these values for X1, X2, and X3 into the above regres-
sion and do the arithmetic:

Ŷ      = − 27, 710 − 975.85  (  26 )    + 2, 114.29  (  4 )    + 5, 580.44  (  16 )

    Ŷ  = − 27, 710 − 25, 372.1 + 8, 457.16 + 89, 287.04      

 Ŷ   = 44, 662.1     

Based on this regression equation, we can say that our analysis of the sample 
data indicates a predicted annual income of $44,662.10 for a person who is 26 
years old with 4 years of work experience and 16 years of education.

Because this prediction uses estimates from the sample—the b’s—rather 
than the true effects from the population—the β’s—we could also think about 
sampling variability in the predicted annual incomes. That is, we could have a 
standard error for the prediction itself. Here we do not explore the calculations 
to estimate that standard error, but those can be found in more advanced texts.

2.3.2 Not Trusting the Results of Prediction
When we have a low R2, we should not trust the prediction from the regression 
as much as we would when R2 is high. Remember that a low R2 indicates that the 
predicted values of Y are not in general very close to the actual values of Y for 
the cases in our sample, so a low R2 will reduce our confidence in the quality of 
predictions in general. Also, we are uncomfortable with predicting Y based on 
a value of X that is well outside the range of X that was seen in the sample used 
to obtain the regression equation. Suppose that we are interested in the effect of 
age on some Y and that we obtained the regression equation from a sample in 
which all persons were 18 to 49 years old. Even if the resulting R2 were high, we 
probably should not try to use the equation to predict Y for a 93-year-old person. 
As 93 is far outside the actual range of age in the data (18–49), we would not be 
too confident that the prediction for such a person is meaningful.

2.3.3 Why Not Interpret a?
We saw above that we use the value of a (the Y-intercept) in the arithmetic 
needed to predict Y. Earlier we said that we are rarely interested in directly inter-
preting a. We mentioned in Chapter 1 that in a bivariate regression, a can be 
interpreted as the predicted value of Y when X is 0; for multiple regression, a 
will be the predicted value of Y for the situation in which every X has value 0. 
If we plug 0 in for every X in the regression equation, the only non-zero part 
is a, so Ŷ = a. Social science applications seldom involve a situation in which it 
would be realistic for every numerical independent variable to equal 0. Then the 
scenario in which every X equals 0 is usually not very helpful to explore, and 
interpreting a as the predicted value of Y under this scenario usually will not 
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lead to any scientific insight. (However, a situation like this can be interesting 
when all measures of independent variables are categorical; we discuss categori-
cal independent variables in Chapter 3.)

2.4 Collinearity
With these fundamental interpretations of regression results in hand, we can 
begin to introduce some extensions of this core. Collinearity is, broadly speak-
ing, a situation in which high negative or positive correlations among the inde-
pendent variables inhibit our regression analysis. This does not require that all 
pairs of X’s be highly correlated, so collinearity may be present if just some X or 
X’s are highly correlated with one or more other X’s. (There are also more com-
plicated situations beyond high pairwise correlations in which collinearity can 
exist; advanced texts discuss this in detail.) Collinearity is potentially a concern 
because it causes increased uncertainty in the regression results.

In practice, one reason for highly correlated X’s may be that a researcher is try-
ing to measure one concept by multiple X’s. For example, a survey respondent’s 
social class background might be measured by father’s and mother’s education. 
In actual data, however, father’s and mother’s education are likely to be highly 
(and positively) correlated. We can imagine that people with a highly educated 
mother are likely to also have a highly educated father, as many couples meet 
in educational or occupational settings that tend to bring similarly educated 
people together. Or, at the aggregate level, consider the level of economic depri-
vation in a geographical unit like a city or census tract. Both the unit’s poverty 
rate (perhaps measured as the percentage of households with incomes below an 
official poverty line) and its median income would be sensible measures of this 
concept. Again, though, these two measures are likely to be highly (and nega-
tively) correlated: cities with a high poverty rate are likely to have low median 
income. Still, it is important to realize that there is not always an obvious theo-
retical reason for two independent variables to be highly correlated, so we will 
need to examine correlations among all the X’s in our data, rather than just 
think about which pairs might be anticipated to be highly correlated.

When there is a strong correlation between two X’s, it becomes more dif-
ficult to envision changing one while holding the other constant. More practi-
cally, it will be challenging for the regression analysis to determine the separate 
effects of two different X’s if the cases in the data with a high value of one X 
almost always have a high (when there is a strong positive correlation) or low 
(strong negative correlation) value of the other. That is, if survey respondents 
with highly educated mothers tend to also have highly educated fathers, it will 
be hard to untangle whether mother’s education, father’s education, or both are 
actually influencing the dependent variable. In this situation, there will be more 
uncertainty in the estimated b’s than there would be without such high corre-
lations, and this uncertainty is reflected in larger standard errors. A tendency 
toward larger standard errors will mean a tendency toward smaller t-statistics 
(remember that the standard error is in the denominator of the formula for 
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the t-statistics shown on the regression output:  t =   b ________________  
standard error of b

   ), and in  
turn larger p-values.

Collinearity, then, will tend to make us less apt to find statistically signifi-
cant effects of X’s on Y. In the extreme, a classic symptom of collinearity is the 
seeming paradox of a high R2, suggesting that the set of X’s does quite well at 
predicting Y, yet with no or almost no statistically significant effects of the X’s. 
This odd situation is possible under collinearity. The X’s are together doing a 
good job of explaining the variance in Y, but high correlations among the X’s 
mean that there is great uncertainty as to how, or which, particular indepen-
dent variables are related to Y.

2.4.1 Diagnosing and Addressing Collinearity
The most basic approach to detecting collinearity begins by checking for any 
high positive or negative correlations among the X’s. Although there are no 
strict cutoffs, correlations that are greater than about 0.70 in absolute value 
are especially apt to create problems in our regression. If two variables have 
an extremely high correlation (> 0.95, say) we surely will not want to include 
both in our regression. Otherwise, though, we can first run our analysis with 
all X’s that we had originally identified as belonging in the regression, even 
those that are strongly correlated with each other. Perhaps the output will still 
show statistical significance for the effects of X’s that are involved in the strong 
correlations, and we can conclude that these correlations are not really causing 
difficulties for our interpretation of results. But if some or all of the X’s that are 
highly correlated do not show statistically significant effects, it may be that 
there is a collinearity problem.

It is not easy to “fix” collinearity. The simplest strategy is to identify pairs 
of highly correlated X’s that did not exhibit statistical significance in the ini-
tial regression and then retain only one of each such pair when rerunning the 
regression. The choice of which of a pair to retain is somewhat arbitrary, as usu-
ally R2 and the pattern of statistically significant effects will be quite similar for 
either choice. This is because two highly correlated X’s are, in a sense, providing 
the same (or greatly overlapping) information in our analysis and will, there-
fore, lead to similar regression results. But if one of the pair seems most relevant 
to the theory and previous research that is guiding our analysis then that X can 
be chosen to remain in the regression.

There are other, more advanced methods for detecting and addressing col-
linearity; see Appendix B to this chapter for some discussion of these (Section 
2.8.2). For beginning researchers, though, the simple strategy above is often 
quite effective. Of course even after removing X’s from highly correlated pairs, 
some effects may not be statistically significant. If so, then the explanation for 
the nonsignificance is more likely the genuine absence of a relationship with Y, 
not collinearity. We clearly do not want to use collinearity as a catch-all “excuse” 
for nonsignificance. Usually nonsignificance really does mean no relationship 
between an X and Y, or at least not one that can be detected in the data we are 
analyzing. But in many instances, statistically significant effects will emerge 
once we address collinearity this way. When that happens, it is important to 
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remember that our choice of which X to retain from a highly correlated pair was 
mostly arbitrary. Probably the other member of the pair would have given simi-
lar results had it been chosen instead, and we should keep that in mind when 
making interpretations. One or both of the pair are affecting Y, but we cannot 
really be more specific than that. In this situation, we should think of the X that 
we decided to include as a representative of this highly correlated pair, rather 
than thinking we have found that it is important for Y while the other X—the 
one we dropped due to the high correlation—is not.

2.5 Examples
The following examples illustrate the concepts we have discussed in this chapter.

2.5.1 Example 1: Crime in Colorado
A criminologist believed that economic deprivation, residential instability, racial 
inequality, and young male population have positive effects on the level of crime 
in society and wanted to test her research hypothesis with a multiple regression 
analysis. Economic deprivation, residential instability, racial inequality, and 
young male population were her independent variables, and the dependent vari-
able was crime. Because her research question concerned aggregate-level relation-
ships, she used aggregate-level data, in this case data from 24 cities in Colorado.

Economic deprivation was measured as the percentage of the labor force that 
was unemployed; a high percentage of unemployed persons in a city indicates a 
high level of economic deprivation. Residential instability was measured as the 
percentage of renter-occupied housing units; a high percentage of renter-occu-
pied housing units indicates a high level of residential instability in the city. 
Racial inequality was measured by the index of white-Black residential segrega-
tion, with possible values from 0 to 100; a high value of the racial segregation 
index in a city indicates a high level of racial inequality. Young male population 
was measured as the percentage of the population that was male and aged 15 to 
24 years. Crime was measured as the city’s total violent crime (murder, robbery, 
rape, and assault) rate per 100,000 population (Y). She obtained these measures 
for each city from the U.S. Census Bureau and the FBI’s Uniform Crime Reports 
(from the Bureau of Justice Statistics).

Her study can be summarized as follows:

Research hypothesis:  Economic deprivation, residential instability, racial 
inequality, and young male population positively influence the level of 
crime in society.

Units of analysis: 24 cities in Colorado (aggregate-level data).

Measurements of independent and dependent variables:
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X1: Percentage of the labor force that was unemployed (economic 
deprivation).

X2: Percentage of renter-occupied housing units (residential instability).

X3: Racial segregation index (racial inequality).

X4: Percentage of the population that was male, aged 15 to 24 years 
(young male population).

Y: Violent crime rate per 100,000 population (crime).

It is helpful to rewrite the research hypothesis using the actual measure-
ments for the independent and dependent variables. We can also separate the 
different parts of the hypothesis.

Research hypothesis with measurements of independent and dependent variables:

 1. The unemployment percentage (X1) has a positive effect on the violent 
crime rate (Y).

 2. The percentage of renter-occupied housing units (X2) has a positive 
effect on the violent crime rate (Y).

 3. The racial segregation index (X3) has a positive effect on the violent 
crime rate (Y).

 4. The percentage of young male population (X4) has a positive effect on 
the violent crime rate (Y).

Her data are as follows:

City 
ID City Name

Violent 
Crime 
(Y)

Unemployment 
(X1)

Renter-occupied 
Housing (X2)

Racial 
Segregation 

(X3)

Young 
Male 
(X4)

1 Arvada  125.9 7.3 26.7 24.3 6.1

2 Aurora  446.1 7.7 40.1 28.7 6.8

3 Boulder  211.6 7.0 52.3 20.3 16.7

4 Brighton  193.0 6.1 30.4 28.0 7.2

5 Colorado 
Springs  491.9 7.6 39.9 34.7 7.4

6 Commerce 
City  252.3 7.0 30.2 17.6 6.1

7 Denver  542.1 7.8 50.0 54.7 6.6

8 Durango  445.6 6.1 52.0 17.7 13.3
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City 
ID City Name

Violent 
Crime 
(Y)

Unemployment 
(X1)

Renter-occupied 
Housing (X2)

Racial 
Segregation 

(X3)

Young 
Male 
(X4)

9 Englewood  446.2 8.5 50.9 17.3 6.3

10 Evans  171.2 6.6 39.5 12.8 8.5

11 Federal 
Heights  478.8 9.4 48.0 20.2 7.5

12 Fort Collins  315.8 7.4 44.9 19.0 12.4

13 Fort 
Morgan  233.9 8.7 39.3 22.7 7.2

14 Golden  116.1 7.6 41.6 36.2 16.8

15 Grand 
Junction  349.0 5.4 37.6 22.4 7.9

16 Lafayette  153.5 7.2 27.2 13.4 5.7

17 Lakewood  442.7 7.8 41.1 24.4 6.7

18 Littleton  130.7 6.6 38.1 22.5 6.1

19 Longmont  311.5 7.0 36.5 10.2 6.3

20 Loveland  191.5 7.1 34.1 12.4 6.0

21 Northglenn  255.3 10.5 41.5 19.7 7.3

22 Pueblo  854.2 11.1 39.8 22.0 7.5

23 Sterling  487.3 7.7 41.1 63.8 10.7

24
Wheat 

Ridge
 565.8 6.4 45.4 20.8 5.2

Year of data: 2010 
Data sources: U.S. Census Bureau and Bureau of Justice Statistics, FBI’s Uniform Crime Reports

After entering the above data in statistical software, the researcher checked 
correlations among the X’s. The results of this correlation analysis are below:

Unemployment 
(X1)

Renter-occupied 
Housing (X2)

Racial 
Segregation 
(X3)

Young Male 
(X4)

Unemployment (X1)  1.000  0.175  0.068  −0.105

Renter-occupied 
Housing (X2)  0.175  1.000  0.181  0.465

Racial Segregation (X3)  0.068  0.181  1.000  0.183

Young Male (X4)  −0.105  0.465  0.183  1.000
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The highest correlation is 0.465, between renter-occupied housing units (X2) 
and young male population (X3). This does not seem so high as to suggest a 
collinearity problem, and none of the other correlations are at all remarkable.

She then ran the multivariate regression analysis with X1, X2, X3, and X4 as 
independent variables. The multiple regression results from these data are below 
(with "SE" written for "standard error"):

R2 = 0.509

df for t = 19

b SE of b t p-value

Intercept (constant)  −392.009  218.221  −1.796  0.088

Unemployment (X1)  37.081  22.891  1.620  0.122

Renter-occupied housing (X2)  13.945  4.685  2.976  0.008

Racial segregation (X3)  3.598  2.385  1.509  0.148

Young male population (X4)  −23.818  10.334  −2.305  0.033

R2 was only moderately high, with a value of 0.509. Such an R2 generally 
indicates a reasonably satisfactory fit of the regression model to the data, but 
here does not seem so high in light of the small sample size (N = 24). 50.9% 
of the variance in violent crime rates (Y) in this sample was explained, or 
accounted for, by this set of X’s (X1 through X4), and for the most part Y and 
Ŷ were somewhat close for cities in the sample. Still, it appears that there are 
additional independent variables that should be considered in order to provide a 
more complete explanation for differences in crime rates among Colorado cities.

Checking for p-values below the usual 0.05 cutoff indicates that the effects 
of two of the four X’s were statistically significant. Renter-occupied housing (X2) 
and young male population (X4) had statistically significant effects on violent 
crime, controlling for other X’s. p-values for unemployment (X1) and the racial 
segregation index (X3) were above the 0.05 cutoff. Thus, when controlling for 
other X’s, the effects of unemployment (X1) and racial segregation index (X3) on 
violent crime (Y) were not statistically significant.

The regression equation based on this output is

  ̂  Y  = –392.009 +  (37.081)   X  1   +  (13.945)   X  2   +  (3.598)   X  3   +  (–23.818)   X  4   

or

  ̂  Y  = –392.009 + 37.081  X  1   + 13.945  X  2   + 3.598  X  3   – 23.818  X  4  . 

For a and the b’s we have retained three decimal places from the output, but it 
would also be fine if we reported more rounded-off figures, especially if we wanted 
to avoid giving an undue impression of precision in our results. Here the three 
decimal places are helpful for readers who run this analysis in their software and 
want to confirm that they obtained exactly the same results; we do this through-
out the book, but normally more rounding is fine when presenting results.
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Because the effects of renter-occupied housing (X2) and young male popula-
tion (X4) were statistically significant, the researcher proceeded to interpret the 
slopes (b’s) for renter-occupied housing (b2) and young male population (b4). 
b2 was 13.945, indicating a positive effect of renter-occupied housing (X2) on 
violent crime rate (Y). The predicted violent crime rate (per 100,000 population) 
increases by 13.945 as renter-occupied housing (X2) increases by 1% (because 
this particular X2 is measured as a percentage, in this instance “one unit” of X2 
means 1%), controlling for the other X’s in the model.

To examine whether the increase of 13.945 is large enough to have a 
meaningful impact in real terms (real-life significance), the researcher should 
first examine the descriptive statistics for renter-occupied housing units (X2) 
and violent crime rates (Y) produced in her statistical software. Renter-occupied 
housing’s (X2) sample mean is 40.34, with a standard deviation of 7.29 and a 
range of 26.70 to 52.30. This context suggests that it may be more informative 
to look at something more than a one-unit increase in renter-occupied housing 
(X2). This does not fundamentally change the regression results but rather allows 
us to make a more reasoned interpretation, because the descriptive statistics 
for renter-occupied housing (X2), including the standard deviation and range, 
suggest that a one-unit increase is rather small. A five-unit increase seems like 
a more meaningful change in renter-occupied housing (X2). To interpret with a 
five-unit increase, she needs to multiply b by five: a five-unit increase in renter-
occupied housing (X2) increases the predicted violent crime rate (Ŷ) by (5 × 
13.945) = 69.725. Next, in light of the mean (342.17) and the range (116.1–854.2) 
of violent crime rates (Y), an increase of 69.725 in predicted violent crime rate 
(Ŷ) for a 5% increase in the renter-occupied housing seems large enough to 
have a real impact. Therefore, she can say that the effect of renter-occupied 
housing (X2) on violent crime rate (Y) has real-life significance. Although this is 
ultimately a judgment that the researcher is making, and can be challenged by 
other researchers, it is rooted in a close examination of the sample data.

Suppose that b2 had been 1.395, rather than the actual figure of 13.945. Then 
a five-unit increase in renter-occupied housing would have implied an increase 
of 6.975 (from 5 × 1.395) in the predicted violent crime rate. Many analysts 
would view such a change as rather small in light of the mean (342.17) and 
range (116.1–854.2) of violent crime rates in the sample, and the researcher 
would likely then conclude that renter-occupied housing’s effect did not have 
much real-life significance. More generally, we always should be mindful 
of the possibility that a statistically significant effect is not large enough to 
demonstrate real-life significance. As noted earlier, this is especially a concern in 
analyses of very large samples; because standard errors tend to be smaller (and, 
in turn, t-statistics larger and p-values smaller) in larger samples, some effects 
that are quite small, or even trivial, in real terms can be statistically significant.

b4 was −23.818, indicating a negative effect of the young male population 
(X4) on violent crime rate (Y). The predicted violent crime rate (per 100,000 
population) decreases by 23.818 as young male population (X4) increases by 1%, 
controlling for the other X’s. Young male population’s (X4) mean is 8.26, and its 
range is 5.20 to 16.80, so a 1% increase in young male population does not seem 
so small as to be uninterpretable. Relative to the mean (342.17) and range (116.1 
to 854.2) of violent crime rates (Y), a decrease of 23.818 in the violent crime rate 
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44  Multiple Regression

seemed to the researcher to be large enough to say that the effect of young male 
population (X4) on violent crime rate (Y) has real-life significance.

With these results, the researcher was able to evaluate the research hypothesis. 
Based on the earlier examination of p-values and slopes (b’s), renter-occupied 
housing (X2) is the only X that showed a statistically significant (and also real-
life significant) effect on crime (Y) in society in the direction—violent crime rate 
increases as renter-occupied housing increases—that was expected under the 
research hypothesis. The effect of young male population (X4) was statistically 
significant (and also real-life significant), but in the negative direction—violent 
crime rate decreases as young male population increases—which is opposite of 
what the research hypothesis suggested. R2 is moderately high, indicating that the 
set of X’s is explaining crime (Y) fairly well, but it would be worthwhile for further 
analyses to explore additional X’s that might also influence crime (Y). Note, 
though, that there is a practical constraint on the number of X’s here, because 
as a general rule one wants the number of X’s to be relatively small compared to 
the sample size N. The small sample size here (N = 24) means that it will not be 
appropriate to include a very large number of X’s in the regression.

Overall, then, the research hypothesis was not very well supported by 
the regression analysis results for these data. Of course it is possible that the 
measurements of variables, or level of analysis, are not ideal. For example, 
economic deprivation could instead be measured by the percentage of city 
residents living in poverty, or racial inequality could be measured as the difference 
between average incomes for white and non-white residents. It is also possible 
that a lower level of analysis, such as neighborhoods, would provide a better 
test of the hypothesis. In addition, the counterintuitive finding of a negative 
relationship between young male population (X4) and violent crime rate (Y) 
may not have arisen had the analysis controlled for other important X’s. Among 
these cities, Boulder, Ft. Collins, and Golden have exceptionally high young 
male populations because these cities are home to the University of Colorado, 
Colorado State University, and the Colorado School of Mines, respectively. None 
of these cities have especially high violent crime rates, so without controlling 
for other variables that could capture the distinctive “college town” character of 
these cities, the regression analysis takes the data for these cities as evidence for 
a negative relationship between young male population and violent crime rate.

The researcher found a positive and significant relationship between renter-
occupied housing and crime from these city-level (aggregate-level) data. She can 
make only aggregate-level interpretations from these findings. That is, it is legit-
imate to say that the analysis indicates that, holding other X’s constant, cities 
with a high proportion of renter-occupied housing units are predicted to have 
higher crime rates than cities with a low proportion of renter-occupied housing 
units. However, it is not legitimate to make an individual-level interpretation of 
these results. This city-level analysis does not show that renters are more likely 
to commit crime than home owners; that would be the ecological fallacy of 
drawing individual-level conclusions from the aggregate-level results.

The p-values in the table of regression results for this example are two-sided, 
as they refer to the alternative hypothesis β ≠ 0; this usually is the case with the 
default output from statistical software. Note that the original research hypoth-
esis specified positive signs for the relationships between independent variables 
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and the dependent variable. The researcher could appeal to various theories 
of crime to argue that the negative relationships between these independent 
variables and crime would be very unlikely. Recalling the review of hypothesis 
tests in Chapter 1, one might then suggest using one-sided rather than two-
sided p-values in this situation, with H1 specifying the sign of the effect if the 
null hypothesis of β = 0 is rejected. These one-sided p-values can be obtained 
by simply dividing the reported two-sided p-values by 2, which of course makes 
the one-sided p-values smaller. Statistically significant relationships with the 
two-sided p-value ≤ 0.05 would remain so in the one-sided approach, but some 
previously nonsignificant relationships might become statistically significant.

In the analysis here, the one-sided p-values for the previously nonsignificant 
independent variables unemployment (X1) and racial segregation (X3) would 
remain over the 0.05 cutoff, but close enough (0.122 / 2 = 0.061 and 0.148 / 2 = 
0.074, respectively) to perhaps be viewed as borderline or marginally significant. 
However, this example also illustrates our caution about using the one-sided 
p-value in many research settings. The seemingly impossible negative effect 
of young male population on crime was in fact observed in the researcher’s 
analysis of these data, despite the strong belief among researchers that societies 
with large young male populations tend to have high levels of violent crime. 
As discussed earlier, we can understand why this counterintuitive result was 
found in this particular sample and how it might change in the presence of 
other controls. Still, this illustrates how we may not always be so confident that 
we can absolutely rule out either a positive or negative effect when applying our 
understanding of theory or past research to new situations or data. We therefore 
will reserve the one-sided approach for analyses in which we have an unusually 
strong basis for ruling out one sign as impossible for the true effect of X on Y, 
even if our initial expression of the research hypothesis suggests a particular 
direction of the effect.

Finally, these data were obviously not derived from a true experiment that 
could be manipulated by the researcher, but instead came from observation of 
the world as it is. Of course there would be no possible way for the researcher 
to randomly assign different levels of renter-occupied housing and the other 
independent variables to different cities. Therefore the effect of renter-occupied 
housing on crime found by the researcher here should be understood as indicat-
ing an association between these variables. This could reflect a causal effect of 
renter-occupied housing on crime, but the nature of the research design does 
not allow the researcher to conclude that definitively.

2.5.2 Example 2: Infant Mortality in the World
A researcher believed that greater economic and technological development, 
health care availability, and urbanization decrease infant mortality in the 
world’s nations and wanted to test this hypothesis with a multiple regression 
analysis. Further, the researcher was interested in exploring this question via 
historical rather than contemporary data, as theoretical arguments suggested 
that these relationships could be different in different historical periods. For 
this analysis, independent variables were economic and technological develop-
ment, health care availability, and urbanization, and the dependent variable 
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was infant mortality. He decided to use 28 randomly selected countries as the 
cases, so this research was at the country level (aggregate level of analysis). Data 
were obtained from a reference book that collected data from various original 
sources and reflected conditions around 1990.

Economic development was measured by gross domestic product (GDP, 
essentially the value of goods and services produced in the country’s economy) 
per capita (or per person) expressed in U.S. dollars. A high value of GDP per 
capita in a country indicates a high level of economic activity and develop-
ment. Technological development was measured by the number of people per 
telephone in the country; note that these data were collected before the cell 
phone era. A high number of people per telephone in a country indicates a low 
level of technological development, because more people “sharing” each phone 
means that there are, relative to the population, fewer phones and less access 
to technology. Health care availability was measured by the number of people 
per hospital bed. As with the telephone measure, a high number of people per 
hospital bed in a country indicates a low level of health care availability, as this 
means that there are few hospital beds relative to the population. Urbanization 
was measured by the percentage of population living in urban areas. It hardly 
needs to be said that a country with a high percentage of population living in 
urban areas is highly urbanized. Finally, infant mortality was measured by the 
number of infant deaths per 1,000 births.

The research hypothesis, units of analysis, measurements of independent 
and dependent variables, and raw data are as follows:

 • Research hypothesis: Greater economic and technological development, 
health care availability, and urbanization decrease infant mortality in 
society.

 • Units of analysis: 28 countries (aggregate-level data).

Measurements of independent and dependent variables:

 • X1: GDP per capita in U.S. dollars (economic development).

 • X2: Number of people per telephone (technological development).

 • X3: Number of people per hospital bed (health care availability).

 • X4: Percentage of population living in urban areas (urbanization).

 • Y: infant mortality rate per 1,000 births (infant mortality).

Research hypothesis with measurements of independent and dependent variables:

 1. GDP per capita (X1) has a negative effect on infant mortality rate (Y).

 2. The number of people per telephone (X2) has a positive effect on infant 
mortality rate (Y). Countries with more people “sharing” a phone (X2), 
reflecting less access to technology, will have higher infant mortality 
rates (Y).
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 3. The number of people per hospital bed (X3) has a positive effect on 
infant mortality rate (Y). Countries with more people per hospital bed 
(X3), indicating less health care availability, will have higher infant 
mortality rates (Y).

 4. The percentage living in urban areas (X4) has a negative effect on infant 
mortality rate (Y).

Data:

Country 
ID

Country 
Name

Infant 
Mortality 
(Y)

GDP per 
Capita 
(X1)

People per 
Telephone 
(X2)

People per 
Hospital 
Bed (X3)

Percentage 
Living in Urban 
Areas (X4)

1 Angola 151 950 132 845 29

2 Bangladesh 112 200 572 3,195 24

3 Bolivia 83 690 37 685 51

4 Burkina Faso 117 205 482 1,359 8

5 China 33 360 89 428 27

6 Cyprus 10 7,585 2 165 69

7 Ecuador 60 1,070 28 610 54

8 Ethiopia 113 130 320 3,873 11

9 Germany 7 14,600 1.5 95 86

10 Guyana 51 300 47 341 35

11 Indonesia 70 630 172 1,485 31

12 Jamaica 17 1,400 13 468 52

13 Liberia 119 440 278 800 46

14 Madagascar 93 200 239 600 22

15 Mauritius 22 2,300 15 364 41

16 Morocco 56 1,060 62 959 50

17 Netherlands 7 16,600 1.6 164 88

18 Pakistan 105 380 131 1,706 32

19 Poland 14 4,300 7.5 154 62

20 Saudi Arabia 69 5,800 13 406 78

21 South Korea 23 6,300 3.3 429 74

22 Spain 6 12,400 2.5 198 79

(Continued)
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Country 
ID

Country 
Name

Infant 
Mortality 
(Y)

GDP per 
Capita 
(X1)

People per 
Telephone 
(X2)

People per 
Hospital 
Bed (X3)

Percentage 
Living in Urban 
Areas (X4)

23 Syria 45 2,300 17 840 50

24 Turkey 54 3,400 7 465 61

25 United 
Kingdom 8 15,900 1.9 138 90

26 United States 10 22,470 1.9 198 76

27 Venezuela 23 2,590 11 370 83

28 Zambia 77 380 78 311 49

The researcher first ran a correlation analysis in his statistical software, to 
check correlations among the X’s in order to detect potential collinearity prob-
lems. The results of the correlation analysis were:

GDP per 
Capita (X1)

People per 
Telephone 
(X2)

People per 
Hospital Bed 
(X3)

Percent 
Living in 
Urban Areas 
(X4)

GDP per Capita 
(X1)

 1.000  −0.439  −0.431  0.755

People per 
Telephone (X2)  −0.439  1.000  0.767  −0.728

People per 
Hospital Bed (X3)  −0.431  0.767  1.000  −0.656

Percent Living in 

Urban Areas (X4)
 0.755  −0.728  −0.656  1.000

The correlation analysis indicated that percentage living in urban areas (X4) 
is strongly correlated with GDP per capita (X1) (r = 0.755), the number of people 
per telephone (X2) (r = −0.728), and the number of people per hospital bed (X3) 
(r = −0.656). The number of people per telephone (X2) and the number of people 
per hospital bed (X3) are also strongly correlated (r = 0.767). These high cor-
relations suggest that collinearity may indeed be a problem in the regression 
analysis.

Results of the multiple regression with all X’s included were as follows, with 
"SE" again written for "standard error":

R2 = 0.673

df for t = 23
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b SE of b t p-value

Intercept (constant)  67.718  24.807  2.730  0.012

GDP per capita (X1)  −0.002  0.001  −1.556  0.133

People per telephone (X2)  0.116  0.061  1.899  0.070

People per hospital bed (X3)  0.004  0.009  0.386  0.703

Percent living in urban 

areas (X4)
 −0.333  0.444  −0.750  0.461

The results show the classic symptom of collinearity that we discussed 
earlier. The R2 is fairly high (0.673), suggesting rather successful predictions of 
Y in the sample, but none of the effects of X on Y are statistically significant 
(although the p-value for X2, number of people per telephone, is close to the 
0.05 cutoff). The researcher then tried to address the collinearity problem by 
excluding an X from each of the highly correlated pairs and rerunning the 
regression analysis.

Because percentage living in urban areas (X4) is strongly correlated with 
three other X’s (GDP per capita [X1], the number of people per telephone [X2], 
and the number of people per hospital bed [X3]), it seemed prudent to exclude 
percentage living in urban area (X4) from the new regression model. With the 
number of people per telephone (X2) and the number of people per hospital 
bed (X3) also strongly correlated, it would be reasonable to exclude one of 
those two also. The researcher chose to exclude the number of people per 
hospital bed (X3) along with percentage living in urban areas (X4). His next 
regression model then included only GDP per capita (X1) and the number of 
people per telephone (X2).

This seems to restate the overall research hypothesis as “greater economic 
and technological development decrease infant mortality in society,” and 
the specific hypotheses as “GDP per capita (X1) has a negative effect on 
infant mortality rate (Y),” and “the number of people per telephone (X2) has 
a positive effect on infant mortality rate (Y).” Note, however, that the choice 
of which X’s to exclude in response to collinearity was rather arbitrary. With 
health care availability and urbanization measures excluded for this reason, 
the researcher must be careful with interpretation. If results show statistically 
significant effects of the economic and technological measures, that does not 
rule out health care availability and urbanization as factors affecting infant 
mortality. Rather collinearity is making it too hard to distinguish all these 
different effects and forcing the researcher to be a bit more modest in his 
research goals.

Regression results with GDP per capita (X1) and the number of people per 
telephone (X2) are as follows:

R2 = 0.661

df for t = 25
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b SE of b t p-value

Intercept (constant)  52.430  8.138  6.443 0.000 (<0.001)

GDP per capita (X1)  −0.003  0.001  −3.098 0.005

People per telephone (X2)  0.157  0.037  4.265 0.000 (<0.001)

R2 is little changed, with 66.1% of the variance in infant mortality (Y) 
explained by GDP per capita (X1) and the number of people per telephone (X2). 
Excluding the number of people per hospital bed (X3) and percentage living in 
urban areas (X4) from the regression did not reduce R2 very much. That is, the 
new regression model’s fit to the sample data is only slightly worse than when 
all four X’s were included.

With number of people per hospital bed (X3) and percentage living in urban 
areas (X4) removed, effects of GDP per capita (X1) and the number of people per 
telephone (X2) on the predicted infant mortality rate (Y) become statistically 
significant. The p-value for GDP per capita (X1) is 0.005, and the p-value for the 
number of people per telephone (X2) is shown by some statistical software as 
0.000, which can be interpreted as < 0.001 (it is not literally zero, but more deci-
mal places would be needed to show that). Both are well below the 0.05 cutoff.

With this statistical significance, we can interpret effects (slopes) for GDP 
per capita (X1) and the number of people per telephone (X2). For GDP per capita 
(X1), the slope b1 is −0.003. This indicates a negative effect of GDP per capita (X1) 
on the predicted infant mortality rate (Y) and that the predicted infant mortal-
ity rate per 1,000 births (Y) decreases by 0.003 as GDP per capita (X1) increases 
by $1, controlling for the number of people per telephone (X2). Of course $1 rep-
resents a very small change in GDP per capita (X1), given the mean ($4,462.14) 
and range ($130–$22,470) of this variable’s values in this data set. A more help-
ful interpretation might be that the predicted infant mortality rate per 1,000 
births (Y) decreases by 3 as GDP per capita (X1) increases by $1,000. The value 
3 was obtained by multiplying b1 by the $1,000 change in X1: if a $1 increase in 
GDP per capita decreases the predicted infant mortality by 0.003, then a $1,000 
increase in GDP per capita will decrease the predicted infant mortality by 1,000 
× 0.003, or 3. Put this way, the effect does not seem so tiny, considering the 
mean (55.54) and the range (6–151) of infant mortality rate (Y) in the sample, 
even if it is still not very large. Thus, the effect of GDP per capita (X1) appears to 
be meaningful in real-world terms.

For number of people per telephone (X2), the slope (b2) is 0.157. This is a posi-
tive effect of the number of people per telephone (X2) on the predicted infant 
mortality rate (Y), and the predicted infant mortality rate (Y) increases 0.157 per 
1,000 births as the number of people per telephone (X2) increases by one, con-
trolling for GDP per capita (X1). Again it is interesting to consider a somewhat 
larger change in the number of people per telephone (X2), as there is a fairly 
large mean (98.76) and very wide range of values (1.5–572) of X2 in the sample. 
If the number of people per telephone (X2) increases by 10, the predicted infant 
mortality rate (Y) increases by 1.57 (calculated as 10 × 0.157) per 1,000 births, 
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still controlling for GDP per capita (X1). As with the effect of GDP per capita, 
this change now does not seem so tiny relative to the sample mean (55.54) and 
range (6–151) of infant mortality rate (Y) and so might be assessed as having 
real-world significance. However, some researchers might look at that change 
as still being too small to indicate real-world significance. As discussed earlier, 
there can be ambiguity in the assessment of real-life significance.

The researcher then evaluated the new research hypotheses. With R2 fairly 
high, the model does pretty well at predicting levels of infant mortality for the 
countries in the sample. R2 is not so close to 1 as to suggest that all important 
variables have been included, but the model is reasonably successful. Further, 
both GDP per capita (X1) and number of people per telephone (X2) have statisti-
cally significant effects on the infant mortality rate (Y), and both effects have 
the expected signs: negative for GDP per capita, and positive for number of 
people per telephone. Both effects are also judged to be large enough to suggest 
real-life significance, though with some ambiguity for number of people per 
telephone. The revised research hypotheses thus seem to be supported in this 
analysis. Still, it is important to keep in mind the collinearity-induced choices of 
X’s from the original set and realize that similar results likely would have been 
found if different choices of which independent variables to keep and drop had 
been made.

The impact of different choices of which X’s to keep in the face of collinearity 
can be illustrated by considering these data further. Remember that the number 
of people per telephone (X2) and the number of people per hospital bed (X3) 
were strongly correlated (r = 0.767), and the researcher chose number of people 
per hospital bed (X3) to exclude from the regression model. What if the other 
choice—excluding the number of people per telephone (X2)—had been made? 
Here is the output from the regression model with independent variables GDP 
per capita (X1) and number of people per hospital bed (X3):

R2= 0.572

df for t = 25

b SE of b t p-value

Intercept (constant)  53.224  10.043  5.300 0.000 (<0.001)

GDP per capita (X1)  −0.003  0.001  −3.134 0.004

People per hospital  

bed (X3)
 0.021  0.007  3.027 0.006

R2 is somewhat smaller than in the previous regression but still moderately 
high. And, as in the previous model, both X’s show statistically significant 
effects. We can interpret the slopes for X1 and X3. Predicted infant mortality 
rate per 1,000 births (Y) decreases by 0.003 as GDP per capita (X1) increases 
by $1, controlling for the number of people per hospital bed (X3). (As before, a 
more helpful interpretation for assessing real-life significance might focus on an 
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increase of $1,000 in GDP per capita.) This is the same effect of GDP per capita 
(X1) as was estimated in the previous regression.

For number of people per hospital bed (X3), the slope b3 is 0.021. That is, 
predicted infant mortality per 1,000 births increases by 0.021 as the number 
of people per hospital bed (X3) increases by one, controlling for GDP per capita 
(X1). Again it is interesting to consider a somewhat larger change in the num-
ber of people per hospital bed (X3), as there is a large mean (773.25) and very 
wide range of values of X3 (95–3,873) in the sample. For an increase of 100 in 
the number of people per hospital bed (X3), the predicted infant mortality rate 
(Y) increases by 2.1 per 1,000 births, while holding GDP per capita (X1) con-
stant. When considered this way, a reasonable change in the number of people 
per hospital bed produces a meaningful change in predicted infant mortality, 
suggesting real-world significance of this effect. An increase in the number of 
people per hospital bed indicates a decrease in the availability of health care, so, 
controlling for economic development, predicted infant mortality increases as 
health care availability decreases. This is consistent with the original hypothesis 
about infant mortality and health care availability.

The regression results with GDP per capita (X1) and number of people per tele-
phone (X2) are quite similar to those with GDP per capita (X1) and the number of 
people per hospital bed (X3). Although R2 is somewhat higher in the regression 
using number of people per telephone (X2), in each regression both independent 
variables have statistically significant effects. Also, the size and direction of the 
effect of GDP per capita (X1) are the same in the two regressions, and whether 
number of people per telephone (X2) or number of people per hospital bed (X3) is 
used, the effect of this variable is statistically significant and positive.

This similarity in results is not surprising. Because highly correlated variables 
represent similar information, using one or the other in the regression will often 
produce similar results. This is why we should be cautious in discussing results 
for regressions carried out after removing variables due to collinearity. We 
should not give the impression that one or the other of these regressions defini-
tively establishes that either technological development (represented by X2) or 
health care availability (represented by X3) is the factor that is truly related to 
infant mortality (Y). Instead, the collinearity limits us to deciding that one or 
both of these factors appear to be related to infant mortality, but the nature of 
the data prevents a more conclusive interpretation. (We will revisit this idea as 
one application of the F-statistic in Chapter 3.) And as before, the nonexperi-
mental research design does not permit us to ascribe a definitive causal inter-
pretation to these effects.

2.6 Exercises
2.6.1 Exercise 1: Median Income Among U.S. States
A researcher hypothesized that higher unemployment and a larger older adult 
population decrease the typical income in a given area. On the other hand, she 
hypothesized that greater educational attainment and urbanization increase an 
area’s typical income. To test these research hypotheses, she collected data from 
34 American states.
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Typical income was measured as the state’s median annual income in dollars, 
and unemployment was measured as the percentage of its labor force that is 
unemployed. Older adult population was measured as the percentage of popula-
tion aged 65 years and over, with educational attainment measured as the per-
centage of those 25 years and older holding at least a bachelor’s degree. Finally, 
urbanization was measured as population density (population per square mile). 
The following data were collected from the Census Bureau:

ID State
Median 
Income Unemployment

Older Adult 
Population

Educational 
Attainment Urbanization

1 Alabama 48,123 5.8 16.5 25.5  96.3

2 Arizona 56,581 5.8 17.1 29.4  61.8

3 Arkansas 45,869 5.6 16.5 23.4  57.7

4 California 71,805 5.9 13.9 33.6  253.8

5 Colorado 69,117 4.2 13.8 41.2  54.1

6 Connecticut 74,168 6.1 16.8 38.7  741.1

7 Delaware 62,852 5.3 18.0 31.5  493.6

8 Florida 52,594 5.5 20.1 29.7  391.3

9 Georgia 56,183 5.8 13.4 30.9  181.3

10 Illinois 62,992 6.1 15.2 34.4  230.6

11 Indiana 54,181 4.7 15.4 26.8  186.1

12 Iowa 58,570 3.6 16.7 28.9  56.3

13 Kentucky 48,375 5.5 15.9 24.0  112.8

14 Louisiana 46,145 6.5 14.9 23.8  108.4

15 Maryland 80,776 5.2 14.9 39.7  623.5

16 Massachusetts 77,385 4.6 16.1 43.4  879.5

17 Michigan 54,909 5.9 16.7 29.1  176.2

18 Minnesota 68,388 3.6 15.4 36.1  70.0

19 Mississippi 43,529 7.0 15.6 21.9  63.6

20 Missouri 53,578 4.6 16.5 29.1  88.9

21 New Hampshire 73,381 3.8 17.6 36.9  150.0

22 New Jersey 80,088 5.3 15.7 39.7  1,224.6

23 New York 64,894 5.5 15.9 36.0  421.2

24 North Carolina 52,752 5.3 15.9 31.3  211.3

(Continued)
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ID State
Median 
Income Unemployment

Older Adult 
Population

Educational 
Attainment Urbanization

25 Ohio 54,021 5.2 16.6 28.0  285.3

26 Oklahoma 50,051 5.4 15.3 25.5  57.3

27 Pennsylvania 59,195 5.3 17.8 31.4  286.2

28 Rhode Island 63,870 5.7 16.7 33.5  1,024.8

29 South Carolina 50,570 5.8 17.2 28.0  167.1

30 Tennessee 51,340 4.9 15.9 27.3  162.9

31 Texas 59,206 5.1 12.2 29.6  108.4

32 Vermont 57,513 3.8 18.8 38.3  67.7

33 Virginia 71,535 4.6 15.0 38.7  214.5

34 Washington 70,979 4.9 15.1 35.5  111.4

Year of data: 2017 
Data source: Census Bureau

 1. What are the independent and dependent variables for this analysis?

 2. After entering the above data in statistical software, check for 
collinearity and then run multiple regression analysis as needed to test 
the research hypothesis.

 3. Interpret the results (output) as fully as possible, focusing on R2, 
p-values, b’s, and real-life significance (remember that descriptive 
statistics are helpful in making interpretations of real-life significance).

 4. Evaluate the research hypothesis.

 5. Use the results to predict median income for a state with 4.3% 
unemployment, 18.1% older adult population, 35.5% holding a 
bachelor’s degree, and 260.3 people per square mile. Should you trust 

this predicted value? Explain.

2.6.2 Exercise 2: Predicting Educational Attainment
Researchers were interested in studying influences on educational attainment, 
and obtained data on a sample of American adults who had completed their 
formal education. They believed that an adult’s education could be predicted 
from measurements taken at childhood on his or her reading test score, resource 
competition in the family, parental education, and household income. In the 
following hypothetical descriptive and regression analyses of the data from 
this sample, the dependent variable is years of education, and the independent 
variables are reading test score, number of siblings (measuring resource 
competition), parental education (whichever parent had the highest, in years), 
and household annual income for the respondent at age 15 (in dollars).
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Descriptive Statistics:

Mean Minimum Maximum

Respondent’s education 14.3 9 21

Test score 100 82 128

Number of siblings 2.6 0 6

Parental education 12.2 8 18

Childhood household income 54,567.12 24,000 78,000

Multiple Regression Analysis Results:

R2 = 0.228

df for t = 103

b SE of b t p-value

Intercept (constant)  −95.5

Test score  0.028 0.017 (i) 0.103

Number of siblings  −0.121 0.058 (ii) 0.039

Parental education  1.122 0.580 (iii) 0.056

Childhood household income  0.002 0.001 2.000 0.048

 1. Assuming no collinearity, interpret the results as fully as possible, 
focusing on R2, p-values, b’s, and statistical and real-life significance.

 2. What are the values for the t-statistics (i), (ii), and (iii) not shown in the 
table?

 3. What are the predicted years of education for a person with a test score 
of 105, three siblings, whose most-educated parent had 12 years of 
education, and whose household income was $46,000 when they were 
15 years old? Should you trust the predicted value?

 4. What is the total number of cases in the sample?

 5. Is the research hypothesis supported? Explain.

2.6.3 Exercise 3

 1. Suppose that our research hypothesis is represented by the set of 
independent variables in the regression. Explain why both R2 and 
statistical significance of the b’s are important in deciding whether the 
research hypothesis is supported.
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 2. If we believe that there are multiple factors that influence our 
dependent variable, why do we need to use multiple regression instead 
of repeatedly applying simple (bivariate, with just one independent 
variable) regression?

 3. Explain how collinearity can lead to artificial findings of statistical 
nonsignificance of X’s. 

2.7 Appendix A: Beginning a Research Project 
Using Multiple Regression

2.7.1 Setting Up the Research Question and Hypothesis
This chapter presented core interpretations of multiple regression results. Here 
we step back and consider how to start a research project using multiple regres-
sion analysis. We begin with a research question and a research hypothesis about 
the expected influences of the multiple independent variables on the dependent 
variable. Social science theories often suggest such relationships, and so theo-
ries can help guide us in choosing the independent and dependent variables. 
Additional independent variables may be suggested by previous quantitative 
research, or even just common sense. Note that we are using “research hypoth-
esis” to mean an overall statement of expected influences on the dependent 
 variable. This is different from the specific statistical hypotheses (H0 and H1) 
that we discussed in the main text of this chapter. Of course specific statistical 
hypothesis tests will be helpful in evaluating the research hypothesis.

When a theory is guiding the analysis, independent variables that do not 
have a central role in the theory are sometimes called “control” variables. This 
distinguishes them from the variables that are the main elements of the theory 
and the focus of the research hypothesis. The researcher expects them to be 
related to Y and likely correlated with at least some of the independent variables 
that are the theory’s main focus, and so wants to control for them when deter-
mining the effects of the independent variables of primary interest. Despite this 
conceptual distinction, however, the control variables are still treated the same 
as other independent variables in the regression analysis itself, and the control 
variables play the same part in predicting Y as do the other independent vari-
ables. It is just that results for the control variables may not be emphasized as 
much when writing a report or article on the research.

For example, in criminology Shaw and McKay’s (1942) social disorganiza-
tion theory suggests that greater poverty, residential instability, and cultural 
conflict increase crime in a community. In this case, the dependent variable 
is crime, and the independent variables suggested by the theory will measure 
poverty, residential instability, and cultural conflict. In addition, much previous 
research has found that areas with more young males—an especially crime-
prone group—tend to have higher crime rates, and the size of the young male 
population may also be correlated with the independent variables suggested by 
the theory. Thus young male population should be included in the regression 
analysis as another independent variable, but with respect to the theory it is a 
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control variable. In this case, then, the research hypothesis would be “The levels 
of poverty, residential instability, cultural conflict, and young male population 
in a community all have positive effects on community crime rates.” Here the 
research hypothesis specified the direction of the relationships (in this case, 
positive) between the independent variables and the dependent variable, but 
sometimes the research hypothesis only says that there is a relationship, leaving 
the direction unspecified.

2.7.2 Level of Analysis
Theories can also suggest whether an aggregate-level or an individual-level anal-
ysis is most appropriate for our research. As discussed in Chapter 1, level of anal-
ysis refers to the nature of the subjects or units we are studying. In the social 
disorganization example above, the theory argues that communities with high 
levels of poverty, residential instability, and cultural conflict are more likely 
to have high crime rates. This suggests the community as the appropriate unit 
to study, yielding an aggregate-level analysis. The theory does not necessarily 
imply that, within a community, crime is being committed by individuals who 
are poor or have recently moved; an individual-level theory of crime would be 
needed for that sort of investigation. (In fact theories sometimes encompass 
more than one level; we briefly discuss multilevel data in Chapter 9.)

In this way, social disorganization theory is tied to aggregate-level analy-
sis, using data from communities such as neighborhoods, cities, counties, or 
states. An individual-level theory such as Hirschi’s (1969) social control theory, 
on the other hand, should be examined with data on individuals. As we noted 
in Chapter 1, in practice it is usually the case that data from higher levels, such 
as states, are easier to obtain than data from lower levels, such as neighborhoods 
or individuals. This makes it especially important to be careful not to assume 
that results obtained from data at one level of analysis automatically apply to 
another level. Recall the “ecological fallacy” from Chapter 1, in which findings 
from aggregate-level research are inappropriately applied to individual-level 
phenomena. Because aggregate-level data are often more accessible, it can be 
very tempting to draw individual-level conclusions from aggregate-level data, 
but this temptation should be resisted. It is important to use data that match the 
level of analysis suggested by the theory we are investigating and to interpret 
results in terms of that level.

2.7.3 Measuring Independent and Dependent Variables
Our next step is to think how to actually measure the independent and depen-
dent variables for the subjects or units we are studying. Again we can take 
advantage of previous quantitative research and common sense in coming 
up with measurements of the variables. For the social disorganization theory 
example, poverty is often measured by the percentage of households in a com-
munity whose total income falls below an official poverty line. Residential 
instability can be measured as the percentage of residents living in different 
housing than they were 5 years ago, or by the community’s percentage of renter-
occupied housing units. Cultural conflict is often measured by the community’s 
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percentage of foreign-born population. Young male population is simply the 
percentage of the population that is made up of men in a particular age range. 
Crime can be measured as the total crimes (or a more specific crime type such 
as homicides or robberies) reported to police in a community, converted into a 
rate per 100,000 population so that values from communities of varying size 
are comparable.

In any case, we want measurements that closely match the theoretical con-
cept for each variable while still being practical to obtain for all the subjects or 
units in our study. When there is no available variable that can directly measure 
a particular theoretical concept, or there is no practical way to carry out that 
measurement in our sample, we must either find the best available alternative 
or not include a variable measuring that concept at all. In either case, this will 
be a limitation of our research and will be important to note in any papers or 
reports describing our work.

2.7.4 Data Collection
After deciding on the level of analysis, and appropriate measurements of the 
independent variables and the dependent variable, we can collect data on 
these measurements for the subjects or units of analysis in our sample. For 
the social disorganization example, suppose that we have decided to use states 
as our units of analysis; remember that the theory requires aggregate-level 
analysis of some kind. We can then collect data from all 50 American states 
on the percentage of households below the poverty line (the poverty measure) 
the percentage of residents living in different housing than 5 years ago or the 
percentage of renter-occupied housing units (the residential instability mea-
sure), the foreign-born population percentage (the cultural conflict measure), 
the population percentage of young men aged 15 to 21 years (the young male 
population measure), and the total crimes reported to police per 100,000 pop-
ulation (the crime measure). For the United States, a great variety of national 
or community (aggregate-level) data can be found at the websites of various 
government agencies, including, among others, the Census Bureau and the 
Bureau of Justice Statistics. An excellent source for individual-level data that 
can be used to investigate a wide variety of research questions is the University 
of Michigan’s Inter-University Consortium for Political and Social Research 
(ICPSR) data archive.

After data collection, we enter data in our statistical software, and use the 
software to run the multiple regression analysis that we have decided will best 
address our research question and hypothesis. The software output will give us 
the numerical results described above and allow us to make interpretations. In 
some cases, there will be an intermediate step in which some variables need to 
be transformed before being used in the regression analysis, but we will discuss 
that situation in subsequent chapters.

2.7.5 Evaluation of Research Hypothesis
We want to use the regression results to evaluate the research hypothesis that 
we developed from our research question. How well is the research hypothesis 
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supported in our data? To evaluate this, we go through the different elements 
of interpretation that we discussed in the preceding sections of this chapter. 
Recapping those sections, we need to consider (a) the value of R2, (b) statistical 
significance of the effects of the X’s (via the p-values), and (c) for those that are 
statistically significant, the slopes, or effects, of the X’s (the b’s) in terms of direc-
tion of the effects and their real-life significance. In general, we view the analy-
sis as strongly supporting our research hypothesis if R2 is high and all (or most 
of) the X’s have statistically significant effects on Y that are in the expected (by 
the research hypothesis) direction, and, further, these effects are large enough 
to have real-life significance.

A high R2 means that the set of X’s suggested by the research hypothesis is 
predicting Y well and that we seem to be accounting for the main influences on 
Y. Statistical significance of every X’s effect means that each of the hypothesized 
X’s does appear to be related to Y, because for each X we are rejecting the statistical 
null hypothesis of no effect (H0). For each X with a statistically significant effect, 
we can check the effect’s direction (positive or negative) from the slope b and 
see if it matches the direction suggested by the research hypothesis (though 
again sometimes that direction is not specified by the research hypothesis). We 
can also determine from each b if the magnitude of the effect is enough to 
believe that the corresponding X has a real impact on Y (still realizing that a 
genuinely causal interpretation of this effect usually cannot be made).

Even if most, or all, of the X’s have statistically significant effects on Y in 
the direction suggested by the research hypothesis, there could still be a low 
value of R2. This typically means that the regression model is incomplete, in 
the sense that our regression is missing some other X’s that are important in 
predicting Y, so that the research hypothesis is incomplete as an explanation for 
Y. In that case we may want to seek other X’s based on theory, previous research, 
or common sense that could also affect Y and rerun the regression with these 
additional X’s to see if R2 improves. (Note too that a low R2 could be due, at least 
in part, to the presence of nonlinear relationships between some X’s and Y. We 
discuss such relationships in later chapters.) The opposite situation, with a high 
R2 but none or almost none of the effects statistically significant, often indicates 
the problem of collinearity, which is discussed in this chapter.

The situation of a low R2 along with none or almost none of the effects of the 
X’s being statistically significant is quite damaging for the research hypothesis. 
In that case, the research hypothesis seems to be both missing important 
influences on Y and incorrect in suggesting that the X’s it named are actually 
related to Y. This circumstance may be unlikely when we are deriving the 
research hypothesis from a well-developed theory, but sometimes even a well-
developed theory is not supported when confronted with real data.

Along with discussing results, a paper reporting on a quantitative research 
project should also compare the current findings to those of previous research, 
discuss limitations, and, if applicable, suggest policy implications. In many 
cases it is also helpful to indicate future research directions that could build on 
the work. In the following section, we discuss a typical framework for organiz-
ing the parts of a quantitative research paper.
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2.7.6 Organization of Quantitative Research Paper Using 
Multiple Regression

To help in writing a complete quantitative research paper, we list each part of 
such a paper below, following a standard framework that is typical of published 
research papers in the social sciences: (1) abstract, (2) introduction, (3) literature 
review, (4) research question, (5) data and measurement, (6) analysis and results 
of analysis, (7) conclusion, (8) tables and figures, and (9) references. Each part 
is discussed below. Note that the organization of the paper is separate from the 
specific format in which it is written. By “format” we mean details of how to 
present elements such as sections, section headings, citations, references, tables, 
and so on. Commonly used styles include those of the American Psychological 
Association (APA), American Sociological Association (ASA), and the Chicago 
Manual. Note that the organization of the paper laid out here is not universal 
in the social sciences, and examples of many variations on this structure can be 
found in the published literature.

 1. Abstract

 • A short overall description of the paper, including results.

 2. Introduction

 • Present your research topic (focusing on the relationship between 
X[s] and Y).

 • Be sure to mention the level of analysis for your research question 
(individual or aggregate).

 • Discuss why it is important to study this relationship (or 
relationships).

 3. Literature Review (Review of Theory and Previous Research)

 • In social science, researchers’ interest in the relationship between 
X(s) and Y is typically inspired by theories and/or previous 
research findings on the same, or closely related, topics.

 • Summarize relevant theories as well as findings of previous 
quantitative research. When summarizing previous research, 
focus on the research questions, the units being studied, the data 
sources, the types of data analysis, the independent and dependent 
variables, and the results/findings.

 4. Research Question

 • Discuss your research question (topic) and research hypothesis 
(expectations for findings). It is often helpful to note the main 
differences between previous research and what you are doing, 
which could include points related to the data (such as the data 
source or when the data were collected) or the analytic methods 
being applied. When the goal is to eventually publish the paper 
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in a scholarly journal, the “novelty” of the research is a key part 
of the evaluation of the paper’s potential importance. In other 
settings, novelty may not be emphasized so much. Also, sometimes 
a researcher working on a new topic or question for which little 
research or theory exists will not really have expectations for 
how results will look and so cannot state a research hypothesis. 
Exploratory work, therefore, will not always have this element.

 5. Data and Measurement

 • Describe your data in detail, focusing on when it was originally 
collected, units (such as persons, cities, states, or nations), and data 
sources.

 • List independent (including control) and dependent variables 
and discuss how they were measured. For example: “Economic 
hardship is measured by the unemployment rate, obtained by 
dividing the number of unemployed people by the total number 
of people in the civilian labor force, times 100. The level of crime 
is measured by the number of reported homicides per 100,000 
population.”

 6. Analysis and Results of Analysis

 • Use statistical software to run appropriate descriptive statistics for 
the independent and dependent variables involved in the multiple 
regression analysis and briefly discuss the descriptive statistics.

 • Diagnose collinearity and, if present, try to address it.

 • Discuss the statistical techniques being used.

 • Use statistical software to run multiple regression analysis; 
interpret and discuss results of this analysis, focusing on 
R-squared, p-values, and b’s (including real-life significance).

 7. Conclusion (Implications of Analysis for Research Question 
and Hypothesis)

 • Discuss whether your findings support the theoretical perspectives 
that you presented earlier in the paper and the research hypothesis 
posed earlier.

 • Compare your results to the findings of previous research. If there 
are differences that appear to stem from differences in data sources 
or analytic methods, it can be useful to discuss those, but this is 
not always the case.

 • If applicable, discuss policy implications.

 • Discuss the limitations of your research and future research 
possibilities.
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 8. Tables and Figures

 • Following the specific style required by a course instructor or 
the applicable style manual, present detailed results of analysis 
(descriptive and multivariate) in tables.

 9. References

 • Follow the specific format required by a course instructor or the 
applicable style manual.

2.8 Appendix B: Additional Issues in Multiple 
Regression

2.8.1 Standardized Coefficients
This chapter has focused on the usual unstandardized coefficients, interpreted 
in terms of the units of measurement for the X’s and Y. That is, if X1 is years of 
education, and Y is dollars of income, b1 is interpreted as the change, in dollars, 
in predicted income for an additional year of education, or when education 
increases by 1 year (holding other independent variables constant). This is 
very natural, because we have an intuitive grasp of the meaning of a certain 
change in dollars of income and the magnitude of the change represented by an 
additional year of education.

However, the fact that the X’s in the multiple regression are typically 
measured in various different units makes it hard to compare the effects of 
different X’s on Y. Continuing the example, suppose that X2 is father’s income. 
Certainly in any realistic sample the variance in people’s incomes (measured in 
dollars) will be much greater than the variance in people’s years of education 
(measured in years), so “1 more year of education” and “1 more dollar of father’s 
income” are not comparable in any obvious way. Therefore the corresponding 
effects on Y are difficult to compare, and we cannot easily say which effect is 
more “important” in predicting Y. Even when we make a careful assessment of 
each independent variable’s real-life significance, it may not be very clear which 
of the real-life significant effects are the largest.

The standardized coefficient is one response to this problem. This coeffi-
cient is a transformation of the usual b, so that the interpretation of an effect 
is made with respect to standard deviations of X and Y, not the original mea-
surement units. That is, the standardized coefficient for the effect of education 
would indicate how many standard deviations—not dollars—predicted income 
would increase for each additional standard deviation—not year—of education. 
Standardized coefficients seem to allow for better assessment of which X’s have 
the biggest effects on Y because the shift to standard deviations means that the 
interpretations no longer involve all the different and incomparable units in 
which the different X's are measured.  This sounds as if it also would enhance 
assessments of real-life significance. An important difficulty, though, is that it 
is hard for us to think in units of standard deviations. Even if it is advantageous 
to put every variable’s effect into a common framework, real-world significance 
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still will often seem easier to assess in terms of the original units than in terms 
of standard deviations. We have a better grasp of the meaning of a change that 
is reported in the original units than of a change that is reported in units of 
standard deviations. The common framework of the standardized coefficients 
may assist with comparison of the effects’ size but at the possible cost of less 
understanding of the effects’ meaning.

There are also some technical objections to standardized coefficients, such as 
the possibility of the same b leading to very different standardized coefficients 
in different samples, due to differences across samples in the variables’ vari-
ances. (More advanced texts discuss these technical points.) For these reasons, 
we will use unstandardized coefficients throughout the text. Still, it is valuable 
to understand what standardized coefficients are and how they are interpreted, 
as some researchers prefer to present multiple regression results in that form. 
Some articles and reports will show both the unstandardized and standardized 
coefficients in tables of regression results. The symbol β (or the word “beta”) will 
sometimes be used to represent the standardized coefficient, but it is important 
to be clear that this is a different use than we are making of that symbol. As dis-
cussed above, we use β to symbolize a coefficient in the “true” regression model 
for the entire population, for which b is our estimate from the sample.

2.8.2 More on Diagnosing and Addressing Collinearity
Many statistical software packages include some more formal methods for 
diagnosing collinearity than simply examining correlations among the X’s as 
we discussed above. For example, variance inflation factor (VIF) scores are an 
attempt to assess the extent to which collinearity is affecting standard errors of 
the regression coefficients by considering how strongly each X is related to the 
set of all other X’s in the regression model. When high VIF scores are observed, 
collinearity is likely a problem, and there are various cutoffs in use for determin-
ing what is a high enough VIF score to indicate this.

When collinearity has been detected, one response is to create new variables 
that combine several highly correlated X’s, using techniques such as principal 
components analysis or factor analysis. We discuss principal components a bit 
more in Chapter 9, but for now we just point out that the nature of the correla-
tions among X’s determines the construction of the new variables. Typically 
these new variables will, by virtue of the method used to construct them, be 
uncorrelated with each other, while still aiming to convey the information con-
tained in the original X's. The new variables can then be used instead of the 
original X’s in the regression, and by definition there will be no collinearity 
among independent variables in this new regression. The tradeoff for the desir-
able absence of collinearity when using these new variables is that b’s for these 
constructed variables will be harder to interpret. The b’s in the regression results 
will no longer refer to natural variables whose measurement and meaning feel 
intuitive to us, but instead to the constructed variables that have standardized 
scales. Advanced texts can be consulted for more guidance on this and other 
methods for detecting and addressing collinearity.
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