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AN INTRODUCTION  

TO STRUCTURAL 
EQUATION MODELING

LEARNING OUTCOMES

1. Understand the meaning of structural equation modeling (SEM)  
and its relationship to multivariate data analysis.

2. Describe the basic considerations in applying multivariate data 
analysis.

3. Comprehend the basic concepts of partial least squares structural 
equation modeling (PLS-SEM).

4. Explain the differences between covariance-based structural equation 
modeling (CB-SEM) and PLS-SEM and when to use each.

CHAPTER PREVIEW
Social science researchers have been using statistical analysis tools for many 
years to extend their ability to develop, explore, and confirm research findings. 
Application of first-generation statistical methods, such as factor analysis and 
regression analysis, dominated the research landscape through the 1980s. But 
since the early 1990s, second-generation methods have expanded rapidly and, in 
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2  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

some disciplines, represent almost 50% of the statistical tools applied in empiri-
cal research. In this chapter, we explain the fundamentals of second-generation 
statistical methods and establish a foundation that will enable you to understand 
and apply one of the emerging second-generation tools, referred to as partial 
least squares structural equation modeling (PLS-SEM).

WHAT IS STRUCTURAL  
EQUATION MODELING?
Statistical analysis has been an essential tool for social science researchers for 
more than a century. Applications of statistical methods have expanded dra-
matically with the advent of computer hardware and software, particularly in 
recent years with widespread access to many more methods due to user-friendly 
interfaces with technology-delivered knowledge. Researchers initially relied on 
univariate and bivariate analysis to understand data and relationships. To com-
prehend more complex relationships associated with current research directions 
in the social science disciplines, it is increasingly necessary to apply more sophis-
ticated multivariate data analysis methods.

Multivariate analysis involves the application of statistical methods that 
simultaneously analyze multiple variables. The variables typically represent 
measurements associated with individuals, companies, events, activities, 
situations, and so forth. The measurements are often obtained from surveys 
or observations that are used to collect primary data, but they may also be 
obtained from databases consisting of secondary data. Exhibit 1.1 displays 
some of the major types of statistical methods associated with multivariate 
data analysis.

EXHIBIT 1.1  ■  Organization of Multivariate Methods

Primarily Exploratory Primarily Confirmatory

First-
generation 
techniques

•• Cluster analysis

•• Exploratory factor analysis

•• Multidimensional scaling

•• Analysis of variance

•• Logistic regression

•• Multiple regression

•• Confirmatory factor 
analysis (CFA)

Second-
generation 
techniques

•• Partial least squares 
structural equation 
modeling (PLS-SEM)

•• Covariance-based 
structural equation 
modeling (CB-SEM)
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Chapter 1 ■ An Introduction to Structural Equation Modeling  3

The statistical methods often used by social scientists are typically called first-
generation techniques (Fornell, 1982, 1987). These techniques, shown in the 
upper part of Exhibit 1.1, include regression-based approaches, such as multiple 
regression, logistic regression, and analysis of variance, but also techniques, such 
as exploratory and confirmatory factor analysis, cluster analysis, and multidimen-
sional scaling. When applied to a research question, these methods can be used to 
either confirm a priori established theories or identify data patterns and relation-
ships. Specifically, they are confirmatory when testing the hypotheses of existing 
theories and concepts, and exploratory when they search for patterns in the data 
in case there is no or only little prior knowledge on how the variables are related.

It is important to note that the distinction between confirmatory and explor-
atory is not always as clear-cut as it seems. For example, when running a regres-
sion analysis, researchers usually select the dependent and independent variables 
based on established theories and concepts. The goal of the regression analysis is 
then to test these theories and concepts. However, the technique can also be used 
to explore whether additional independent variables prove valuable for extending 
the concept being tested. The findings typically focus first on which indepen-
dent variables are statistically significant predictors of the single dependent vari-
able (more confirmatory) and then on which independent variables are, relatively 
speaking, better predictors of the dependent variable (more exploratory). In a sim-
ilar fashion, when exploratory factor analysis is applied to a data set, the method 
searches for relationships between the variables in an effort to reduce a large num-
ber of variables to a smaller set of composite factors (i.e., linear combinations of 
variables). The final set of composite factors is a result of exploring relationships 
in the data and reporting the relationships that are found (if any). Neverthe-
less, while the technique is exploratory in nature (as the name already suggests), 
researchers often have theoretical knowledge that may, for example, guide their 
decision on how many composite factors to extract from the data (Sarstedt & 
Mooi, 2019; Chapter 8.3.3). In contrast, the confirmatory factor analysis is spe-
cifically designed for testing and substantiating an a priori determined factor(s) 
and its assigned indicators.

First-generation techniques have been widely applied by social science research-
ers, and they have significantly shaped the way we see the world today. In par-
ticular, methods such as multiple regression, logistic regression, and analysis of 
variance have been used to empirically test relationships among variables. How-
ever, what is common to these techniques is that they share three limitations, 
namely (1) the postulation of a simple model structure, (2) the assumption that 
all variables can be considered observable, and (3) the conjecture that all variables 
are measured without error (Haenlein & Kaplan, 2004).

With regard to the first limitation, multiple regression analysis and its exten-
sions postulate a simple model structure involving one layer of dependent 
and independent variables. Causal chains such as “A leads to B leads to C” or 
more complex nomological networks involving a great number of intervening 
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4  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

variables can only be estimated piecewise rather than simultaneously, which can 
have severe consequences for the results’ quality (Sarstedt, Hair, Nitzl, Ringle, 
& Howard, 2020).

With regard to the second limitation, regression-type methods are restricted 
to processing observable variables, such as age or sales (in units or dollars). Theo-
retical concepts, which are “abstract, unobservable properties or attributes of a 
social unit or entity” (Bagozzi & Philipps, 1982, p. 465), can only be considered 
after prior stand-alone validation by means of, for example, a confirmatory fac-
tor analysis. The ex post inclusion of measures of theoretical concepts, however, 
comes with various limitations.

With regard to the third limitation and related to the previous point, one 
has to bear in mind that each observation of the real world is accompanied by 
a certain measurement error, which can be systematic or random (Chapter 4).  
First-generation techniques are, strictly speaking, only applicable when there 
is neither systematic, nor random error. This situation is, however, rarely 
encountered in reality, particularly when the aim is to estimate relationships 
among measures of theoretical concepts. As the social sciences, many other 
fields of scientific inquiry routinely deal with theoretical concepts such as per-
ceptions, attitudes, and intentions, these limitations of first-generation tech-
niques are fundamental.

To overcome these limitations, researchers have increasingly been turning to 
second-generation techniques. These methods, referred to as structural equa-
tion modeling (SEM), enable researchers to simultaneously model and estimate 
complex relationships among multiple dependent and independent variables. The 
concepts under consideration are typically unobservable and measured indirectly 
by multiple indicator variables. In estimating the relationships, SEM accounts for 
measurement error in observed variables. As a result, the method obtains a more 
precise measurement of the theoretical concepts of interest (Cole & Preacher, 
2014). We will discuss these aspects in the following sections and chapters in 
greater detail.

There are two types of SEM methods: covariance-based structural equa-
tion modeling (CB-SEM) and partial least squares structural equation model-
ing (PLS-SEM; also called PLS path modeling). CB-SEM is primarily used to 
confirm (or reject) theories (i.e., a set of systematic relationships between multiple 
variables that can be tested empirically). It does this by determining how well a 
proposed theoretical model can estimate the covariance matrix for a sample data 
set. In contrast, PLS has been introduced as a “causal-predictive” approach to 
SEM (Jöreskog & Wold, 1982, p. 270), which focuses on explaining the variance 
in the model’s dependent variables (Chin et al., 2020). We explain these differ-
ences in more detail later in the chapter.

PLS-SEM is evolving rapidly as a statistical modeling technique. Over the 
last decades, there have been numerous introductory articles on the method (e.g., 
Chin, 1998; Haenlein & Kaplan, 2004; Hair, Risher, Sarstedt, & Ringle, 2019; 
Nitzl & Chin, 2017; Rigdon, 2013; Roldán & Sánchez-Franco, 2012; Tenenhaus, 
Esposito Vinzi, Chatelin, & Lauro, 2005; Wold, 1985) as well as review articles 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  5

examining how researchers across different disciplines have used the method 
(Exhibit 1.2). In light of the increasing maturation of the field, researchers have 
also started exploring the knowledge infrastructure of methodological research 
on PLS-SEM by analyzing the structures of authors, countries, and co-citation 
networks (Hwang, Sarstedt, Cheah, & Ringle, 2020; Khan et al., 2019).

EXHIBIT 1.2  ■  Review Articles on PLS-SEM Usage

Discipline References

Accounting Lee, Petter, Fayard, & Robinson (2011)

Nitzl (2016)

Construction management Zeng, Liu, Gong, Hertogh, & König (2021)

Entrepreneurship Manley, Hair, Williams, & McDowell (2020)

Family business Sarstedt, Ringle, Smith, Reams, & Hair (2014)

Higher education Ghasemy, Teeroovengadum, Becker, & Ringle 
(2020)

Hospitality and tourism Ali, Rasoolimanesh, Sarstedt, Ringle, & Ryu (2018)

Do Valle & Assaker (2016)

Usakli & Kucukergin (2018)

Human resource 
management

Ringle, Sarstedt, Mitchell, & Gudergan (2020)

International business 
research

Richter, Sinkovics, Ringle, & Schlägel (2016)

Knowledge management Cepeda-Carrión, Cegarra-Navarro, & Cillo (2019)

Management Hair, Sarstedt, Pieper, & Ringle (2012)

Management information 
systems

Hair, Hollingsworth, Randolph, & Chong (2017)

Ringle, Sarstedt, & Straub (2012)

Marketing Hair, Sarstedt, Ringle, & Mena (2012)

Operations management Bayonne, Marin-Garcia, & Alfalla-Luque (2020)

Peng & Lai (2012)

Psychology Willaby, Costa, Burns, MacCann, & Roberts (2015)

Software engineering Russo & Stol (2021)

Supply chain management Kaufmann & Gaeckler (2015)
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6  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

Until the first edition of this book, published in 2014, there was no compre-
hensive textbook that explained the fundamental aspects of the method, particu-
larly in a way that can be comprehended by the non-statistician. In recent years, 
a growing number of follow-up textbooks (e.g., Garson, 2016; Henseler, 2020; 
Ramayah, Cheah, Chuah, Ting, & Memon, 2016; Wong, 2019) and edited books 
on the method (e.g., Avkiran & Ringle, 2018; Esposito Vinzi, Chin, Henseler, 
& Wang, 2010; Latan & Noonan, 2017) have been published, which helped to  
further popularize PLS-SEM. This third edition of our book expands and clari-
fies the nature and role of PLS-SEM in social science research and hopefully 
makes researchers aware of a tool that will enable them to pursue research oppor-
tunities in many new and different ways.

CONSIDERATIONS IN USING 
STRUCTURAL EQUATION MODELING
Depending on the underlying research question and the empirical data available, 
researchers must select an appropriate multivariate analysis method. Regardless 
of whether a researcher is using first- or second-generation multivariate analy-
sis methods, several considerations are necessary in deciding to use multivariate 
analysis, particularly SEM. Among the most important are the following five 
elements: (1) composite variables, (2) measurement, (3) measurement scales,  
(4) coding, and (5) data distributions.

Composite Variables

A composite variable (also referred to as a variate) is a linear combina-
tion of several variables that are chosen based on the research problem at hand 
(Hair, Black, Babin, & Anderson, 2019). The process for combining the variables 
involves calculating a set of weights, multiplying the weights (e.g., w1 and w2)  
times the associated data observations for the variables (e.g., x1 and x2), and sum-
ming them. The mathematical formula for this linear combination with five vari-
ables is shown as follows (note that the composite value can be calculated for any 
number of variables):

Composite value = w1 · x1 + w2 · x2 + . . . + w5 · x5,

where x stands for the individual variables and w represents the weights. All x vari-
ables (e.g., questions in a questionnaire) have responses from many respondents 
that can be arranged in a data matrix. Exhibit 1.3 shows such a data matrix, where 
i is an index that stands for the number of responses (i.e., cases). A composite 
value is calculated for each of the i respondents in the sample.
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Chapter 1 ■ An Introduction to Structural Equation Modeling  7

Measurement

Measurement is a fundamental concept in conducting social science research. 
When we think of measurement, the first thing that comes to mind is often a 
ruler, which could be used to measure someone’s height or the length of a piece 
of furniture. But there are many other examples of measurement in life. When 
you drive, you use a speedometer to measure the speed of your vehicle, a heat 
gauge to measure the temperature of the engine, and a gauge to determine how 
much fuel remains in your tank. If you are sick, you use a thermometer to mea-
sure your temperature, and when you go on a diet, you measure your weight on 
a bathroom scale.

Measurement is the process of assigning numbers to a variable based on a set of 
rules (Hair, Page, & Brunsveld, 2020). The rules are used to assign the numbers 
to the variable in a way that accurately represent the variable. With some vari-
ables, the rules are easy to follow, while with other variables, the rules are much 
more difficult to apply. For example, if the variable is gender, then it is easy to 
assign a 1 for females and a 0 for males. Similarly, if the variable is age or height, 
it is again easy to assign a number. But what if the variable is satisfaction or trust? 
Measurement in these situations is much more difficult because the phenomenon 
that is supposed to be measured is abstract, complex, and not directly observable. 
We therefore talk about the measurement of latent variables or constructs.

We cannot directly measure abstract concepts such as satisfaction or trust. 
However, we can measure indicators of what we have agreed to call satisfaction or 
trust, for example, in a brand, product, or company. Specifically, when concepts 
are difficult to measure, one approach is to measure them indirectly by using a set 
of directly observable and measurable indicators (also called items or manifest 
variables). Each indicator represents a single separate aspect of a larger abstract 
concept. For example, if the concept is restaurant satisfaction, then the several 
indicators that could be used to measure this might be the following:

1. The taste of the food was excellent.

2. The speed of service met my expectations.

EXHIBIT 1.3  ■  Data Matrix

Case x1 x2 . . . x5 Composite Value

1 x11 x21 . . . x51 v1

. . . . . . . . . . . . . . . . . .

i x1i x2i . . . x5i vi
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8  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

3. The waitstaff was very knowledgeable about the menu items.

4. The background music in the restaurant was pleasant.

5. The meal was a good value compared with the price.

By combining several indicators to form a scale (or index; Chapter 2), we can 
indirectly measure the overall concept of restaurant satisfaction. Usually, research-
ers use several items to form a multi-item scale, which indirectly measures a con-
cept, as in the restaurant satisfaction example above. The several measures are 
combined to form a single composite score (i.e., the score of the variate). In some 
instances, the composite score is a simple summation of the several measures. In 
other instances, the scores of the individual measures are combined to form a 
composite score by using a linear weighting process. The logic of using several 
individual variables to measure an abstract concept such as restaurant satisfaction 
is that the measure will be more accurate. The anticipated improved accuracy is 
based on the assumption that using several items to measure a single concept is 
more likely to represent all the different aspects of that concept. This involves 
reducing measurement error, which is the difference between the true value of 
a variable and the value obtained by a measurement. There are many sources of 
measurement error, including poorly worded questions in a survey, misunder-
standing of the scaling approach, and incorrect application of a statistical method. 
Indeed, all measurements used in multivariate analysis are likely to contain some 
measurement error. The objective, therefore, is to reduce the measurement error 
as much as possible.

Rather than using multiple items, researchers sometimes opt for the use of  
single-item constructs to measure concepts such as satisfaction or purchase 
intention. For example, we may use only “Overall, I’m satisfied with this restau-
rant” to measure restaurant satisfaction instead of all five items described above. 
While this is a good way to make the questionnaire shorter, it also reduces the 
quality of your measurement. We discuss the fundamentals of measurement and 
measurement evaluation in the following chapters.

Measurement Scales

A measurement scale is a tool with a predetermined number of closed-ended 
responses that can be used to obtain an answer to a question. There are four types 
of measurement scales, each representing a different level of measurement— 
nominal, ordinal, interval, and ratio. Nominal scales are the lowest level of scales 
because they are the most restrictive in terms of the type of analysis that can 
be carried out. A nominal scale assigns numbers that can be used to identify 
and classify objects (e.g., people, companies, products) and is also referred to as 
a categorical scale. For example, if a survey asked a respondent to identify his 
or her profession and the categories are doctor, lawyer, teacher, engineer, and so 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  9

forth, the question has a nominal scale. Nominal scales can have two or more 
categories, but each category must be mutually exclusive, and all possible catego-
ries must be included. A number could be assigned to identify each category, and 
the numbers could be used to count the responses in each category, or the modal 
response or percentage in each category.

If we have a variable measured on an ordinal scale, we know that if the value 
of that variable increases or decreases, this gives meaningful information. For 
example, if we code customers’ use of a product as nonuser = 0, light user = 1, and 
heavy user = 2, we know that if the value of the use variable increases, the level of 
use also increases. Therefore, when an attribute or characteristic is measured on 
an ordinal scale, the values provide information about the order of our observa-
tions. However, we cannot assume that the differences in the order are equally 
spaced. That is, we do not know if the difference between “nonuser” and “light 
user” is the same as between “light user” and “heavy user,” even though the dif-
ferences in the values (i.e., 0–1 and 1–2) are equal. Therefore, it is not appropriate 
to calculate arithmetic means or variances for ordinal data.

If an attribute or characteristic is measured with an interval scale, we have 
precise information on the rank order at which something is measured and, in 
addition, we can interpret the magnitude of the differences in values directly. For 
example, if the temperature is 80°F, we know that if it drops to 75°F, the differ-
ence is exactly 5°F. This difference of 5°F is the same as the increase from 80°F 
to 85°F. This exact “spacing” is called equidistance, and equidistant scales are 
necessary for certain analysis techniques, such as SEM. What the interval scale 
does not give us is an absolute zero point. If the temperature is 0°F, it may feel 
cold, but the temperature can drop further. The value of 0 therefore does not 
mean that there is no temperature at all (Sarstedt & Mooi, 2019; Chapter 3.6). 
The value of interval scales is that almost any type of mathematical computations 
can be carried out, including the mean and standard deviation. Moreover, you 
can convert and extend interval scales to alternative interval scales. For example, 
instead of degrees Fahrenheit (°F), many countries use degrees Celsius (°C) to 
measure the temperature. While 0°C marks the freezing point, 100°C depicts 
the boiling point of water. You can convert temperature from Fahrenheit into  
Celsius by using the following equation: Degrees Celsius (°C) = (degrees  
Fahrenheit (°F) − 32) · 5 / 9. In a similar way, you can convert data (via rescaling) 
on a scale from 1 to 5 into data on a scale from 0 to 100: (([data point on the scale 
from 1 to 5] − 1) / (5 − 1)) · 100.

A ratio scale provides the most information. If something is measured on a 
ratio scale, we know that a value of 0 means that a particular characteristic for a 
variable is not present. For example, if a customer buys no products (value = 0), 
then he or she really buys no products. Or, if we spend no money on advertising 
a new product (value = 0), we really spend no money. Therefore, the zero point or 
origin of the variable is equal to 0. The measurement of length, mass, and volume 
as well as time elapsed uses ratio scales. With ratio scales, all types of mathemati-
cal computations are possible.

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



10  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

Coding

The assignment of numbers to categories in a manner that facilitates mea-
surement is referred to as coding. In survey research, data are often precoded. 
Precoding is assigning numbers ahead of time to answers (e.g., scale points) that 
are specified on a questionnaire. For example, a 10-point agree–disagree scale 
typically would assign the number 10 to the highest endpoint “agree” and a 1 
to the lowest endpoint “disagree,” and the points between would be coded 2 
to 9. Postcoding is assigning numbers to categories of responses after data are 
collected. The responses might be to an open-ended question in a quantitative 
survey or to an interview response in a qualitative study.

Coding is very important in the application of multivariate analysis because 
it determines when and how various types of scales can be used. For example, 
variables measured with interval and ratio scales can always be used with multi-
variate analysis. However, when using ordinal scales such as Likert scales (which 
is common within an SEM context), researchers have to pay special attention to 
the coding to fulfill the requirement of equidistance. For example, when using 
a typical 7-point Likert scale with the categories (1) fully disagree, (2) disagree,  
(3) somewhat disagree, (4) neither agree nor disagree, (5) somewhat agree,  
(6) agree, and (7) fully agree, the inference is that the “distance” between cate-
gories 1 and 2 is the same as between categories 3 and 4. In contrast, the same 
type of Likert scale but using the categories (1) fully disagree, (2) disagree,  
(3) neither agree nor disagree, (4) somewhat agree, (5) agree, (6) strongly agree, 
and (7) fully agree is unlikely to be equidistant, as there are only two catego-
ries below the neutral category “neither agree nor disagree,” whereas four 
categories score above the neutral category. This would clearly bias any result 
in favor of a better outcome. A suitable Likert scale, as in our first example 
above, will present symmetry of Likert items about a middle category that 
have clearly defined linguistic qualifiers for each category. In such symmetric 
scaling, equidistant attributes will typically be more clearly observed or, at 
least, inferred. When a Likert scale is perceived as symmetric and equidistant, 
it will behave more like an interval scale. So, while a Likert scale is ordinal, 
if it is well presented, then it is likely that the Likert scale can approximate 
an interval-level measurement, and the corresponding variables can be used 
in SEM.

Data Distributions

When researchers collect quantitative data, the answers to the questions 
asked are reported as a distribution across the available (predefined) response 
categories. For example, if responses are requested using a 7-point agree– 
disagree scale, then a distribution of the answers in each of the possible response 
categories (1, 2, 3, . . . , 7) can be calculated and displayed in a table or chart. 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  11

Exhibit 1.4 shows an example of the frequencies of a corresponding variable x. 
As can be seen, most respondents indicated a 4 on the 7-point scale, followed 
by 3 and 5, and finally (barely visible), 1 and 7. Overall, the frequency count 
approximately follows a bell-shaped, symmetric curve around the mean value 
of 4. This bell-shaped curve is the normal distribution, which many statistical 
methods require for their analyses.

EXHIBIT 1.4  ■  Distribution of Responses

x

6.004.002.00.00

3,000.0

2,000.0

Fr
eq

ue
nc

y

1,000.0

0.0

Mean = 3.50
Std. Dev. = 0.748
N = 5,000

1 2 3 4 5 6 7

While many different types of distributions exist (e.g., normal, binomial,  
Poisson), researchers working with SEM generally only need to distinguish 
normal from nonnormal distributions. Normal distributions are usually desir-
able, especially when working with CB-SEM. In contrast, PLS-SEM generally 
makes no assumptions about the data distributions. However, for reasons dis-
cussed in later chapters, it is worthwhile to consider the distribution when work-
ing with PLS-SEM. To assess whether the data follow a normal distribution, 
researchers can apply statistical tests such as the Kolmogorov–Smirnov test and  
Shapiro–Wilk test (Sarstedt & Mooi, 2019; Chapter 6.3.3.3). In addition, 
researchers can examine two measures of distributions—skewness and kurtosis 
(Chapter 2)—which allow assessing to what extent the data deviate from normal-
ity (Hair, Black, Babin, & Anderson, 2019).
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12  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

PRINCIPLES OF STRUCTURAL  
EQUATION MODELING
Path Models With Latent Variables

Path models are diagrams used to visually display the hypotheses and variable 
relationships that are examined when SEM is applied (Hair, Page, & Brunsveld, 
2020; Hair, Ringle, & Sarstedt, 2011). An example of a path model is shown in 
Exhibit 1.5.

EXHIBIT 1.5  ■  A Simple Path Model

Measurement model/outer model
of exogenous latent variables 

Structural model/inner model

x1

z3

x7 e7

e8

e9

x8

x9

x10

z4

Y1 Y3

Y4Y2

x2

x3

x4

x5

x6

Measurement model/outer model
of endogenous latent variables

Constructs (i.e., variables that are not directly measured) are represented 
in path models as circles or ovals (Y1 to Y4). The indicators, also called items 
or manifest variables, are the directly measured variables that contain the raw 
data. They are represented in path models as rectangles (x1 to x10). Relationships 
between constructs as well as between constructs and their assigned indicators 
are shown as arrows. In PLS-SEM, the arrows are always single-headed, thus 
representing directional relationships. Single-headed arrows are considered pre-
dictive relationships and, with strong theoretical support, can be interpreted as 
causal relationships.
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Chapter 1 ■ An Introduction to Structural Equation Modeling  13

A PLS path model consists of two elements. First, there is a structural model 
(also called the inner model in the context of PLS-SEM) that links together the 
constructs (circles or ovals). The structural model also displays the relationships 
(paths) between the constructs. Second, a construct’s measurement model (also 
referred to as the outer model in PLS-SEM) displays the relationships between 
the construct and its indicator variables (rectangles). In Exhibit 1.5, there are 
two types of measurement models: one for the exogenous latent variables (i.e., 
those constructs that explain other constructs in the model) and one for the 
endogenous latent variables (i.e., those constructs that are being explained 
in the model). Rather than referring to measurement models of exogenous and 
endogenous latent variables, researchers often refer to the measurement model 
of one specific latent variable. For example, x1 to x3 are the indicators used in 
the measurement model of Y1 while Y4 has only the x10 indicator in the measure-
ment model.

The error terms (e.g., e7 or e8; Exhibit 1.5) are connected to the (endoge-
nous) constructs and (reflectively) measured variables by single-headed arrows. 
Error terms represent the unexplained variance when path models are estimated 
(i.e., the difference between the model’s in-sample prediction of a value and an 
observed value of a manifest or latent variable). In Exhibit 1.5, error terms e7 to e9 
are on those indicators whose relationships point from the construct (Y3) to the 
indicator (i.e., reflectively measured indicators).

In contrast, the formatively measured indicators x1 to x6, where the relation-
ship goes from the indicator to the construct (Y1 and Y2), do not have error terms 
(Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). Finally, for the single-item 
construct Y4, the direction of the relationships between the construct and the 
indicator is not relevant, as construct and item are equivalent. For the same rea-
son, there is no error term connected to x10. The structural model also contains 
error terms. In Exhibit 1.5, z3 and z4 are associated with the endogenous latent 
variables Y3 and Y4 (note that error terms on constructs and measured variables 
are labeled differently). In contrast, the exogenous latent variables (Y1 and Y2) that 
only explain other latent variables in the structural model do not have an error 
term, regardless of whether they are specified reflectively or formatively.

Testing Theoretical Relationships

Path models are developed based on theory and are often used to test theoreti-
cal relationships. Theory is a set of systematically related hypotheses developed 
following the scientific method that can be used to explain and predict out-
comes. Thus, hypotheses are individual conjectures, whereas theories are multiple 
hypotheses that are logically linked together and can be tested empirically. Two 
types of theory are required to develop path models: measurement theory and 
structural theory. Measurement theory specifies which indicators and how these 
are used to measure a certain construct. In contrast, structural theory specifies 
how the constructs are related to each other in the structural model.
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14  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

Testing theory using PLS-SEM follows a two-step process (Hair, Black, 
Babin, & Anderson, 2019). We first test the measurement theory to confirm 
the reliability and validity of the measurement models. After the measurement 
models are confirmed, we move on to testing the structural theory. The logic is 
that we must first confirm the measurement theory before testing the structural 
theory, because structural theory cannot be confirmed if the measures are unreli-
able or invalid.

Measurement Theory
Measurement theory specifies how the latent variables (constructs) are mea-

sured. Generally, there are two different ways to measure unobservable variables. 
One approach is referred to as reflective measurement, and the other is formative 
measurement. Constructs Y1 and Y2 in Exhibit 1.5 are modeled based on a forma-
tive measurement model. Note that the directional arrows are pointing from the 
indicator variables (x1 to x3 for Y1 and x4 to x6 for Y2) to the construct, indicating 
a predictive (causal) relationship in that direction.

In contrast, Y3 in the exhibit is modeled based on a reflective measurement 
model. With reflective indicators, the direction of the arrows is from the con-
struct to the indicator variables, indicating the assumption that the construct 
causes the measurement (more precisely, the covariation) of the indicator vari-
ables. As indicated in Exhibit 1.5, reflective measures have an error term associ-
ated with each indicator, which is not the case with formative measures. The 
latter are assumed to be error free (Diamantopoulos, 2006). Finally, note that Y4 
is measured using a single item rather than multi-item measures. Therefore, the 
relationship between construct and indicator is undirected.

Deciding whether to measure the constructs reflectively vs. formatively and 
whether to use multiple items or a single-item measure are fundamental when 
developing path models. We therefore explain these two approaches to modeling 
constructs as well as their variations in more detail in Chapter 2.

Structural Theory
Structural theory shows how the latent variables are related to each other  

(i.e., it shows the constructs and their path relationships in the structural model). 
The location and sequence of the constructs are either based on theory or the 
researcher’s experience and accumulated knowledge, or both. When path models 
are developed, the sequence is from left to right. The variables on the left side of 
the path model are independent variables, and any variable on the right side is 
the dependent variable. Moreover, variables on the left are shown as sequentially 
preceding and predicting the variables on the right. However, when variables are 
in the middle of the path model (between the variables that serve only as inde-
pendent or dependent variables – Y3) they may also serve as both independent and 
dependent variables in the structural model.
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Chapter 1 ■ An Introduction to Structural Equation Modeling  15

When latent variables serve only as independent variables, they are called 
exogenous latent variables (Y1 and Y2). When latent variables serve only as depen-
dent variables (Y4) or as both independent and dependent variables (Y3), they are 
called endogenous latent variables. Any latent variable that has only single-headed 
arrow going out of it is an exogenous latent variable. In contrast, endogenous 
latent variables can have either single-headed arrows going both into and out of 
them (Y3) or only going into them (Y4). Note that the exogenous latent variables Y1 
and Y2 do not have error terms since these constructs are the entities (independent 
variables) that are explaining the dependent variables in the path model.

PLS-SEM, CB-SEM, AND  
REGRESSIONS BASED ON SUM SCORES
There are two main approaches to estimating the relationships in a structural 
equation model (Hair, Black, Babin, & Anderson, 2019; Hair, Ringle, & Sarstedt, 
2011). One is CB-SEM, the other is PLS-SEM, the latter being the focus of this 
book. Each is appropriate for a different research context, and researchers need 
to understand the differences in order to apply the correct method (Marcoulides 
& Chin, 2013; Rigdon, Sarstedt, & Ringle, 2017). Finally, some researchers have 
argued for using regressions based on sum scores, instead of some type of indica-
tor weighting as done by PLS-SEM. The sum scores approach offers practically 
no value compared to the PLS-SEM weighted approach. For this reason, in the 
following, we only briefly discuss sum scores and instead focus on the PLS-SEM 
and CB-SEM methods.

A crucial conceptual difference between PLS-SEM and CB-SEM relates to 
the way each method treats the latent variables included in the model. CB-SEM 
represents a common factor-based SEM method that considers the constructs 
as common factors that explain the covariation between its associated indicators. 
This approach is consistent with the measurement philosophy underlying reflec-
tive measurement, in which the indicators and their covariations are regarded 
as manifestations of the underlying construct. In principle, CB-SEM can also 
accommodate formative measurement models, even though the method fol-
lows a common factor model estimation approach (Diamantopoulos, Riefler, 
& Roth, 2008). To estimate this model type, however, researchers must follow 
rules that require specific constraints on the model to ensure model identifica-
tion (Bollen & Davies, 2009; Diamantopoulos & Riefler, 2011), which means 
that the method can calculate estimates for all model parameters. As Hair, 
Sarstedt, Ringle, and Mena (2012, p. 420) note, “these constraints often con-
tradict theoretical considerations, and the question arises whether model design 
should guide theory or vice versa.”

PLS-SEM, on the other hand, assumes the concepts of interest can be mea-
sured as composites (Jöreskog & Wold, 1982), which is why the method is 
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16  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

regarded as a composite-based SEM method (Hwang et al., 2020). Model 
estimation in PLS-SEM involves combining the indicators based on a linear 
method to form composite variables (Chapter 3). The composite variables are 
assumed to be comprehensive representations of the constructs and, therefore, 
valid proxies of the conceptual variables being examined (e.g., Hair & Sarstedt, 
2019). The composite-based approach is consistent with the measurement phi-
losophy underlying formative measurement, but this does not imply that PLS-
SEM is only capable of estimating formatively specified constructs. The reason is 
that the estimation perspective (i.e., forming composites to represent conceptual 
variables) should not be confused with the measurement theory perspective (i.e., 
specifying measurement models as reflective or formative). The way a method 
like PLS-SEM estimates the model parameters needs to be clearly distinguished 
from any measurement theoretical considerations on how to operationalize con-
structs (Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). Researchers can 
include reflectively and formatively specified measurement models, which PLS-
SEM estimates without any limitations.

In following a composite-based approach to SEM, PLS relaxes the strong 
assumptions of CB-SEM that all of the covariation between the sets of indicators 
is explained by a common factor (Henseler et al., 2014; Rigdon, 2012; Rigdon 
et al., 2014). At the same time, using weighted composites of indicator variables 
facilitates accounting for measurement error, thus making PLS-SEM superior 
compared with multiple regression using sum scores. If multiple regression with 
sum scores is used, the researcher assumes an equal weighting of indicators, which 
means that each indicator contributes equally to forming the composite (Hair & 
Sarstedt, 2019; Henseler et al., 2014). Referring to our descriptions on composite 
variables at the very beginning of this chapter, this would imply that all indicator 
weights w are set to 1. As noted earlier, the resulting mathematical formula for a 
linear combination with five variables would be as follows:

Composite value = 1 · x1 + 1 · x2 + . . . + 1 · x5.

For example, if a respondent has the scores 4, 5, 4, 6, and 7 on the five vari-
ables, the corresponding composite value would be 26. While easy to apply, regres-
sions using sum scores equalize any differences in the individual item weights. 
Such differences are, however, common in research reality, and ignoring them 
entails substantial biases in the parameter estimates (e.g., Hair, Hollingsworth, 
Randolph, & Chong, 2017). Furthermore, learning about individual item weights 
offers important insights, as the researcher learns about each item’s importance 
for forming the composite in a certain context (i.e., its relationships with other 
composites in the structural model). When measuring customer satisfaction, for 
example, the researcher learns which aspects covered by the individual items are of 
particular importance for the shaping of satisfaction.

It is important to note that the composites produced by PLS-SEM are not 
assumed to be identical to the constructs, which they replace. They are explicitly 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  17

recognized as approximations (Rigdon, 2012). As a consequence, some scholars 
view CB-SEM as a more direct and precise method to empirically measure theo-
retical concepts (e.g., Rönkkö, McIntosh, & Antonakis, 2015), while PLS-SEM 
provides approximations. Other scholars contend, however, that such a view is 
quite shortsighted as common factors derived in CB-SEM are also not necessarily 
equivalent to the theoretical concepts that are the focus of research (Rigdon, 2012; 
Rigdon, Sarstedt, & Ringle, 2017; Rossiter, 2011; Sarstedt, Hair, Ringle, Thiele, 
& Gudergan, 2016). Rigdon, Becker, and Sarstedt (2019a) show that common 
factor models can be subject to considerable degrees of metrological uncertainty. 
Metrological uncertainty refers to the dispersion of the measurement values 
that can be attributed to the object or concept being measured (JCGM/WG1, 
2008). Numerous sources contribute to metrological uncertainty, such as defini-
tional uncertainty or limitations related to the measurement scale design, which 
go well beyond the simple standard errors considered in CB-SEM analyses (Hair 
& Sarstedt, 2019). As such, uncertainty is a validity threat to measurement and 
has adverse consequences for the replicability of study findings (Rigdon, Sarstedt, 
& Becker, 2020). While uncertainty also applies to composite-based SEM, the 
way researchers treat models in CB-SEM analyses typically leads to a pronounced 
increase in uncertainty. More precisely, in an effort to improve model fit, research-
ers typically restrict the number of indicators per construct, which in turn increases 
uncertainty (Hair, Matthews, Matthews, & Sarstedt, 2017; Rigdon, Becker, & 
Sarstedt, 2019a). These issues do not necessarily imply that composite models are 
superior, but they cast considerable doubt on the assumption of some researchers 
that CB-SEM constitutes the gold standard when measuring unobservable con-
cepts. In fact, researchers in various fields of science show increasing appreciation 
that common factors may not always be the right approach to measure concepts 
(e.g., Rhemtulla, van Bork, & Borsboom, 2020; Rigdon, 2016). Similarly, Rigdon,  
Becker, and Sarstedt (2019b) show that using sum scores can significantly increase 
the degree of metrological uncertainty, which casts additional doubt on this mea-
surement practice.

Apart from differences in the philosophy of measurement, the differing treat-
ment of latent variables and, more specifically, the availability of latent variable 
scores also has consequences for the methods’ areas of application. Specifically, 
while it is possible to estimate latent variable scores within a CB-SEM frame-
work, these estimated scores are not unique. That is, an infinite number of differ-
ent sets of latent variable scores that will fit the model equally well are possible. 
A crucial consequence of this factor (score) indeterminacy is that the correla-
tions between a common factor and any variable outside the factor model are 
themselves indeterminate (Guttman, 1955). That is, they may be high or low, 
depending on which set of factor scores one chooses. As a result, this limitation 
makes CB-SEM grossly unsuitable for prediction (e.g., Hair & Sarstedt, 2021a; 
Dijkstra, 2014). In contrast, a major advantage of PLS-SEM is that it always pro-
duces a single specific (i.e., determinate) composite score for each case, once the 
weights are established. These determinate scores are proxies of the concepts being  
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18  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

measured, just as factors are proxies for the conceptual variables in CB-SEM  
(Rigdon, Sarstedt, & Ringle, 2017; Sarstedt, Hair, Ringle, Thiele, & Gud-
ergan, 2016). Using these proxies as input, PLS-SEM applies ordinary least 
squares regression with the objective of minimizing the error terms (i.e., the 
residual variance) of the endogenous constructs. In short, PLS-SEM esti-
mates coefficients (i.e., path model relationships) with the goal of maximizing 
the R² values (i.e., the amount of explained variance) of the (target) endog-
enous constructs. This feature achieves the (in-sample) prediction objective of 
PLS-SEM, which is therefore the preferred method when the research objec-
tive is theory development and explanation of variance (prediction of the 
constructs). For this reason, PLS-SEM is regarded a variance-based SEM 
approach. Specifically, the logic of the PLS-SEM approach is that all of the 
indicators’ variance should be used to estimate the model relationships, with 
particular focus on prediction of the dependent variables (e.g., McDonald,  
1996). In contrast, CB-SEM divides the total variance into three types— 
common, unique, and error variance—but utilizes only common variance (i.e., 
the variance shared with other indicators in the same measurement model) in the 
model estimation (Hair, Black, Babin, & Anderson, 2019). That is, CB-SEM only 
explains the covariation between the indicators (Jöreskog, 1973) and does not focus 
on predicting dependent variables (Hair, Matthews, Matthews, & Sarstedt, 2017).

Note that PLS-SEM is similar but not equivalent to PLS regression, another 
popular multivariate data analysis technique (Abdi, 2010; Wold, Sjöström, & 
Eriksson, 2001). PLS regression is a regression-based approach that explores the 
linear relationships between multiple independent variables and a single or multi-
ple dependent variable(s). PLS regression differs from regular regression, however, 
because in developing the regression model, it derives composite factors from the 
multiple independent variables by means of principal component analysis. PLS-
SEM, on the other hand, relies on prespecified networks of relationships between 
constructs as well as between constructs and their measures (see Mateos-Aparicio, 
2011, for a more detailed comparison between PLS-SEM and PLS regression).

CONSIDERATIONS  
WHEN APPLYING PLS-SEM
Key Characteristics of the PLS-SEM Method

Several considerations are important when deciding whether or not to apply 
PLS-SEM. These considerations also have their roots in the method’s character-
istics. The statistical properties of the PLS-SEM algorithm have important fea-
tures associated with the characteristics of the data and model used. Moreover, 
the properties of the PLS-SEM method affect the evaluation of the results. There 
are four critical issues relevant to the application of PLS-SEM (Hair, Ringle, 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  19

& Sarstedt, 2011; Hair, Risher, Sarstedt, & Ringle, 2019): (1) data characteris-
tics, (2) model characteristics, (3) model estimation, and (4) model evaluation. 
Exhibit 1.6 summarizes the key characteristics of the PLS-SEM method. An 
initial overview of these issues is provided in this chapter, and a more detailed 
explanation is provided in later chapters of the book, particularly as they relate 
to the PLS-SEM algorithm and evaluation of results.

EXHIBIT 1.6  ■  Key Characteristics of PLS-SEM

Data Characteristics

Sample size •• Neglectable identification issues with small 
sample sizes

•• Achieves high levels of statistical power with small 
sample sizes

•• Larger sample sizes increase the precision (i.e., 
consistency) of PLS-SEM estimations

Distribution •• No distributional assumptions; PLS-SEM is a 
nonparametric method

•• Influential outliers and collinearity may influence 
the results

Missing values •• Highly robust as long as missing values are below a 
reasonable level (less than 5%)

Scale of measurement •• Works with metric data and quasi-metric (ordinal) 
scaled variables

•• The standard PLS-SEM algorithm also 
accommodates binary coded variables, but 
additional considerations are required when 
they are used as control variables, moderators, 
and in the analysis of data from discrete choice 
experiments

Model Characteristics

Number of items 
in each construct’s 
measurement model

•• Handles constructs measured with single- and 
multi-item measures

Relationships between 
constructs and their 
indicators

•• Easily incorporates reflective and formative 
measurement models

(Continued)
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20  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

Model Characteristics

Model complexity •• Handles complex models with many structural 
model relationships

Model setup •• No causal loops (no circular relationships) are 
allowed in the structural model

Model Estimation

Objective •• Aims at maximizing the amount of unexplained 
variance in the dependent measures (i.e., 
maximizes the R² values)

Efficiency •• Converges after a few iterations (even in situations 
with complex models and/or large sets of data) to 
the optimum solution (i.e., the algorithm is very 
efficient)

Nature of constructs •• Viewed as proxies of the latent concept under 
investigation, represented by composites

Construct scores •• Estimated as linear combinations of their 
indicators (i.e., they are determinate)

•• Used for predictive purposes

•• Can be used as input for subsequent analyses

•• Not affected by data limitations and  
inadequacies

Parameter estimates •• Structural model relationships are generally 
underestimated, and measurement model 
relationships are generally overestimated when 
solutions are obtained using data from common 
factor models

•• Unbiased and consistent when estimating data 
from composite models

•• High levels of statistical power compared to 
alternative methods such as CB-SEM

Model Evaluation

Evaluation of the 
overall model

The concept of fit—as defined in CB-SEM—does not 
apply to PLS-SEM. Efforts to introduce model fit 
measures have generally proven unsuccessful

EXHIBIT 1.6  ■  (Continued)

(Continued)
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Chapter 1 ■ An Introduction to Structural Equation Modeling  21

Model Evaluation

Evaluation of the 
measurement models

•• Reflective measurement models are assessed 
on the grounds of indicator reliability, internal 
consistency reliability, convergent validity, and 
discriminant validity

•• Formative measurement models are assessed 
on the grounds of convergent validity, indicator 
collinearity, and the significance and relevance of 
indicator weights

Evaluation of the 
structural model

•• Collinearity among sets of predictor  
constructs

•• Significance and relevance of path coefficients

•• Criteria to assess the model’s in-sample (i.e., 
explanatory) power and out-of-sample predictive 
power (PLSpredict)

Additional analyses •• Methodological research has substantially 
extended the original PLS-SEM method by 
introducing advanced modeling, assessment, and 
analysis procedures. Some examples include:

{{ Confirmatory tetrad analysis

{{ Discrete choice modeling

{{ Endogeneity assessment

{{ Higher-order constructs

{{ Latent class analysis

{{ Measurement model invariance

{{ Mediation analysis

{{ Model selection

{{ Moderating effects

{{ Multigroup analysis

{{ Necessary condition analysis

{{ Nonlinear effects

Source: Adapted and extended from Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: 
Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–151. Copyright © 2011 by 
M. E. Sharpe, Inc. Reprinted with permission of the publisher (Taylor & Francis Ltd., http://www 
.tandfonline.com).

EXHIBIT 1.6  ■  (Continued)
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22  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

PLS-SEM works efficiently with small sample sizes and complex models  
(Cassel, Hackl, & Westlund, 1999; Chin, 2010). In addition, different from 
maximum likelihood–based CB-SEM, which requires normally distributed data, 
PLS-SEM makes no distributional assumptions (i.e., it is nonparametric). PLS-
SEM can easily handle reflective and formative measurement models, as well as 
single-item constructs, with no identification problems. It can therefore be applied 
in a wide variety of research situations. When applying PLS-SEM, researchers 
also benefit from high efficiency in parameter estimation, which is manifested in 
the method’s greater statistical power compared to CB-SEM. Greater statisti-
cal power means that PLS-SEM is more likely to render a specific relationship 
significant when it is in fact present in the population. The same holds for the 
comparison with regression based on sum scores, which lags behind PLS-SEM in 
terms of statistical power (Hair, Hult, Ringle, Sarstedt, & Thiele, 2017).

There are, however, several limitations of PLS-SEM. In its basic form, the 
technique cannot be applied when structural models contain causal loops or cir-
cular relationships between the latent variables (i.e., non-recursive models). Early 
extensions of the basic PLS-SEM algorithm that have not yet been implemented 
in standard PLS-SEM software packages, however, enable handling of circular 
relationships (Lohmöller, 1989). Furthermore, since PLS-SEM does not have an 
established global goodness-of-fit measure, its use for theory testing and con-
firmation is more limited in certain situations. Recent research has attempted 
to promote common goodness-of-fit measures within a PLS-SEM frame-
work (Schuberth, Henseler, & Dijkstra, 2018), but with very limited success. 
The concept of model fit—as defined in CB-SEM—is not applicable to PLS-
SEM because of the methods’ differing functioning principles (see Chapter 6  
for details). Instead, PLS-SEM-based model estimation and assessment follows a 
causal–predictive paradigm, where the aim is to test the predictive power in the 
confinements of a model carefully developed on the ground of theory and logic. 
The underlying causal–predictive logic follows what Gregor (2006) refers to as 
explaining and predicting (EP) theories. EP theories imply an understanding 
of the underlying causes and prediction as well as description of theoretical con-
structs and their relationships. According to Gregor (2006, p. 626), this type of 
theory “corresponds to commonly held views of theory in both the natural and 
social sciences.” Numerous seminal theories and models such as Oliver’s (1980) 
expectation–disconfirmation theory or the various technology acceptance mod-
els (e.g., Davis, 1989; Venkatesh, Morris, Davis, & Davis, 2003) follow an EP–
theoretic approach in that they aim to explain and predict. PLS-SEM is perfectly 
suited to investigate models derived from EP theories as the method strikes a 
balance between machine learning methods, which are fully predictive in nature, 
and CB-SEM, which focuses on confirmation and model fit (Richter, Cepeda-
Carrión, Roldán, & Ringle, 2016). Its causal–predictive nature makes PLS-SEM 
particularly appealing for research in fields that aim to derive recommendations 
for practice. For example, recommendations in managerial implications sections 
that populate business research journals always come in the form of predictive 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  23

statements (“our results suggest that managers should . . .”). Making such state-
ments requires a prediction focus in model estimation and evaluation. PLS-SEM 
perfectly emphasizes this need as the method sheds light on the mechanisms (i.e., 
the structural model relationships) through which the predictions were generated 
(Hair, 2020; Hair & Sarstedt, 2019, 2021b).

In early writing, researchers noted that PLS estimation is “deliberately approxi-
mate” to factor-based SEM (Hui & Wold 1982, p. 127), a characteristic that has 
come to be known as the PLS-SEM bias (e.g., Chin, Marcoulin, & Newsted, 
2003). A number of studies have used simulations to demonstrate the alleged PLS-
SEM bias (e.g., Goodhue, Lewis, & Thompson, 2012; McDonald, 1996; Rönkkö 
& Evermann, 2013), which manifests itself in measurement model estimates that 
are higher, while structural model estimates that are lower compared to the pre-
specified values. The studies conclude that parameter estimates will approach what 
has been labeled the “true” parameter values when both the number of indica-
tors per construct and sample size increase (Hui & Wold, 1982). However, all 
these simulation studies used CB-SEM as the benchmark against which the PLS-
SEM estimates were evaluated with the assumption that they should be the same. 
Because PLS-SEM is a composite-based approach, which uses the total variance 
to estimate parameters, biases can be expected in such an assessment (Lohmöller, 
1989; Schlittgen, Sarstedt, & Ringle, 2020; Schneeweiß, 1991). Not surprisingly, 
the very same issues apply when composite models are used to estimate CB-SEM 
results. In fact, Sarstedt, Hair, Ringle, Thiele, and Gudergan (2016) show that the 
biases produced by CB-SEM are far more severe than those of PLS-SEM, when 
applying the method to the wrong type of model (i.e., estimating composite mod-
els with CB-SEM vs. estimating common factor models with PLS-SEM). When 
acknowledging the different nature of the construct measures, most of the criti-
cism voiced by critics of the PLS-SEM method (Rönkkö, McIntosh, Antonakis, 
& Edwards, 2016) are no longer an issue (Cook & Forzani, 2020). Apart from 
these conceptual concerns, simulation studies show that the differences between 
PLS-SEM and CB-SEM estimates when assuming the latter as a standard of com-
parison are very small, provided that measurement models meet minimum recom-
mended standards in terms of measurement quality (i.e., reliability and validity). 
Specifically, when the measurement models have four or more indicators and indi-
cator loadings meet the common standards (≥0.70), there is practically no differ-
ence between the two methods in terms of parameter accuracy (e.g., Reinartz, 
Haenlein, & Henseler, 2009; Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). 
Thus, the extensively discussed PLS-SEM bias is of no practical relevance for the 
vast majority of applications (e.g., Binz Astrachan, Patel, & Wanzenried, 2014).

Finally, methodological research has substantially extended the original PLS-
SEM method by introducing advanced modeling, assessment, and analysis pro-
cedures. Examples include different types of robustness checks (Sarstedt, Ringle  
et al., 2020), discrete choice modeling (Hair, Ringle et al., 2018), necessary 
condition analysis (Richter, Schubring, Hauff, Ringle, & Sarstedt, 2020), out-
of-sample prediction metrics (Hair, 2020), endogeneity assessment (Hult et al., 
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2018), and higher-order constructs (Sarstedt, Hair, Cheah, Becker, & Ringle, 
2019). Chapter 8 and Hair, Sarstedt, Ringle, and Gudergan (2018) offer an intro-
duction into several of these advanced issues.

In the following, we discuss aspects related to data characteristics (e.g., 
minimum sample size requirements) and model characteristics (e.g., model 
complexity).

Data Characteristics

Data characteristics, such as minimum sample size requirements, nonnor-
mal data, and scales of measurement (i.e., the use of different scale types), are 
among the most often stated reasons for applying PLS-SEM across numerous 
disciplines (e.g., Ghasemy, Teeroovengadum, Becker, & Ringle, 2020; Hair, 
Sarstedt, Ringle, & Mena, 2012; Ringle, Sarstedt, Mitchell, & Gudergan, 2020). 
While some of the arguments are consistent with the method’s capabilities, others 
are not. In the following sections, we discuss these and related data characteristics.

Minimum Sample Size Requirements
Small sample size is probably the most often misused argument for using  

PLS-SEM, with some researchers considering unacceptably low sample sizes 
(Goodhue et al., 2012; Marcoulides & Saunders, 2006). These researchers often-
times believe there is some “magic” in the PLS-SEM approach that allows them 
to use a very small sample (e.g., less than 100) to obtain results representing the 
effects that exist in a population of several million elements or individuals. No 
multivariate analysis technique, including PLS-SEM, has this kind of “magic” 
capabilities (Petter, 2018).

PLS-SEM can certainly be used with smaller samples, but the population’s 
nature determines the situations in which small sample sizes are acceptable 
(Rigdon, 2016). For example, in business-to-business research, populations are 
often restricted in size. Assuming that other situational characteristics are equal, 
the more heterogeneous the population, the larger the sample size needed to 
achieve an acceptable sampling error (Cochran, 1977). If basic sampling theory  
guidelines are not considered (Sarstedt, Bengart, Shaltoni, & Lehmann, 2018), 
questionable results are produced.

In addition, when applying multivariate analysis techniques, the technical 
dimension of the sample size becomes relevant. Adhering to the minimum sample 
size guidelines ensures the results of a statistical method such as PLS-SEM have 
adequate statistical power. In these regards, an insufficient sample size may not 
reveal an effect that exists in the underlying population (which results in commit-
ting a type II error). Moreover, executing statistical analyses based on minimum 
sample size guidelines will ensure the results of the statistical method are robust 
and the model is generalizable to another sample from that same population. 
Thus, an insufficient sample size may lead to PLS-SEM results that differ from 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  25

those of another sample. In the following, we focus on the PLS-SEM method and 
its technical requirements of the minimum sample size.

The overall complexity of a structural model has little influence on the sample 
size requirements for PLS-SEM. The reason is the PLS-SEM algorithm does 
not compute all relationships in the structural model at the same time. Instead, 
it uses ordinary least squares regressions to estimate the model’s partial regres-
sion relationships. Two early studies systematically evaluated the performance 
of PLS-SEM with small sample sizes and concluded that the method performed 
well (e.g., Chin & Newsted, 1999; Hui & Wold, 1982). Subsequent simula-
tion studies by, for example, Hair, Hult, Ringle, Sarstedt, and Thiele (2017) and 
Reinartz, Haenlein, and Henseler (2009) indicate that PLS-SEM is the method 
of choice when the sample size is small. Moreover, compared with its covariance-
based counterpart, PLS-SEM has higher levels of statistical power in situations 
with complex model structures and smaller sample sizes. Similarly, Henseler 
et al. (2014) show that solutions can be obtained with PLS-SEM when other 
methods such as CB-SEM do not converge or provide inadmissible solutions. 
For instance, problems often are encountered when using CB-SEM on complex 
models, especially when the sample size is limited. Finally, CB-SEM suffers from 
identification and convergence issues when formative measures are involved (e.g., 
Diamantopoulos & Riefler, 2011).

Unfortunately, some researchers believe that sample size considerations do not 
play a role in the application of PLS-SEM. This idea has been fostered by the 
often-cited 10 times rule (Barclay, Higgins, & Thompson, 1995), which suggests 
the sample size should be equal to 10 times the number of independent variables 
in the most complex regression in the PLS path model (i.e., considering both 
measurement and structural models). This rule of thumb is equivalent to saying 
the minimum sample size should be 10 times the maximum number of arrow-
heads pointing at a latent variable anywhere in the PLS path model. While this 
rule offers a rough guideline, the minimum sample size requirement should con-
sider the statistical power of the estimates. To assess statistical power, research-
ers can consider power tables (Cohen, 1992) or power analyses using programs 
such as G*Power (Faul, Erdfelder, Buchner, & Lang, 2009), which is available 
free of charge at http://www.gpower.hhu.de/. These approaches do not explicitly 
consider the entire model but use the most complex regression in the (formative) 
measurement models and structural model of a PLS path model as point of refer-
ence for assessing the statistical power. In doing so, researchers typically aim at 
achieving a power level of 80%. However, the minimum sample size resulting 
from these calculations may still be too small (Kock & Hadaya, 2018).

Addressing these concerns, Kock and Hadaya (2018) proposed the inverse 
square root method, which considers the probability that the ratio of a path 
coefficient and its standard error will be greater than the critical value of a test 
statistic for a specific significance level. Therefore, the results for the technically 
required minimum sample size depend on only one path coefficient and do not 
depend on the size of the most complex regression in the model. Assuming a 
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26  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

common power level of 80% and significance levels of 1%, 5%, and 10%, the 
minimum sample size (nmin) is given by the following equations, where pmin is 
the value of the path coefficient with the minimum magnitude in the PLS path 
model, which is expected to be statistically significant:

Significance level 3.168
min

min

= >








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% : n
p
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For example, assuming a significance level of 5% and a minimum path  
coefficient of 0.2, the minimum sample size is given by

nmin 154.505> 





 =

2 486
0 2

2.
.

This result needs to be rounded to the next integer, so the minimum sample 
size is 155.

The inverse square root method is rather conservative in that it slightly over-
estimates the sample size required to render an effect significant at a given power 
level. Most importantly, the method stands out due to its ease of use as it can be 
readily implemented.

Nevertheless, two considerations are important when using the inverse square 
root method. First, by using the smallest statistical path coefficient as point of 
reference, the method can be misleading as researchers will not expect marginal 
effects to be significant. For example, assuming a 5% significance level and a 
minimum path coefficient of 0.01 would require a sample size of 61,802! Hence, 
researchers should choose a higher path coefficient as input, either depending on 
whether the model produces overall weak or strong effects or depending on the 
smallest relevant (to be detected) effect.

Second, by relying on model estimates, the inverse square root method follows 
a retrospective approach. Such an assessment can be used as a basis for additional 
data collection or adjustments in the model. If possible, however, researchers 
should follow a prospective approach by trying to derive the minimum expected 
effect size prior to data analysis. To do so, researchers can draw on prior research 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  27

involving a comparable conceptual background or models with similar complex-
ity or, preferably, the results of a pilot study, which tested the hypothesized model 
using a smaller sample of respondents from the same population. For example, if 
the pilot study produced a minimum path coefficient of 0.15, this value should 
be chosen as input for computing the required sample size for the main study. 
In most cases, however, researchers have only limited information regarding the 
expected effect sizes, even if a pilot study has been conducted. Hence, it is reason-
able to consider ranges of effect sizes rather than specific values to determine the 
sample size required for a specific study. Exhibit 1.7 shows the minimum sample 
size requirement for different significance levels and varying ranges of pmin. In 
deriving the minimum sample size, it is reasonable to consider the upper bound-
ary of the effect range as reference as the inverse square root method is rather 
conservative. For example, when assuming that the minimum path coefficient 
expected to be significant is between 0.11 and 0.20, one would need approxi-
mately 155 observations to render the corresponding effect significant at 5%. 
Similarly, if the minimum path coefficient expected to be significant is between 
0.31 and 0.40, then the recommended sample size would be 39.

EXHIBIT 1.7  ■   Minimum Sample Sizes for Different Levels of Minimum 
Path Coefficients (pmin) and Significance Levels

pmin

Significance level

1% 5% 10%

0.05–0.1 1,004 619 451

0.11–0.2 251 155 113

0.21–0.3 112 69 51

0.31–0.4 63 39 29

0.41–0.5 41 25 19

Missing Value Treatment
As with other statistical analyses, missing values should be dealt with when 

using PLS-SEM. For reasonable limits (i.e., less than 5% values missing per  
indicator), missing value treatment options such as mean replacement, EM 
(expectation–maximization algorithm), and nearest neighbor (e.g., Hair, Black, 
Babin, & Anderson, 2019) generally result in only slightly different PLS-SEM 
estimates. Alternatively, researchers can opt for deleting all observations with 
missing values, which decreases variation in the data and may introduce biases 
when certain groups of observations have been deleted systematically.
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Nonnormal Data
The use of PLS-SEM has two other key advantages related to data character-

istics (i.e., distribution and scales). In situations where it is difficult or impossible 
to meet the stricter requirements of more traditional multivariate techniques (e.g., 
normal data distribution), PLS-SEM is the preferred method. PLS-SEM’s greater 
flexibility is described by the label “soft modeling,” coined by Wold (1982), who 
developed the method. It should be noted, however, that “soft” is attributed only 
to the distributional assumptions and not to the concepts, models, or estima-
tion techniques (Lohmöller, 1989). PLS-SEM’s statistical properties provide very 
robust model estimations with data that have normal as well as extremely non-
normal distributional properties (Hair, Hult, Ringle, Sarstedt, & Thiele, 2017; 
Reinartz, Haenlein, & Henseler, 2009). It must be remembered, however, that 
influential outliers and collinearity do influence the ordinary least squares regres-
sions in PLS-SEM, and researchers should evaluate the data and results for these 
issues (Hair, Black, Babin, & Anderson, 2019).

Scales of Measurement
The PLS-SEM algorithm generally requires variables to be measured on a  

metric scale (ratio or interval measurement) for the measurement model indica-
tors. But the method also works well with ordinal scales with equidistant data 
points (i.e., quasi-metric scales; Sarstedt & Mooi, 2019; Chapter 3.6) and with 
binary coded data. The use of binary coded data is often a means of including 
categorical control variables or moderators in PLS-SEM models. In short, binary 
indicators can be included in PLS-SEM models but require special attention. For 
example, using PLS-SEM in discrete choice experiments where the aim is to pre-
dict a binary dependent variable requires specific designs and estimation routines 
(Hair, Ringle et al., 2019).

Secondary Data
Secondary data are data that have already been gathered, often for a differ-

ent research purpose and some time ago (Sarstedt & Mooi, 2019; Chapter 3.2.1).  
Secondary data are increasingly available to explore real-world phenomena. 
Research based on secondary data typically focuses on a different objective than 
in a standard CB-SEM analysis, which is strictly confirmatory in nature. More 
precisely, secondary data are mainly used in exploratory research to propose causal 
relationships in situations that have little clearly defined theory (Hair, Risher, 
Sarstedt, & Ringle, 2019; Hair, Hollingsworth, Randolph, & Chong, 2017). 
Such settings require researchers to place greater emphasis on examining all pos-
sible relationships rather than achieving model fit (Nitzl, 2016). By its nature, this 
process creates large, complex models that cannot be analyzed with the CB-SEM 
method. In contrast, due to its less stringent requirements on the data, PLS-SEM 
offers the flexibility needed for the interplay between theory and data (Nitzl, 
2016). Or, as Wold (1982, p. 29) notes, “soft modeling is primarily designed for 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  29

research contexts that are simultaneously data-rich and theory-skeletal.” Further-
more, the increasing popularity of secondary data analysis (e.g., by using data 
that stem from company databases, social media, customer tracking, national 
statistical bureaus, or publicly available survey data) shifts the research focus from 
strictly confirmatory to predictive and causal–predictive modeling. Such research 
settings are a perfect fit for the prediction-oriented PLS-SEM approach (also see 
Gefen, Rigdon, & Straub, 2011).

PLS-SEM also proves valuable for analyzing secondary data from a mea-
surement theory perspective. First, unlike survey measures, which are usually 
crafted to confirm a well-developed theory, measures used in secondary data 
sources are typically not created and refined over time for confirmatory analyses. 
Thus, achieving model fit is very unlikely with secondary data measures in most 
research situations when using CB-SEM. Second, researchers who use secondary 
data do not have the opportunity to revise or refine the measurement model to 
achieve fit. Third, a major advantage of PLS-SEM when using secondary data is 
that it permits the unrestricted use of single-item and formative measures. This  
is extremely valuable for research involving secondary data, because many mea-
sures included in corporate databases are artifacts, such as financial ratios and 
other firm-fixed factors (Henseler, 2017b). Such artifacts typically are reported 
in the form of formative indices whose estimation dictates the use of PLS-SEM.

Exhibit 1.8 summarizes key considerations related to data characteristics.

EXHIBIT 1.8  ■  Data Considerations When Applying PLS-SEM

•• The 10 times rule is not a reliable indication of sample size requirements in 
PLS-SEM. Statistical power analyses provide a more reliable minimum sample 
size estimate. Researchers can also draw on the inverse square root method 
as a more conservative way of assessing minimum sample size requirements.

•• When the construct measures meet recommended guidelines in terms of 
reliability and validity, results from CB-SEM and PLS-SEM are generally very 
similar.

•• PLS-SEM can handle extremely nonnormal data (e.g., data with high levels of 
skewness).

•• Due to its flexibility in handling different data and measurement types,  
PLS-SEM is the method of choice when analyzing secondary data.

•• Most missing value treatment procedures (e.g., mean replacement, pairwise 
deletion, EM, and nearest neighbor) can be used for reasonable levels of 
missing data (less than 5% missing per indicator) with limited effect on the 
analysis results.

•• PLS-SEM works with metric, quasi-metric, and categorical (i.e., dummy-coded) 
scaled data, although there are certain limitations. Processing of data from 
discrete choice experiments requires specific designs and estimation routines.
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Model Characteristics

PLS-SEM is very flexible in its modeling properties. In its basic form, the 
PLS-SEM algorithm requires all models to be without circular relationships 
or loops of relationships between the latent variables in the structural model. 
Although causal loops are sometimes specified in business research, this charac-
teristic does not limit the applicability of PLS-SEM as Lohmöller’s (1989) exten-
sions of the basic PLS-SEM algorithm allow for handling such model types. 
Other model specification requirements that constrain the use of CB-SEM, such 
as distribution assumptions, are generally not relevant with PLS-SEM.

Measurement model difficulties are one of the major obstacles to obtain-
ing a solution with CB-SEM. For instance, estimation of complex models with 
many latent variables and/or indicators is often impossible with CB-SEM. In 
contrast, PLS-SEM can be used in such situations since it is not constrained by 
identification and other technical issues. Consideration of reflective and forma-
tive measurement models is a key issue in the application of SEM (Bollen &  
Diamantopoulos, 2017). PLS-SEM can easily handle both formative and reflec-
tive measurement models and is considered the primary approach when the 
hypothesized model incorporates formative measures. CB-SEM can accommo-
date formative indicators, but to ensure model identification, they must fol-
low distinct specification rules (Diamantopoulos & Riefler, 2011). In fact, the 
requirements often prevent running the analysis as originally planned. In con-
trast, PLS-SEM does not have such requirements and handles formative mea-
surement models without any limitation. This also applies to model settings 
in which endogenous constructs are measured formatively. The applicability of 
CB-SEM to such model settings has been subject to considerable debate (Cado-
gan & Lee, 2013; Rigdon, 2014a), but due to PLS-SEM’s multistage estima-
tion process (Chapter 3), which separates measurement from structural model 
estimation, the inclusion of formatively measured endogenous constructs is not 
an issue in PLS-SEM (Rigdon et al., 2014). The only problematic issue is when 
a high level of collinearity exists between the indicator variables of a formative 
measurement model.

Different from CB-SEM, PLS-SEM facilitates easy specification of interac-
tion terms to map moderation effects in a path model. This makes PLS-SEM the 
method of choice in simple moderation models and more complex conditional 
process models, which combine moderation and mediation effects (Sarstedt, Hair 
et al., 2020). Similarly, higher-order constructs, which allow specifying a con-
struct simultaneously on different levels of abstraction (Sarstedt et al., 2019) can 
readily be implemented in PLS-SEM.

Finally, PLS-SEM is capable of estimating very complex models. For example, 
if theoretical or conceptual assumptions support large models and sufficient data 
are available (i.e., meeting minimum sample size requirements), PLS-SEM can 
handle models of almost any size, including those with dozens of constructs and 
hundreds of indicator variables. As noted by Wold (1985), PLS-SEM is virtually 
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Chapter 1 ■ An Introduction to Structural Equation Modeling  31

without competition when path models with latent variables are complex in their 
structural relationships (Chapter 3). Exhibit 1.9 summarizes rules of thumb for 
PLS-SEM model characteristics.

EXHIBIT 1.9  ■  Model Considerations When Choosing PLS-SEM

•• PLS-SEM offers much flexibility in handling different measurement model set-
ups. For example, PLS-SEM can handle reflective and formative measurement 
models as well as single-item measures without additional requirements or 
constraints.

•• The method allows for the specification of advanced model elements such as 
interaction terms and higher-order constructs.

•• Model complexity is generally not an issue for PLS-SEM. As long as 
appropriate data meet minimum sample size requirements, the complexity of 
the structural model is virtually unrestricted.

GUIDELINES FOR CHOOSING  
BETWEEN PLS-SEM AND CB-SEM
To answer the question of when to use PLS-SEM versus CB-SEM, researchers 
should focus on the characteristics and objectives that distinguish the two meth-
ods (Hair, Sarstedt, Ringle, & Mena, 2012). Broadly speaking, with its strong 
focus on model fit and in light of its extensive data requirements, CB-SEM is par-
ticularly suitable for testing a theory in the confinement of a concise theoretical 
model. However, if the primary research objective is prediction and explanation 
of target constructs (Rigdon, 2012), PLS-SEM should be given preference (Hair, 
Hollingsworth, Randolph, & Chong, 2017; Hair, Sarstedt, & Ringle, 2019).

Summarizing the previous discussions and drawing on Hair, Risher, Sarstedt, 
and Ringle (2019), Exhibit 1.10 displays the rules of thumb that can be applied 
when deciding whether to use CB-SEM or PLS-SEM. As can be seen, PLS-SEM 
is not recommended as a universal alternative to CB-SEM. Both methods differ 
from a statistical point of view, are designed to achieve different objectives, and 
rely on different philosophies of measurement. Neither of the techniques is gen-
erally superior to the other, and neither of them is appropriate for all situations  
(Petter, 2018). In general, the strengths of PLS-SEM are CB-SEM’s limitations 
and vice versa, although PLS-SEM is increasingly being applied for scale devel-
opment and confirmation (Hair, Howard, & Nitzl, 2020). It is important that 
researchers understand the different applications each approach was developed 
for—and to use them accordingly. Researchers need to apply the SEM technique 
that best suits their research objective, data characteristics, and model setup 
(Roldán & Sánchez-Franco, 2012).
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EXHIBIT 1.10  ■   Rules of Thumb for Choosing Between PLS-SEM  
and CB-SEM

Use PLS-SEM when

•• the analysis is concerned with testing a theoretical framework from a 
prediction perspective;

•• the structural model is complex and includes many constructs, indicators, 
and/or model relationships;

•• the research objective is to better understand increasing complexity by 
exploring theoretical extensions of established theories (exploratory research 
for theory development);

•• the path model includes one or more formatively measured constructs;

•• the research consists of financial ratios or similar types of artifacts;

•• the research is based on secondary data, which may lack a comprehensive 
substantiation on the grounds of measurement theory;

•• a small population restricts the sample size (e.g., business-to-business 
research), but PLS-SEM also works very well with large sample sizes;

•• distribution issues are a concern, such as lack of normality; or

•• the research requires latent variable scores for follow-up analyses.

Use CB-SEM when

•• the goal is theory testing and confirmation;

•• error terms require additional specification, such as the covariation;

•• the structural model has circular relationships; or

•• the research requires a global goodness-of-fit criterion.

Source: Adapted from Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and 
how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.

Copyright © 2019 by Emerald Publishing. Reprinted with permission of the publisher (Emerald 
Publishing; https://www.emeraldgrouppublishing.com).

ORGANIZATION OF  
REMAINING CHAPTERS
The remaining chapters provide more detailed information on PLS-SEM, includ-
ing specific examples of how to use software to estimate simple and complex PLS 
path models. In doing so, the chapters follow a multistage procedure that should 
be used as a blueprint when conducting PLS-SEM analyses (Exhibit 1.11).
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Chapter 1 ■ An Introduction to Structural Equation Modeling  33

EXHIBIT 1.11  ■  A Systematic Procedure for Applying PLS-SEM

Specifying the Structural Model

Specifying the Measurement Models

Collecting and Examining the Data

PLS Path Model Estimation

Assessing PLS-SEM Results of the
Reflective Measurement Models 

Assessing PLS-SEM Results of the
Formative Measurement Models 

Assessing PLS-SEM Results
of the Structural Model 

Advanced PLS-SEM Analyses

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5a

Stage 5b

Stage 6

Stage 7

Chapter 2

Chapter 2

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapters 7 
and 8

Interpretation of Results and 
Drawing Conclusions

Stage 8
Chapters 6,
7, and 8

Specifically, the process starts with the specification of structural and mea-
surement models, followed by the examination of data (Chapter 2). Next, we 
discuss the PLS-SEM algorithm and provide an overview of important consider-
ations when running the analyses (Chapter 3). On the basis of the results of the 
computation, researchers then have to evaluate the results. To do so, research-
ers must know how to assess both reflective and formative measurement models  
(Chapters 4 and 5). When the data for the measures are considered reliable and 
valid (based on established criteria), researchers can then evaluate the structural 

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



34  A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

model (Chapter 6). Chapter 7 covers the handling of mediating and moderating 
effects whose analysis has become standard in PLS-SEM research. On the basis 
of the results of Chapters 6 and 7, researchers interpret their findings and draw 
their final conclusions. Finally, Chapter 8 offers a brief overview of advanced 
techniques.

Summary

• Understand the meaning of structural equation modeling (SEM) and its 
relationship to multivariate data analysis. SEM is a second-generation 
multivariate data analysis method, which facilitates analyzing the 
relationships among constructs, each measured by one or more indicator 
variables. The primary advantage of SEM is its ability to measure complex 
model relationships while accounting for measurement error, inherent in the 
indicators. There are two types of SEM methods—CB-SEM and PLS-SEM. 
The two method types differ in the way they estimate the model parameters 
and their assumptions regarding the nature of measurement. Whereas 
CB-SEM considers the constructs as common factors, PLS-SEM considers the 
constructs as composites based on total variance, linearly formed by sets of 
indicator variables.

• Describe the basic considerations in applying multivariate data analysis.  
Several considerations are necessary when applying multivariate analysis, 
including the following five: (1) composite variables, (2) measurement,  
(3) measurement scales, (4) coding, and (5) data distributions. A composite 
variable (also called a variate) is a linear combination of several indicators 
that are chosen based on the research problem at hand. Measurement 
is the process of assigning numbers to a variable based on a set of rules. 
Multivariate measurement involves using several variables to indirectly 
measure a concept to improve measurement accuracy. The anticipated 
improved accuracy is based on the assumption that using several variables 
(indicators) to measure a single concept is more likely to represent all 
the different aspects of the concept and thereby result in a more valid 
measurement of the concept. The ability to identify measurement error using 
multivariate measurement also helps researchers obtain more accurate 
measurements. Measurement error is the difference between the true value 
of a variable and the value obtained by a measurement. A measurement scale 
is a tool with a predetermined number of closed-ended responses that can be 
used to obtain an answer to a question. There are four types of measurement 
scales: nominal, ordinal, interval, and ratio. When researchers collect 
quantitative data using scales, the answers to the questions can be  
shown as a distribution across the available (predefined) response  
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categories. The type of distribution must always be considered when  
working with SEM.

• Comprehend the basic concepts of partial least squares structural equation 
modeling (PLS-SEM). Path models are diagrams used to visually display the 
hypotheses and variable relationships that are examined when structural 
equation modeling is applied. Four basic elements must be understood 
when developing path models: (1) constructs, (2) measured variables, (3) 
relationships, and (4) error terms. Constructs (or latent variables) measure 
theoretical concepts that are not directly observable. They are represented 
in path models as circles or ovals. Measured variables are directly measured 
observations (raw data), generally referred to as either indicators or manifest 
variables, and are represented in path models as rectangles. Relationships 
represent hypotheses in path models and are shown as arrows that are single-
headed, indicating a predictive-causal relationship between the constructs. 
These relationships are derived from structural theory and logic. Depending 
on their role in the model, constructs are either exogenous or endogenous. 
Error terms represent the unexplained variance when path models are 
estimated and are present for endogenous constructs and reflectively 
measured indicators. Exogenous constructs and formative indicators do not 
have error terms. Measurement theory specifies how the constructs (latent 
variables) are measured. Latent variables can be specified as either reflective 
or formative.

• Explain the differences between covariance-based structural equation  
modeling (CB-SEM) and PLS-SEM, and when to use each. Compared to  
CB-SEM, PLS-SEM emphasizes prediction while simultaneously relaxing 
the demands regarding the data and specification of relationships. PLS-SEM 
aims at maximizing the endogenous latent variables’ explained variance by 
estimating partial model relationships in an iterative sequence of ordinary 
least squares regressions. In contrast, CB-SEM estimates model parameters 
such that the discrepancy between the estimated and sample covariance 
matrices is minimized. Instead of following a common factor model logic as 
CB-SEM does, PLS-SEM calculates composites of indicators that serve as 
proxies for the concepts under research. The method is not constrained by 
identification issues, even if the model becomes complex—a situation that 
typically restricts CB-SEM use—and does not require accounting for most 
distributional assumptions. Moreover, PLS-SEM can better handle formative  
measurement models and has advantages when sample sizes are relatively 
small and when analyzing secondary data. Researchers should consider the 
two SEM approaches as complementary and apply the SEM technique  
that best suits their research objective, data characteristics, and  
model setup.
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Review Questions

1.  What is multivariate analysis?

2. Describe the difference between first- and second-generation multivariate 
methods.

3. What is structural equation modeling?

4. What is the key difference in the common factor model and the composite 
model?

5. What is the value of structural equation modeling in understanding 
relationships between variables?

Critical Thinking Questions

1.  When would SEM methods be more advantageous than first-generation 
techniques, such as multivariate regression in understanding relationships 
between variables?

2. What are the most important considerations in deciding whether to use 
CB-SEM or PLS-SEM?

3. Under what circumstances is PLS-SEM the preferred method over CB-SEM?

4. Why is an understanding of theory important when deciding whether to use 
PLS-SEM or CB-SEM?

5. Why should social science researchers consider using SEM instead of multiple 
regression?

6. Why is PLS-SEM’s prediction focus a major advantage of the method?

Key Terms

10 times rule 25
Categorical scale 8
Coding 10
Common factor-based SEM 15
Composite-based SEM 16
Composite scores 8

Composite variable 6
Confirmatory 3
Constructs 7
Covariance-based structural 

equation modeling  
(CB-SEM) 4
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Endogenous latent variables 13
Equidistance 9
Error terms 13
Exogenous latent variables 13
Explaining and predicting (EP) 

theories 22
Exploratory 3
Factor (score) indeterminacy 17
First-generation techniques 3
Formative measurement model 14
Indicators 7
Inner model 13
Interval scale 9
Inverse square root method 25
Items 7
Latent variables 7
Manifest variables 7
Measurement 7
Measurement error 8
Measurement model 13
Measurement scale 8
Measurement theory 13
Metric scale 28
Metrological uncertainty 17
Minimum sample size 

requirements 24
Missing value treatment 27

Multivariate analysis 2
Nominal scale 8
Ordinal scale 9
Outer model 13
Partial least squares structural 

equation modeling  
(PLS-SEM) 2

Path model 12
PLS path modeling 4
PLS regression 18
PLS-SEM bias 23
R² value 18
Ratio scale 9
Reflective measurement  

model 14
Secondary data 28
Second-generation techniques 4
Single-item constructs 8
Statistical power 22
Structural equation modeling 

(SEM) 4
Structural model 13
Structural theory 13
Sum scores 16
Theory 13
Variance-based SEM 18
Variate 6
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