Fundamentals of Multiple
Regression

In this chapter, we present some basic ideas_abcut raultiple, or multivariate,
regression analysis, including an introductic=t multiple regression focus-
ing on the difference between bivariate (simjle) and multivariate regression,
and interpretation of multiple regressicii nesaics. We discuss predicting Y via a
multiple regression equation and also the problem of collinearity. In addition,
there are several examples of multiple regiession analysis, as well as homework
exercises. The chapter’s Appexadi.: A also provides guidance on how to start a
research project involving ‘aui‘iple regression analysis, how to evaluate research
hypotheses, and how toargatiize a quantitative research paper using multiple
regression.

2.1 IrGoduction to Multiple Regression

Bivaritte, cr simple, regression examines the effect of an independent variable
(X) on tlie dependent variable (Y). Multiple regression extends this idea by con-
ider ng the effects of multiple independent variables (X’s) on the dependent
variable (Y). It is almost always more realistic for there to be multiple influences
on a dependent variable than to suppose that truly only a single factor influ-
ences Y. For example, criminal behavior might be influenced by many factors
such as economic hardship, lack of informal social control, and likelihood of
getting caught and punished. Similarly, a person’s income could be influenced
by multiple factors such as age, gender, race/ethnicity, education, and work
experience. In some analyses we cannot include all factors that might plausibly
influence Y, as there are technical reasons for preferring that the number of X's
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24 Multiple Regression

be relatively small compared to the number of observations (N) in our data,
or because we simply do not have all those measures available in our sample.
Usually, though, this restriction is not very confining, and we are able to con-
sider quite a few independent variables; we discuss the choice of variables later
in this chapter.

Note that in both bivariate and multivariate regression, we decide whether
an X influences Y, rather than the other way around. In making this decision we
draw on theory, past research, or our common sense. We use our existing knowl-
edge to decide whether to proceed as if “variable one” influences “variable two”
or as if “variable two” influences “variable one.” We label the variables X and.Y.
based on this decision: in the first case, variable one is X and variable two ic.Y,
while in the second case variable two is X and variable one is Y. Sometime. thi;
can be quite difficult to decide, but in any case the direction of this#nflu>nce
will be assumed, not actually tested, in the methods we examine herc

Another point worth mentioning again is that we will often 1 e ixe language
of “effects” or “influence” of independent variables on the fiependint variable
even when, as noted in Chapter 1, the nature of the ruseasch.2esign does not
allow us to genuinely identify causal relations among(che variables. Unless we
are analyzing data from a true experiment, we are fypicaily uncovering associa-
tions among variables rather than actual causal ei"ects. Some formal methods
attempt to draw causal inferences from nonexj erin ental data, but, except for a
brief overview in Chapter 9 (Section 9.7, Causal Inference), those approaches
are beyond the scope of this book. It is .nost.convenient to simply speak of the
effect of an X on Y, or X influencing-Y when discussing multiple regression
results, but we should keep in mina tkac this is shorthand language, not neces-
sarily an indication of a true 2~ucalselationship.

A single multivariate regzess on analysis includes multiple X’s that might
influence Y, and multiple regrcssion aims to separate, or single out, the effect
of each X on Y. Thus, the U, (slope or coefficient) for a particular X in a multiple
regression is interpretea as the effect of X on Y, expressed as how many units
the prediction.Y ‘ncreases or decreases for each additional unit of X, while hold-
ing other X’s cons ancor, in slightly different language, while controlling for other
X’s. The deasor “holding other X’s constant” is the key conceptual element that
di¢tinguisiics this interpretation of b from the interpretation made in bivariate
ragrestion. This is also why we cannot achieve the same results as a multiple
cegression by repeatedly applying bivariate regression (once for each indepen-
Jdent variable). A series of bivariate regressions will not incorporate this idea of
control/holding constant, so we need to consider all of the independent vari-
ables together in the same analysis.

In a bivariate regression, the apparent effect of X on Y may actually also
incorporate effects of other X’s that are related to it but are not included in the
regression; although such a situation is also possible in multiple regression, it
is especially likely in a bivariate regression that, by definition, includes only a
single X. Suppose you are interested in finding the effect of age on income. It is
easy to imagine that the variable “years in the labor force” also influences a per-
son’s income. Those two possible influences on income (age and years in labor
force) are closely related conceptually, and will be correlated in any realistic
data set: older people (those with higher ages) tend to also have more years in
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Chapter 2 @ Fundamentals of Multiple Regression 25

the labor force. Thus, the effect of age on income that is obtained in a bivariate
regression probably also reflects, to some extent at least, the influence of years
in the labor force.

A multiple regression can include both age (X,) and years in the labor force
(X,) in one analysis, and attempt to statistically separate the effects of age (X,)
and years in the labor force (X,) on income (Y). Thus, the b for age (X,) from
such a multiple regression analysis is interpreted as the effect of age (X,) on
predicted income (Y), holding years in the labor force (X,) constant (or, control-
ling for years in the labor force). In other words, we are trying to imagine what
would happen if everyone in our data set had the same years in the labor force
(X,)—which of course will not be true in our actual sample—but varied in age.
(If somehow everyone in the sample did have exactly the same years in the
labor force, then we would not be able to include that as an X in our multiple
regression. There must be at least some variation in an X for it to be useful in
predicting Y.) In that imaginary scenario, how would differences in ag: (X))
be reflected in differences in income (Y)? Similarly, the b for years in tiie laber
force (X,) from this multivariate regression analysis is interpreted a: tiiz effaCt of
an additional year in the labor force (X,) on predicted income (¥), helaing age
(X,) constant. (Note that we will use “effect of X on Y” and “effece-df X on 'l
interchangeably; the first may sound more natural, while the .2cond is arguably
more precise.) That is, if we imagine that everyone in th: sarple had the same
age (X,), then b, indicates how differences in years in the 1abor force would be
reflected in differences in predicted income (Y): This.statistical separation of
the independent variables becomes more difficultthe more closely they are cor-
related; we will return to this concern later

A multiple regression equation with *=rca ¥'s can be written in symbols as

Y = a+b, X, +b,X,+b,; X, whiie

o ¥ represents the predicied value of Y;
e arepresents the Y.inero:pt;

® b, representsiiie affect (slope) of X, on'Y, holding the other X's (X, and
X,) constant,

* b, reprasents the effect (slope) of X, on Y, holding the other X’s (X, and
X.) wons.ant; and

e v, represents the effect (slope) of X, on Y, holding the other X’s (X, and
X,) constant.

We often refer to the regression equation as a regression model, because it
embodies some social scientific hypotheses about which factors affect Y, and we
recognize that as a model we do not necessarily expect it to capture all of the
particular nuances of the data in our sample. In this book we will not focus on
the technical details of actually calculating a and the b’s from a particular data
set; those details are covered in more advanced texts, and we will be relying
on statistical software to do the calculations. It is enough to say that, as with
simple regression in Chapter 1, these values are chosen under the least squares
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26  Multiple Regression

principle. That is, the values of a and the b’s reported by our statistical software
are chosen so as to make the predicted values Y in the sample as close as pos-
sible to the actual values Y, in the sense of minimizing the sum of squared errors
(or residuals, meaning differences between the actual and predicted values of
Y among the N observations in our sample). We will revisit the sum of squared
errors in Chapter 3.

The above regression equation with three X’s helps show why we interpret
b, as the effect of X, on Y (or the change in Y as X, increases by one unit) while
holding other X's constant. If we compare the predicted Y for a case calculated
before and after increasing its value of X, by one unit, while holding its values
of X, and X, constant, it is as if we changed the regression equation for that case
from

Y

a+b; X, +b,X,+b,; X,
to

Y a+b;(X;+1)+b,X,+b,X,, orY = a+b,%. 4 b1 b, X, +b, X,

We can see, then, that the value of Y changed by & as'X, increased by one
unit and other X’s were held constant. This leads to tii interpretation of b,
as the effect of X, on Y while holding other X’s canstant. (Again, we will use
the term “effect” for convenience even if our reseirch design does not permit
a genuinely causal interpretation.) If b, is a positive number, then Y increases
when X, increases; if b, is negative, thei, Y decreases when X, increases. by, b,,
and b, are often called regression coejficizats, because they multiply the values of
the X’s in the regression equatiori.

As in simple regression, wa=dG el mean that we literally change our data by
adding to the X values; our somr.e data do not change. Instead, we use this idea
of a one-unit increase as a means of interpreting the results. Also as in simple
regression, it may help to ¢hink of b, as the difference in Y between two cases
that are equivalesicexcept for a one-unit difference in their values of X;. In many
contexts this.wii' se:m more natural than thinking about a one-unit increase
in X, for on: cas:.

In a (vell«controlled lab experiment, the techniques of multiple regression
wceirld usuaily be less necessary. In that setting, it may be possible to focus on
hew ¢hanging a single factor affects Y, while controlling the research environ-
‘men . to such an extent that we are literally holding all the other influences on Y
vonstant. For example, if we want to see how the amount of a specific chemical
(X) in a solution influences the size of an explosion (Y), we can run the experi-
ment with varying amounts of the chemical while, for instance, keeping the
temperature, size of the container, and other important factors the same every
time. Then, to the extent that we have successfully held these other factors con-
stant, observed differences in the results (analogous to our Y) can logically be
attributed to the changes that we made in the amount of the chemical.

However, in the social sciences there are a variety of practical and ethical
reasons why it will be rare to have this degree of experimental control. Therefore
multiple regression attempts to achieve statistically what we might be able to
literally do in a science lab: distinguish the separate effects of different inde-
pendent variables by seeing how Y changes when only a single X changes. The
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ability to do this when a lab experiment is impractical, or even logically impos-
sible, and when the independent variables correlated with each other in real
data, makes multiple regression extremely important in a wide range of social
science fields. (We will also examine difficulties that can arise when X'’s are too
highly correlated with each other; this is the problem of collinearity.)

2.2 Interpretation of Multiple Regression Results

We now know what multivariate regression is and how it differs from bivariate
regression. In this section, we look at the core interpretations of multiple regres-
sion analysis results. We will need to pay attention to (a) R-squared (R?), (b) statis-
tical significance (obtained from p-values), and (c) slopes, regression coefficients,
or effects (b’s). Note again that scientific conclusions drawn from the analysis o
just one single data set are inherently somewhat tentative. We should keethint
in mind as we focus on the technical interpretations of the results.

We should also be aware that researchers use a variety of terms«o i=fer te the
act of carrying out a multiple regression analysis. “Run a regressio’t™ 1= common
but informal, while “estimate a regression model” highlights the “<¢ that our
analysis of the sample data is meant to estimate what we wou.'d find if we could
actually analyze data on the entire population from which w arew the sample.
(We discuss below how this sort of thinking can also appty to situations in
which we have data on the whole population.) In 2y case, these different terms
do not imply differences in the actual analysis/being Gone.

2.21 R-squared—Overall Periaimance of Multiple
Regression

One of the main purposes in cariving out a regression analysis is to predict val-
ues of Y. Therefore, it is imrartai: to know how well the regression is actually
doing at predicting Y in our sa npic. How close are the predicted values of Y to
the actual values for tle sa nple cases? If the predicted values of Y closely match
the actual values, ‘he rcgression is performing well in one important respect,
and the regression 1.:24el has “good fit” to our data. If the predicted values of Y
do not closelv 1natch the actual values, the regression is not performing well in
this respect, ar;d the regression model has “poor fit” to our data.
In Vivariate regression, we can look at the scatterplot of X against Y and,
more fo:mally, the correlation 1, between X and Y to indicate the fit of the
egrossion. If points in the scatterplot are generally close to the bivariate
tegression line, then the bivariate regression model has a good fit to the sample
lata. Remember that the correlation between X and Y will be high (in absolute
value) in this situation, so r, indicates the bivariate regression’s fit. As r, gets
closer to the extremes of 1 or -1, the fit of the regression gets better; as I,y gets
closer to 0, the fit of the regression gets worse. It also can be shown that the
absolute value of Iy is exactly equal to the correlation between Y and Y (from
the bivariate regression), which is another justification for interpreting Iy asa
measure of how closely predicted and actual values of Y match in the sample.
For example, if 1,y = 0.90, the bivariate regression has a very good fit: in that
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sample, predicted values of Y from the regression will be in general quite close
to actual values of Y.

For multivariate regression, the situation is a little more complicated. Because
we have to consider multiple X’s together when determining the fit of the
multiple regression model, the correlation between any single X and Y is not by
itself adequate for assessing the fit. But we can still use the idea of the correlation
between actual and predicted values of Y in the multiple regression context,
with the only difference from the bivariate case being that the predicted values
are based on the multiple regression. The square of this correlation between
Y and Y is called “R-squared,” written as R2. It is the main indicator of the
fit of a multiple regression model and is included in the regression output
from any statistical software. R? will range between 0 and 1: it is the square
of a correlation, so a squared value cannot be negative, and with a 12axiraum
possible correlation of 1 (in absolute value), the square cannot exczed 1 =ither.
If R? is high (close to 1), then the multiple regression is predic ‘ngV well, and
the regression model has a good fit. If R? is low (close to 0)/tnen “he multiple
regression is not predicting Y well and has a poor fit.

Poor fit likely means that the multiple regression mqdel s 1nissing important
X’s that are also related to Y and would help with prediciiug it. Therefore, a low
R? leads us to think about the possibility of inclucing additional (or different)
X’s in the regression model. Poor fit could [lso 'ndicate that a straight-line
regression does not effectively capture the relationship between the X's and Y,
but we will wait until later chapters to cansicer that sort of situation.

It is difficult to set hard cutoffs f(r what'is a high or low value of R?, because
the value of R? is affected by mar: aspects of the data we are analyzing. For
instance, in general it will be-2asiar #0 achieve a high R? in a small data set (that
is, with a small N) than in a.arge data set. The same R? value may therefore give
a different impression dependii:g on the sample size. Still, when R? is not fairly
close to 1, even in a la ge Gata set, we want to think about what important X’s
may be left out. Mte tiict R? will always go up, at least a little, when we add any
X’s to the regression’ But if the added X’s do not really help much in predicting
Y, the imprc verm :nuin R? will be small.

R? is sometimes described as the proportion of variance (or variation) in Y
thitis expiained, or accounted for, by the X’s in the multiple regression. If, for
example, the value of R? is 0.60, then we can say that 60% of the variance in Y
.s explained or accounted for by the set of X’s that we included in the multiple
regression. We can think of the variance of Y as referring to the overall pattern
of cases in our sample with high or low values of Y, and the regression model
for Y estimates how the cases’ X values lead to these varying Y values. That
means that the predicted values of Y reflect the X values through the regression
equation. If the predictions generally match the actual Y values poorly, lead-
ing to a low R?, then there is a good deal of case-to-case variability in Y that is
not represented in, or accounted for by, the regression equation. On the other
hand, generally close matches between predicted and actual values of Y—giving
a high R>—indicate that the regression equation does seem to represent the key
sources of case-to-case variability in Y.
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2.2.2 p-Values: Statistical Significance of Each X's
EffectonY

R? indicates the multiple regression’s overall fit or performance in predict-
ing Y in the sample data. The assessment of statistical significance, from p-val-
ues, is the first step in investigating the importance of each X'’s effect on Y
(again, controlling for the other X’s that also appear in the regression model
and not necessarily meaning a genuinely causal effect; we also could refer here
to Y instead of Y). In this section, we discuss how the general idea of statistical
hypothesis testing applies to statistical significance in regression. As mentioned
in the Preface, some aspects of the role of statistical significance in the interpre-
tation of regression results, and social science more broadly, are becoming more
controversial. However, here we simply present it as typically used by sociai
scientists now and in the published literature from recent decades.

In adapting statistical hypothesis testing to the situation of multiple 1»3re:-
sion, we are interested in the question of what the effect of an X on "wou'd
be in the entire population, rather than what effect we find in the‘particalar
sample we have. Of course, sometimes we actually do have dat7 oi:ai: entire
population, for instance when we are doing an aggregate-level a.xolysis using
data from all 50 states. In such a situation, we can still view the data as being
like a sample from a theoretical “superpopulation” that | efle ts the many ways
that history could have played out differently for these 50 scates. Although this
image can sometimes seem a bit farfetched, the _-actical result is that we will
treat such data as if it were a sample from a larse mopulation.

If we had the entire population or superpcpul=tion, we could find the “true”
effect of an X on Y, holding other X’s corstent./und write it as p to distinguish it
from b, the effect of this X on Y in our .xmp e. That is, b is the estimate we obtain
from our sample, while f is the value we would obtain if we could analyze data from
the entire population. The true reg :essinn model would therefore be expressed with
f’s, and the estimated model=voui. be expressed with b’s. As usual in statistical
hypothesis testing, we can fiame oui thinking in terms of two competing hypothe-
ses about the populatio: th null hypothesis Hy and the alternative hypothesis Hj.

The most commron ruii hypothesis in regression analysis, and the one that is
assumed in the outpe!from standard software packages, is “H: X has no effect
on Y in thetrucimodel,” or, stated in symbols, “H,: p = 0.” It is possible to con-
sider othe1 nul! hypotheses that specify some other value of , and those can be
used i, tha general hypothesis test format that was discussed in Chapter 1, but
other nu'! hypotheses are not so common in social science research. In practice,

nos. applications use a two-sided alternative hypothesis, and this will generally
bewine default for statistical software’s calculation of p-values. The alternative
'H;: X has some effect on Y in the true model,” or equivalently “H,: p # 0,” will
then be paired with the usual null, so that the typical hypothesis test is set up as

H,: (null hypothesis): X has no true effect on Y, or f = 0;

H,: (alternative hypothesis): X has some true effect on Y, or p # 0.

After setting up H, and H, this way, we need to calculate a test statistic—in
this situation, it will be a t-statistic—from the sample information and use it
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to determine a p-value and decide whether we should reject or not reject H,,.
Rejecting H, would mean that H,, the hypothesis that X does have some effect
on Y, appears more reasonable from our sample data, so in that case the sample
leads us to believe that there really is some effect of X on Y in the entire popu-
lation. If we do not reject Hy, then H,—the hypothesis that X has no effect on
Y—still appears plausible in light of the sample data. That is, if we do not reject
H, we are saying that the sample information does not allow us to confidently
conclude that there actually is an effect of X on Y in the population. Of course
we must always remember that, in any particular analysis, it is possible that we
reached an incorrect conclusion of rejecting H,, or not, which is one reason whv
we are reluctant to rely too heavily on a single study of some research question.

The t-statistic follows the general format shown in Chapter 1 and can b
calculated as follows:

_ b -y
~ standard error of b

The standard error of b is an estimate of sampling v2_iabllity in b; that is, it
gives us a sense of how much b might vary across san.nles chat we could have
drawn from the population. Because we are mos* commonly testing the null
hypothesis that p = 0, the above equation usuzily wa.» be rewritten:

_ b-0
standard error of b
b
standard error of b

We can calculate this t« tati tic for each of the X’s in our regression and
then find p-values for the t-scitistics from a t-table or an online t-calculator.
Either will require us "0 know the proper degrees of freedom (df), and for this
test df are calculatea & om the sample size as df = N - (the number of X’s in
the regression)“ 1. ‘Wit a p-value (here two-sided) in hand, we can decide
whether or/not tc reject Hy, using the traditional (though again ultimately
rather arbicrasy) p-value cutoff of 0.05. With this cutoff, we do not reject H,, if
the p-valceis > 0.05. In that case we still believe that it is plausible that, in the
entun population, X has no effect on Y, and we will say that “X does not have
1 staristically significant effect on Y.” On the other hand, if the p-value is less
thian (or exactly equal to, which could occur due to rounding) 0.05, we reject
H, in favor of H,, believing that we would find an effect of X on Y if we were
to analyze the whole population. In this case (p < 0.05), we say that “X has a
statistically significant effect on Y.” The language of statistical significance is
therefore a summary of the results of this particular hypothesis test. When we
are working with a multiple regression, it is good to also include "controlling for
other X's" or "holding other X's constant" in our statement of the results.

Fortunately, much of the actual arithmetic here is done for us when we use
statistical software, because the software will report each b’s standard error and
t-statistic, calculate the df, and find the p-value that corresponds to the value
of the t-statistic. Our only work is to then use the p-values to decide whether
each X has a statistically significant effect on Y. If the effect of an X on Y is
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statistically significant, then we will go on to interpret the slope b for that X.
If the effect is not statistically significant, then we generally do not want to
interpret b further, as we are not sure that there is any true effect of that X at
all. Again, though, 0.05 is a rather arbitrary cutoff, so it is hard to justify why we
would interpret b when the p-value is just under 0.05, but not when the p-value
is just over 0.05. When the p-value is above but close to the cutoff, we may want
to consider this an instance of “borderline,” or “marginal,” significance. We
probably want to go ahead with interpreting b for an X that shows a borderline
significant effect, but we need to make clear that in doing so we are not strictly
applying the usual cutoff and that our conclusion is therefore even more tenta-
tive than usual.

2.2.3 Interpreting b in the Multiple Regression Context

When the p-value indicates that an X has a statistically significant effect®n
Y, we next want to interpret its slope b. b could be positive or negative.wich a
positive b indicating a positive relationship between that X and Y, coi:*iol ing
for other X’s; as in the bivariate case, this means that X and Y tepi to move in
the same direction—as X increases, Y tends to also increase, and a: X iecreases,
Y tends to also decrease—but now we also think of the othe: X’s as being held
constant when making this interpretation. Likewise, a/iegative b indicates a
negative relationship between X and Y, controlling for otier X's; as X increases
(holding other X’s constant), Y tends to decrease, »nd as X decreases, Y tends to
increase. Also as in the bivariate case, this logicappiies to comparisons of Y val-
ues for cases that differ in their X values, and ti11s./will often be a more helpful
way to understand a positive or negative re¢'atic aship between X and Y.

As discussed in Section 2.1, the sp¢écifi: numerical value of b indicates the
effect of that X on Y (showing the increwse in ¥ associated with an additional
unit of X), controlling for, or ho'ding constant, the other X’s in the regression.
Suppose that b = 3. Then we iiit2inret the result as “¥Y increases by three units
as X increases by one unit, cor.‘rol ing for other X’s.” If b = -4, we could try to
use similar language: “/{ 1:crdases by negative four units as X increases one unit,
controlling for othe: K'.”.Lut this “negative increase” sounds very awkward. An
increase of —4 is equivaient to a decrease of 4, so it is much more natural to say
“Y decreases b four units as X increases by one unit, controlling for other X's.”
We can al{0 think of b as reflecting the difference in ¥ between two cases that
are ideritizaniin their values of other variables but differ by one unit on this X.

Let us consider a social science example. Suppose that we wanted to examine
tlicvinfluence of a person’s education and criminal history on their income,
vith'education measured by years of schooling (X,), criminal history measured
vy lifetime number of arrests (X,), and income measured as annual income in
dollars (Y). We then collected information on these variables from a sample of
adults and analyzed the resulting data.

Suppose that the multiple regression output from our statistical software
indicated that the effects of both education (X,) and arrests (X,) on income (Y)
are statistically significant (p < 0.05), with b, (the slope for X,) = 2,580, and b,
(the slope for X,) = —=5,890. Then our interpretation of b, is “predicted annual
income (Y) increases by $2,580 as years of education (X,) increase by 1 year,
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controlling for the number of arrests (X,).” b, is negative, so we could say “For
each additional arrest (X,), predicted annual income (¥) decreases by $5,890,
holding years of education (X,) constant.”

Although it is accurate to say “predicted” annual income as we have here,
and helpful to focus attention on the fact that these figures are estimates from
a model for the predicted Y (Y), in practice we may assume that our audience
understands that the b’s refer to the predicted Y (Y). If so, for convenience we
could drop the “predicted” from this language, or use Y instead of Y. Also, the
data here came from a snapshot of the sample members at one point in time,
rather than tracking individuals through time. Therefore this is an instanceir
which it may be more natural to view statements like “as education increases
by 1 year, holding number of arrests constant” as referring to a compa.isor
between people who differ by one year of education while having ‘ne .ame
number of arrests.

2.2.4 Real-Life (Substantive) Significance

Real-life significance refers to an evaluation of whethe/ tfi size of an X's effect
on Y is large enough to be meaningful. That is, when=onsidered in light of
the definitions and observed values of the X and.Y variables in our sample,
does the effect seem important, or rather trivial? We always need to consider
this question of real-life significance, becausc” sometimes an X’s effect is
statistically significant (indicated by p-2.0.05), but the size of the b is not large
enough to suggest any meaningful fmnraccon Y in real terms. Suppose that X,
is years of education and Y is apiivaldizicome, the p-value indicates that years
of education has a statistically.signi‘icant effect on Y, and b, is 25. This would
mean that predicted annua: inc¢ me increases only $25 for each additional year
of education, holding other X.,constant. Even 4 additional years of education
would only increase predicted annual income by $100: each additional year
of education increases ', redicted income by $25, so 4 additional years increase
the predicted iricomwre by 4 x 25 = $100. If the data are contemporary rather
than historical, 1nd.so come from a context in which full-time workers have
annual ‘nconics in the tens of thousands of dollars, this result would suggest
that. in praciical terms, there is no meaningful impact of education on income.
This iny difference in predicted income between people differing by 4 years of
ducation would mean that income is effectively unrelated to education. In that
case, the effect of education on income would have statistical significance, but
not real-life significance. Alternative terms for “real-life” here include real-world,
practical, and substantive.

There is no automatic numerical cutoff for determining real-life signifi-
cance. We might simply use our knowledge of social science, or our com-
mon sense, in deciding whether the effect of X on Y is large in real terms.
However, it is better to examine descriptive statistics such as the mean, stan-
dard deviation, and range (minimum and maximum values) of the variables
to determine whether the effect is large enough to have real-life significance.
This requires examination of both X and Y. For X, it may be that the usual
“one-unit change” is not the most suitable for this real-life assessment. For
example, if X is public school spending per student, measured in dollars, a
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one-unit change in X refers to a single dollar. If the average public school
spending per student in our sample were $11,762, with a standard deviation
of $5,891, a minimum value of $4,152, and a maximum value of $32,366, a
change of $1 would appear extremely small. One additional dollar of spending
per student will almost surely have virtually no effect on whatever Y we are
studying, making it hard to assess real-life significance. In this case a larger
change in X would be more interpretable, perhaps an increase of $500 or even
$1,000 per student. Then the change in ¥ would be 500 x b, or 1,000 x b,
and we will be in a better position to assess whether the resulting change in
¥ is large in real terms.

There could also be cases in which the usual one-unit change in X is too
large. For example, the Gini index of income inequality in a society is usually
presented as a number between 0 and 1. A “one-unit change” would be teo
large to sensibly consider for that variable, as it would be equivalent to a change
from the theoretical minimum value to the theoretical maximum value ¢ this
index. Again the resulting change in Y would be calculated as b multipiied &y
the change in the Gini index, and we might consider something“ikc.a change
of 0.10 instead of 1.

When we are convinced that we are examining an approp:iucely sized
change in X, we next assess the resulting change in Y, baseaan Y's descriptive
statistics. To illustrate this process, suppose that, for a_gre; ate-level data, X,
is unemployment rate (percentage unemployed) and Y 1s the suicide rate
per 100,000 population. Suppose too that, freia our software’s regression
output, the p-value indicates that the unempleyment rate has a statistically
significant effect on suicide rate, and b, /5« EFour descriptive statistics for
percentage unemployment (X,) showed«2 1ne20 of 5.5, a standard deviation of
0.9, and a minimum to maximum ranje o 3.8 to 6.9 in our sample, we would
probably decide that a 1% change in usemployment is indeed appropriate
for evaluating real-life significar.ce. The value of b, means that the predicted
suicide rate per 100,000 iiicreas:s by 4 as the unemployment percentage
increases by one unit (here; 1%). It suicide rates in the sample have mean 13.4
and range between 1C (miinwum) and 80 (maximum), an increase of 4 in the
suicide rate seems to b2 1arge enough to suggest real-life significance. On the
other hand, the sam estimated effect (b, = 4) may not seem to have real-life
significancefar o different dependent variable that had mean 1,200 and range
1,000 to_1,500

We canyrevisit the earlier example of public school spending per student as
X. Baseaon the descriptive statistics for public school spending per student (X)

mean $11,762 with a standard deviation of $5,891, minimum of $4,152, and
maximum of $32,366), it seems that a $1 increase in X is too small to be easily
mterpretable. We can instead consider the predicted change in Y when public
school spending per student (X) increases by $1,000. In this case, the change in
Y isb x 1,000. If b is 0.003 and Y is high school graduation rate (%), then we can
say that the predicted high school graduation rate increases 0.003 x 1,000 = 3%
as public school spending (X) increases by $1,000, holding other independent
variables constant. Then we can use the descriptive statistics for graduation rate
(Y) to assess whether a 3% increase in graduation rate should be considered large
enough to have real-life significance.
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We always need to consider this question of real-life significance before
deciding that a statistically significant X has a meaningful impact on Y, so
we should not be too impressed by the words “statistically significant” alone.
We still need to check real-life significance by looking at the size of b and the
descriptive statistics for X and Y to reach a judgment as to whether the effect of
this X is large enough to have some real impact. Of course different researchers
may not always agree on whether the magnitude of a particular X's effect on Y
is large enough to be called real-life significant, and there will be instances in
which it is quite difficult to make this determination. Even so, attempts to assess
the real size of any statistically significant effects are an important element ér
the full interpretation of regression results.

This is especially true when the sample size is very large. A large sampiu:size
(N) will tend to make the standard errors of b small, which will tend tcnak the
t-statistics large and in turn tend to produce small p-values. It is, thercfors, gen-
erally easier to find statistically significant effects of X's in larg:‘da.a sets, even
if those X’s actually have very small real-life impacts on Y/ >o.it'is especially
important not to simply take statistical significance at fuce valne’'when working
with very large samples.

2.2.5 Other Notes on Interpretation

As in bivariate regression, we are usually not so iuterested in interpreting a, the
Y-intercept. In the next section we loo:. at calculation of the predicted value of
Y, and a is certainly necessary for t’iat.But in social science we rarely make a
direct interpretation of a and usyzaily d='not discuss its value when interpreting
results. We discuss this issue furiher.n Section 2.3. Remember that, as we men-
tioned in Chapter 1, most st ftwere's regression output will provide the value of
a in the "b" column, with a ter.m like "intercept" or "constant" distinguishing a
from the b's.

Note that alomg wii) “unstandardized coefficients,” which are the b,, b,,
and b, that we cre ciscussing here, your statistical software may also present
“standardize ! coc‘ficients.” Throughout this text, we focus on unstandardized
coefficieits, .aiid b always refers to those. You may encounter standardized
confficienice“when reading journal articles or other research reports, however,
ard hey can be thought of as giving another approach to the assessment of
-eal- ife significance. Therefore Appendix B to this chapter includes a brief
discussion (see Section 2.8.1).

Research reports and articles sometimes present confidence intervals for regres-
sion coefficients. A confidence interval takes the general form of a sample esti-
mate (of some population value) plus or minus a “margin of error” for that
estimate. The confidence interval is reported with a numerical level of confi-
dence, typically 95%. The interpretation of the 95% confidence interval is that
the method for constructing the interval means that 95% of the time the inter-
val will include the true population value. The analyst is therefore “95% confi-
dent” that the true value is somewhere in the interval.

A 95% confidence interval for a true regression coefficient like f, is found by b,
+ margin of error. The margin of error reflects sampling variability in the estimate
b,, so it is based on the standard error of b,. In particular, the margin of error is
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calculated by t , (SE of b)). The value of t ,. is found in a t-table, using the usual
df of t for assessing statistical significance of a regression coefficient (N — the num-
ber of X’s — 1), and is the value that leaves a tail of the t-curve with 2.5% of the
total probability. For instance, if df = 30, then t . = 2.042. Together, then, the
95% confidence interval for p, = b, £ t ., (SE of b,), or if written to highlight the
two endpoints, as the interval (b, —t - SE, b, + t ,5 SE). Note that t ,, gets closer
to 1.96 as df increase, so a quick approximation for typical sample sizes is that t .
is about 2, and the margin of error is roughly twice the standard error.

This confidence interval is closely related to the hypothesis test. If the
p hypothesized by H,, is within the 95% confidence interval, then the (two-
sided) p-value for that H is > 0.05. If that hypothesized value is outside the
95% confidence interval, then the p-value is < 0.05. (A value precisely on the
boundary of the 95% confidence interval corresponds to p = 0.05, but that will
be unlikely when results are given with several decimal places.) So for the usval
regression situation in which H,: g = 0, looking for 0 in the 95% confi:">nc2
interval will give the same conclusion as assessing statistical significan<e in tie
usual way. But because the confidence interval does not require the notica of
statistical significance or hypothesis testing to make sense, it ma; be appealing
to researchers who are uncomfortable with the usual apprrach o statistical
significance, even if it is closely related in a technical sense

Confidence intervals are more popular in some fields than others, so we do
not report them in the examples here. But the formula above is easy to execute,
so confidence intervals can be constructed for an; of the regression coefficients
shown in the examples or exercises. The maia 2ificulty with the confidence
interval is that the commonsense interpretsicaca <¢liat many people would make,
that there is a “95% probability that p lisadinthe interval,” is not really justified.
In particular, the statistical framework tha underlies the analyses here views
as fixed, even if it is unknown. That is, the framework does not include a notion
of probability of different values ¢ p; tandomness enters via sampling variability
in b;, so we really want toay soiething like there is “a 95% probability that
we obtain a value of b sucy, that tne resulting confidence interval includes p.”
This is certainly less ilituit ve,'but the more natural statement will be sensible
only if we have adbptel a “Bayesian” framework in which there explicitly is a
probability distribution for f. We do not explore that framework here.

2.3 < Frediction in Multiple Regression

%2.31 Calculating the Predicted Value of Y From the Values
of X’s

The process of obtaining predicted values of Y in multivariate regression is a
straightforward extension of that in bivariate regression: to predict Y, we simply
plug into the regression equation the values of the X's that we are interested in
using. For example, suppose we wanted to investigate the effects of age (X)),
years of work experience (X,), and years of education (X,) on annual income (Y),
and our analysis found a = -27,710, b, = -975.85, b, = 2,114.29, and b, = 5,580.44.
Then the regression equation would be:
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Y = -27,710-975.85X, +2,114.29X, + 5,580.44 X ,

If we want to know the predicted annual income for a person who is 26 years
old (X, = 26), has 4 years of work experience (X, = 4), and 16 years of education
(X; = 16), we simply plug these values for X;, X,, and X, into the above regres-
sion and do the arithmetic:

¥ = -27,710-975.85(26) + 2,114.29(4) + 5, 580.44(16)
¥ = -27,710-25,372.1 +8,457.16 + 89,287.04
Y = 44,662.1

Based on this regression equation, we can say that our analysis of th< sampie
data indicates a predicted annual income of $44,662.10 for a persorswino.s 26
years old with 4 years of work experience and 16 years of educttio.

Because this prediction uses estimates from the sample=-tii2 b’s—rather
than the true effects from the population—the p’s—we ceuid alfo think about
sampling variability in the predicted annual incomes. T1.at 13, we could have a
standard error for the prediction itself. Here we do not axn.ore the calculations
to estimate that standard error, but those can be ft und in more advanced texts.

2.3.2 Not Trusting the Results of Preuiction

When we have a low R?, we should pet trust the prediction from the regression
as much as we would when R? is hioli:' Re:nember that a low R? indicates that the
predicted values of Y are not in' genc ral very close to the actual values of Y for
the cases in our sample, so 2 low R= will reduce our confidence in the quality of
predictions in general. Also, v are uncomfortable with predicting Y based on
a value of X that is we'l outside the range of X that was seen in the sample used
to obtain the regressien equation. Suppose that we are interested in the effect of
age on some Y ¢ nd that. ~e obtained the regression equation from a sample in
which all peisois \rere 18 to 49 years old. Even if the resulting R? were high, we
probablyvsiios!dnot try to use the equation to predict Y for a 93-year-old person.
As 93 is ior catside the actual range of age in the data (18-49), we would not be
toc vonfident that the prediction for such a person is meaningful.

2.3.3 Why Not Interpret a?

We saw above that we use the value of a (the Y-intercept) in the arithmetic
needed to predict Y. Earlier we said that we are rarely interested in directly inter-
preting a. We mentioned in Chapter 1 that in a bivariate regression, a can be
interpreted as the predicted value of Y when X is O; for multiple regression, a
will be the predicted value of Y for the situation in which every X has value 0.
If we plug O in for every X in the regression equation, the only non-zero part
is a, so Y = a. Social science applications seldom involve a situation in which it
would be realistic for every numerical independent variable to equal 0. Then the
scenario in which every X equals 0 is usually not very helpful to explore, and
interpreting a as the predicted value of Y under this scenario usually will not

Copyright ©2022 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 2 @ Fundamentals of Multiple Regression 37
lead to any scientific insight. (However, a situation like this can be interesting

when all measures of independent variables are categorical; we discuss categori-
cal independent variables in Chapter 3.)

2.4 Collinearity

With these fundamental interpretations of regression results in hand, we can
begin to introduce some extensions of this core. Collinearity is, broadly speak-
ing, a situation in which high negative or positive correlations among the inde-
pendent variables inhibit our regression analysis. This does not require that all
pairs of X’s be highly correlated, so collinearity may be present if just some X or
X's are highly correlated with one or more other X’s. (There are also more com-
plicated situations beyond high pairwise correlations in which collinearity cat.
exist; advanced texts discuss this in detail.) Collinearity is potentially a ccrcein
because it causes increased uncertainty in the regression results.

In practice, one reason for highly correlated X’s may be that a researsher is try-
ing to measure one concept by multiple X’s. For example, a survey teancadent’s
social class background might be measured by father’s and mothe.’s.~ducation.
In actual data, however, father’s and mother’s education are  ikely to be highly
(and positively) correlated. We can imagine that people vith a nighly educated
mother are likely to also have a highly educated father, asinany couples meet
in educational or occupational settings that ten:” to bring similarly educated
people together. Or, at the aggregate level, congiaer ti:¢ level of economic depri-
vation in a geographical unit like a city or scasus.tract. Both the unit’s poverty
rate (perhaps measured as the percentage 0" ho'seholds with incomes below an
official poverty line) and its median iit ~om» would be sensible measures of this
concept. Again, though, these two meascres are likely to be highly (and nega-
tively) correlated: cities with a high poverty rate are likely to have low median
income. Still, it is important+*o 1ceize that there is not always an obvious theo-
retical reason for two indeenc ent variables to be highly correlated, so we will
need to examine corr'lationsiamong all the X’s in our data, rather than just
think about which/pairsiiight be anticipated to be highly correlated.

When there is a=*iong correlation between two X’s, it becomes more dif-
ficult to envisica changing one while holding the other constant. More practi-
cally, it wi'l be :-hallenging for the regression analysis to determine the separate
effectsiot “wo different X's if the cases in the data with a high value of one X
almost «'ways have a high (when there is a strong positive correlation) or low

strcng negative correlation) value of the other. That is, if survey respondents
witli highly educated mothers tend to also have highly educated fathers, it will
)e hard to untangle whether mother’s education, father’s education, or both are
actually influencing the dependent variable. In this situation, there will be more
uncertainty in the estimated b’s than there would be without such high corre-
lations, and this uncertainty is reflected in larger standard errors. A tendency
toward larger standard errors will mean a tendency toward smaller t-statistics
(remember that the standard error is in the denominator of the formula for
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b

the t-statistics shown on the regression output: t =
g p standard error of b

turn larger p-values.

Collinearity, then, will tend to make us less apt to find statistically signifi-
cant effects of X’s on Y. In the extreme, a classic symptom of collinearity is the
seeming paradox of a high R?, suggesting that the set of X’s does quite well at
predicting Y, yet with no or almost no statistically significant effects of the X's.
This odd situation is possible under collinearity. The X's are together doing a
good job of explaining the variance in Y, but high correlations among the X’s
mean that there is great uncertainty as to how, or which, particular indepen-
dent variables are related to Y.

), and in

2.4.1 Diagnosing and Addressing Collinearity

The most basic approach to detecting collinearity begins by checking f=i any
high positive or negative correlations among the X's. Althou:1 there are no
strict cutoffs, correlations that are greater than about 0.7Q71a_avsolute value
are especially apt to create problems in our regression. I two.variables have
an extremely high correlation (> 0.95, say) we surely jviliinct want to include
both in our regression. Otherwise, though, we can firse=un our analysis with
all X’s that we had originally identified as belorning in the regression, even
those that are strongly correlated with each o her. Perhaps the output will still
show statistical significance for the effects of X's tnat are involved in the strong
correlations, and we can conclude that ‘hese.correlations are not really causing
difficulties for our interpretation of fes:!ts."But if some or all of the X’s that are
highly correlated do not show siatistizally significant effects, it may be that
there is a collinearity problem

It is not easy to “fix” col'ine: rity. The simplest strategy is to identify pairs
of highly correlated X’s that aid not exhibit statistical significance in the ini-
tial regression and then resain only one of each such pair when rerunning the
regression. The chaice ¢ which of a pair to retain is somewhat arbitrary, as usu-
ally R? and the patte n or statistically significant effects will be quite similar for
either choic. TLis 1 because two highly correlated X's are, in a sense, providing
the sam’ (or greatly overlapping) information in our analysis and will, there-
fore.lead ve'similar regression results. But if one of the pair seems most relevant
tethetheory and previous research that is guiding our analysis then that X can
be ¢l osen to remain in the regression.

[here are other, more advanced methods for detecting and addressing col-
linearity; see Appendix B to this chapter for some discussion of these (Section
2.8.2). For beginning researchers, though, the simple strategy above is often
quite effective. Of course even after removing X's from highly correlated pairs,
some effects may not be statistically significant. If so, then the explanation for
the nonsignificance is more likely the genuine absence of a relationship with Y,
not collinearity. We clearly do not want to use collinearity as a catch-all “excuse”
for nonsignificance. Usually nonsignificance really does mean no relationship
between an X and Y, or at least not one that can be detected in the data we are
analyzing. But in many instances, statistically significant effects will emerge
once we address collinearity this way. When that happens, it is important to

Copyright ©2022 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 2 @ Fundamentals of Multiple Regression 39

remember that our choice of which X to retain from a highly correlated pair was
mostly arbitrary. Probably the other member of the pair would have given simi-
lar results had it been chosen instead, and we should keep that in mind when
making interpretations. One or both of the pair are affecting Y, but we cannot
really be more specific than that. In this situation, we should think of the X that
we decided to include as a representative of this highly correlated pair, rather
than thinking we have found that it is important for Y while the other X—the
one we dropped due to the high correlation—is not.

2.5 Examples

The following examples illustrate the concepts we have discussed in this chapter.

2.5.1 Example 1: Crime in Colorado

A criminologist believed that economic deprivation, residential instabilicy, 17 cial
inequality, and young male population have positive effects on thedic el of crime
in society and wanted to test her research hypothesis with a multiple egression
analysis. Economic deprivation, residential instability, raci:l inequality, and
young male population were her independent variables, a1d the dependent vari-
able was crime. Because her research question concerned aygrcgate-level relation-
ships, she used aggregate-level data, in this case da"« from 24 cities in Colorado.

Economic deprivation was measured as the zcrcer*age of the labor force that
was unemployed; a high percentage of uner=ployec persons in a city indicates a
high level of economic deprivation. Reside atial instability was measured as the
percentage of renter-occupied housing uni's; a high percentage of renter-occu-
pied housing units indicates a high levc of residential instability in the city.
Racial inequality was measured Ly the index of white-Black residential segrega-
tion, with possible values from . 0 100; a high value of the racial segregation
index in a city indicates a1 igh eve. of racial inequality. Young male population
was measured as the pircentage of the population that was male and aged 15 to
24 years. Crime was 1neazured as the city’s total violent crime (murder, robbery,
rape, and assault) rate zer 100,000 population (Y). She obtained these measures
for each city nom the U.S. Census Bureau and the FBI's Uniform Crime Reports
(from the Jture. u of Justice Statistics).

Her/study Can be summarized as follows:

Research hypothesis: Economic deprivation, residential instability, racial
inequality, and young male population positively influence the level of
crime in society.

Units of analysis: 24 cities in Colorado (aggregate-level data).

Measurements of independent and dependent variables:

Copyright ©2022 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



40  Multiple Regression

X,: Percentage of the labor force that was unemployed (economic
deprivation).

X,: Percentage of renter-occupied housing units (residential instability).
X,: Racial segregation index (racial inequality).

X,: Percentage of the population that was male, aged 15 to 24 years
(young male population).

Y: Violent crime rate per 100,000 population (crime).

It is helpful to rewrite the research hypothesis using the actual measuis-
ments for the independent and dependent variables. We can also sepa=ate the
different parts of the hypothesis.

Research hypothesis with measurements of independent and depend«at vriables:

1. The unemployment percentage (X,) has a positive ¢ffe 01 the violent
crime rate (Y).

2. The percentage of renter-occupied housing nits (i{;) has a positive
effect on the violent crime rate (Y).

3. The racial segregation index (X;) has a pasitive effect on the violent
crime rate (Y).

4. The percentage of young mal> »Gpulation (X,) has a positive effect on
the violent crime rate (Y)

Her data are as follows:

Racial
(o113Y i Renter-occupied Segregation
ID City Name Housing (X,) (X,)
1 Arvada
2 Auror. 4461 7.7 40.1 28.7 6.8
3 Dod'der 211.6 7.0 52.3 20.3 16.7
Y2 Biyhton 193.0 6.1 30.4 28.0 7.2
5 Colorado 4919 7.6 39.9 34.7 7.4
Springs
6 Commerce 252.3 7.0 30.2 17.6 6.1
City
7 Denver 5421 7.8 50.0 54.7 6.6
8 Durango 445.6 6.1 52.0 17.7 13,3
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ID City Name
9 Englewood
10 Evans
1 Fe<.1eral
Heights
12 Fort Collins
13 f/loorrtgan
14 Golden
5 imion
16 Lafayette
17 Lakewood
18 Littleton
19 Longmont
20 Loveland
21 Northglenn
22 Pueblo
23 Sterling
Wheat
24
Ridge

Year of data: 2010
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Violent

Crime Unemployment | Renter-occupied

(Y) (X;) Housing (X,)
446.2 8.5 50.9
171.2 6.6 39.5
478.8 9.4 48.0
315.8 7.4 44.9
233.9 8.7 9.3
116.1 7.6 41.6
349.0 5.4 37.6
153.5 7.2 27.2
442.7 7.8 1.1
130.7 6.6 BT
311.5 7.0 36.5
191.5 7.1 34.1
255.3 195 41.5
854.2 11 39.8
487.3 N/ 41.1
5458 6.4 45.4

41

Racial
Segregation

(X,)

17.3 6.3
12.8 8.5
20.2 7.5
19.0 W
22.7 7.2
3c 2 16.8
22.4 7.9
13.4 5.7
24.4 6.7
22.5 6.1
10.2 6.3
12.4 6.0
19.7 7.3
22.0 7.5
63.8 10.7
20.8 5.2

Data sources: U.S. Cengus Buicau and Bureau of Justice Statistics, FBI's Uniform Crime Reports

After entering the above data in statistical software, the researcher checked
correlatior s an ong the X’s. The results of this correlation analysis are below:

Unemployment (X,)

Renter-occupied
Housing (X,)

Racial Segregation (X;)

Young Male (X,)
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Racial
Unemployment Renter-occupied Segregation Young Male
(X,) Housing (X,) (X;) (X,)
1.000 0.175 0.068 -0.105
0.175 1.000 0.181 0.465
0.068 0.181 1.000 0.183
-0.105 0.465 0.183 1.000
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The highest correlation is 0.465, between renter-occupied housing units (X,)
and young male population (X,). This does not seem so high as to suggest a
collinearity problem, and none of the other correlations are at all remarkable.

She then ran the multivariate regression analysis with X;, X,, X;, and X, as
independent variables. The multiple regression results from these data are below
(with "SE" written for "standard error"):

R%=0.509
df for t=19
IR PO P PR PP

Intercept (constant) -392.009 218.221 -1.796 L 188
Unemployment (X,) 37.081 22.891 1.620 0..72
Renter-occupied housing (X,) 13.945 4.685 2.976 0.008
Racial segregation (X,) 3.598 2.385 1.508 0.148
Young male population (X, -23.818 10.334 -2.525 0.033

R? was only moderately high, with a value i 0.509. Such an R? generally
indicates a reasonably satisfactory fit ¢ the.regression model to the data, but
here does not seem so high in light of th{ small sample size (N = 24). 50.9%
of the variance in violent crimc ates’(Y) in this sample was explained, or
accounted for, by this set of X’s\‘X. through X,), and for the most part Y and
Y were somewhat close for'itie in the sample. Still, it appears that there are
additional independent variabios that should be considered in order to provide a
more complete explanction for differences in crime rates among Colorado cities.

Checking for z«vaiucs below the usual 0.05 cutoff indicates that the effects
of two of the fou: X's weie statistically significant. Renter-occupied housing (X,)
and young (nale pcpulation (X,) had statistically significant effects on violent
crime, chntroning for other X’s. p-values for unemployment (X,) and the racial
segregatica-index (X,) were above the 0.05 cutoff. Thus, when controlling for
otherX’s, the effects of unemployment (X,) and racial segregation index (X;) on
rjole nt crime (Y) were not statistically significant.

I'he regression equation based on this output is

4

-392.009 + (37.081) X, +(13.945) X, + (3.598) X, + (-23.818) X,

or

4

-392.009 +37.081 X, +13.945X, +3.598 X ,-23.818 X ,.

For a and the b’s we have retained three decimal places from the output, but it
would also be fine if we reported more rounded-off figures, especially if we wanted
to avoid giving an undue impression of precision in our results. Here the three
decimal places are helpful for readers who run this analysis in their software and
want to confirm that they obtained exactly the same results; we do this through-
out the book, but normally more rounding is fine when presenting results.
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Because the effects of renter-occupied housing (X,) and young male popula-
tion (X,) were statistically significant, the researcher proceeded to interpret the
slopes (b’s) for renter-occupied housing (b,) and young male population (b,).
b, was 13.945, indicating a positive effect of renter-occupied housing (X,) on
violent crime rate (Y). The predicted violent crime rate (per 100,000 population)
increases by 13.945 as renter-occupied housing (X,) increases by 1% (because
this particular X, is measured as a percentage, in this instance “one unit” of X,
means 1%), controlling for the other X’s in the model.

To examine whether the increase of 13.945 is large enough to have a
meaningful impact in real terms (real-life significance), the researcher should
first examine the descriptive statistics for renter-occupied housing units (X,)
and violent crime rates (Y) produced in her statistical software. Renter-occupied
housing’s (X,) sample mean is 40.34, with a standard deviation of 7.29 and,a
range of 26.70 to 52.30. This context suggests that it may be more informatjre
to look at something more than a one-unit increase in renter-occupied ho sitg
(X,). This does not fundamentally change the regression results but rath<r allo.’s
us to make a more reasoned interpretation, because the descrip:ivue, statistics
for renter-occupied housing (X,), including the standard deviatibn <na range,
suggest that a one-unit increase is rather small. A five-unit increascseems like
a more meaningful change in renter-occupied housing (X.). v interpret with a
five-unit increase, she needs to multiply b by five: a five- 1nit ncrease in renter-
occupied housing (X,) increases the predicted violent crime rate (¥) by (5 x
13.945) = 69.725. Next, in light of the mean (342.1, ) and the range (116.1-854.2)
of violent crime rates (Y), an increase of 69.72) irmviedicted violent crime rate
(Y) for a 5% increase in the renter-occupicavhedasing seems large enough to
have a real impact. Therefore, she car=say.tkat the effect of renter-occupied
housing (X,) on violent crime rate (Y) 1 as r al-life significance. Although this is
ultimately a judgment that the researcheiis making, and can be challenged by
other researchers, it is rooted in a clote examination of the sample data.

Suppose that b, had beeri3:395, rather than the actual figure of 13.945. Then
a five-unit increase in rentcs-or cupied housing would have implied an increase
of 6.975 (from 5 x 1.[95) 'n ‘he predicted violent crime rate. Many analysts
would view such ¢ chenge as rather small in light of the mean (342.17) and
range (116.14854.2) o1 violent crime rates in the sample, and the researcher
would likelz=thcn.conclude that renter-occupied housing’s effect did not have
much rea. life’ significance. More generally, we always should be mindful
of the posuibility that a statistically significant effect is not large enough to
demonstrate real-life significance. As noted earlier, this is especially a concern in
inal sses of very large samples; because standard errors tend to be smaller (and,
in curn, t-statistics larger and p-values smaller) in larger samples, some effects
chat are quite small, or even trivial, in real terms can be statistically significant.

b, was -23.818, indicating a negative effect of the young male population
(Xy) on violent crime rate (Y). The predicted violent crime rate (per 100,000
population) decreases by 23.818 as young male population (X,) increases by 1%,
controlling for the other X’s. Young male population’s (X,) mean is 8.26, and its
range is 5.20 to 16.80, so a 1% increase in young male population does not seem
so small as to be uninterpretable. Relative to the mean (342.17) and range (116.1
to 854.2) of violent crime rates (Y), a decrease of 23.818 in the violent crime rate
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seemed to the researcher to be large enough to say that the effect of young male
population (X,) on violent crime rate (Y) has real-life significance.

With these results, the researcher was able to evaluate the research hypothesis.
Based on the earlier examination of p-values and slopes (b’s), renter-occupied
housing (X,) is the only X that showed a statistically significant (and also real-
life significant) effect on crime (Y) in society in the direction—violent crime rate
increases as renter-occupied housing increases—that was expected under the
research hypothesis. The effect of young male population (X,) was statistically
significant (and also real-life significant), but in the negative direction—violent
crime rate decreases as young male population increases—which is opposite of
what the research hypothesis suggested. R? is moderately high, indicating that the
set of X's is explaining crime (Y) fairly well, but it would be worthwhile for fu:the;
analyses to explore additional X's that might also influence crime /). iTote,
though, that there is a practical constraint on the number of X’s Feia v=cause
as a general rule one wants the number of X's to be relatively sn 1l compared to
the sample size N. The small sample size here (N = 24) means that .0 will not be
appropriate to include a very large number of X's in the ingiussian.

Overall, then, the research hypothesis was not (very.well supported by
the regression analysis results for these data. Of ecoursc it is possible that the
measurements of variables, or level of analysis. ure not ideal. For example,
economic deprivation could instead be mea ure/! by the percentage of city
residentslivingin poverty, orracialinequality couid be measured as the difference
between average incomes for white anu non:white residents. It is also possible
that a lower level of analysis, such(as-=eighborhoods, would provide a better
test of the hypothesis. In addition, tlic counterintuitive finding of a negative
relationship between young.mal= ropulation (X,) and violent crime rate (Y)
may not have arisen had the ana'ysis controlled for other important X’s. Among
these cities, Boulder, Ft. Collil.s, and Golden have exceptionally high young
male populations beca 1se<:hese cities are home to the University of Colorado,
Colorado State Uriiversic 7, and the Colorado School of Mines, respectively. None
of these cities. have ~specially high violent crime rates, so without controlling
for other va.iabl s tiat could capture the distinctive “college town” character of
these cit es, the regression analysis takes the data for these cities as evidence for
a r.egative telationship between young male population and violent crime rate.

Thio researcher found a positive and significant relationship between renter-
ccupied housing and crime from these city-level (aggregate-level) data. She can
make only aggregate-level interpretations from these findings. That is, it is legit-
imate to say that the analysis indicates that, holding other X’s constant, cities
with a high proportion of renter-occupied housing units are predicted to have
higher crime rates than cities with a low proportion of renter-occupied housing
units. However, it is not legitimate to make an individual-level interpretation of
these results. This city-level analysis does not show that renters are more likely
to commit crime than home owners; that would be the ecological fallacy of
drawing individual-level conclusions from the aggregate-level results.

The p-values in the table of regression results for this example are two-sided,
as they refer to the alternative hypothesis p # O; this usually is the case with the
default output from statistical software. Note that the original research hypoth-
esis specified positive signs for the relationships between independent variables

Copyright ©2022 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 2 @ Fundamentals of Multiple Regression 45

and the dependent variable. The researcher could appeal to various theories
of crime to argue that the negative relationships between these independent
variables and crime would be very unlikely. Recalling the review of hypothesis
tests in Chapter 1, one might then suggest using one-sided rather than two-
sided p-values in this situation, with H, specifying the sign of the effect if the
null hypothesis of p = 0 is rejected. These one-sided p-values can be obtained
by simply dividing the reported two-sided p-values by 2, which of course makes
the one-sided p-values smaller. Statistically significant relationships with the
two-sided p-value < 0.05 would remain so in the one-sided approach, but some
previously nonsignificant relationships might become statistically significant.

In the analysis here, the one-sided p-values for the previously nonsignificant
independent variables unemployment (X,) and racial segregation (X,) would
remain over the 0.05 cutoff, but close enough (0.122 / 2 = 0.061 and 0.148 / 2.=
0.074, respectively) to perhaps be viewed as borderline or marginally significar:t.
However, this example also illustrates our caution about using the one:ided
p-value in many research settings. The seemingly impossible negatire eftc(t
of young male population on crime was in fact observed in thy, researclier’s
analysis of these data, despite the strong belief among researcher( tha* societies
with large young male populations tend to have high levels.of vicient crime.
As discussed earlier, we can understand why this counterir.tuitive result was
found in this particular sample and how it might chaiige i1 the presence of
other controls. Still, this illustrates how we may not always pe so confident that
we can absolutely rule out either a positive or nega.ive effect when applying our
understanding of theory or past research to netv sitmauons or data. We therefore
will reserve the one-sided approach for analyscs it which we have an unusually
strong basis for ruling out one sign as imnussible for the true effect of X on Y,
even if our initial expression of the 1cseaich hypothesis suggests a particular
direction of the effect.

Finally, these data were obvic isly'not derived from a true experiment that
could be manipulated by thicwesearcher, but instead came from observation of
the world as it is. Of coursc there would be no possible way for the researcher
to randomly assign d!ffer¢ at levels of renter-occupied housing and the other
independent varialles ‘o different cities. Therefore the effect of renter-occupied
housing on ciime fouiid by the researcher here should be understood as indicat-
ing an assosiatien between these variables. This could reflect a causal effect of
renter-occuniec housing on crime, but the nature of the research design does
not al’>w che researcher to conclude that definitively.

2.5,2 Example 2: Infant Mortality in the World

A researcher believed that greater economic and technological development,
health care availability, and urbanization decrease infant mortality in the
world’s nations and wanted to test this hypothesis with a multiple regression
analysis. Further, the researcher was interested in exploring this question via
historical rather than contemporary data, as theoretical arguments suggested
that these relationships could be different in different historical periods. For
this analysis, independent variables were economic and technological develop-
ment, health care availability, and urbanization, and the dependent variable
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was infant mortality. He decided to use 28 randomly selected countries as the
cases, so this research was at the country level (aggregate level of analysis). Data
were obtained from a reference book that collected data from various original
sources and reflected conditions around 1990.

Economic development was measured by gross domestic product (GDP,
essentially the value of goods and services produced in the country’s economy)
per capita (or per person) expressed in U.S. dollars. A high value of GDP per
capita in a country indicates a high level of economic activity and develop-
ment. Technological development was measured by the number of people per
telephone in the country; note that these data were collected before the call
phone era. A high number of people per telephone in a country indicates a law
level of technological development, because more people “sharing” each pione
means that there are, relative to the population, fewer phones and i5s a cess
to technology. Health care availability was measured by the numkei ot eople
per hospital bed. As with the telephone measure, a high numL: v 65 people per
hospital bed in a country indicates a low level of health care/availavility, as this
means that there are few hospital beds relative to the puntlatiar. Urbanization
was measured by the percentage of population living (n usban areas. It hardly
needs to be said that a country with a high percertage ¢I"population living in
urban areas is highly urbanized. Finally, infant mcrtality was measured by the
number of infant deaths per 1,000 births.

The research hypothesis, units of analysis, measurements of independent
and dependent variables, and raw data e as.follows:

e Research hypothesis: Great<i ¢cczomic and technological development,
health care availability.a.d rirbanization decrease infant mortality in
society.

e Units of analysis: 28 countries (aggregate-level data).
Measurements of 1.:dep. ndent and dependent variables:

e X »G0P ver capita in U.S. dollars (economic development).

e X,-Mamber of people per telephone (technological development).
x;: Number of people per hospital bed (health care availability).
® X,: Percentage of population living in urban areas (urbanization).

* Y:infant mortality rate per 1,000 births (infant mortality).

Research hypothesis with measurements of independent and dependent variables:

1. GDP per capita (X,) has a negative effect on infant mortality rate (Y).

2. The number of people per telephone (X,) has a positive effect on infant
mortality rate (Y). Countries with more people “sharing” a phone (X,),
reflecting less access to technology, will have higher infant mortality
rates (Y).
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3. The number of people per hospital bed (X,) has a positive effect on
infant mortality rate (Y). Countries with more people per hospital bed
(X;), indicating less health care availability, will have higher infant
mortality rates (Y).

4. The percentage living in urban areas (X,) has a negative effect on infant
mortality rate (Y).

Data:

Infant People per People per
Country | Country Mortality Telephone Hospital &
Name (yY) (X,)
1 Angola 151 950 132 ) 29
2 Bangladesh 112 200 572 3, % 24
3 Bolivia 83 690 37 685 51
4 Burkina Faso 117 205 LR 1,359 8
5 China 38 360 X 428 27
6 Cyprus 10 7,585 2 165 69
7 Ecuador 60 1.076 28 610 54
8 Ethiopia 113 2N 320 3,873 1
9 Germany 7 74,600 1.5 95 86
10 Guyana 5 300 47 341 35
1" Indonesia 70 630 172 1,485 Sl
12 Jamaica 17 1,400 13 468 52
13 Liberic 19 440 278 800 46
14 McHagascar 93 200 239 600 22
15 M- .uritius 22 2,300 15 364 41
16 Morocco 56 1,060 62 959 50
17 Netherlands 7 16,600 1.6 164 88
18 Pakistan 105 380 131 1,706 32
19 Poland 14 4,300 7.5 154 62
20 Saudi Arabia 69 5,800 13 406 78
21 South Korea 23 6,300 3.3 429 74
22 Spain 6 12,400 2.5 198 79
(Continued)
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Infant People per People per Percentage

Country | Country Mortality Telephone Hospital Living in Urban
ID Name (Y) (X,) Bed (X,) Areas (X,)

23 Syria 45 2,300 17 840 50

24 Turkey 54 3,400 7 465 61

25 United 8 15,900 19 138 90

Kingdom

26 United States 10 22,470 1.9 198 76

27 Venezuela 23 2,590 1" 370 83

28 Zambia 77 380 78 31 4

The researcher first ran a correlation analysis in his statistical software, to
check correlations among the X’s in order to detect poteatia! ¢uilinearity prob-
lems. The results of the correlation analysis were:

Percent
eople per Living in
GDP per Hospital Bed | Urban Areas
Capita (X,) ‘ (X,)
GDP per Capita 1.000 _0.439 ~0.431 0.755
(X,)
People per 0.439 1.000 0.767 0.728
Telephone (X,) ’ ’ ’ ’
People per 0431 0.767 1.000 -0.656
Hospital Bed X, ’ ’ ’
Percent _ivi, 2 i,
0.755 -0.728 -0.656 1.000

Urban A, ~a+ (X,)

Tae correlation analysis indicated that percentage living in urban areas (X,)
1 strongly correlated with GDP per capita (X,) (r = 0.755), the number of people
per telephone (X,) (r = -0.728), and the number of people per hospital bed (X,)
(r=-0.656). The number of people per telephone (X,) and the number of people
per hospital bed (X,) are also strongly correlated (r = 0.767). These high cor-
relations suggest that collinearity may indeed be a problem in the regression
analysis.

Results of the multiple regression with all X’s included were as follows, with
"SE" again written for "standard error":

R2=0.673
df for t =23
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Intercept (constant) 67.718 24.807 2.730 0.012
GDP per capita (X,) -0.002 0.001 -1.556 0.133
People per telephone (X,) 0.116 0.061 1.899 0.070
People per hospital bed (X;) 0.004 0.009 0.386 0.703

Percent living in urban
-0.333 0.444 -0.750 0.461
areas (X,)

The results show the classic symptom of collinearity that we discussec
earlier. The R? is fairly high (0.673), suggesting rather successful predictions of
Y in the sample, but none of the effects of X on Y are statistically signifcant
(although the p-value for X,, number of people per telephone, is close«to the
0.05 cutoff). The researcher then tried to address the collinearitv procien. by
excluding an X from each of the highly correlated pairs and rzieniing the
regression analysis.

Because percentage living in urban areas (X,) is strong v correlated with
three other X's (GDP per capita [X,], the number of peoyle y e1telephone [X,],
and the number of people per hospital bed [X,]), it seemcd-prudent to exclude
percentage living in urban area (X,) from the ne : regression model. With the
number of people per telephone (X,) and the‘iiuni>er of people per hospital
bed (X,) also strongly correlated, it would=he reasonable to exclude one of
those two also. The researcher chose to'=xclide the number of people per
hospital bed (X,) along with percent’ ge iiving in urban areas (X,). His next
regression model then included only Gi:P per capita (X,) and the number of
people per telephone (X,).

This seems to restate the oves-1l research hypothesis as “greater economic
and technological develC ment <ecrease infant mortality in society,” and
the specific hypothefes ¢s “GDP per capita (X,) has a negative effect on
infant mortality r7te (17" and “the number of people per telephone (X,) has
a positive effect oriinfant mortality rate (Y).” Note, however, that the choice
of which X’s t¢iexclude in response to collinearity was rather arbitrary. With
health car> av.ilability and urbanization measures excluded for this reason,
the researcher must be careful with interpretation. If results show statistically
significont effects of the economic and technological measures, that does not
“uleout health care availability and urbanization as factors affecting infant
neorality. Rather collinearity is making it too hard to distinguish all these
lifferent effects and forcing the researcher to be a bit more modest in his
research goals.

Regression results with GDP per capita (X;) and the number of people per
telephone (X,) are as follows:

R2 =0.661
df for t =235
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Intercept (constant) 52.430 8.138 6.443  0.000 (<0.001)
GDP per capita (X,) -0.003 0.001 -3.098 0.005
People per telephone (X,) 0.157 0.037 4.265 0.000 (<0.001)

R? is little changed, with 66.1% of the variance in infant mortality (Y)
explained by GDP per capita (X,) and the number of people per telephone (X))
Excluding the number of people per hospital bed (X,) and percentage livingin
urban areas (X,) from the regression did not reduce R? very much. That isj,the
new regression model’s fit to the sample data is only slightly worse tiin v hen
all four X’s were included.

With number of people per hospital bed (X,) and percentage “iviag in urban
areas (X,) removed, effects of GDP per capita (X,) and the nuinbar i people per
telephone (X,) on the predicted infant mortality rate (V) heeaine statistically
significant. The p-value for GDP per capita (X,) is 0.00¢, an! tne p-value for the
number of people per telephone (X,) is shown by:somesratistical software as
0.000, which can be interpreted as < 0.001 (it is.not'iterally zero, but more deci-
mal places would be needed to show that). Bot arc¢ well below the 0.05 cutoff.

With this statistical significance, we can interpret effects (slopes) for GDP
per capita (X,) and the number of peopicper«elephone (X,). For GDP per capita
(X)), the slope b, is —0.003. This india*;a negative effect of GDP per capita (X,)
on the predicted infant mortality ra'e(r) and that the predicted infant mortal-
ity rate per 1,000 births (Y) dearcases by 0.003 as GDP per capita (X,) increases
by $1, controlling for the nuiabe’ of people per telephone (X,). Of course §$1 rep-
resents a very small change in &DP per capita (X,), given the mean ($4,462.14)
and range ($130-$22,470) Uf this variable’s values in this data set. A more help-
ful interpretatior: inighe be that the predicted infant mortality rate per 1,000
births (Y) decreases Dy 3 as GDP per capita (X,) increases by $1,000. The value
3 was obtail ed 'y niultiplying b, by the $1,000 change in X,: if a $1 increase in
GDP pe1 capita decreases the predicted infant mortality by 0.003, then a $1,000
increase i GDP per capita will decrease the predicted infant mortality by 1,000
» 2,002, or 3. Put this way, the effect does not seem so tiny, considering the
neait (55.54) and the range (6-151) of infant mortality rate (Y) in the sample,
wven if it is still not very large. Thus, the effect of GDP per capita (X,) appears to
be meaningful in real-world terms.

For number of people per telephone (X,), the slope (b,) is 0.157. This is a posi-
tive effect of the number of people per telephone (X,) on the predicted infant
mortality rate (Y), and the predicted infant mortality rate (Y) increases 0.157 per
1,000 births as the number of people per telephone (X,) increases by one, con-
trolling for GDP per capita (X,). Again it is interesting to consider a somewhat
larger change in the number of people per telephone (X,), as there is a fairly
large mean (98.76) and very wide range of values (1.5-572) of X, in the sample.
If the number of people per telephone (X,) increases by 10, the predicted infant
mortality rate (Y) increases by 1.57 (calculated as 10 x 0.157) per 1,000 births,
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still controlling for GDP per capita (X,). As with the effect of GDP per capita,
this change now does not seem so tiny relative to the sample mean (55.54) and
range (6-151) of infant mortality rate (Y) and so might be assessed as having
real-world significance. However, some researchers might look at that change
as still being too small to indicate real-world significance. As discussed earlier,
there can be ambiguity in the assessment of real-life significance.

The researcher then evaluated the new research hypotheses. With R? fairly
high, the model does pretty well at predicting levels of infant mortality for the
countries in the sample. R? is not so close to 1 as to suggest that all important
variables have been included, but the model is reasonably successful. Further,
both GDP per capita (X,) and number of people per telephone (X,) have statisti-
cally significant effects on the infant mortality rate (Y), and both effects have
the expected signs: negative for GDP per capita, and positive for number ot
people per telephone. Both effects are also judged to be large enough to suggest
real-life significance, though with some ambiguity for number of peop:« pur
telephone. The revised research hypotheses thus seem to be supportes 1n. tiils
analysis. Still, it is important to keep in mind the collinearity-inducea sheiccs of
X’s from the original set and realize that similar results likely wo'1ld have been
found if different choices of which independent variables to keep aixa drop had
been made.

The impact of different choices of which X's to keep in the ‘ace of collinearity
can be illustrated by considering these data further. Rememper that the number
of people per telephone (X,) and the number of heople per hospital bed (X,)
were strongly correlated (r = 0.767), and the re/ea=cher chose number of people
per hospital bed (X,) to exclude from the fegiession model. What if the other
choice—excluding the number of peop!anar tilephone (X,)—had been made?
Here is the output from the regressiors mo: lel with independent variables GDP
per capita (X,) and number of people per nospital bed (X,):

R2=0.572

df for t =235
Intercept [Luinta ) 53.224 10.043 5.300 0.000 (<0.001)
GDP rer "apia [X1] -0.003 0.001 -3.134 0.004

People per hospital
bed (X,)

0.021 0.007 3.027 0.006

R? is somewhat smaller than in the previous regression but still moderately
high. And, as in the previous model, both X’s show statistically significant
effects. We can interpret the slopes for X, and X,. Predicted infant mortality
rate per 1,000 births (Y) decreases by 0.003 as GDP per capita (X,) increases
by $1, controlling for the number of people per hospital bed (X,). (As before, a
more helpful interpretation for assessing real-life significance might focus on an
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increase of $1,000 in GDP per capita.) This is the same effect of GDP per capita
(X,) as was estimated in the previous regression.

For number of people per hospital bed (X,), the slope b, is 0.021. That is,
predicted infant mortality per 1,000 births increases by 0.021 as the number
of people per hospital bed (X;) increases by one, controlling for GDP per capita
(X,). Again it is interesting to consider a somewhat larger change in the num-
ber of people per hospital bed (X,), as there is a large mean (773.25) and very
wide range of values of X, (95-3,873) in the sample. For an increase of 100 in
the number of people per hospital bed (X,), the predicted infant mortality rate
(Y) increases by 2.1 per 1,000 births, while holding GDP per capita (X,) ccn-
stant. When considered this way, a reasonable change in the number of pecple
per hospital bed produces a meaningful change in predicted infant morwility
suggesting real-world significance of this effect. An increase in the 17 mb-r of
people per hospital bed indicates a decrease in the availability of health cite, so,
controlling for economic development, predicted infant morta’ 'ty increases as
health care availability decreases. This is consistent with the griginaThypothesis
about infant mortality and health care availability.

The regression results with GDP per capita (X,) and n'imuer of people per tele-
phone (X,) are quite similar to those with GDP per eapita X)) and the number of
people per hospital bed (X;). Although R? is somev.hat higher in the regression
using number of people per telephone (X,), in "ach regression both independent
variables have statistically significant effects. Also, the size and direction of the
effect of GDP per capita (X,) are the saiqe in,the two regressions, and whether
number of people per telephone (X,) or=mumiber of people per hospital bed (X,) is
used, the effect of this variable ig’statistically significant and positive.

This similarity in results is=ovsurprising. Because highly correlated variables
represent similar informatio.:. us ng one or the other in the regression will often
produce similar results. This is why we should be cautious in discussing results
for regressions carriec. out after removing variables due to collinearity. We
should not give tiiciimp. ession that one or the other of these regressions defini-
tively establishesithzt eicher technological development (represented by X,) or
health care avai ability (represented by X,) is the factor that is truly related to
infant n'ortelity (Y). Instead, the collinearity limits us to deciding that one or
bo'h of thicse factors appear to be related to infant mortality, but the nature of
tha acta prevents a more conclusive interpretation. (We will revisit this idea as
ne upplication of the F-statistic in Chapter 3.) And as before, the nonexperi-
mental research design does not permit us to ascribe a definitive causal inter-
pretation to these effects.

2.6 Exercises

2.6.1 Exercise 1: Median Income Among U.S. States

A researcher hypothesized that higher unemployment and a larger older adult
population decrease the typical income in a given area. On the other hand, she
hypothesized that greater educational attainment and urbanization increase an
area’s typical income. To test these research hypotheses, she collected data from
34 American states.

Copyright ©2022 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 2 @ Fundamentals of Multiple Regression 53

Typical income was measured as the state’s median annual income in dollars,
and unemployment was measured as the percentage of its labor force that is
unemployed. Older adult population was measured as the percentage of popula-
tion aged 65 years and over, with educational attainment measured as the per-
centage of those 25 years and older holding at least a bachelor’s degree. Finally,
urbanization was measured as population density (population per square mile).
The following data were collected from the Census Bureau:

Median Older Adult | Educational
Income | Unemployment | Population Attainment
5.8 . .

1 Alabama 48,123

2 Arizona 56,581 5.8 17.1 z. 4 61.8
3 Arkansas 45,869 5.6 16.5 <) 57.7
4 California 71,805 5.9 13.9 33.6 253.8
5 Colorado 69,117 4.2 13 41.2 54.1
6 Connecticut 74,168 6.1 16.t 38.7 7411
7 Delaware 62,852 5.3 18.0 31.5 493.6
8 Florida 52,594 5.5 20.1 29.7 391.3
9 Georgia 56,183 53 13.4 30.9 181.3
10 IlUinois 62,992 64 15.2 34.4 230.6
" Indiana 54,181 o7 15.4 26.8 186.1
12 lowa 58.57u 3.6 16.7 28.9 56.3
13 Kentucky 4y 37°F 5.3 15.9 24.0 112.8
14 Louisiana 45,145 6.5 14.9 23.8 108.4
15 Marylend 80,776 5.2 14.9 39.7 623.5
16 Mas,ac, usctts 77,385 4.6 16.1 43.4 879.5
17 . ‘Michigan 54,909 5.9 16.7 29.1 176.2
1 Minnesota 68,388 3.6 15.4 36.1 70.0
‘0 Mississippi 43,529 7.0 15.6 21.9 63.6
20 Missouri 53,578 4.6 16.5 29.1 88.9
21 New Hampshire 73,381 3.8 17.6 36.9 150.0
22 New Jersey 80,088 5.3 15.7 39.7 1,224.6
23 New York 64,894 5.5 15.9 36.0 421.2
24 North Carolina 52,752 5.3 15.9 313 211.3

(Continued)
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W ELIED Older Adult Educational
Income | Unemployment | Population Attainment Urbanization
5.2 . .

25  Ohio 54,021 285.3
26  Oklahoma 50,051 5.4 15.3 25.8 =3
27 Pennsylvania 59,195 5.3 17.8 31.4 286.2
28  Rhode Island 63,870 5.7 16.7 3.9 1,024.8
29  South Carolina 50,570 5.8 17.2 28.0 167.1
30 Tennessee 51,340 4.9 159 27.3 162.9
31  Texas 59,206 5.1 12.2 29.6 18.4
32  Vermont 57,513 3.8 18.8 38.3 Vil
33  Virginia 71,535 4.6 15.0 38.7 214.5
34  Washington 70,979 4.9 15.1 35% 1M1.4

Year of data: 2017
Data source: Census Bureau

1. What are the independent and dependeit var:ables for this analysis?

2. After entering the above data in statistical software, check for
collinearity and then run multip.» regression analysis as needed to test
the research hypothesis.

3. Interpret the results (output) ¢5 fully as possible, focusing on R?,
p-values, b’s, and rea!'life significance (remember that descriptive
statistics are helpful in .fiaking interpretations of real-life significance).

4. Evaluate the«escarci hypothesis.

5. Use the result to‘predict median income for a state with 4.3%
unen ploymunt, 18.1% older adult population, 35.5% holding a
brichercr’s degree, and 260.3 people per square mile. Should you trust

thispredicted value? Explain.

2.6.2 Exercise 2: Predicting Educational Attainment

Researchers were interested in studying influences on educational attainment,
and obtained data on a sample of American adults who had completed their
formal education. They believed that an adult’s education could be predicted
from measurements taken at childhood on his or her reading test score, resource
competition in the family, parental education, and household income. In the
following hypothetical descriptive and regression analyses of the data from
this sample, the dependent variable is years of education, and the independent
variables are reading test score, number of siblings (measuring resource
competition), parental education (whichever parent had the highest, in years),
and household annual income for the respondent at age 15 (in dollars).
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Descriptive Statistics:

Respondent’s education

Test score 100 82 128
Number of siblings 2.6 0 6
Parental education 12.2 8 18
Childhood household income 54,567.12 24,000 78,000

Multiple Regression Analysis Results:

R%2=0.228
df for t =103
N
I PR E2T e

Intercept (constant) -95.5
Test score 0.028 0.017 (i) 0.103
Number of siblings -0.121 0.058 (ii) 0.039
Parental education 1.122 @320 (iii) 0.056
Childhood household income 0.002 Quul 2.000 0.048

1. Assuming no collinearity, interprc-the results as fully as possible,
focusing on R?, p-values, I’s, and statistical and real-life significance.

2. What are the valuesiorthe (-statistics (i), (ii), and (iii) not shown in the
table?

3. What are th< predicred years of education for a person with a test score
of 105, three =ikiings, whose most-educated parent had 12 years of
educatica, and whose household income was $46,000 when they were
15 vears old? Should you trust the predicted value?

4. “What is the total number of cases in the sample?

50 Is the research hypothesis supported? Explain.

2.6.3 Exercise 3

1. Suppose that our research hypothesis is represented by the set of
independent variables in the regression. Explain why both R? and
statistical significance of the b’s are important in deciding whether the
research hypothesis is supported.
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2. If we believe that there are multiple factors that influence our
dependent variable, why do we need to use multiple regression instead
of repeatedly applying simple (bivariate, with just one independent
variable) regression?

3. Explain how collinearity can lead to artificial findings of statistical
nonsignificance of X’s.

2.7 Appendix A: Beginning a Research Project
Using Multiple Regression

2.71 Setting Up the Research Question and Hypothes's

This chapter presented core interpretations of multiple regressior results. Here
we step back and consider how to start a research project using 1:ulu'ple regres-
sion analysis. We begin with a research question and a rescarcn.*zynothesis about
the expected influences of the multiple independent vari. blc: 61t the dependent
variable. Social science theories often suggest such relitioi:ships, and so theo-
ries can help guide us in choosing the independ¢nt and dependent variables.
Additional independent variables may be suggested by previous quantitative
research, or even just common sense. Note tha we are using “research hypoth-
esis” to mean an overall statement of expected influences on the dependent
variable. This is different from the sneCific Statistical hypotheses (H, and H,)
that we discussed in the main text ¢¥%n s chapter. Of course specific statistical
hypothesis tests will be helpful i1 evluating the research hypothesis.

When a theory is guiding the analysis, independent variables that do not
have a central role in the theary are sometimes called “control” variables. This
distinguishes them frem the vaiiables that are the main elements of the theory
and the focus of tlia research hypothesis. The researcher expects them to be
related to Y and.'1ke.v co related with at least some of the independent variables
that are the iiv01,75 main focus, and so wants to control for them when deter-
mining the (ffeccs or the independent variables of primary interest. Despite this
conceptial cistinction, however, the control variables are still treated the same
as « her independent variables in the regression analysis itself, and the control
varnbils play the same part in predicting Y as do the other independent vari-
anles. It is just that results for the control variables may not be emphasized as
niuch when writing a report or article on the research.

For example, in criminology Shaw and McKay’s (1942) social disorganiza-
tion theory suggests that greater poverty, residential instability, and cultural
conflict increase crime in a community. In this case, the dependent variable
is crime, and the independent variables suggested by the theory will measure
poverty, residential instability, and cultural conflict. In addition, much previous
research has found that areas with more young males—an especially crime-
prone group—tend to have higher crime rates, and the size of the young male
population may also be correlated with the independent variables suggested by
the theory. Thus young male population should be included in the regression
analysis as another independent variable, but with respect to the theory it is a
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control variable. In this case, then, the research hypothesis would be “The levels
of poverty, residential instability, cultural conflict, and young male population
in a community all have positive effects on community crime rates.” Here the
research hypothesis specified the direction of the relationships (in this case,
positive) between the independent variables and the dependent variable, but
sometimes the research hypothesis only says that there is a relationship, leaving
the direction unspecified.

2.7.2 Level of Analysis

Theories can also suggest whether an aggregate-level or an individual-level anal-
ysis is most appropriate for our research. As discussed in Chapter 1, level of anal-
ysis refers to the nature of the subjects or units we are studying. In the social
disorganization example above, the theory argues that communities with high
levels of poverty, residential instability, and cultural conflict are more ''kelv
to have high crime rates. This suggests the community as the appropriae unit
to study, yielding an aggregate-level analysis. The theory does nat iecessurily
imply that, within a community, crime is being committed by intividuals who
are poor or have recently moved; an individual-level theory of cri=< would be
needed for that sort of investigation. (In fact theories soni:times encompass
more than one level; we briefly discuss multilevel data ir. Ch. pter 9.)

In this way, social disorganization theory is tied to aggregate-level analy-
sis, using data from communities such as neigh.orheods, cities, counties, or
states. An individual-level theory such as Hirscni’s.(1569) social control theory,
on the other hand, should be examined witiidat2 on individuals. As we noted
in Chapter 1, in practice it is usually the.ca:e tliat data from higher levels, such
as states, are easier to obtain than data' ron lower levels, such as neighborhoods
or individuals. This makes it especially 1.aportant to be careful not to assume
that results obtained from data «t ore level of analysis automatically apply to
another level. Recall the “esc'ogic. 1 fallacy” from Chapter 1, in which findings
from aggregate-level resea.ch are‘inappropriately applied to individual-level
phenomena. Because (.ggri ga.>-level data are often more accessible, it can be
very tempting to ¢raw.nidividual-level conclusions from aggregate-level data,
but this temptation sx0uld be resisted. It is important to use data that match the
level of analysii suggested by the theory we are investigating and to interpret
results in {>rm; of that level.

2173 easuring Independent and Dependent Variables

Cur'next step is to think how to actually measure the independent and depen-
lent variables for the subjects or units we are studying. Again we can take
advantage of previous quantitative research and common sense in coming
up with measurements of the variables. For the social disorganization theory
example, poverty is often measured by the percentage of households in a com-
munity whose total income falls below an official poverty line. Residential
instability can be measured as the percentage of residents living in different
housing than they were 5 years ago, or by the community’s percentage of renter-
occupied housing units. Cultural conflict is often measured by the community’s
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percentage of foreign-born population. Young male population is simply the
percentage of the population that is made up of men in a particular age range.
Crime can be measured as the total crimes (or a more specific crime type such
as homicides or robberies) reported to police in a community, converted into a
rate per 100,000 population so that values from communities of varying size
are comparable.

In any case, we want measurements that closely match the theoretical con-
cept for each variable while still being practical to obtain for all the subjects or
units in our study. When there is no available variable that can directly measure
a particular theoretical concept, or there is no practical way to carry out that
measurement in our sample, we must either find the best available alternative
or not include a variable measuring that concept at all. In either case, thisiwil
be a limitation of our research and will be important to note in any ape:s or
reports describing our work.

2.7.4 Data Collection

After deciding on the level of analysis, and approprizce ineasurements of the
independent variables and the dependent variable, vwa-Can collect data on
these measurements for the subjects or units ot analysis in our sample. For
the social disorganization example, suppose tat | 7e have decided to use states
as our units of analysis; remember that the tiicory requires aggregate-level
analysis of some kind. We can then c.l!lect.data from all 50 American states
on the percentage of households be’ow.th{ poverty line (the poverty measure)
the percentage of residents living i difrerent housing than S years ago or the
percentage of renter-occupied. liousing units (the residential instability mea-
sure), the foreign-born pop lati>n percentage (the cultural conflict measure),
the population percentage of young men aged 15 to 21 years (the young male
population measure), . nd+he total crimes reported to police per 100,000 pop-
ulation (the crizmesmea ure). For the United States, a great variety of national
or communitv 2ggregace-level) data can be found at the websites of various
governmen' age1ci2s, including, among others, the Census Bureau and the
Bureau Of Jusuice Statistics. An excellent source for individual-level data that
can be uscd’o investigate a wide variety of research questions is the University
of Michigan’s Inter-University Consortium for Political and Social Research
ICPR) data archive.

After data collection, we enter data in our statistical software, and use the
software to run the multiple regression analysis that we have decided will best
address our research question and hypothesis. The software output will give us
the numerical results described above and allow us to make interpretations. In
some cases, there will be an intermediate step in which some variables need to
be transformed before being used in the regression analysis, but we will discuss
that situation in subsequent chapters.

2.7.5 Evaluation of Research Hypothesis

We want to use the regression results to evaluate the research hypothesis that
we developed from our research question. How well is the research hypothesis
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supported in our data? To evaluate this, we go through the different elements
of interpretation that we discussed in the preceding sections of this chapter.
Recapping those sections, we need to consider (a) the value of R?, (b) statistical
significance of the effects of the X’s (via the p-values), and (c) for those that are
statistically significant, the slopes, or effects, of the X’s (the b’s) in terms of direc-
tion of the effects and their real-life significance. In general, we view the analy-
sis as strongly supporting our research hypothesis if R? is high and all (or most
of) the X’s have statistically significant effects on Y that are in the expected (by
the research hypothesis) direction, and, further, these effects are large enough
to have real-life significance.

A high R? means that the set of X’s suggested by the research hypothesis is
predicting Y well and that we seem to be accounting for the main influences on
Y. Statistical significance of every X's effect means that each of the hypothesized
X’s does appear to be related to Y, because for each X we are rejecting the statistical
null hypothesis of no effect (H). For each X with a statistically significant ¢ ‘fect
we can check the effect’s direction (positive or negative) from the slore b aiid
see if it matches the direction suggested by the research hypotiesiz (though
again sometimes that direction is not specified by the research hy pochesis). We
can also determine from each b if the magnitude of the effect 1>=¢nough to
believe that the corresponding X has a real impact on Y _(st.l realizing that a
genuinely causal interpretation of this effect usually canot i e made).

Even if most, or all, of the X's have statistically significant effects on Y in
the direction suggested by the research hypothes's, there could still be a low
value of R%. This typically means that the re{ressiorr model is incomplete, in
the sense that our regression is missing seinc cilier X's that are important in
predicting Y, so that the research hypothasitisincomplete as an explanation for
Y. In that case we may want to seek othor X', based on theory, previous research,
or common sense that could also affect iand rerun the regression with these
additional X’s to see if R improves. (Mote too that a low R? could be due, at least
in part, to the presence of ronlincr relationships between some X’s and Y. We
discuss such relationshins 1.2 1aer chapters.) The opposite situation, with a high
R? but none or almost hone of the effects statistically significant, often indicates
the problem of collinezrity, which is discussed in this chapter.

The situation of a 1ow R? along with none or almost none of the effects of the
X's being statistiz2lly significant is quite damaging for the research hypothesis.
In that cate, tne research hypothesis seems to be both missing important
influer ces'an Y and incorrect in suggesting that the X’s it named are actually
related 1o Y. This circumstance may be unlikely when we are deriving the

esecrch hypothesis from a well-developed theory, but sometimes even a well-
developed theory is not supported when confronted with real data.

Along with discussing results, a paper reporting on a quantitative research
project should also compare the current findings to those of previous research,
discuss limitations, and, if applicable, suggest policy implications. In many
cases it is also helpful to indicate future research directions that could build on
the work. In the following section, we discuss a typical framework for organiz-
ing the parts of a quantitative research paper.
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2.7.6 Organization of Quantitative Research Paper Using
Multiple Regression

To help in writing a complete quantitative research paper, we list each part of
such a paper below, following a standard framework that is typical of published
research papers in the social sciences: (1) abstract, (2) introduction, (3) literature
review, (4) research question, (5) data and measurement, (6) analysis and results
of analysis, (7) conclusion, (8) tables and figures, and (9) references. Each part
is discussed below. Note that the organization of the paper is separate from the
specific format in which it is written. By “format” we mean details of how ito
present elements such as sections, section headings, citations, references, tables,
and so on. Commonly used styles include those of the American Psychol¢gica

Association (APA), American Sociological Association (ASA), and tha/Chicago
Manual. Note that the organization of the paper laid out here is rocuiiversal
in the social sciences, and examples of many variations on this »“rusture can be
found in the published literature.

1. Abstract
e A short overall description of the pape: including results.
2. Introduction

e Present your research topic'focusing on the relationship between
X][s] and Y).

* Be sure to mention tke lever of analysis for your research question
(individual or aggzcgac)

e Discuss why it is in.jortant to study this relationship (or
relationshifs).

3. Literature levi>w (Review of Theory and Previous Research)

e [y sovia.science, researchers’ interest in the relationship between
K(»=nd Y is typically inspired by theories and/or previous
re,earch findings on the same, or closely related, topics.

= Summarize relevant theories as well as findings of previous
quantitative research. When summarizing previous research,
focus on the research questions, the units being studied, the data
sources, the types of data analysis, the independent and dependent
variables, and the results/findings.

4. Research Question

e Discuss your research question (topic) and research hypothesis
(expectations for findings). It is often helpful to note the main
differences between previous research and what you are doing,
which could include points related to the data (such as the data
source or when the data were collected) or the analytic methods
being applied. When the goal is to eventually publish the paper
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in a scholarly journal, the “novelty” of the research is a key part

of the evaluation of the paper’s potential importance. In other
settings, novelty may not be emphasized so much. Also, sometimes
a researcher working on a new topic or question for which little
research or theory exists will not really have expectations for

how results will look and so cannot state a research hypothesis.
Exploratory work, therefore, will not always have this element.

5. Data and Measurement

e Describe your data in detail, focusing on when it was originally
collected, units (such as persons, cities, states, or nations), and data
sources.

e List independent (including control) and dependent variables
and discuss how they were measured. For example: “Economic
hardship is measured by the unemployment rate, obtained b
dividing the number of unemployed people by the total nu.zive:
of people in the civilian labor force, times 100. The ler<Cl o1 crime
is measured by the number of reported homicides per 100,000
population.”

6. Analysis and Results of Analysis

e Use statistical software to run appropy «te descriptive statistics for
the independent and dependent variable:-involved in the multiple
regression analysis and briefly disauss t'ie descriptive statistics.

e Diagnose collinearity and, i presesic, try to address it.
e Discuss the statistical techniq.'es being used.

e Use statistical software to tun multiple regression analysis;
interpret and discuss recults of this analysis, focusing on
R-squared, p-aluas/and b’s (including real-life significance).

7. Conclusior! (In.ziications of Analysis for Research Question
and RHypot.es.s)

e Iissusrwhether your findings support the theoretical perspectives
Jhat/you presented earlier in the paper and the research hypothesis
posed earlier.

e Compare your results to the findings of previous research. If there
are differences that appear to stem from differences in data sources
or analytic methods, it can be useful to discuss those, but this is
not always the case.

e [f applicable, discuss policy implications.

e Discuss the limitations of your research and future research
possibilities.
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8. Tables and Figures

e Following the specific style required by a course instructor or
the applicable style manual, present detailed results of analysis
(descriptive and multivariate) in tables.

9. References

e Follow the specific format required by a course instructor or the
applicable style manual.

2.8 Appendix B: Additional Issues in Multiple
Regression

2.8.1 Standardized Coefficients

This chapter has focused on the usual unstandardized coeff cici ts, interpreted
in terms of the units of measurement for the X's and Y. “hatis, if X, is years of
education, and Y is dollars of income, b, is interpreted (s th» change, in dollars,
in predicted income for an additional year of education, or when education
increases by 1 year (holding other independ<iit variables constant). This is
very natural, because we have an intuitive gisp.of the meaning of a certain
change in dollars of income and the magnitude of the change represented by an
additional year of education.

However, the fact that the X’stiii ‘he multiple regression are typically
measured in various different {inits makes it hard to compare the effects of
different X’s on Y. Continujrig the cxample, suppose that X, is father’s income.
Certainly in any realistic sanip!< the variance in people’s incomes (measured in
dollars) will be much«greater than the variance in people’s years of education
(measured in years),; =0 ‘1 more year of education” and “1 more dollar of father’s
income” are not coriparible in any obvious way. Therefore the corresponding
effects on Y.are aifficult to compare, and we cannot easily say which effect is
more “impoctan.” in predicting Y. Even when we make a careful assessment of
each inaper dent variable’s real-life significance, it may not be very clear which
of 1l:e real-life significant effects are the largest.

The standardized coefficient is one response to this problem. This coeffi-
clen( is a transformation of the usual b, so that the interpretation of an effect
15> made with respect to standard deviations of X and Y, not the original mea-
surement units. That is, the standardized coefficient for the effect of education
would indicate how many standard deviations—not dollars—predicted income
would increase for each additional standard deviation—not year—of education.
Standardized coefficients seem to allow for better assessment of which X’s have
the biggest effects on Y because the shift to standard deviations means that the
interpretations no longer involve all the different and incomparable units in
which the different X's are measured. This sounds as if it also would enhance
assessments of real-life significance. An important difficulty, though, is that it
is hard for us to think in units of standard deviations. Even if it is advantageous
to put every variable’s effect into a common framework, real-world significance

Copyright ©2022 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 2 @ Fundamentals of Multiple Regression 63

still will often seem easier to assess in terms of the original units than in terms
of standard deviations. We have a better grasp of the meaning of a change that
is reported in the original units than of a change that is reported in units of
standard deviations. The common framework of the standardized coefficients
may assist with comparison of the effects’ size but at the possible cost of less
understanding of the effects’ meaning.

There are also some technical objections to standardized coefficients, such as
the possibility of the same b leading to very different standardized coefficients
in different samples, due to differences across samples in the variables’ vari-
ances. (More advanced texts discuss these technical points.) For these reasons,
we will use unstandardized coefficients throughout the text. Still, it is valuable
to understand what standardized coefficients are and how they are interpreted,
as some researchers prefer to present multiple regression results in that form.
Some articles and reports will show both the unstandardized and standardizca
coefficients in tables of regression results. The symbol f (or the word “beta’] wi'l
sometimes be used to represent the standardized coefficient, but it is iniportaxt
to be clear that this is a different use than we are making of that symual. A< dis-
cussed above, we use f§ to symbolize a coefficient in the “true” regcess'on model
for the entire population, for which b is our estimate from tha sampic.

2.8.2 More on Diagnosing and Addressing Coll.nearity

Many statistical software packages include son.® more formal methods for
diagnosing collinearity than simply examinirg cariciations among the X's as
we discussed above. For example, variance ii:flation factor (VIF) scores are an
attempt to assess the extent to which collit.2aricy is affecting standard errors of
the regression coefficients by consideiing I ow strongly each X is related to the
set of all other X's in the regression mode’, When high VIF scores are observed,
collinearity is likely a problem, a1 d there are various cutoffs in use for determin-
ing what is a high enough VI¥ scc 2 to indicate this.

When collinearity has veen detccted, one response is to create new variables
that combine several nhigh'y vorrelated X’s, using techniques such as principal
components analysis or.actor analysis. We discuss principal components a bit
more in Chapter 9, val for now we just point out that the nature of the correla-
tions among. X: determines the construction of the new variables. Typically
these new variibles will, by virtue of the method used to construct them, be
uncorzelacad with each other, while still aiming to convey the information con-
tained 1., the original X's. The new variables can then be used instead of the
riginal X's in the regression, and by definition there will be no collinearity
a1:ong independent variables in this new regression. The tradeoff for the desir-
able absence of collinearity when using these new variables is that b’s for these
constructed variables will be harder to interpret. The b’s in the regression results
will no longer refer to natural variables whose measurement and meaning feel
intuitive to us, but instead to the constructed variables that have standardized
scales. Advanced texts can be consulted for more guidance on this and other
methods for detecting and addressing collinearity.
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