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THE LINEAR 
REGRESSION 
MODEL
The objective of Part I, which consists of five chapters, is to introduce the reader

to the “bread-and-butter” tool of econometrics, namely, the linear regression 
model.

Chapter 2 discusses the basic ideas of linear regression in terms of the simplest 
possible linear regression model, in particular, the two-variable model. We make 
an important distinction between the population regression model and the sample 
regression model and estimate the former from the latter. This estimation is done 
using the method of least squares, one of the popular methods of estimation.1

Chapter 3 considers hypothesis testing. As in any hypothesis testing in statistics, 
we try to find out whether the estimated values of the parameters of the regression 
model are compatible with the hypothesized values of the parameters. We do this 
hypothesis testing in the context of the classical linear regression model (CLRM). 
We discuss why the CLRM is used and point out that the CLRM is a useful start-
ing point. In Part II, we will reexamine the assumptions of the CLRM to see what 
happens to the CLRM if one or more of its assumptions are not fulfilled.

Chapter 4 extends the idea of the two-variable linear regression model developed 
in the previous two chapters to multiple regression models, that is, models having 
more than one explanatory variable. Although in many ways the multiple regres-
sion model is an extension of the two-variable model, there are differences when it 
comes to interpreting the coefficients of the model and in the hypothesis-testing 
procedure.

The linear regression model, whether two-variable or multivariable, only requires 
that the parameters of the model be linear; the variables entering the model need 
not themselves be linear.

1An alternative is the method of maximum likelihood (ML), which we do not discuss in this text because 
it is mathematically a bit complex. For an introduction to ML, see Damodar Gujarati, Econometrics by 
Example, 2nd ed., Palgrave-Macmillan, London, 2015, pp. 25−26.
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24  Essentials of Econometrics

Chapter 5 considers a variety of models that are linear in the parameters (or can 
be made so) but are not necessarily linear in the variables. With several illustrative 
examples, we point out how and where such models can be used.

Often the explanatory variables entering into a regression model are qualitative in 
nature, such as sex, race, and religion. Chapter 6 shows how such variables can be 
measured and how they enrich the linear regression model by taking into account the 
influence of variables that otherwise cannot be quantified. This chapter also considers 
briefly models in which the dependent variable is also dummy or qualitative.

Part I makes an effort to “wed” practice to theory. The availability of user-friendly 
regression packages allows you to estimate a regression model without knowing much 
theory, but remember the adage that “a little knowledge is a dangerous thing.” So even 
though theory may be boring, it is absolutely essential in understanding and interpret-
ing regression results. Besides, by omitting all mathematical derivations, we have made 
the theory “less boring.”
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2
BASIC IDEAS OF LINEAR 

REGRESSION

THE TWO-VARIABLE MODEL

In Chapter 1, we noted that in developing a model of an economic phenomenon 
(e.g., the law of demand), econometricians make heavy use of a statistical technique 

known as regression analysis. The purpose of this chapter and Chapter 3 is to intro-
duce the basics of regression analysis in terms of the simplest possible linear regres-
sion model, namely, the two-variable model. Subsequent chapters will consider various 
modifications and extensions of the two-variable model.

2.1 THE MEANING OF REGRESSION

As noted in Chapter 1, regression analysis is concerned with the study of the relation-
ship between one variable called the explained, or dependent, variable and one or 
more other variables called independent, or explanatory, variables.

Thus, we may be interested in studying the relationship between the quantity 
demanded of a commodity in terms of the price of that commodity, income of the 
consumer, and prices of other commodities competing with this commodity. Or, we 
may be interested in finding out how sales of a product (e.g., automobiles) are related 
to advertising expenditure incurred on that product. Or, we may be interested in 
finding out how defense expenditures vary in relation to the gross domestic product 
(GDP). In all these examples, there may be some underlying theory that specifies 
why we would expect one variable to be dependent or related to one or more other 
variables. In the first example, the law of demand provides the rationale for the 
dependence of the quantity demanded of a product on its own price and several 
other variables previously mentioned.

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



26  Part I ■ The Linear Regression Model

For notational uniformity, from here on we will let Y represent the dependent variable 
and X the independent, or explanatory, variable. If there is more than one explanatory 
variable, we will show the various Xs by the appropriate subscripts (X1, X2, X3, etc.).

It is very important to bear in mind the warning given in Chapter 1 that, although 
regression analysis deals with the relationship between a dependent variable and one 
or more independent variables, it does not necessarily imply causation; that is, it does not 
necessarily mean that the explanatory variables are the cause and the dependent vari-
able is the effect. If causality between the two exists, it must be justified on the basis 
of some (economic) theory. As noted earlier, the law of demand suggests that if all 
other variables are held constant, the quantity demanded of a commodity is (inversely) 
dependent on its own price. Here microeconomic theory suggests that the price may 
be the causal force and the quantity demanded the effect. Always keep in mind that 
regression does not necessarily imply causation. Causality must be justified, or inferred, 
from the theory that underlies the phenomenon that is tested empirically.

Regression analysis has one or more of the following objectives:

1. To estimate the mean, or average, value of the dependent variable, given the 
values of the explanatory variables.

2. To test hypotheses about the nature of the dependence—hypotheses suggested 
by the underlying economic theory. For example, in the demand function 
mentioned previously, we may want to test the hypothesis that the price 
elasticity of demand is, say, −1.0; that is, the demand curve has unitary 
price elasticity. If the price of the commodity goes up by 1%, the quantity 
demanded on the average goes down by 1%, assuming all other factors 
affecting demand are held constant.

3. To predict, or forecast, the mean value of the dependent variable, given the 
value(s) of the explanatory variable(s) beyond the sample range. Thus, in the 
SAT example discussed in the next section, we may wish to predict the average 
score on the critical reasoning part of the SAT for a group of students who 
know their scores on the math part of the test (see Table 2-1 on the website).

4. One or more of the preceding objectives combined.

2.2 THE POPULATION REGRESSION  
FUNCTION (PRF): A HYPOTHETICAL EXAMPLE

To illustrate what all this means, we will consider a concrete example. In the last 2 years 
of high school, most American teenagers take the SAT college entrance examination.  
The test consists of three sections: critical reasoning (formerly called the verbal section), 
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Chapter 2 ■ Basic Ideas of Linear Regression  27

mathematics, and an essay portion, each scored on a scale of 0 to 800. Since the essay 
portion is more difficult to score, we will focus primarily on the mathematics section. 
Suppose we are interested in finding out whether a student’s family income is related 
to how well students score on the mathematics section of the test. Let Y represent the 
math SAT score and X represent annual family income. The income variable has been 
broken into 10 classes: (<$10,000), ($10,000−$20,000), ($20,000−$30,000), . . . ,  
($80,000−$100,000), and (>$100,000). For simplicity, we have used the midpoints of 
each of the classes, estimating the last class midpoint at $150,000, for the analysis. Assume 
that a hypothetical population of 100 high school students is reported in Table 2-2.

Table 2-2 can be interpreted as follows: For an annual family income of $5,000, 
one student scored a 460 on the math section of the SAT; nine other students had 
similar family incomes, and their scores, together with the first student, averaged to 
452. For a family income of $15,000, one student scored a 480 on the section, and 
the average of 10 students in that income bracket was 475. The remaining columns 
are similar.

A scattergram of these data is shown in Figure 2-1. For this graph, the horizontal 
axis represents annual family income and the vertical axis represents the students’ 
math SAT scores. For each income level, there are several SAT scores; in fact, in this 

TABLE 2-2   Mathematics SAT Scores in Relation to Annual Family Income

Math SAT Scores

Family Income

Student $5,000 $15,000 $25,000 $35,000 $45,000 $55,000 $65,000 $75,000 $90,000 $150,000

 1 460 480 460 520 500 450 560 530 560 570

 2 470 510 450 510 470 540 480 540 500 560

 3 460 450 530 440 450 460 530 540 470 540

 4 420 420 430 540 530 480 520 500 570 550

 5 440 430 520 490 550 530 510 480 580 560

 6 500 450 490 460 510 480 550 580 480 510

 7 420 510 440 460 530 510 480 560 530 520

 8 410 500 480 520 440 540 500 490 520 520

 9 450 480 510 490 510 510 520 560 540 590

10 490 520 470 450 470 550 470 500 550 600

Mean 452 475 478 488 496 505 512 528 530 552
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28  Part I ■ The Linear Regression Model

instance, there are 10 recorded scores.2 The points connected with the line are the 
mean values for each income level. It seems as though there is a general upward trend 
in the math scores; higher income levels tend to be associated with higher math scores. 
This is especially evident with the connected open circles, representing the average 
scores per income level. These connected circles are formally called the conditional 
mean or conditional expected values (see Appendix B for details). Since we have 
assumed the data represent the population of score values, the line connecting the 
conditional means is called the population regression line (PRL). The PRL gives the 
average, or mean, value of the dependent variable (math SAT scores in this example) cor-
responding to each value of the explanatory variable (here, annual family income) in the 
population as a whole. Thus, corresponding to an annual income of $25,000, the aver-
age math SAT score is 478, whereas corresponding to an annual income of $45,000, 
the average math SAT score is 496. In short, the PRL tells us how the mean, or average, 
value of Y (or any dependent variable) is related to each value of X (or any explanatory 
variable) in the whole population.

Since the PRL in Figure 2-1 is approximately linear, we can express it mathematically 
in the following functional form:

 E(Y |Xi) = B1 + B2Xi (2.1)

2For simplicity, we are assuming there are 10 scores for each income level. In reality, there may be a very  
large number of scores for each X (income) value, and each income level need not have the same number of 
observations.

FIGURE 2-1  Annual family income ($) and math SAT score
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Chapter 2 ■ Basic Ideas of Linear Regression  29

which is the mathematical equation of a straight line. In Equation (2.1), E(Y | Xi) 
means the mean, or expected value, of Y corresponding to, or conditional upon, a given 
value of X. The subscript i refers to the ith subpopulation. Thus, in Table 2-2, E(Y | Xi 
= 5,000) is 452, which is the mean, or expected, value of Y in the first subpopulation 
(i.e., corresponding to X = $5,000).

The last row of Table 2-2 gives the conditional mean values of Y. It is very important to 
note that E(Y | Xi) is a function of Xi (linear in the present example). This means that 
the dependence of Y on X, technically called the regression of Y on X, can be defined sim-
ply as the mean of the distribution of Y values (as in Table 2-2), which has the given X.  
In other words, the population regression line (PRL) is a line that passes through the  
conditional means of Y. The mathematical form in which the PRL is expressed, such as 
Equation (2.1), is called the population regression function (PRF), as it represents 
the regression line in the population as a whole. In the present instance, the PRF is 
linear. (The more technical meaning of linearity is discussed in Section 2.6.)

In Equation (2.1), B1 and B2 are called the parameters, also known as the regression 
coefficients. B1 is also known as the intercept (coefficient) and B2 as the slope (coef-
ficient). The slope coefficient measures the rate of change in the (conditional) mean value of 
Y per unit change in X. If, for example, the slope coefficient (B2) were 0.001, it would 
suggest that if annual family income were to increase by a dollar, the (conditional) 
mean value of Y would increase by 0.001 points. Because of the scale of the variables, 
it is easier to interpret the results for a one-thousand-dollar increase in annual family 
income; for each one-thousand-dollar increase in annual family income, we would 
expect to see a 1-point increase in the (conditional) mean value of the math SAT score. 
B1 is the (conditional) mean value of Y if X is zero; it gives the average value of the 
math SAT score if the annual family income were zero. We will have more to say about 
this interpretation of the intercept later in the chapter.

How do we go about finding the estimates, or numerical values, of the intercept and 
slope coefficients? We explore this in Section 2.8.

Before moving on, a word about terminology is in order. Since in regression analysis, 
as noted in Chapter 1, we are concerned with examining the behavior of the dependent 
variable conditional upon the given values of the explanatory variable(s), our approach to 
regression analysis can be termed conditional regression analysis.3 As a result, there is 

3The fact that our analysis is conditional on X does not mean that X causes Y. It is just that we want to see the 
behavior of Y in relation to an X variable that is of interest to the analyst. For example, when the Federal 
Reserve Bank (the Fed) changes the federal funds rate, it is interested in finding out how the economy 
responds. During the economic crisis of 2008 in the United States, the Fed reduced the federal funds rate 
several times to resuscitate the ailing economy. One of the key determinants of the demand for housing is the 
mortgage interest rate. It is therefore of great interest to prospective homeowners to track the mortgage inter-
est rates. When the Fed reduces the federal funds rate, all other interest rates follow suit.
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30  Part I ■ The Linear Regression Model

no need to use the adjective conditional all the time. Therefore, in the future, expressions 
like E (Y | Xi) will be simply written as E (Y), with the explicit understanding that the 
latter in fact stands for the former. Of course, where there is cause for confusion, we will 
use the more extended notation.

2.3 STATISTICAL OR STOCHASTIC 
SPECIFICATION OF THE POPULATION 
REGRESSION FUNCTION

As we just discussed, the PRF gives the average value of the dependent variable  
corresponding to each value of the explanatory variable. Let us take another look at  
Table 2-2. We know, for example, that corresponding to X = $75,000, the average Y is  
528 points. But if we pick one student at random from the 10 students corresponding to 
this income, we know that the math SAT score for that student will not necessarily be 
equal to the mean value of 528. To be concrete, take the last student in this group. His or 
her math SAT score is 500, which is below the mean value. By the same token, if you take 
the first student in that group, his or her score is 530, which is above the average value.

How do you explain the score of an individual student in relation to income? The best 
we can do is to say that any individual’s math SAT score is equal to the average for that 
group plus or minus some quantity. Let us express this mathematically as

 Yi = B1 + B2Xi + ui (2.2)

where u is known as the stochastic, or random, error term, or simply the error 
term.4 We have already encountered this term in Chapter 1. The error term is a ran-
dom variable (r.v.), for its value cannot be controlled or known a priori. As we know 
from Appendix A, an r.v. is usually characterized by its probability distribution (e.g., 
the normal or the t distribution).

How do we interpret Equation (2.2)? We can say that a student’s math SAT score, 
say, the ith individual, corresponding to a specific family income can be expressed as 
the sum of two components. The first component is (B1 + B2Xi), which is simply the 
mean, or average, math score in the ith subpopulation, that is, the point on the PRL 
corresponding to the family income. This component may be called the systematic, or 
deterministic, component. The second component is ui, which may be called the non-
systematic, or random, component (i.e., determined by factors other than income). The 
error term ui is also known as the noise component.

4The word stochastic comes from the Greek word stokhos, meaning a “bull’s eye.” The outcome of throwing 
darts onto a dartboard is a stochastic process, that is, a process fraught with misses. In statistics, the word 
implies the presence of a random variable—a variable whose outcome is determined by a chance experiment.
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Chapter 2 ■ Basic Ideas of Linear Regression  31

To see this clearly, consider Figure 2-2, which is based on the data of Table 2-2.

As this figure shows, at annual family income = $5,000, one student scores 470 on the 
test, whereas the average math score at this income level is 452. Thus, this student’s 
score exceeds the systematic component (i.e., the mean for the group) by 18 points. So, 
his or her u component is +18 units. On the other hand, at income = $75,000, a ran-
domly chosen second student scores 500 on the math test, whereas the average score 
for this group is 528. This person’s math score is less than the systematic component 
by 28 points; his or her u component is thus −28.

Equation (2.2) is called the stochastic (or statistical) PRF, whereas Equation (2.1) is 
called the deterministic, or nonstochastic, PRF. The latter represents the means of 
the various Y values corresponding to the specified income levels, whereas the former 
tells us how individual math SAT scores vary around their mean values due to the 
presence of the stochastic error term, u.

What is the nature of the u term?

2.4 THE NATURE OF  
THE STOCHASTIC ERROR TERM

1. The error term may represent the influence of those variables that are not 
explicitly included in the model. For example, in our math SAT scenario, it 
may very well represent influences, such as a person’s wealth, the area where he 

FIGURE 2-2  Math SAT scores in relation to family income
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32  Part I ■ The Linear Regression Model

or she lives, high school grade point average (GPA), or math courses  
taken in school.

2. Even if we included all the relevant variables determining the math test score, 
some intrinsic randomness in the math score is bound to occur that cannot be 
explained no matter how hard we try. Human behavior, after all, is not totally 
predictable or rational. Thus, u may reflect this inherent randomness in human 
behavior.

3. u may also represent errors of measurement. For example, the data on annual 
family income may be rounded or the data on math scores may be suspect 
because in some communities, few students plan to attend college and 
therefore don’t take the test.

4. The principle of Ockham’s razor—that descriptions be kept as simple as possible 
until proved inadequate—would suggest that we keep our regression model 
as simple as possible. Therefore, even if we know what other variables might 
affect Y, their combined influence on Y may be so small and nonsystematic 
that you can incorporate it in the random term, u. Remember that a model 
is a simplification of reality. If we truly want to build reality into a model, it 
may be too unwieldy to be of any practical use. In model building, therefore, 
some abstraction from reality is inevitable. By the way, William Ockham 
(1285−1349) was an English philosopher who maintained that a complicated 
explanation should not be accepted without good reason and wrote, “Frustra 
fit per plura, quod fieri potest per pauciora—It is vain to do with more what can 
be done with less.”

It is for one or more of these reasons that an individual student’s math SAT  
score will deviate from his or her group average (i.e., the systematic component).  
And as we will soon discover, this error term plays an extremely crucial role in regres-
sion analysis.

2.5 THE SAMPLE  
REGRESSION FUNCTION (SRF)

How do we estimate the PRF of Equation (2.1), that is, obtain the values of B1 and 
B2? If we have the data from Table 2-2, the whole population, this would be a rela-
tively straightforward task. All we have to do is to find the conditional means of Y 
corresponding to each X and then join these means. Unfortunately, in practice, we 
rarely have the entire population at our disposal. Often, we have only a sample from 
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Chapter 2 ■ Basic Ideas of Linear Regression  33

this population. (Recall from Chapter 1 and Appendix A our discussion regarding the 
population and the sample.)

Our task here is to estimate the PRF on the basis of the sample information. How do 
we accomplish this?

Pretend that you have never seen Table 2-2 but only had the data given in Table 2-3, 
which presumably represent a randomly selected sample of Y values corresponding  
to the X values shown in Table 2-2.

TABLE 2-3  A Random Sample From Table 2-2

Y X

410 5,000

420 15,000

440 25,000

490 35,000

530 45,000

530 55,000

550 65,000

540 75,000

570 90,000

590 150,000

Unlike Table 2-2, we now have only one Y value corresponding to each X. The impor-
tant question that we now face is the following: From the sample data of Table 2-3, can 
we estimate the average SAT math score in the population as a whole corresponding 
to each X? In other words, can we estimate the PRF from the sample data? As you can 
well surmise, we may not be able to estimate the PRF accurately because of sampling 
fluctuations, or sampling error, a topic we discuss in Appendix C.

To see this clearly, suppose another random sample, which is shown in Table 2-4, is 
drawn from the population of Table 2-2. If we plot the data of Tables 2-3 and 2-4, we 
obtain the scattergram shown in Figure 2-3.
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34  Part I ■ The Linear Regression Model

TABLE 2-4  Another Random Sample From Table 2-2

Y X

420 5,000

520 15,000

470 25,000

450 35,000

470 45,000

550 55,000

470 65,000

500 75,000

550 90,000

600 150,000

FIGURE 2-3  Sample regression lines based on two independent samples
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Through the scatter points, we have drawn visually two straight lines that fit the scat-
ter points reasonably well. We will call these lines the sample regression lines (SRLs). 
Which of the two SRLs represents the true PRL? If we avoid the temptation of looking 
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Chapter 2 ■ Basic Ideas of Linear Regression  35

at Figure 2-1, which represents the PRL, there is no way we can be sure that either 
of the SRLs shown in Figure 2-3 represents the true PRL. For if we had yet another 
sample, we would obtain a third SRL. Supposedly, each SRL represents the PRL, but 
because of sampling variation, each is at best an approximation of the true PRL. In 
general, we would get K different SRLs for K different samples, and all these SRLs are 
not likely to be the same.

Now analogous to the PRF that underlies the PRL, we can develop the concept of the 
sample regression function (SRF) to represent the SRL. The sample counterpart of 
Equation (2.1) may be written as

 Y b b Xi i

∧
= +1 2  (2.3)

where ^ is read as “hat” or “cap”; Yi

∧

 = estimator of E(Y | Xi), the estimator of the 
population conditional mean; b1 = estimator of B1; and b2 = estimator of B2.

As noted in Appendix D, an estimator, or a sample statistic, is a rule or a 
formula that suggests how we can estimate the population parameter at hand. 
A particular numerical value obtained by the estimator in an application, as we 
know, is an estimate. (See Appendix D for the discussion on point and interval 
estimators.)

If we look at the scattergram in Figure 2-3, we observe that not all the sample data 
lie exactly on the respective sample regression lines. Therefore, just as we developed 
the stochastic PRF of Equation (2.2), we need to develop the stochastic version of  
Equation (2.3), which we write as

 Y b b X ei i i= + +1 2  (2.4)

where ei = the estimator of ui.

We call ei the residual term, or simply the residual. Conceptually, it is analogous to 
ui and can be regarded as the estimator of the latter. It is introduced in the SRF for the 
same reasons as ui was introduced in the PRF. Simply stated, ei represents the difference 
between the actual Y values and their estimated values from the sample regression. That is,

 e Y Yi i i= −
∧

 (2.5)

To summarize, our primary objective in regression analysis is to estimate the (stochastic) 
PRF

Y B B X ui i i= + +1 2
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36  Part I ■ The Linear Regression Model

on the basis of the SRF

Y b b X ei i i= + +1 2

because more often than not, our analysis is based on a single sample from some popu-
lation. But because of sampling variation, our estimate of the PRF based on the SRF 
is only approximate. This approximation is shown in Figure 2-4. Keep in mind that we 
actually do not observe B1, B2, and u. What we observe are their proxies, b1, b2, and e, once 
we have a specific sample.

FIGURE 2-4  Population and sample regression lines
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For a given Xi, shown in this figure, we have one (sample) observation, Yi. In terms of 
the SRF, the observed Yi can be expressed as

 Y Y ei i i= +
∧

 (2.6)

and in terms of the PRF, it can be expressed as

 Y E Y X ui i i= ( ) +|  (2.7)

Obviously, in Figure 2-4, Yi

∧
 underestimates the true mean value E(Y | X1) for the 

X1 shown therein. By the same token, for any Y to the right of point A in Figure 2-4  
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Chapter 2 ■ Basic Ideas of Linear Regression  37

(e.g., Y
∧

n), the SRF will overestimate the true PRF. But you can readily see that such 
over- and underestimation is inevitable due to sampling fluctuations.

The important question now is the following: Granted that the SRF is only an approx-
imation of the PRF, can we find a method or a procedure that will make this approxi-
mation as close as possible? In other words, how should we construct the SRF so that 
b1 is as close as possible to B1 and b2 is as close as possible to B2, because generally we 
do not have the entire population at our disposal? As we will show in Section 2.8, we 
can indeed find a “best-fitting” SRF that will mirror the PRF as faithfully as possible. 
It is fascinating to consider that this can be done even though we never actually determine 
the PRF itself.

2.6 THE SPECIAL MEANING OF  
THE TERM LINEAR REGRESSION

Since in this text we are concerned primarily with “linear” models like Equation (2.1), 
it is essential to know what the term linear really means, for it can be interpreted in 
two different ways.

Linearity in the Variables

The first and perhaps the more “natural” meaning of linearity is that the conditional 
mean value of the dependent variable is a linear function of the independent variable(s) 
as in Equation (2.1) or Equation (2.2) or in the sample counterparts, Equations (2.3) 
and (2.4).5 In this interpretation, the following functions are not linear:

 E Y B B Xi( ) = +1 2
2

 
(2.8)

 
E Y B B

Xi

( ) = +1 2
1

 
(2.9)

because in Equation (2.8), X appears with a power of 2, and in Equation (2.9), it 
appears in the inverse form. For regression models linear in the explanatory variable(s), 
the rate of change in the dependent variable remains constant for a unit change in the 
explanatory variable; that is, the slope remains constant. But for a regression mode 
nonlinear in the explanatory variables, the slope does not remain constant. This can  
be seen more clearly in Figure 2-5.

5A function Y =f(X ) is said to be linear in X if (1) X appears with a power of 1 only, that is, terms such as X2 
and X  are excluded, and (2) X is not multiplied or divided by another variable (e.g., X · Z and X/Z, where 
Z is another variable).
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38  Part I ■ The Linear Regression Model

As Figure 2-5 shows, for the regression (2.1), the slope—the rate of change in E(Y )—
the mean of Y, remains the same, namely, B2 no matter at what value of X we measure 
the change. But for regression, say, Equation (2.8), the rate of change in the mean 
value of Y varies from point to point on the regression line; it is actually a curve here.6

Linearity in the Parameters

The second interpretation of linearity is that the conditional mean of the dependent vari-
able is a linear function of the parameters, the Bs; it may or may not be linear in the 
variables. Analogous to a linear-in-variable function, a function is said to be linear in the 
parameter, say, B2, if B2 appears with a power of 1 only. On this definition, models (2.8) 
and (2.9) are both linear models because B1 and B2 enter the models linearly. It does not 
matter that the variable X enters nonlinearly in both models. However, a model of the type

 E Y B B Xi( ) = +1 2
2  (2.10)

is nonlinear in the parameter model since B2 enters with a power of 2.

In this book, we are primarily concerned with models that are linear in the parameters. 
Therefore, from now on, the term linear regression will mean a regression that is linear 
in the parameters, the Bs (i.e., the parameters are raised to the power of 1 only); it may 
or may not be linear in the explanatory variables.7

FIGURE 2-5  (a) Linear demand curve and (b) nonlinear demand curve
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Slope B2 is same at each
point on the curve.

Slope B2 various from
to point on the curve.

Yi = B1 + B2 (1/Xi)

Yi = B1 + B2 Xi

6Those who know calculus will recognize that in the linear model, the slope, that is, the derivative of Y with 
respect to X, is constant, equal to B2, but in the nonlinear model, Equation (2.9), it is equal to − ( )B Xi2 1/ 2 , 
which obviously will depend on the value of X at which the slope is measured and is therefore not constant.
7This is not to suggest that nonlinear (in-the-parameters) models like Equation (2.10) cannot be estimated 
or that they are not used in practice. As a matter of fact, in advanced courses in econometrics, such models 
are studied in depth.
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Chapter 2 ■ Basic Ideas of Linear Regression  39

2.7 TWO-VARIABLE VERSUS  
MULTIPLE LINEAR REGRESSION

So far in this chapter, we have considered only the two-variable, or simple, regres-
sion models in which the dependent variable is a function of just one explanatory 
variable. This was done just to introduce the fundamental ideas of regression analysis. 
But the concept of regression can be extended easily to the case where the dependent 
variable is a function of more than one explanatory variable. For instance, if the math 
SAT score is a function of income (X2), number of math classes taken (X3), and age of 
the student (X4), we can write the extended math SAT function as

 E Y B B X B X B Xi i i( ) = + + +1 2 2 3 3 4 4  (2.11)

[Note: E(Y ) = E(Y | X2i, X3i, X4i).]

Equation (2.11) is an example of a multiple linear regression, a regression in which 
more than one independent, or explanatory, variable is used to explain the behavior of 
the dependent variable. Model (2.11) states that the (conditional) mean value of the 
math SAT score is a linear function of income, number of math classes taken, and age of 
the student. The score function of a student (i.e., the stochastic PRF) can be expressed as

 

Y B B X B X B X u

E Y u
i i i i i

i

= + + + +

= ( ) +
1 2 2 3 3 4 4

 
(2.12)

which shows that the individual math SAT score will differ from the group mean by 
the factor u, which is the stochastic error term. As noted earlier, even in a multiple 
regression, we introduce the error term because we cannot take into account all the 
forces that might affect the dependent variable.

Notice that both Equations (2.11) and (2.12) are linear in the parameters and are 
therefore linear regression models. The explanatory variables themselves do not need to 
enter the model linearly, although in the present example they do.

2.8 ESTIMATION OF PARAMETERS:  
THE METHOD OF ORDINARY LEAST SQUARES

As noted in Section 2.5, we estimate the population regression function (PRF) on the 
basis of the sample regression function (SRF), since in practice, we only have a sample 
(or two) from a given population. How then do we estimate the PRF? And how do 
we find out whether the estimated PRF (i.e., the SRF) is a “good” estimate of the 
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40  Part I ■ The Linear Regression Model

true PRF? We will answer the first question in this chapter and take up the second  
question—of the “goodness” of the estimated PRF—in Chapter 3.

To introduce the fundamental ideas of estimation of the PRF, we consider the 
simplest possible linear regression model, namely, the two-variable linear regression 
in which we study the relationship of the dependent variable Y to a single explana-
tory variable X. In Chapter 4, we extend the analysis to the multiple regression, 
where we will study the relationship of the dependent variable Y to more than one 
explanatory variable.

The Method of Ordinary Least Squares

Although there are several methods of obtaining the SRF as an estimator of the true 
PRF, in regression analysis, the method that is used most frequently is that of least 
squares (LS), more popularly known as the method of ordinary least squares (OLS).8 
We will use the terms LS and OLS methods interchangeably. To explain this method, 
we first explain the least squares principle.

The Least Squares Principle. Recall our two-variable PRF, Equation (2.2):

Y B B X ui i i= + +1 2

Since the PRF is not directly observable (why?), we estimate it from the SRF

Y b b X ei i i= + +1 2

which we can write as

e Y Y

Y Y
Y b b X

i i i

i i

i i

= −

= −
= − −

actual predicted 
∧

1 2

which shows that the residuals are simply the differences between the actual and esti-
mated Y values, the latter obtained from the SRF, Equation (2.3). This can be seen 
more vividly in Figure 2-4.

8Despite the name, there is nothing ordinary about this method. As we will show, this method has several 
desirable statistical properties. It is called OLS because there is another method, called the generalized least 
squares (GLS) method, of which OLS is a special case.
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Chapter 2 ■ Basic Ideas of Linear Regression  41

Now the best way to estimate the PRF is to choose b1 and b2, the estimators of B1 and 
B2, in such a way that the residuals ei are as small as possible. The method of ordinary 
least squares (OLS) states that b1 and b2 should be chosen in such a way that the 
residual sum of squares (RSS), ∑e2

i ,is as small as possible.9 Algebraically, the least 
squares principle states

 

Minimum e Y Y

Y b b X
i i

i i

∑ ∑

∑

∧2 2

1 2
2

= −

= − −

( )

( )  

(2.13)

As you can observe from Equation (2.13), once the sample values of Y and X are given, 
RSS is a function of the estimators, b1 and b2. Choosing different values of b1 and 
b2 will yield different es and hence different values of RSS. To see this, just rotate the 
SRF shown in Figure 2-4 any way you like. For each rotation, you will get a different 
intercept (i.e., b1) and a different slope (i.e., b2). We want to choose the values of these 
estimators that will give the smallest possible RSS.

How do we actually determine these values? This is now simply a matter of arithmetic 
and involves the technique of differential calculus. Without going into detail, it can be 
shown that the values of b1 and b2 that actually minimize the RSS given in Equation 
(2.13) are obtained by solving the following two simultaneous equations. (The details 
are given in Appendix 2A at the end of this chapter.)

 ∑ ∑Y nb b Xi i= +1 2  (2.14)

 ∑ ∑ ∑X Y b X b Xi i i i= +1 2
2  (2.15)

where n is the sample size. These simultaneous equations are known as the (least 
squares) normal equations.

In Equations (2.14) and (2.15), the unknowns are the bs and the knowns are the quan-
tities involving sums, squared sums, and the sum of the cross-products of the variables 
Y and X, which can be easily obtained from the sample at hand. Now solving these two 
equations simultaneously (using any high school algebra trick you know), we obtain 
the following solutions for b1 and b2.

 b Y b X1 2= −  (2.16)

9Note that the smaller the ei is, the smaller their sum of squares will be. The reason for considering the 
squares of ei and not the ei themselves is that this procedure avoids the problem of the sign of the residuals. 
Note that ei can be positive as well as negative.
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42  Part I ■ The Linear Regression Model

which is the estimator of the population intercept, B1. The sample intercept is thus the 
sample mean value of Y minus the estimated slope times the sample mean value of X.

 

b
x y
x
X X Y Y

X X
X Y nXY
X nX

i i

i

i i

i

i i

i

2 2

2

2 2

=

=
− −

−

=
−

−

∑
∑

∑
∑

∑

( )( )
( )

 

(2.17)

which is the estimator of the population slope coefficient B2. Note that

x X X y Y Yi i i i= − = −( ) ( )and

that is, the small letters denote deviations from the sample mean values, a convention that 
we will adopt in this book.

As you can see from the formula for b2, it is simpler to write the estimator using the devia-
tion form. Expressing the values of a variable from its mean value does not change the ranking 
of the values, since we are subtracting the same constant from each value. Note that b1 and b2 
are solely expressed in terms of quantities that can be readily computed from the sample 
at hand. Of course, these days, the computer will do all the calculations for you.

The estimators given in Equations (2.16) and (2.17) are known as OLS estimators, 
since they are obtained by the method of OLS.

Before proceeding further, we should note a few interesting features of the OLS esti-
mators given in Equations (2.16) and (2.17):

1. The SRF obtained by the method of OLS passes through the sample mean values 
of X and Y, which is evident from Equation (2.16), for it can be written as

 Y b b X= +1 2  (2.18)

2. The mean value of the residuals, ē(=∑ei/n), is always zero, which provides a 
check on the arithmetical accuracy of the calculations (see Table 2-5).

3. The sum of the product of the residuals e and the values of the explanatory 
variable X is zero; that is, these two variables are uncorrelated (on the 
definition of correlation, see Appendix B). Symbolically,

 ∑e Xi i = 0  
(2.19)

4. The sum of the product of the residuals ei and the estimated Yi(=  Y
∧

i
) is zero; 

that is, ∑eiY
∧

i is zero (see Question 2.27).
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44  Part I ■ The Linear Regression Model

2.9 PUTTING IT ALL TOGETHER

Let us use the sample data given in Table 2-3 to compute the values of b1 and b2. The 
necessary computations involved in implementing formulas (2.16) and (2.17) are laid 
out in Table 2-5. Keep in mind that the data given in Table 2-3 are a random sample 
from the population given in Table 2-2.

From the computations shown in Table 2-5, we obtain the following sample math  
SAT score regression:

 Y Xi i

∧
= +432 4138 0 0013. .  (2.20)

where Y represents math SAT score and X represents annual family income. Note that 
we have put a cap on Y to remind us that it is an estimator of the true population mean 
corresponding to the given level of X (recall Equation 2.3). The estimated regression line 
is shown in Figure 2-6.

Interpretation of the Estimated Math SAT Score Function

The interpretation of the estimated math SAT score function is as follows: The slope 
coefficient of 0.0013 means that, other things remaining the same, if annual family 
income goes up by a dollar, the mean or average math SAT score goes up by about 

FIGURE 2-6  Regression line based on data from Table 2-2
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Chapter 2 ■ Basic Ideas of Linear Regression  45

0.0013 points. The intercept value of 432.4138 means that if family income is zero, 
the mean math score will be about 432.4138. Very often, such an interpretation has 
no economic meaning. For example, we have no data where an annual family income 
is zero. As we will see throughout the book, often the intercept has no particular economic 
meaning. In general, you have to use common sense in interpreting the intercept term, 
for very often the sample range of the X values (family income in our example) may not 
include zero as one of the observed values. Perhaps it is best to interpret the intercept term 
as the mean or average effect on Y of all the variables omitted from the regression model.

2.10 SOME ILLUSTRATIVE EXAMPLES

Now that we have discussed the OLS method and learned how to estimate a PRF, let 
us provide some concrete applications of regression analysis.

Example 2.1. Years of Schooling and Average Hourly Earnings

Based on a sample of 528 observations, Table 2-6 gives data on average hourly  
wage Y($) and years of schooling (X ).

TABLE 2-6  AVERAGE HOURLY WAGE BY EDUCATION

Years of Schooling Average Hourly Wage ($) Number of People

 6 4.4567 3

 7 5.7700 5

 8 5.9787 15

 9 7.3317 12

10 7.3182 17

11 6.5844 27

12 7.8182 218

13 7.8351 37

14 11.0223 56

15 10.6738 13

16 10.8361 70

17 13.6150 24

18 13.5310 31

Source: Arthur S. Goldberger, Introductory Econometrics, Harvard University Press, Cambridge, MA, 1998, Table 1.1,  
p. 5. The original data are from the U.S. Bureau of Labor Statistics.
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46  Part I ■ The Linear Regression Model

Suppose we want to find out how Y behaves in relation to X. From human capital 
theories of labor economics, we would expect average wage to increase with years 
of schooling. That is, we expect a positive relationship between the two variables; it 
would be bad news if such were not the case.

The regression results based on the data in Table 2-5 are as follows:

 Y Xi i

∧
= − +0 0144 0 7241. .  (2.21)

As these results show, there is a positive association between education and earnings, 
which accords with prior expectations. For every additional year of schooling, the 
mean wage rate goes up by about 72 cents per hour.10 The negative intercept in the 
present instance has no particular economic meaning.

Example 2.2. Okun’s Law

Based on the U.S. data for 1947 to 1960, the late Arthur Okun of the Brookings 
Institution and a former chairman of the President’s Council of Economic Advisers 
obtained the following regression, known as Okun’s law:

 Y Xt i= − −0 4 2 5. ( . )  (2.22)

where Yt = change in the unemployment rate, percentage points; Xt = percent growth 
rate in real output, as measured by real GDP; and 2.5 = the long-term, or trend, rate 
of growth of output historically observed in the United States.

In this regression, the intercept is zero and the slope coefficient is −0.4. Okun’s law says 
that for every percentage point of growth in real GDP above 2.5%, the unemployment 
rate declines by 0.4 percentage points.

Okun’s law has been used to predict the required growth in real GDP to reduce the 
unemployment rate by a given percentage point. Thus, a growth rate of 5% in real 
GDP will reduce the unemployment rate by 1 percentage point, or a growth rate of 
7.5% is required to reduce the unemployment rate by 2 percentage points. In Problem 
2.17, which gives comparatively more recent data, you are asked to find out if Okun’s 
law still holds.

This example shows how sometimes a simple (i.e., two-variable) regression model can 
be used for policy purposes.

10Since the data in Table 2-6 refer to the mean wage for the various categories, the slope coefficient here 
should strictly be interpreted as the average increase in the mean hourly earnings.
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Chapter 2 ■ Basic Ideas of Linear Regression  47

Example 2.3. Stock Prices and Interest Rates

Stock prices and interest rates are key economic indicators. Investors in stock markets, 
individual or institutional, watch very carefully the movements in the interest rates. 
Since interest rates represent the cost of borrowing money, they have a vast effect on 
investment and hence on the profitability of a company. Macroeconomic theory would 
suggest an inverse relationship between stock prices and interest rates.

As a measure of stock prices, let us use the S&P 500 composite index (1941−1943  
= 10), and as a measure of interest rates, let us use the three-month Treasury bill rate 
(%). Table 2-7, found on the textbook’s website, gives data on these variables for the 
period 1980−2007.

Plotting these data, we obtain the scattergram as shown in Figure 2-7. The scattergram 
clearly shows that there is an inverse relationship between the two variables, as per 
theory. But the relationship between the two is not linear (i.e., straight line); it more 
closely resembles Figure 2-5(b). Therefore, let us maintain that the true relationship is

 Y B B X ut i i= + +1 2 1( )  (2.23)

Note that Equation (2.23) is a linear regression model, as the parameters in the model 
are linear. It is, however, nonlinear in the variable X. If you let Z = 1/X, then the model 
is linear in the parameters as well as the variables Y and Z.

FIGURE 2-7   S&P 500 composite index and three-month Treasury bill rate, 
1980−2007
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48  Part I ■ The Linear Regression Model

Using the EViews statistical package, we estimate Equation (2.23) by OLS, giving the 
following results:

 Y Xt t

∧
= +404 4067 996 866 1. . ( )  (2.24)

How do we interpret these results? The value of the intercept has no practical economic 
meaning. The interpretation of the coefficient of (1/X) is rather tricky. Literally inter-
preted, it suggests that if the reciprocal of the three-month Treasury bill rate goes up by 
one unit, the average value of the S&P 500 index will go up by about 997 units. This 
is, however, not a very enlightening interpretation. If you want to measure the rate of 
change of (mean) Y with respect to X (i.e., the derivative of Y with respect to X), then 
as footnote 5 shows, this rate of change is given by −B Xi2

21( ) , which depends on the 
value taken by X. Suppose X = 2. Knowing that the estimated B2 is 996.866, we find 
the rate of change at this X value as −249.22 (approx). That is, starting with a Treasury 
bill rate of about 2%, if that rate goes up by 1 percentage point, on average, the S&P 
500 index will decline by about 249 units. Of course, an increase in the Treasury bill 
rate from 2% to 3% is a substantial increase.

Interestingly, if you had disregarded Figure 2-5 and had simply fitted the straight-line 
regression to the data in Table 2-7 (found on the textbook’s website), you would obtain 
the following regression:

 Y Xt t

∧
= −1229 3414 99 4014. .  (2.25)

Here the interpretation of the intercept term is that if the Treasury bill rate were zero, 
the average value of the S&P 500 index would be about 1,229. Again, this may not 
have any concrete economic meaning. The slope coefficient here suggests that if the 
Treasury bill rate were to increase by 1 unit, say, 1 percentage point, the average value 
of the S&P 500 index would go down by about 99 units.

Regressions (2.24) and (2.25) bring out the practical problems in choosing an appro-
priate model for empirical analysis. Which is a better model? How do we know? What 
tests do we use to choose between the two models? We will provide answers to these 
questions as we progress through the book (see Chapter 5). A question to ponder: In 
Equation (2.24), the sign of the slope coefficient is positive, whereas in Equation 
(2.25), it is negative. Are these findings conflicting? (Hint: Two negatives make one 
positive.) See Chapter 5.

Example 2.4. Median Home Price and  
 Interest Rate in the United States, 1980−2007

Over the past several years, there has been a surge in home prices across the United 
States. It is believed that this surge is due to sharply falling mortgage interest rates. 

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 2 ■ Basic Ideas of Linear Regression  49

To see the impact of mortgage interest rates on home prices, Table 2-8 (found on the 
textbook’s website) gives data on median home prices ($1,000s) and 30-year fixed rate 
mortgage (%) in the United States for the period 1980−2007.

These data are plotted in Figure 2-8.

As a first approximation, if you fit a straight-line regression model, you will obtain the 
following results, where Y = median home price ($1,000s) and X = 30-year fixed rate 
mortgage (%):

 Y Xt t

∧
= −329 0041 17 3694. .  (2.26)

These results show that if the mortgage interest rate goes up by 1 percentage point,11 
on average, the median home price goes down by about 17.4 units or about $17,400. 
(Note: Y is measured in thousands of dollars.) Literally interpreted, the intercept coef-
ficient of about 329 would suggest that if the mortgage interest rate were zero, the 
median home price on average would be about $329,000, an interpretation that may 
stretch our credulity.

It seems that falling interest rates do have a substantial impact on home prices.  
A question: If we had taken median family income into account, would this conclu-
sion still stand?

FIGURE 2-8  Median home prices and interest rates, 1980−2007
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50  Part I ■ The Linear Regression Model

Example 2.5. Antique Clocks and Their Prices

The Triberg Clock Company of Schonachbach, Germany, holds an annual antique 
clock auction. Data on about 32 clocks (the age of the clock, the number of bidders, 
and the price of the winning bid in marks) are given in Table 2-9 (posted on the 
book’s website). Note that this auction took place about 25 years ago.

If we believe that the price of the winning bid depends on the age of the clock—the 
older the clock, the higher the price, ceteris paribus—we would expect a positive rela-
tionship between the two. Similarly, the higher the number of bidders, the higher the 
auction price because a large number of bidders for a particular clock would suggest 
that that clock is more valuable, and hence we would expect a positive relationship 
between the two variables.

Using the data given in Table 2-9 (posted on the book’s website), we obtained the  
following OLS regressions:

 Price  Age= − +191 6662 10 4856. .  (2.27)

 Price  Bidders= +807 9501 54 5724. .  (2.28)

As these results show, the auction price is positively related to the age of the clock, as 
well as to the number of bidders present at the auction.

In Chapter 4 on multiple regression, we will see what happens when we regress price 
on age and number of bidders together, rather than individually, as in the preceding 
two regressions.

Example 2.6. Gross Private Investment (GPI) and Gross Private 
Savings (GPS), United States, Quarterly 2009-IV to 2019-I

Based on the data given in Table 2-10 of the companion website, we obtained the fol-
lowing regression results:

 GPIt = −78.7210 + 1.1073GPSt (2.29)

The slope coefficient in this regression represents the marginal propensity to invest 
(MPI), that is, the increase in gross private investment per dollar's worth increase in 
gross private savings. In this case, MPI is about 1.10, meaning that if gross private sav-
ings (GPS) increase by a dollar, the average gross private investment (GPI) goes up by 
about $1.10.
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Chapter 2 ■ Basic Ideas of Linear Regression  51

Example 2.7. Capital Asset Pricing Model (CAPM)12

In its simplest form, the celebrated capital asset pricing model (CAPM) of portfolio 
theory states that

 (ERit − Rft) = βi(ERm − Rft) (2.30)

where ERt = expected rate of return on a security i at time t; ERm = expected rate of 
return on a market portfolio as represented by the S&P 500 composite stock index 
or the UK FTSE 100 index at time t; Rf = risk-free rate of return, say, as represented 
by the return on 90-day U.S. Treasury bills; and βi  = the beta coefficient of security 
I, which is a measure of systematic risk that cannot be eliminated through portfolio 
diversification.

In other words, the beta coefficient measures the extent to which the ith security's 
risk-adjusted rate of return moves with the risk-adjusted market rate of return. The 
rationale underlying CAPM is that economic forces that affect the market more or 
less also affect the individual security or stock. By convention, a security with a beta 
coefficient greater than 1 is said to be an aggressive security, whereas a security with a 
beta coefficient of less than 1 is said to be a defensive security and a beta coefficient of 
1 means the security moves with the market.

Table 2-11 on the companion website gives data on excess return Yt (%) on an index 
of 104 stocks in the sector of cyclical consumer goods and excess return Xt (%) on 
the overall stock market index for the United Kingdom for the monthly period 
1980−1999, for a total of 240 observations. Excess return is return in excess of return 
on riskless asset.13

Based on the data in Table 2-11, we obtained the following regression:

 Y Xt t= 1 1711.  (2.31)

It seems the return on the index of 104 stocks seems more aggressive than the returns 
of the overall market index, which may not be surprising.

12See Markowitz Harry, Portfolio Selection: Efficient Diversification of Investment, John Wiley, New 
York, 1959. In 1990, Markowitz shared the Nobel Prize in economics with William Sharpe of Stanford 
University.
13The data are originally from the Datastream databank and reproduced, with permission, from C. 
Heij, P. de Boer, P. H. Franses, and H. K. Dijk, Econometric Methods With Applications in Business and 
Econometrics, Oxford University Press, Oxford, UK, 2004, p. 751. Further details of the data can be 
found in this book.
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52  Part I ■ The Linear Regression Model

The regression results presented in the preceding examples can be obtained easily by 
applying the OLS formulas of Equation (2.16) and Equation (2.17) to the data pre-
sented in the various tables. Of course, this would be very tedious and very time-con-
suming to do manually. Fortunately, several statistical software packages can estimate 
regressions in practically no time. In this book, we will use the EViews, MINITAB, 
and STATA software packages to estimate several regression models because these 
packages are comprehensive, easy to use, and readily available. (Excel can also do 
simple and multiple regressions.) Throughout this book, we will reproduce the computer 
output obtained from these packages. But keep in mind that other software packages 
can estimate all kinds of regression models. Some of these packages are LIMDEP, 
MICROFIT, PC-GIVE, RATS, SAS, SHAZAM, SPSS, and the freely available R 
statistical package.

Example 2.8. Life Expectancy in  
Relation to Real Per Capita Income

Based on the data on life expectancy given in Table 1-9, we obtained the following 
regression:

 LifeExpi = 56.2403 + 0.0013GDPi (2.32)

The positive relationship between life expectancy and per capita real GDP is expected 
to be positive because as the latter increases, people can afford better food, better 
quality health care, and better education. Literally interpreted, the slope coefficient 
suggests that as per capita real GDP increases by a dollar, the average life expectancy 
increases by 0.0013 years. Of course, it is understood that all other factors besides 
income are held constant.

2.11 SUMMARY
In this chapter, we introduced some fundamental 
ideas of regression analysis. Starting with the 
key concept of the population regression function 
(PRF), we developed the concept of linear PRF. This 
book is primarily concerned with linear PRFs, that 
is, regressions that are linear in the parameters 
regardless of whether or not they are linear in 
the variables. We then introduced the idea of the 
stochastic PRF and discussed in detail the nature 
and role of the stochastic error term u. PRF is, of 

course, a theoretical or idealized construct because, 

in practice, all we have is a sample(s) from some 

population. This necessitated the discussion of the 

sample regression function (SRF).

We then considered the question of how we actually 

go about obtaining the SRF. Here we discussed the 

popular method of ordinary least squares (OLS) and 

presented the appropriate formulas to estimate the 

parameters of the PRF.
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Chapter 2 ■ Basic Ideas of Linear Regression  53

We illustrated the OLS method with a fully worked-
out numerical example as well as with several 
practical examples.

Our next task is to find out how good the SRF 
obtained by OLS is as an estimator of the true PRF. 
We undertake this important task in Chapter 3.

KEY TERMS AND CONCEPTS
The key terms and concepts introduced in this chapter are as follows:

Regression analysis 25

(a) Explained, or dependent, 
variable 25

(b) Independent, 
or explanatory, 
variable 25

Scattergram 27

(a) Conditional mean or 
conditional expected 
values 28

Population regression line 
(PRL) 28

Population regression function 
(PRF) 29

Regression coefficients; 
parameters 29

(a) Intercept 29
(b) Slope 29

Conditional regression 
analysis 29

Stochastic, or random, error 
term; error term 29

(a) Noise component 30
(b) Stochastic, or 

statistical, PRF 31
(c) Deterministic, or 

nonstochastic, PRF 31

Sample regression line 
(SRL) 34

Sample regression function 
(SRF) 34

Estimator; sample statistic 35

Estimate 35
Residual term e; residual 35
Linear regression 38
Two-variable, or simple, 

regression vs.  
multiple linear 
regression 39

Estimation of parameters 39

(a) The method of  
ordinary least squares 
(OLS) 40

(b) Least squares 
principle 40

(c) Residual sum of squares 
(RSS) 41

(d) Normal equations 41
(e) OLS estimators 42

QUESTIONS

2.1. Explain carefully the meaning of each of the 
following terms:

a. Population regression function (PRF)

b. Sample regression function (SRF)

c. Stochastic PRF

d. Linear regression model

e. Stochastic error term (ui)

f. Residual term (ei)

g. Conditional expectation

h. Unconditional expectation

i. Regression coefficients or parameters

j. Estimators of regression coefficients

2.2. What is the difference between a  
stochastic population regression function 
(PRF) and a stochastic sample regression 
function (SRF)?

2.3. Since we do not observe the PRF, why bother 
studying it? Comment on this statement.

2.4. State whether the following statements are 
true, false, or uncertain. Give your reasons. 
Be precise.
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54  Part I ■ The Linear Regression Model

a. The stochastic error term ui and the 
residual term ei mean the same thing.

b. The PRF gives the value of the dependent 
variable corresponding to each value of 
the independent variable.

c. A linear regression model means a model 
linear in the variables.

d. In the linear regression model, the 
explanatory variable is the cause and the 
dependent variable is the effect.

e. The conditional and unconditional mean of 
a random variable are the same thing.

f. In Equation (2.2), the regression 
coefficients, the Bs, are random variables, 
whereas the bs in Equation (2.4) are the 
parameters.

g. In Equation (2.1), the slope coefficient B2 
measures the slope of Y per unit change  
in X.

h. In practice, the two-variable regression 
model is useless because the behavior of a 

dependent variable can never be explained 
by a single explanatory variable.

i. The sum of the deviation of a random 
variable from its mean value is always 
equal to zero.

2.5. What is the relationship between

a. B1 and b1, b. B2 and b2, and c. ui and ei? 
Which of these entities can be observed 
and how?

2.6. Can you rewrite Equation (2.22) to express X 
as a function of Y? How would you interpret 
the converted equation?

2.7. The following table gives pairs of  
dependent and independent variables.  
In each case, state whether you would  
expect the relationship between the two  
variables to be positive, negative, or 
uncertain. In other words, tell whether the 
slope coefficient will be positive, negative,  
or neither. Give a brief justification in  
each case.

Dependent Variable Independent Variable

(a) GDP Rate of interest

(b) Personal savings Rate of interest

(c) Yield of crop Rainfall

(d) U.S. defense expenditure Russia’s defense expenditure

(e) Number of home runs hit by a star 
baseball player

Annual salary

(f) A president’s popularity Length of stay in office

(g) A student’s first-year grade point 
average

SAT score

(h) A student’s grade in econometrics Grade in statistics

(i) Imports of Japanese cars U.S. per capita income
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Chapter 2 ■ Basic Ideas of Linear Regression  55

PROBLEMS

2.8. State whether the following models are linear 
regression models:

a. Yi = B1 + B2 (1/Xi)

b. Yi = B1 + B2 ln Xi + ui

c. ln Yi = B1 + B2 Xi + ui

d. ln Yi = B1 + B2 ln Xi + ui

e. Yi = B1 + B2B3 Xi + ui

f. Yi = B1 + B2
3 Xi + ui

Note: ln stands for the natural log, that is, log to the 
base e. (More on this in Chapter 4.)

2.9. Table 2-12 gives data on weekly family 
consumption expenditure (Y) (in dollars) and 

weekly family income (X) (in dollars).

a. For each income level, compute the mean 
consumption expenditure, E(Y | Xi), that is, 
the conditional expected value.

TABLE 2-12   Hypothetical Data on Weekly Consumption Expenditure and 
Weekly Income (Also Posted on the Book’s Website)

Weekly Income
($) (X)

Weekly Consumption Expenditure
($) (Y)

 80 55, 60, 65, 70, 75

100 65, 70, 74, 80, 85, 88

120 79, 84, 90, 94, 98

140 80, 93, 95, 103, 108, 113, 115

160 102, 107, 110, 116, 118, 125

180 110, 115, 120, 130, 135, 140

200 120, 136, 140, 144, 145

220 135, 137, 140, 152, 157, 160, 162

240 137, 145, 155, 165, 175, 189

260 150, 152, 175, 178, 180, 185, 191

b. Plot these data in a scattergram with 
income on the horizontal axis and 
consumption expenditure on the vertical 
axis.

c. Plot the conditional means derived in part 
(a) in the same scattergram created in 
part (b).

d. What can you say about the relationship 
between Y and X and between mean Y  
and X?

e. Write down the PRF and the SRF for this 
example.

f. Is the PRF linear or nonlinear?
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56  Part I ■ The Linear Regression Model

2.10. From the data given in the preceding 
problem, a random sample of Y was  

drawn against each X. The result was as 
follows:

Y 70 65 90 95 110 115 120 140 155 150

X 80 100 120 140 160 180 200 220 240 260

a. Draw the scattergram with Y on the 
vertical axis and X on the horizontal axis.

b. What can you say about the relationship 
between Y and X?

c. What is the SRF for this example? Show 
all your calculations in the manner of 
Table 2-5.

d. On the same diagram, show the SRF and 
PRF.

e. Are the PRF and SRF identical? Why or 
why not?

2.11. Suppose someone has presented the 
following regression results for your 
consideration:

Yt tX
∧

= −2 6911 0 4795. .

where Y = coffee consumption in the United 
States (cups per person per day), X = retail 
price of coffee ($ per pound), and t = time 
period.

a. Is this a time-series regression or a  
cross-sectional regression?

b. Sketch the regression line.

c. What is the interpretation of the intercept 
in this example? Does it make economic 
sense?

d. How would you interpret the slope 
coefficient?

e. Is it possible to tell what the true PRF is in 
this example?

f. The price elasticity of demand is defined 
as the percentage change in the quantity 

demanded for a percentage change in the 
price. Mathematically, it is expressed as

Elasticity Slope=










X
Y

That is, elasticity is equal to the product 
of the slope and the ratio of X to Y, where X 
= the price and Y = the quantity. From the 
regression results presented earlier, can you 
tell what the price elasticity of demand for 
coffee is? If not, what additional information 
would you need to compute the price 
elasticity?

2.12. Table 2-13 (posted on the book’s website) 
gives data for the years 1978 to 1989 on the 
consumer price index (CPI) for all items 
(1982−1984 = 100) and the Standard & Poor’s 
(S&P) index of 500 common stock prices 
(base of index: 1,941 − 1,943 = 10).

a. Plot the data on a scattergram with the 
S&P index on the vertical axis and CPI on 
the horizontal axis.

b. What can you say about the relationship 
between the two indexes? What does 
economic theory have to say about this 
relationship?

c. Consider the following regression model:

( )S&P CPIt t tB B u= + +1 2

 Use the method of least squares to 
estimate this equation from the preceding 
data and interpret your results.

d. Do the results obtained in part (c) make 
economic sense?
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Chapter 2 ■ Basic Ideas of Linear Regression  57

e. Do you know why the S&P 500 index 
dropped in 1988?

2.13. Table 2-14 gives data on the nominal interest 
rate (Y) and the inflation rate (X) for the year 
1988 for nine industrial countries.

TABLE 2-14   Nominal Interest Rate (Y) and Inflation (X) in Nine Industrial Countries  
for the Year 1988

Country Y(%) X(%)

Australia 11.9 7.7

Canada 9.4 4.0

France 7.5 3.1

Germany 4.0 1.6

Italy 11.3 4.8

Mexico 66.3 51.7

Switzerland 2.2 2.0

United Kingdom 10.3 6.8

United States 7.6 4.4

Source: Rudiger Dornbusch and Stanley Fischer, Macroeconomics, 5th ed., McGraw-Hill, New York, 1990, p. 652. The original data are 
from various issues of International Financial Statistics, published by the International Monetary Fund (IMF). These data are also posted 
on the book's website.

a. Plot these data with the interest rate on 
the vertical axis and the inflation rate 
on the horizontal axis. What does the 
scattergram reveal?

b. Do an OLS regression of Y on X. Present all 
your calculations.

c. If the real interest rate is to remain 
constant, what must be the relationship 
between the nominal interest rate and 
the inflation rate? That is, what must 
be the value of the slope coefficient 
in the regression of Y on X and that of 
the intercept? Do your results suggest 
that this is the case? For a theoretical 
discussion of the relationship among the 

nominal interest rate, the inflation rate, 
and the real interest rate, see any textbook 
on macroeconomics and look up the topic 
of the Fisher equation, named after the 
famous American economist, Irving Fisher.

2.14. The real exchange rate (RE) is defined as the 
nominal exchange rate (NE) times the ratio 
of the domestic price to foreign price. Thus, 
RE for the United States against the United 
Kingdom is

RE NE US UKUS US CPI CPI= ( )

a. From the data given in Table 1-5 (posted 
on the book’s website) of Problem 1.7, 
compute REUS.
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58  Part I ■ The Linear Regression Model

b. Using a regression package you are 
familiar with, estimate the following 
regression:

NE REUS US= + +B B u1 2  (1)

c. A priori, what do you expect the 
relationship between the nominal and 
real exchange rates to be? You may want 
to read up on the purchasing power parity 
(PPP) theory from any text on international 
trade or macroeconomics.

d. Are the a priori expectations supported by 
your regression results? If not, what might 
be the reason?

e. 14Run regression (1) in the following 
alternative form:

      ln lnNE REUS US= + +A A u1 2  (2)

 where ln stands for the natural logarithm, 
that is, log to the base e. Interpret the 
results of this regression. Are the results 
from regressions (1) and (2) qualitatively 
the same?

2.15. Refer to Problem 2.12. In Table 2-15 (posted 
on the book’s website), we have data on CPI 
and the S&P 500 index for the years 1990 to 
2007.

a. Repeat questions (a) to (e) from Problem 
2.12.

b. Do you see any difference in the estimated 
regressions?

c. Now combine the two sets of data and 
estimate the regression of the S&P 500 
index on the CPI.

d. Are there noticeable differences in the 
regressions?

2.16. Table 2-16, found on the textbook’s website, 
gives data on average starting pay (ASP), 

grade point average (GPA) scores (on 
a scale of 1 to 4), GMAT scores, annual 
tuition, percentage of graduates employed 
at graduation, recruiter assessment score 
(5.0 highest), and percentage of applicants 
accepted in the graduate business school 
for 47 well-regarded business schools in 
the United States for the year 2007−2008. 
Note: Northwestern University ranked fourth 
(in a tie with MIT and University of Chicago) 
but was removed from the data set because 
there was no information available about 
percentage of applicants accepted.

a. Using a bivariate regression model, find 
out if GPA has any effect on ASP.

b. Using a suitable regression model, find 
out if GMAT scores have any relationship 
to ASP.

c. Does annual tuition have any relationship to 
ASP? How do you know? If there is a positive 
relationship between the two, does that 
mean it pays to go to the most expensive 
business school? Can you argue that a 
high-tuition business school means a high-
quality MBA program? Why or why not?

d. Does the recruiter perception have any 
bearing on ASP?

2.17. Table 2-17 (found on the textbook’s website) 
gives data on real GDP (Y) and civilian 
unemployment rate (X) for the United States 
for period 1960 to 2006.

a. Estimate Okun’s law in the form of 
Equation (2.22). Are the regression results 
similar to the ones shown in (2.22)? Does 
this suggest that Okun’s law is universally 
valid?

b. Now regress percentage change in 
real GDP on change in the civilian 
unemployment rate and interpret your 
regression results.

14Optional
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Chapter 2 ■ Basic Ideas of Linear Regression  59

c. If the unemployment rate remains 
unchanged, what is the expected (percent) 
rate of growth in real GDP? (Use the 
regression in [b]). How would you interpret 
this growth rate?

2.18. Refer to Example 2.3, for which the data 
are as shown in Table 2-7 (on the textbook’s 
website).

a. Using a statistical package of your choice, 
confirm the regression results given in 
Equation (2.24) and Equation (2.25).

b. For both regressions, get the estimated 
values of Y (i.e., Y

∧

i) and compare them 
with the actual Y values in the sample. 
Also obtain the residual values, ei. From 
this, can you tell which is a better model, 
Equation (2.24) or Equation (2.25)?

2.19. Refer to Example 2.5 on antique clock prices. 
Table 2-9 gives the underlying data.

Plot clock prices against the age of the clock 
and against the number of bidders. Does 
this plot suggest that the linear regression 
models shown in Equation (2.27) and 
Equation (2.28) may be appropriate?

2.20. Refer to the math SAT score example 
discussed in the text. Table 2-5 gives the 
necessary raw calculations to obtain the OLS 
estimators. Look at the columns Y (actual Y) 
and Y

∧
 (estimated Y) values. Plot the two in 

a scattergram. What does the scattergram 
reveal? If you believe that the fitted model 
(Equation (2.20)) is a “good” model, what 
should be the shape of the scattergram? In 
the next chapter, we will see what we mean by 
a “good” model.

2.21.  Table 2-18 (on the textbook’s website) gives 
data on verbal and math SAT scores for both 
males and females for the period 1972−2007.

a. You want to predict the male math score 
(Y) on the basis of the male verbal score 

(X). Develop a suitable linear regression 
model and estimate its parameters.

b. Interpret your regression results.

c. Reverse the roles of Y and X and regress 
the verbal score on the math score. 
Interpret this regression.

d. Let a2 be the slope coefficient in the 
regression of the math score on the verbal 
score and let b2 be the slope coefficient 
of the verbal score on the math score. 
Multiply these two values. Compare the 
resulting value with the r2 obtained from 
the regression of math score on verbal 
score or the r2 value obtained from the 
regression of verbal score on math score. 
What conclusion can you draw from this 
exercise?

2.22.  Table 2-19 (on the textbook’s website) gives 
data on investment rate (ipergdp) and savings 
rate (spergdp), both measured as percentage 
of GDP, for a cross section of countries. 
These rates are averages for the period 
1960−1974.15

a. Plot the investment rate on the vertical 
axis and the savings rate on the horizontal 
axis.

b. Eyeball a suitable curve from the scatter 
diagram in (a).

c. Now estimate the following model:

ipergdp spergdpi i iB B u= + +1 2

d. Interpret the estimated coefficients.

e. What general conclusion do you draw from 
your analysis?

Note: Save your results for further analysis in 

the next chapter.

2.23. Table 12-20 gives data on the website of the 
book on fertility rate (number of births per 

15Source of data: Martin Feldstein and Charles Horioka, “Domestic Savings and International Capital Flows,” Economic Journal 
vol. 90, June 1980, pp. 314−329.
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60  Part I ■ The Linear Regression Model

1000) in 2000 and PPGDP (gross national 
product per person) in 2001 for 193 countries.

a. Plot fertility rate against PPGDP.

b. A priori, what would you expect the 
relationship between the two?

c. Regress fertility rate on PPGDP, 
presenting the usual output, and see if the 
a priori expectations are fulfilled.

2.24. Table 2-21 on the book's website gives data 
on maternal mortality, GDP per capita, 

fertility rate, Human Development Index, and 
carbon emission per capita for 155 countries.

a. What do you expect to be the relationship 
between maternal mortality and each of 
the other variables and why?

b. If you regress maternal mortality rate 
on the other four variables, what result 
would you expect? Show the necessary 
regression output.

c. Would you expect multicollinearity among 
some of the variables? And why?

OPTIONAL QUESTIONS

2.25. Prove that ∑ei = 0, and hence show that ē = 0.

2.26. Prove that ∑eixi = 0.

2.27. Prove that ∑ei Y
∧

i = 0, that is, that the sum of 
the product of residuals ei and the estimated 
Yi is always zero.

2.28. Prove that Y Y=
∧

, that is, that the means of 
the actual Y values and the estimated Y values 
are the same.

2.29. Prove that ∑xiyi = ∑
i

n

i ix Y
=1

 = ∑
i

n

i iX y
=1

, where  

xi = (Xi − X ) and yi = (Yi − Y
∧
).

2.30. Prove that ∑xi = ∑yi = 0, where xi and yi are as 
defined in Problem 2.29.

APPENDIX 2A: DERIVATION OF LEAST SQUARES ESTIMATORS
We start with Equation (2.13):

               ∑ ∑e Y b b Xi i
2

1 2 1
2= − −( )  (2A.1)

Using the technique of partial differentiation from 
calculus, we obtain

          ∂ ∂ = − − −∑ ∑e b Y b b Xi i i
2

1 1 22 1/ ( )( )  (2A.2)

        ∂ ∂ = − − −∑ ∑e b Y b b X Xi i i i
2

2 1 22/ ( )( )  (2A.3)

By the first-order condition of optimization, we set these 
two derivations to zero and simplify, which will give

                        ∑ ∑Y nb b Xi i= +1 2  (2A.4)

                  ∑ ∑ ∑Y X b X b Xi i i i= +1 2
2

 (2A.5)

which are Equations (2.14) and (2.15), respectively, 
given in the text.

Solving these two equations simultaneously, we get 
the formulas given in Equations (2.16) and (2.17).
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