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CHAPTER 1

INTRODUCTION

1.1 Text Data

Text data is basically verbal expression and communication. Words are how 
most humans form thoughts and communicate them. Text analysis is par-
ticularly useful for big data, either thousands of documents, or thousands of 
words in each document, or both. When the mass of information exceeds 
what a reader can read comprehensibly, computer-based, algorithmic text 
analysis using the internet and other technologies is particularly valuable. 
These big data records, comprised of thousands of documents and millions 
of words, are now more common than ever before. In this book, we study 
the corpus of 8,500 letters of the Territorial Papers, and another corpus 
consisting of more than 100,000 speeches given by members of the 39th 
United States Congress. Constructing larger and still larger data sets per-
mits analysis on even larger degrees of scale.

Other examples of text information include tweets, messages, or emails 
of public figures, the copious WikiLeaks documents, the political debates, 
Supreme Court decisions, State of the Union speeches, the complete works 
of Shakespeare, poems of ancient Roman poets, and the Federalist papers. 
Many data sets include both text and numeric data. For example, movie and 
restaurant reviews include both text (the written review) and numeric rat- 
ing scores (usually from 1 to 5, or 1 to 10) indicating how positive the 
reviewer feels about the subject. Other kinds of combined text and numeric 
data are medical chart data, with written notes describing a patient’s medi-
cal condition and her associated numeric test results; and earnings reports 
of companies (the text), with associated numbers (e.g., sales, earnings, 
stock price, and their changes over each reporting interval). When the num-
ber of documents is limited and the documents are short, the information 
can be read and analyzed without needing special tools. But when the 
number and the length of documents exceed the capacity of readers, one 
seeks automatic computer-based methods to understand the relevant 
information.

Text mining can address interesting questions like contested authorships 
and similarities of genres: Which of Shakespeare’s plays are similar, and 
which are different? Who was the author of certain disputed Federalist 
papers? Frederick Mosteller and David Wallace spent years combing over 
the written works of Madison and Hamilton in order to identify patterns in 
their writings, and they used these linguistic fingerprints to trace the origins 
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of the disputed Federalist papers back to their original author (Mosteller & 
Wallace, 1984). Text analysis permits even more nuanced inquiry such 
as whether the writing styles have changed over time in measurable ways. 
Are there gender, age, or other demographic differences in writing 
styles? The range of interesting questions that text analysis can address 
is virtually limitless.

1.1.1 Introducing the Definitions

Before we get into the mechanics of text analysis, let’s start with a couple 
of definitions and illustrative examples. Understanding the component 
parts of text data itself requires some precision. Let’s look at components 
of the text.

Text information is available on individual units of observation. The 
unit of observation may be an individual speech, letter, book, poem, movie 
review, patient record, company earnings report, or tweet. The basic unit of 
observation is also referred to as the document. The very fact that com-
munications are recorded indicates that each unit can be called a document. 
Text information in each unit is comprised of a string of words. Words are 
typically separated by spaces (blanks). The string may be only a few words 
or thousands of words long. The collection of the text information from all 
the documents is referred to as the corpus.

Metainformation attached to a unit of information, or a document, 
refers to the context in which the unit of communication was created. Who 
authored these words, spoke this message, or chose to push the button that 
sent the message? When did the communication occur? Where did it occur? 
Who was the audience? Was the intended audience specified? Each docu-
ment exists within a certain context, and the details that describe that con-
text is the metadata of the text. Each document can be coded with these 
tags. One can also code demographic characteristics of a speaker, such as 
the speaker’s age, party affiliation, residence, income level, or gender. One 
can also code the demographic characteristics of the audience. Coding 
metadata is useful for further analysis. Metadata may also suggest some 
category of subject matter, such as, the type of company (size or industry 
affiliation) described in the earnings report, or the genre of the movie (com-
edy, documentary, etc.) being reviewed. Actually, any characteristic that is 
worth breaking out as a category can give rise to a metadata variable that 
can be coded and then used to split documents into groups for meaningful 
separate or comparative analysis.

Text information for any given document is comprised of a string of 
words. The string includes words (e.g., “house”, “war”, “beautiful”, “I”, 
“am”, “the”, “also”, “collusion”), punctuations (e.g., periods and commas), 
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special characters (e.g., # and &), and numbers. Some words are rare and 
occur only once in a document or in the entire corpus of documents; other 
words occur frequently.

If word order is not important, the text information of a document 
reduces to a collection of distinct words and their associated frequencies. 
Think about this as the relative word clouds that you have seen. However, 
when word order matters, one can use bigrams, trigrams, and/or even larger 
n-grams to systematically consider what words are adjacent to each other. 
A bigram is an ordered pair of two adjacent words. Since word order mat-
ters, the bigram “united states” is different from the bigram “states united”. 
Any string of words can be represented by its distinct bigrams and their 
respective frequencies. Of course, this practice can be extended to trigrams 
(which are ordered three-word groups) or any number of multiples. Be 
warned that the process gets very complicated very fast as one moves to 
larger n-grams. The complications associated with n-grams are (a) their 
high dimension and (b) their sparsity. There will be a larger number of 
n-grams, but each n-gram does not occur very often. These features 
increase the dimensionality of the problem, thereby complicating the 
numerical text analysis.

There are useful and easy-to-use tools for dealing with text, even before 
you get too deeply into the analysis: the Google Ngram Viewer and con-
cordance and collocate tools.

The Google Ngram Viewer (https://books.google.com/ngrams) is an 
online search engine that can chart the frequencies of any search word (or 
string of words), using a yearly count of n-grams found in sources printed 
between the year 1500 and the present day and part of Google’s text cor-
pora (in English, as well as other major languages). This search engine is a 
useful tool to learn about the (relative) occurrence of a specified word or 
phrase among all (Google) digitized books published during any given 
year. It utilizes the vast libraries of books that Google has digitized and 
finds the relative frequency of books that contain the phrase. The Google 
Ngram Viewer is a quick and useful tool for comparing the occurrences and 
trends of different expressions. You can also select the reference popula-
tion, choosing either American or British English (or several other major 
languages). Note that it doesn’t matter how often a phrase is mentioned in 
a given book.

The key word in context (commonly abbreviated as KWIC) is a search 
window for exploring the neighborhood where the key word or key phrase 
is located. You select a search window of a certain size around the KWIC 
to find the words immediately preceding and following that key word.

The contextual occurrence of a word is referred to as its concordance. 
Concordance tools provide you with all text snippets around a specified 
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KWIC. For example, in the Congressional debates that we explore in this 
book, you may want to see all text snippets in the corpus surrounding a 
word such as “republic” or around phrases such as “republican form of 
government” or “post office”, as these snippets show you more about the 
context in which the word or phrase is used.

Collocate tools allow you to further quantify the information about the 
concordance. Again in the Congressional debates corpus, you may want to 
obtain counts on how often the words “servant” or “black” occur within a 
window of specified length around the KWIC word “slave”. Free and easy 
to use software tools, such as AntConc (http://www.laurenceanthony.net/
software.html) and Voyant (https://voyant-tools.org/) can provide this 
information. We provide examples in Section 1.4.

The statistical analysis of text data is challenging—certainly more chal-
lenging than the analysis of the typical numeric and categorical data 
encountered in standard statistical applications. Usually, the analysis of 
textual information starts with words (more generally, n-grams) and their 
frequencies. Next, the analysis factors in any associated metadata on the 
documents. Text analysis can further explore the relationships between text 
characteristics and document meta/covariate information. Metavariables 
that involve time, or space, allow the text data analyst to incorporate time-
series and spatial components. Naturally, this complicates the analysis—
but, of course, it also makes it more interesting and potentially more 
meaningful.

1.1.2 Types of Text Data

Some text data that you seek to analyze, particularly recent data, may 
have been created and collected electronically from the very start, for 
example, twitter data, earnings reports, or medical records. And if you 
collect the data yourself, you may want to design a structure for the data 
collection that takes into account the ease of analysis later. Designing the 
metadata information to select documents for targeted study will save you 
time in the long run; see Ledolter and Swersey (2007) for a discussion on 
useful principles of design of experiments.

But often the text data was created for some purpose other than the 
text analysis that you want to perform. Thanks to 20th-century uniform 
typeset, there is a vast amount of printed or typed information that can 
be transformed into an electronic textual record through a method 
called optical character recognition (OCR). The results of the OCR 
process on historical documents are textual data that are typically much 
noisier, in that they contain misspelled words, and unwanted words, 
that arise from scanned formats, such as headers, line breaks, page 
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numbers, and footnotes. Performing OCR on 19th-century printing is 
even trickier because of the irregular spacing and hand-carved type. 
Making this noisy data more useful for analysis requires time- 
consuming text cleaning, either through automatic or manual methods 
or both. This was a major problem with both of our historical corpora 
from the 19th century that we describe in Section 1.2. Printed book 
pages had to be digitized one page at a time. We will show you how we 
cleaned these noisy data sets in Chapter 3.

1.1.3 File Formats to Save and Store Text Information

Data can be stored in various formats. Here we mention five of them: 
(1) text, (2) XML, (3) Word, (4) Excel, and (5) PDF. First, because of 
their simplicity, text files (with extension .txt) are commonly used for 
storage of information that is structured as a sequence of lines of 
electronic text. Text files are also versatile in that they can be read into 
many different editing programs. Second, the information can be stored 
as an extensible markup language, or XML file (with extension .xml). 
XML files can be thought of as a text-based database; they are plain text 
files but also describe the file structure through custom tags that define 
objects and the data within each object. XML files open in Microsoft 
XML Notepad. Notepad++, a particularly useful text and source code 
editor, supports tabbed editing, which allows working with multiple 
open files in a single window. Third, the information can be stored as a 
 Microsoft Word file (with extension .doc or .docx), or fourth, as a 
Microsoft Excel file (with extension .xls) or a Microsoft Excel comma-
separated (also called, comma-delimited) file (with extension .csv). 
CSV is a simple file format used to store tabular data, such as a 
spreadsheet. The difference between the .csv and .xls file formats is that 
the .csv format is a plain text format in which values are separated by 
commas, while the .xls file format is a binary file format that holds 
information about all the worksheets in a file, including both content 
and formatting. Finally, files can be stored as Adobe Portable Document 
Format or PDF files (with extension .pdf). PDF files are easily viewed 
and manipulated using the free Acrobat Reader DC software. Because 
PDFs don’t rely on the software that created them, nor do they depend 
on any particular operating system or hardware, they look the same no 
matter what device they’re opened on.

Each formatting/storing system carries its own advantages and draw-
backs; however, multiple tools are available to convert text data from one 
format to the other. We found that text files served our purposes best, but 
use the system that works for you.
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1.2 The Two Applications Considered in This Book

The two applications in this book were selected because they were both 
representative and challenging. Each one represented a different social 
dynamic of communication.

One corpus, The Territorial Papers of the United States, contains the 
correspondence between the government and inhabitants of the U.S. terri-
tories over six decades from 1790 to 1850. The corpus of the Territorial 
Papers contains 8,500 letters of correspondence among ordinary and influ-
ential individuals during the westward expansion of the United States. 
These letters were not necessarily a sustained correspondence because they 
usually took weeks to reach their intended audience through the mail, and 
even longer to receive a response.

The U.S. Territorial Papers analyzed in Ledolter and Vandervelde 
(2019) cover 15 expertly curated volumes containing 8,500 entries (letters) 
written to and from Washington, D.C., the center of national power, and the 
nation’s territories. The letters are arranged chronologically and regionally 
beginning in 1789 with the collective correspondence about the original 
Northwest Territory and ending in 1848 with the correspondence about 
 Wisconsin (Volume 28, the last volume transcribed and published by 
Congress). The chronology and the regional coverage concerns the 
formation of new states to enter the union. We included all Northern states 
and those states west of the Mississippi river that joined before 1850. The 
coverage includes the regions from which the states of Indiana, Illinois, 
Louisiana, Missouri, Michigan, Wisconsin, and Iowa were formed. 
Analysis of this data reveals several things, first what the territorial 
residents want from their government, and what the government wants 
from its territories. Second, analyzing these letters can also reveal the 
sentiment of categories of letters; for example, whether the collective 
sentiment differs in letters that originate from the center of power or from 
the periphery of the expanding empire. Finally, analyzing these data can tell 
us about the relative importance of the topics that the letters address and 
how the discourse changed over time.

The dynamics of the other corpus, the Congressional debates from 1865 
to 1867, were very different. The Congressional Globe (now called the 
Congressional Record), comprises all speeches given during a certain con-
gress. We chose the 39th U.S. Congress, which met from 1865 to 1867, just 
after the Civil War. These texts are the transcripts of exactly what was said 
on the floor of each house as taken down by stenographers. There were 
more than 100,000 entries during these 2 years; some were brief remarks, 
but some were speeches lasting more than an hour. The purpose of this 
orally spoken word was to communicate directly to others in the chamber 
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in the hopes of persuading others and to ultimately pass laws. The purpose 
of the transcription and printing was ultimately to communicate with the 
American public, as the transcribed speeches were published, and dissemi-
nated throughout the nation. Only a discrete set of elected congressmen, no 
more than 200, and a handful of clerks were permitted to speak on the floor. 
Sometimes the congressmen were addressing members of the public in the 
galleries. Although parliamentary rules of order governed the overall pro-
cess, responses were often immediate, speakers were frequently inter-
rupted, speeches often got emotional and heated, and sometimes laughter 
broke out. All these utterances were faithfully recorded by stenographers.

The 39th U.S. Congress, meeting in Washington, D.C., from March 1865 
to March 1867, covers an extremely active period of legal and Constitu-
tional reform. The Thirteenth Amendment abolishing slavery had just been 
passed, the South had surrendered, and President Lincoln had just been 
assassinated and succeeded by the unpopular Vice President Andrew 
 Johnson. In this study, we are interested in the language related to civil 
rights, in particular race, liberty, slavery, equality, governance and citizen-
ship, and the occurrence of words such as “white”, “black”, “freedmen”, 
“negro”, “labor”, “slaves”, and so on. We are interested to learn which 
congressmen address which topics, whether the speakers who do so share 
common characteristics, and who were the leaders in the discussion. We are 
also interested in finding related words that were commonly used during 
the debates and whether certain topics dominated certain time periods.

We provide more detailed discussion and appraisal of these two digital 
data sets in Chapter 2.

You will undoubtedly want to select your very own text corpora and 
adjust the methods of text analysis to your specific interests. We provide 
several other text corpora that you can use for practice on the website for 
Chapter 11, including Donald Trump’s 44,000 tweets, covering the period 
from May 2009 to December 2019. This data set includes text as well as 
emojis (pictorial representations of emphasis and sentiment). The date of 
each tweet is also available.

1.3 Introductory Example and Its Analysis Using the 
R Statistical Software

To show you a simple introductory example in detail, we consider just four 
speeches from the hundreds of thousands of speeches given during the 39th 
U.S. Congress. The text of all four short speeches is given below. The Con-
gressional Globe gives the speaker’s name (Representatives Thaddeus 
Stevens, James Brooks, and Philip Johnson, and the Clerk of the House of 
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Representatives) at the beginning of each speech. The speaker’s name is the 
metavariable and must be separated from the textual information. We stored 
the information in four rows of a comma-delimited Excel file, test.csv. 
Each row represents a different speech. You can find the file on the book’s 
website for Chapter 1.

Mr. STEVENS. The gentleman cannot have anything to 
explain. As he has not spoken there is nothing to 
explain, nothing to patch up.

Mr. BROOKS. I do not see the relevancy of that remark. 
I desire to know, Mr. Clerk, first, whether I can yield 
the floor temporarily to the gentleman from Pennsylvania 
for the purpose of explanation; or second, whether I can 
yield the remaining portion of my time to him.

The CLERK. Under the rules of the House the gentleman 
from New York cannot yield the remaining portion of his 
time to any member if objection is made to his doing so; 
nor can he yield to any other member, except for purposes 
of personal explanation in relation to the pending 
proposition. The gentleman from Pennsylvania has stated 
that he did not rise for the purpose of explanation. 
Hence by his own statement he is precluded from taking 
the floor.

Mr. JOHNSON. I do not desire the floor for the purpose 
of personal explanation, but I desire to as an explanation 
of the gentleman from New York.

The word file ProgramTest (which also can be found on our website for 
Chapter 1) includes the computer code that is needed to read in the informa-
tion, to separate the metavariables from the text, and to analyze the text. In 
this book, we use the R computer software for analysis. The R Project for 
Statistical Computing (https://www.r-project.org/) provides a free software 
environment for statistical computing and graphics that includes many use-
ful methods for text mining and the visualization of text information.

This book includes computer code quite sparingly for several reasons: 
The book’s main focus is on the concepts of text analysis. The book 
describes and explains useful methods, discusses their appropriateness, and 
summarizes what can be learned from such analysis. As such, the discus-
sion of concepts and methods should not be tied too tightly—too dependent 
on—to the software or software version that carries out the analysis. Com-
puter code changes rapidly, and code that works well today is often out-
dated tomorrow.
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But software is critical to carrying out text analysis, especially with large 
corpora comprised of millions of words. We want our readers to be able to 
use these methods and to gain valuable hands-on experience. The book will 
be much more useful if the reader can put these methods to use. This is the 
reason why you will find most of the code we use (the R code) on the 
book’s accompanying website https://www.biz.uiowa.edu/faculty/jled-
olter/analyzing-textual-information. You can cut and paste snippets of 
the code to adapt our programs to your own analysis. The book and website 
are closely linked, with the overarching goal to make methods of textual 
analysis useful to the reader. Some readers may already be familiar with the  
R software, and for you, the coding in R may be easy. But for other readers, 
it may be your first exposure to R. The website contains R tutorials, links 
to supplementary materials, errata sheets, and our communication with you, 
the reader. The information on the website becomes a “living” document as 
compared with the printed book that intends to explain durable concepts 
but can only be frozen as of the time of publication.

For you to become more familiar with text data, we show slightly more 
R-code in this chapter than in the following chapters. We want to give you, 
the reader, a taste of the text data and the analysis tools. Note that 
R instructions are shown in boldface. The R output is indented and shown 
in regular font.

First, we input the data. We use the R function read.csv to input the 
information from a comma-delimited Excel file into a data frame, with 
rows corresponding to cases (documents, speeches) and columns (here 
there is just a single column) corresponding to the text and the metavaria-
ble. We strip out punctuation, periods, commas, and semicolons from the 
text, and we insert a hyphen to differentiate the state New York from the 
two adjoining words, “new” and “york”. Next, we extract the metavariable 
(the name of the speaker), remove the metavariable from the text, and count 
the number of tokens (that is, the word length) of each speech. Note that the 
number of tokens in a speech is larger than the number of distinct words (as 
some words are repeated). The first speech, given by Representative 
 Stevens, has length 21—that is, 21 words.

Here we apply useful R functions such as gsub (global text substitution to 
replace snippets of text), strsplit (to split a character string into words), 
and toString (to convert objects into a character string). These are useful 
functions for preprocessing text, which we need here for extracting the speak-
ers. Otherwise, we could have skipped these steps and could have gone directly 
to creating the corpus. The website describes this more fully. You can also use 
the R help window to learn what these functions do and how to use them. We 
recommend that you double and triple check your code by trying it out on 
smaller chunks of your corpus, like we did for the four speeches, and convince 

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



10

yourself that the code you are using is fit for more general analysis. Note that 
R uses the symbol “>” as the prompt for instructions. Text following “##” is 
ignored and is only there to comment on the code.

> ## read and clean data
> data = read.csv(‘C:\\Users\\ledolter\\Desktop\\test.csv’, 
header=FALSE,stringsAsFactors=F)
> ## Note that we read the data from the directory C:\\Users\\
ledolter\\Desktop
> dim(data) 

[1] 4 1
> data[1:4,1]

[1] “Mr. STEVENS. The gentleman cannot have anything to 
explain. As he has not spoken there is nothing to 
explain, nothing to patch up.”
[2] “Mr. BROOKS. I do not see the relevancy of that 
remark. I desire to know, Mr. Clerk, first, whether I 
can yield the floor temporarily to the gentleman from 
Pennsylvania for the purpose of explanation; or second, 
whether I can yield the remaining portion of my time to 
him.”
[3] “The CLERK. Under the rules of the House the 
gentleman from New York cannot yield the remaining 
portion of his time to any member if objection is made 
to his doing so; nor can he yield to any other member, 
except for purposes of personal explanation in relation 
to the pending proposition. The gentleman from 
Pennsylvania has stated that he did not rise for the 
purpose of explanation. Hence by his own statement he 
is precluded from taking the floor.”
[4] “Mr. JOHNSON. I do not desire the floor for the 
purpose of personal explanation, but I desire to as an 
explanation of the gentleman from New York.”

> dim(data)[1] ## number of speeches
[1] 4

> for (i in 1:dim(data)[1]) {
+ txt=data[i,1]
+ txt=tolower(txt)
+ txt=gsub(“[.]”,“”, ignore.case = TRUE,txt) 
+ txt=gsub(“[,]”,“”, ignore.case = TRUE,txt) 
+ txt=gsub(“[;]”,“”, ignore.case = TRUE,txt) 
+ txt=gsub(“new york”,“new-york”, ignore.case = TRUE,txt) ## 
the state of new york
+ data[i,1]=txt
+ }
> data[1:4,1]

[1] “mr stevens the gentleman cannot have anything to 
explain as he has not spoken there is nothing to explain 
nothing to patch up” 
. . . .
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[4] “mr johnson i do not desire the floor for the 
purpose of personal explanation but i desire to as an 
explanation of the gentleman from new-york”

> ## omit meta variables from the text
> ## speaker in meta2; determine length of each speech
> ## works if there are no missing values in meta2
> len=dim(dim(data)[1])
> meta1=dim(dim(data)[1])
> meta2=dim(dim(data)[1])
> for (i in 1:dim(data)[1]) {
+ txt=data[i,1]
+ temp=strsplit(txt,“ ”)[[1]]
+ len[i]=length(temp)-2
+ meta1[i]=temp[1]
+ meta2[i]=temp[2]
+ tempr=dim(len[i])
+ for (j in 1:len[i]) {
+ tempr[j]=temp[j+2]
+ }
+ data[i,1]=toString(tempr)
+ data[i,1]=gsub(“[,]”,“”, ignore.case = TRUE,data[i,1])
+ }
> data[1:4,1]

[1] “the gentleman cannot have anything to explain as 
he has not spoken there is nothing to explain nothing 
to patch up”  
. . . .
[4] “i do not desire the floor for the purpose of 
personal explanation but i desire to as an explanation 
of the gentleman from new-york”

> len
[1] 21 47 77 24

> hist(len)
> boxplot(len)
> quantile(len)

   0%    25%   50%   75%    100% 
21.00 23.25 35.50 54.50 77.00 

> meta2
[1] “stevens” “brooks”  “clerk”   “johnson” 

Next, we use the R package tm to create the corpus. The function  VCorpus 
creates the corpus infrastructure necessary for the analysis. We strip all 
white space and transfer everything to lower case. We remove punctuation 
and numbers (this is not needed here as we already did that when preproc-
essing the text). We also omit stopwords. Stopwords are “filler” words that 
usually have little textual meaning, and these words are stripped from the 
text. You can check which words are included in the file stopwords(“english”). 
If you want to add more stopwords or create your own stopwords, we show 
how you can do so easily.
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We decided against stemming words. We leave the words as they are. 
Stemming strips off suffixes and some other word endings. You may already 
be familiar with stemming in search engines such as Hein on-line or Westlaw. 
The goal of stemming is to reduce inflectional forms and derivationally 
related forms of a word to a common base form, the word’s stem. Stemming 
uses a heuristic process to identify and chop off the ends of words. The most 
common and empirically effective algorithm for stemming English is Porter’s 
algorithm (Porter, 1980). The entire algorithm is long and intricate, consisting 
of several phases of word reductions applied sequentially. Within each phase, 
there are various conventions to select systematically among rules—for exam-
ple, selecting the rule from each rule group that applies to the longest suffix.

At this point, the words and their frequencies are summarized in the 
document-term matrix, a large matrix with row dimension given by 
the number of documents and column dimension given by the number of 
distinct terms (words) in the corpus.

In our small four-speech example here, the document-term matrix is a 
matrix of four rows, and 43 columns because there are 43 distinct words 
appearing in the entire corpus of these four speeches, after having removed 
all stopwords. Note that very short words, words of length 2 or less, are 
automatically omitted. Also note that the word “new-york” has become 
“newyork” as we removed all punctuations when preprocessing the corpus. 
Many entries in the document-term frequency matrix are zero as words do 
not appear in every document.

Our document-term matrix has 4 × 43 = 172 cells: 61 of the cells have 
nonzero frequencies, while 111 cells are empty (zero frequencies). The spar-
sity of the matrix is expressed as the proportion of sparse elements  (elements 
with zero frequency); here the sparsity is 100(111/172) = 65%. A sparsity of 
zero means that every word in the corpus occurs in every document.

Similarly, we can obtain the term-document matrix, the matrix 
 transpose of the document-term matrix. Its row dimension is given by the 
number of distinct words in the corpus and its column dimension is given 
by the number of documents.

The document-term matrix helps us illustrate what stemming does 
because the matrix allows us to compare the words in our corpus without 
and with stemming. Stemming collapses the singular “purpose” and plural 
“purposes” into one word—which is excellent. However, stemming reduces 
the word “stated” to “state”, which is not so good because the verb “stated” 
is not the same as the noun “state”. Furthermore, stemming strips off “ing”, 
so the stemmed word “noth” (from “nothing”) and “pend” (from “pending”) 
are difficult to interpret. Similarly, “explan”, the stemmed version of “expla-
nation”, is unfortunately not merged with “explain”. This simple compari-
son demonstrates that there is no easy way to decide whether to stem or 
not—each approach has its advantages and disadvantages.Copyright ©2022 by SAGE Publications, Inc. 

This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



13

We chose to leave words as they are but combine singular and plural 
words into the same root word. We try to do this for as many important 
words as possible. This can be done in two different ways. (1) One can 
substitute expressions in the text prior to creating the corpus and the 
document-term matrix. One can use the global text substitution com-
mand gsub: for example, the command txt=gsub(“ purposes ”,“ purpose ”, 
ignore.case = TRUE, txt) to globally replace all occurrences of the plural 
“purposes” with “purpose”, or the command txt=gsub(“ treaties ”, 
“ treaty ”, ignore.case = TRUE, txt) to replace the plural “treaties” with 
“treaty”. Make sure that you leave blank spaces before and after the 
expressions. Otherwise this command will also replace snippets within a 
larger word. (2) One can  combine terms in the document-term matrix, 
using the function combine_terms that we wrote for this purpose. It’s 
on the website at https://www.biz.uiowa.edu/faculty/jledolter/analyzing- 
textual-information/.

Word frequencies are obtained and visualized, either through bar-charts or 
word-clouds. The bar chart shown here displays frequencies of words that 
occur at least three times in the corpus. The two different word clouds shown 
draw the size of the words proportional to the frequency of their occurrences.

The R code on the website will get you started. We recommend that you 
follow our template and use the R help window to learn about the R func-
tions that we used. The more you practice, the better you will get writing 
your own code.

> library(tm) ## library tm needs to be installed (instructions 
on WebAppendix)
> ## creating corpus
> corpus = VCorpus(VectorSource(data[,1]),readerControl = 
list(reader = readPlain)) 
## this is how to create corpus 
> corpus1 = tm_map(corpus, stripWhitespace)
> corpus2 = tm_map(corpus1, content_transformer(tolower))
> corpus3 = tm_map(corpus2, removePunctuation)
> corpus4 = tm_map(corpus3, removeNumbers)
> corpus5 = tm_map(corpus4, removeWords, stopwords(“english”))
> corp.dtm = DocumentTermMatrix(corpus5,control=list(stemming=
FALSE)) 
## no stemming is the default
> corp.dtm
 <<DocumentTermMatrix (documents: 4, terms: 43)>>
 Non-/sparse entries : 61/111
 Sparsity : 65%
 Maximal term length : 12
 Weighting : term frequency (tf)
> corp.tdm = TermDocumentMatrix(corpus5,control=list(stemming=
FALSE)) Copyright ©2022 by SAGE Publications, Inc. 
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> corp.tdm
 <<TermDocumentMatrix (terms: 43, documents: 4)>>
 Non-/sparse entries : 61/111
 Sparsity : 65%
 Maximal term length : 12
 Weighting : term frequency (tf)
> corps.dtm = DocumentTermMatrix(corpus5,control=list(stemming
=TRUE))
> corps.dtm
 <<DocumentTermMatrix (documents: 4, terms: 42)>>
 Non-/sparse entries : 60/108
 Sparsity : 64%
 Maximal term length : 12
 Weighting : term frequency (tf)
> findFreqTerms(corp.dtm,1)

 [1] “anything” “can” “clerk” “desire” “except”  
. . . 

> findFreqTerms(corps.dtm,1)
 [1] “anyth” “can” “clerk” “desir” “except” 
. . . .

> ## creating corpus
> 
> stopwords(“english”)

 [1] “i” “me” “my” “myself” “we”
 [6] “our” “ours” “ourselves” “you” “your”
. . . .

> ## adding your own stopwords
> stopwordsnew1=c(stopwords(“english”),“occasionally”)  
##adding “occasionally”
> stopwordsnew2=c(“perhaps”,“never”)
> stopwordsnew2

[1] “perhaps” “never”  
> 
> ## frequencies of words
> ## displaying frequencies 
> library(ggplot2)
> dim(corp.dtm)

[1] 4 43
> as.matrix(corp.dtm)

    Terms
Docs anything can clerk desire except explain
 1 1 0 0 0 0 2
 2 0 2 1 1 0 0
 3 0 1 0 0 1 0
 4 0 0 0 2 0 0
explanation first floor gentleman
 0 0 0 1
 1 1 1 1
 2 0 1 2
 2 0 1 1
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    Terms
Docs hence house know made member newyork 
 1 0 0 0 0 0 0
 2 0 0 1 0 0 0
 3 1 1 0 1 2 1
 4 0 0 0 0 0 1
nothing objection patch pending
 2 0 1 0
 0 0 0 0
 0 1 0 1
 0 0 0 0
. . . .

> findFreqTerms(corp.dtm,1)
> findFreqTerms(corp.dtm,2)

[1] “explain” “gentleman” “nothing” “can” “desire” 
[6] “explanation” “floor” “pennsylvania” “portion”      
“purpose” 
[11] “remaining” “time” “whether” “yield”        “member”      
[16] “newyork” “personal”

> freq=colSums(as.matrix(corp.dtm))
> ord=order(freq)
> freq[head(ord)]
anything  patch spoken clerk first know 
 1 1 1 1 1 1 
> freq[tail(ord)]
 desire floor purpose yield gentleman explanation 
 3 3 3 4 5 5 
> freq=sort(colSums(as.matrix(corp.dtm)),decreasing=TRUE)
> head(freq,20)
 gentleman explanation yield can desire floor 
 5 5 4 3 3 3 
purpose  explain nothing pennsylvania portion remaining 
 3 2 2 2 2 2 
 time whether member newyork personal anything 
 2 2 2 2 2 1 
 patch spoken 
 1 1 
> wf=data.frame(word=names(freq),freq=freq)
> head(wf)

               word freq
gentleman gentleman 5
explanation explanation 5
yield yield 4
can can 3
desire desire 3
floor floor 3

> p=ggplot(subset(wf,freq>2),aes(word,freq))
> p=p+geom_bar(stat=“identity”)
> p=p+theme(axis.text.x=element_text(angle=45,hjust=1))
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> p
> ## displaying frequencies

> ## displaying word clouds
> library(wordcloud)
> set.seed(142)
> wordcloud(names(freq),freq,min.freq=1)
> set.seed(142)
> dark2 = brewer.pal(6,“Dark2”)
>  wordcloud(names(freq),freq,max.words=7,rot.per=0.2, 

colors=dark2)
> ## displaying word clouds
> ## frequencies of words
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> p
> ## displaying frequencies

> ## displaying word clouds
> library(wordcloud)
> set.seed(142)
> wordcloud(names(freq),freq,min.freq=1)
> set.seed(142)
> dark2 = brewer.pal(6,“Dark2”)
>  wordcloud(names(freq),freq,max.words=7,rot.per=0.2, 

colors=dark2)
> ## displaying word clouds
> ## frequencies of words
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We also assess whether the number of occurrences of one word (e.g., the 
word “explanation” or the word “gentleman”) is related to (that is, corre-
lated with) the number of occurrences of any of the other words in the very 
same document. Results with correlation +1 indicate that there is a posi-
tive and perfect linear association among the frequencies of the two 
words. Take the words “gentleman” and “except” for illustration. The 
frequencies in the four documents are 1 1 2 1 (for “gentleman”) and 0 0 1 0  
(for “except”). The frequencies are perfectly correlated: (frequencies for 
“gentleman”) = 1 + 1 ∗ (frequencies for “except”). Hence, the correlation 
is 1. Of course, one should not read too much into correlations from just a 
few documents (like the four speeches in our example).

Often, the R function weightBin is useful. It transforms the number of 
occurrences (the frequency) of a word in a given document to an occur-
rence indicator of a word; that is, it creates a 0–1 indicator variable indicat-
ing whether the word has not (has) occurred in a given document.

> ## finding associations
> as.matrix(corp.dtm)

    Terms
Docs anything can clerk desire except explain
 1 1 0 0 0 0 2
 2 0 2 1 1 0 0
 3 0 1 0 0 1 0
 4 0 0 0 2 0 0
explanation first floor gentleman
 0 0 0 1
 1 1 1 1
 2 0 1 2
 2 0 1 1
. . . .
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> findAssocs(corp.dtm, “explanation”, 0.5)
$explanation
 newyork personal floor purpose except gentleman 
 0.90 0.90 0.87 0.87 0.52 0.52 
 hence house made member objection pending 
 0.52 0.52 0.52 0.52 0.52 0.52 
 precluded proposition purposes relation rise rules 
 0.52 0.52 0.52 0.52 0.52 0.52 
 stated statement taking 
 0.52 0.52 0.52
> findAssocs(corp.dtm, “gentleman”, 0.5)
$gentleman
 except hence house made member objection 
 1.00 1.00 1.00 1.00 1.00 1.00 
 pending precluded proposition purposes relation rise 
 1.00 1.00 1.00 1.00 1.00 1.00 
 rules stated statement taking newyork pennsylvania 
 1.00 1.00 1.00 1.00 0.58 0.58 
 personal portion remaining time yield explanation 
 0.58 0.58 0.58 0.58 0.58 0.52
> ## weightBin creates indicator variables for presence of term
> Bcorp.dtm=weightBin(corp.dtm)
> as.matrix(Bcorp.dtm)

    Terms
Docs anything can clerk desire except explain
 1 1 0 0 0 0 1
 2 0 1 1 1 0 0
 3 0 1 0 0 1 0
 4 0 0 0 1 0 0
explanation first floor gentleman
 0 0 0 1
 1 1 1 1
 1 0 1 1
 1 0 1 1
. . . .

> findAssocs(Bcorp.dtm, “explanation”, 0.5)
$explanation
 floor purpose can desire pennsylvania portion 
 1.00 1.00 0.58 0.58 0.58 0.58 
 remaining time yield newyork personal 
 0.58 0.58 0.58 0.58 0.58 
> findAssocs(Bcorp.dtm, “gentleman”, 0.5)
 $gentleman
 numeric(0)
> ## finding associations

The document-term matrix shows the frequencies of individual words, and 
it does so for each document separately. What about frequencies of 
 two-word phrases? What about bigrams? The R code shown below with 
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the function BigramTokenizer creates the document-term and the 
 term-document matrices that contain frequencies of adjacent word 
 combinations for each of the four documents. Here, there are 59 different 
bigrams. Bigrams that occur at least two times in the corpus are displayed 
in the attached bar chart. The extension to trigrams, which are three-word 
phrases, is straightforward. The complication with n-grams (as compared 
with the case of individual words) is the resulting large number of n-grams, 
with most (almost all) of the n-grams occurring with very low frequencies. 
This increases both the dimensionality and also the sparsity.

> ## bigrams
> BigramTokenizer = function(x)
+     unlist(lapply(ngrams(words(x),2),paste,collapse = “ ”), 
use.names = FALSE)
> bi.dtm = DocumentTermMatrix(corpus5, control = list(tokenize 
= BigramTokenizer)) 
> bi.dtm
 <<DocumentTermMatrix (documents: 4, terms: 59)>>
 Non-/sparse entries : 67/169
 Sparsity : 72%
 Maximal term length : 22
 Weighting : term frequency (tf)
> as.matrix(bi.dtm)

    Terms
Docs anything explain can yield clerk first
 1 1 0 0
 2 0 2 1
 3 0 1 0
 4 0 0 0
desire explanation desire floor
 0 0
 0 0
 0 0
 1 1
    Terms
Docs desire know except purposes explain nothing
 1 0 0 1
 2 1 0 0
 3 0 1 0
 4 0 0 0
explain spoken
 1
 0
 0
 0
. . . .

> bi.tdm = TermDocumentMatrix(corpus5, control = list(tokenize 
= BigramTokenizer)) 
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> bi.tdm
 <<TermDocumentMatrix (terms: 59, documents: 4)>>
 Non-/sparse entries : 67/169
 Sparsity : 72%
 Maximal term length : 22
 Weighting : term frequency (tf)
> as.matrix(bi.tdm)

                     Docs
Terms 1 2 3 4
 anything explain 1 0 0 0
 can yield 0 2 1 0
 clerk first 0 1 0 0
 desire explanation 0 0 0 1
 desire floor 0 0 0 1
 desire know 0 1 0 0
 . . . .
 time member 0 0 1 0
 whether can 0 2 0 0
 yield floor 0 1 0 0
 yield member 0 0 1 0
 yield remaining 0 1 1 0

> ## bigrams
>
> ## displaying bigram frequencies
> findFreqTerms(bi.dtm,1)

[1] “anything explain” “can yield” “clerk first”           
[4] “desire explanation” “desire floor” “desire know”           
[7] “except purposes” “explain nothing” “explain 
spoken”
. . . . 
[55] “time member” “whether can” “yield floor”
[58] “yield member” “yield remaining”

> findFreqTerms(bi.dtm,2)
[1] “can yield” “gentleman newyork” “gentleman 
pennsylvania”
[4] “personal explanation” “portion time” “purpose 
explanation” 
[7] “remaining portion” “whether can” “yield remaining”       

> freq=colSums(as.matrix(bi.dtm))
> ord=order(freq)
> freq[head(ord)]
 anything explain clerk first desire explanation
 1 1 1
 desire floor desire know except purposes
 1 1 1
> freq[tail(ord)]
 portion time purpose explanation remaining portion
 2 2 2
 whether can yield remaining can yield 
 2 2 3 
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> freq=sort(colSums(as.matrix(bi.dtm)),decreasing=TRUE)
> head(freq,20)
 can yield gentleman newyork gentleman pennsylvania 
 3 2 2 
 personal explanation portion time purpose explanation 
 2 2 2 
 . . . .
> wf=data.frame(word=names(freq),freq=freq)
> head(wf)

                           word freq
can yield can yield 3
gentleman newyork gentleman newyork 2
gentleman pennsylvania gentleman pennsylvania 2
personal explanation personal explanation 2
portion time portion time 2
purpose explanation purpose explanation 2

>
> p=ggplot(subset(wf,freq>1),aes(word,freq))
> p=p+geom_bar(stat=“identity”)
> p=p+theme(axis.text.x=element_text(angle=45,hjust=1))
> p
> ## displaying bigram frequencies

0

1

2

3

ca
n 

yie
ld

ge
nt

lem
an

 n
ew

yo
rk

ge
nt

lem
an

 p
en

ns
ylv

an
ia

pe
rs

on
al 

ex
pla

na
tio

n

po
rti

on
 tim

e

pu
rp

os
e 

ex
pla

na
tio

n

re
m

ain
ing

 p
or

tio
n

whe
th

er
 ca

n

yie
ld 

re
m

ain
ing

word

fr
eq

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



22

1.4 The Introductory Example Revisited, Illustrating 
Concordance and Collocation Using Alternative Software

We chose the R Statistical Software for most of our textual analyses. 
However, we are eclectic in utilizing other software packages as long as 
they get the job done. The packages AntConc and Voyant are especially 
useful for their concordance and collocate tools. Concordance tools tell 
you about all text snippets around a specified key word in context (KWIC). 
You may want to see all text snippets in a corpus around a word such as 
“republic”, or around phrases such as “republican form of government” or 
“post office”, as these text selections will tell you about the context in 
which a word or phrase is used. Collocate tools allow you to further 
quantify the concordance information. For example, they can obtain counts 
on how often the word “black” or “indian” occurs within a window of 
specified length around the KWIC word “slave”. Both software packages, 
AntConc and Voyant, are quite flexible, allowing you to change the 
length of the window and focus on words before or after the given KWIC 
word of interest.

We use the package AntConc to illustrate such analysis on the four 
speeches in the Excel file test.csv. The file is easily uploaded. The 
concordance tab allows us to select a KWIC word; we select “gentleman”. 
We specify a search window size of 50 characters (letters), and ask the 
software to highlight the words that are within two words from the KWIC 
word “gentleman”. We get five hits, and the five text snippets are displayed 
below. The KWIC word is in boldface, and the highlighted words around 
them are underlined:

1 Mr. Stevens. The gentleman cannot have anything 

1 the rules of the House the gentleman from New York cannot 

2 desire to as an explanation of the gentleman from New York.

3 to the pending proposition. The gentleman from  Pennsylvania has 

4 yield the floor temporarily to the gentleman from  Pennsylvania 

The collocates tab with the search word “gentleman” and with a specified 
window that asks for one word to the left and one word to the right reveals 
three collocates (neighboring words). The word “the” with five frequencies 
(5 to left and 0 to right), “from” with four frequencies (0 to left and 4 to 
the right), and “cannot” with one frequency (0 to left and 1 to the right). 
Changing the window to two words to the right and two words to the 
left gives us several more collocates for the KWIC “gentleman” such as 
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“Pennsylvania” with two frequencies (both to the right of the word 
“gentleman”).

Concordance and collocates can also be displayed with the software 
package Voyant. Voyant has many other useful features such as auto-
matic ways of omitting stopwords (e.g., “the” and “from”) that are left in 
the AntConc output shown above. We refer the reader to the additional 
materials shown on our website at https://www.biz.uiowa.edu/faculty/
jledolter/analyzing-textual-information/.

The analysis for this small example is straightforward. But imagine carrying 
out this analysis for a corpus with millions of words. Getting concordance 
information and collocates so quickly is a wonderful feature of these programs. 
Where do these terms appear in the text and which words are around them? 
Which are the most frequent words that co-occur in a neighborhood around a 
certain word and how can one get a word cloud for these given words? How 
does word usage change with author and date in case the metavariables author 
and date have been collected? The user wants an easy intuitive search engine 
to learn about a text corpus and easy ways for visualizing the information.

Two other useful software packages (with our apologies for having omit-
ted many others) are as follows:

PhiloLogic4, developed at the University of Chicago Textual 
Optics Lab (https://artfl-project.uchicago.edu/philologic4). Go to 
https://artfl-project.github.io/PhiloLogic4 and explore this software 
using one of its many available data bases.

Distant Reader: A Tool for Reading, developed at the 
University of Notre Dame (https://distantreader.org). It transforms 
unstructured text into structured text and conducts useful analyses 
involving words and word counts and n-grams. It also parses the text 
through parts of speech (POS) analysis and determines automatically 
whether a word is a noun, verb, adjective, and so on.

POS tagging, also referred to as the parsing of text, is the process of relating 
each word in a text to a particular part of speech. In English, one distin-
guishes nine major POS: noun, verb, article, adjective, preposition, pro-
noun, adverb, conjunction, and interjection. However, there are clearly 
many more categories and subcategories. On nouns, for example, one can 
further distinguish the plural, possessive, and singular forms, and one can 
mark nouns for their “case” (role as subject, object, etc.), grammar, and so 
on. Verbs can be marked for tense, aspect, and other things. A tag set is a 
list of labels that describe the part of speech and its associated grammatical 
categories (case, tense, etc.) of words in a text corpus.
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Tagging text “by hand” is not only tedious and slow, it also is not that 
easy because some POS are complex and some words can represent more 
than one part of speech at different times.

Once performed by hand, POS tagging is now carried out with computer 
algorithms. The field that deals with the set of methods that make human 
language accessible to computers is commonly referred to as  natural lan-
guage processing. The first major English corpus tagged by a computer 
algorithm is the Brown University Corpus developed in the mid-1960s. The 
corpus consists of complete sentences and more than 100,000 words, and a 
large tag set with almost 100 different tags. A somewhat simpler tag set for 
POS tagging of American English text is the Penn tag set, developed by the 
Penn Treebank project. Many algorithms for computer-based POS tagging 
are available today, and most achieve an accuracy above 95%.

1.5 Concluding Remarks

The analysis for the four-speech example in Section 1.3 is fairly simple: 
The number of words is not very large, the text is clean, and none of the 
words are misspelled. Nevertheless, even analyzing this simple case 
involved many decisions: The pair “new york” is recognized as the state 
and the two terms are joined. The words, “purpose” and “purposes” are 
recognized as the single and the plural forms of the same noun. We con-
clude that these two terms may be better combined during the next round 
of analysis, and we show how this can be done. Now imagine a much, much 
larger corpus, with millions of words and lots of misspellings. A single pass 
through the text can never be the end of the analysis; it cannot provide 
insightful solutions to vaguely formulated theories about the text. Any 
learning has to proceed iteratively, an approach that involves observing the 
results of each pass-through and refining the inquiry each time according to 
previous findings. Several (usually, many) iterative passes through the text 
are needed.

Statisticians have long been aware of this in the study of numbers. They 
customarily screen the data for unusual observations, and they transform 
and group data whenever needed. Processes in text analysis work the same 
way. Decisions about how to analyze the text data become clearer once the 
analysis has started. However, there is a big difference: Text has such a high 
number of dimensions that the discovery process is more difficult and time-
consuming. But the challenge is rewarding.
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1.6 References

Ledolter, J., & Swersey, A. J. (2007). Testing 1–2–3: Experimental design 
with applications in marketing and service operations. Stanford 
 University Press.

Ledolter, J., & VanderVelde, L. (2019). A case study in text mining: Textual 
analysis of the Territorial Papers. Digital Scholarship in the Humanities, 
35(1), 101–126. https://doi.org/10.1093/llc/fqz007

Mosteller, F., & Wallace, D. L. (1984). Applied Bayesian and classical 
inference: The case of the Federalist Papers (2nd ed.). Springer.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 
130−137. https://doi.org/10.1108/eb046814

The R Project for Statistical Computing. https://www.r-project.org/ 
Voyant Tools: Open-source, web-based application for performing text 

analysis. https://voyant-tools.org/
AntConc: A freeware corpus analysis toolkit for concordancing and text 

analysis. https://www.laurenceanthony.net/software/antconc/
Distant Reader: A Tool for Reading: Developed at the University of Notre 

Dame; https://distantreader.org/
PhiloLogic4: Developed at the University of Chicago Textual Optics Lab; 

https://artfl-project.uchicago.edu/philologic4/

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te


