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2
Understanding the 

Latent Variable

This chapter presents a conceptual schema for understanding the relation-
ship between measures and the constructs they represent, though it is not 

the only framework available. Item response theory is an alternative measure-
ment perspective that we will examine in Chapter 8. Because of its relative 
conceptual and computational accessibility and wide usage, we emphasize the 
classical measurement model, which assumes that individual items are compa-
rable indicators of the underlying construct.

Constructs Versus Measures
Typically, researchers are interested in constructs rather than items or scales per 
se. For example, a market researcher measuring parents’ aspirations for their 
children would be more interested in intangible parental sentiments and hopes 
about what their children will accomplish than in where those parents place 
marks on a questionnaire. However, recording responses to a questionnaire 
may, in many cases, be the best method of assessing those sentiments and 
hopes. Scale items are usually a means to the end of construct assessment. In 
other words, they are necessary because many constructs cannot be assessed 
directly. In a sense, measures are proxies for variables that we cannot directly 
observe. By assessing the relationships between measures, we indirectly infer 
the relationships between constructs. In Figure 2.1, for example, although our 
primary interest is the relationship between Variables A and B, we estimate that 
relationship on the basis of the connection between measures corresponding 
to those variables.

The underlying phenomenon or construct that a scale is intended to reflect 
is often called the latent variable. As we use the terms in this text, all scales (and 
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20    Scale Development

some indices) involve a latent variable. In this chapter, unless otherwise noted, 
our discussion is limited to scale items. Exactly what is a latent variable? Its 
name reveals two chief features. Consider the example of parents’ aspirations 
for children’s achievement. First, it is latent rather than manifest. Parents’ aspi-
rations for their children’s achievement are not directly observable. In addi-
tion, the construct is variable rather than constant—that is, some aspect of it, 
such as its strength or magnitude, changes. Parents’ aspirations for their chil-
dren’s achievement may vary according to time (e.g., during the child’s infancy 
versus adolescence), place (e.g., on an athletic field versus a classroom), people 
(e.g., parents whose own backgrounds or careers differ), or any combination of 
these and other dimensions. The latent variable is the actual phenomenon that 
is of interest—in this case, child achievement aspirations.

Another noteworthy aspect of the latent variable in the case of a scale is 
that it is typically a characteristic of the individual who is the source of data. 
Thus, in our present example, parental aspirations are a characteristic of the 
parents and not of the children. Accordingly, we assess it by collecting data 
about the parents’ beliefs from the parents themselves. While there may be 
circumstances in which some form of proxy reporting (e.g., asking parents to 
report some characteristic of their children) is appropriate, in general, we will 
ask respondents to self-report information pertaining to themselves. When this 
is not the case, as in a study involving parents describing the aspirations their 
children have for themselves, care must be taken in interpreting the resulting 
information. Arguably, in this hypothetical instance, the latent variable might 
more accurately be described as parents’ perceptions of their children’s aspirations 
than as children’s aspirations per se. Likewise, if we ask a group of shoppers to 
evaluate characteristics of a particular store, we are assessing shoppers’ percep-
tions rather than aspects of the store itself (which might be more easily assessed 

FIGURE 2.1  ● � Relationships between instruments correspond with 
relationships between latent variables only when each 
measure corresponds to its latent variable

Variable A Variable B
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Chapter 2  •  Understanding the Latent Variable    21

by direct observation). How important the distinction is between assessing the 
perceptions of a respondent with regard to some external stimulus (e.g., per-
ceptions of the store), as opposed to characteristics of the external stimulus 
(e.g., the store itself), will depend on the specific circumstances and goals of the 
assessment; however, in all cases, it is important to be mindful of the distinc-
tion and to make appropriate interpretations of the resultant data.

Although we cannot observe or quantify it directly, the latent variable 
presumably takes on a specific value under some specified set of conditions.  
A scale developed to measure a latent variable is intended to estimate its actual 
magnitude at the time and place of measurement for each thing measured. This 
unobservable actual magnitude is the true score.

Latent Variable as the Presumed Cause  
of Scale Item Values
The notion of a latent variable implies a certain relationship between it and 
the items that tap it. The latent variable is regarded as a cause of the scale item 
score—that is, the strength or quantity of the latent variable (i.e., the value of 
its true score) is presumed to cause an item (or set of items) to take on a certain 
value.

An example may reinforce this point: The following are hypothetical items 
for assessing parents’ aspirations for children’s achievement:

1.	 My child’s achievements determine my own success. 

2.	 I will do almost anything to ensure my child’s success.

3.	 No sacrifice is too great if it helps my child achieve success.

4.	 My child’s accomplishments are more important to me than just about 
anything else I can think of.

If parents were given an opportunity to express how strongly they agree 
with each of these items, their underlying aspirations for childhood achieve-
ment should influence their responses. In other words, each item should give 
an indication of how strong the latent variable (aspirations for children’s 
achievement) is. The score obtained on the item is caused by the strength or 
quantity of the latent variable for that person at that particular time.

A causal relationship between a latent variable and a measure implies certain 
empirical relationships. For example, if an item value is caused by a latent vari-
able, then there should be a correlation between that value and the true score 
of the latent variable. As a consequence of each of the indicators correlating 
with the latent variable, they should also correlate with each other. Because we 
cannot directly assess the true score, we cannot compute a correlation between 
it and the item. However, when we examine a set of items that are presumably 
caused by the same latent variable, we can examine their relationships to one 
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22    Scale Development

another. So if we had several items like the ones preceding measuring parental 
aspirations for child achievement, we could look directly at how they corre-
lated with one another, invoke the latent variable as the basis for the correla-
tions among items, and use that information to infer how highly each item was 
correlated with the latent variable. Shortly, we will explain how all this can be 
learned from correlations among items. First, however, we will introduce some 
diagrammatic procedures to help make this explanation more clear.

Path Diagrams
Coverage of this topic will be limited to a brief review of issues pertinent to 
scale development. For greater depth, consult Asher (1983) or Loehlin (1998).

Diagrammatic Conventions
Path diagrams are a method for depicting causal relationships among vari-

ables. Although they can be used in conjunction with path analysis, which is 
a data analytic method, path diagrams have more general utility as a means 
of specifying how a set of variables are interrelated. These diagrams adhere to 
certain conventions. A straight arrow drawn from one variable label to another 
indicates that the two are causally related and that the direction of causality is 
as indicated by the arrow. Thus X → Y indicates explicitly that X is the cause 
of Y. Often, associational paths are identified by labels, such as the letter a in 
Figure 2.2.

The absence of an arrow also has an explicit meaning—namely, that two 
variables are unrelated. Thus, A → B → C D → E specifies that A causes B, B causes 
C, C and D are unrelated, and D causes E.

Another convention of path diagrams is the method of representing error, 
which is usually depicted as an additional causal variable. This error term is a 
residual, representing all sources of variation not accounted for by other causes 
explicitly depicted in the diagram.

Because this error term is a residual, it represents the discrepancy between 
the actual value of Y and what we would predict Y to be based on knowledge 
of X and Z (in this case; see Figure 2.3). Sometimes, the error term is assumed 
and, thus, not included in the diagram.

Path Diagrams in Scale Development
Path diagrams can help us see how scale items are causally related to a latent 

variable. They can also help us understand how certain relationships among 
items imply certain relationships between items and the latent variable. We 

FIGURE 2.2  ●  The causal pathway from X to Y
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a
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Chapter 2  •  Understanding the Latent Variable    23

begin by examining a simple computational rule for path diagrams. Let us look 
at the simple path diagram in Figure 2.4.

The numbers along the paths are standardized path coefficients. Each one 
expresses the strength of the causal relationship between the variables joined 
by the arrow. The fact that the coefficients are standardized means that they 
all use the same scale to quantify the causal relationships and that their values 
can range from –1.0 to +1.0. In this diagram, Y is a cause of X1 through X5.  
A useful relationship exists between the values of path coefficients and the cor-
relations between the Xs (which would represent items in the case of a scale-
development–type path diagram). For diagrams like this one having only one 
common origin (Y in this case), the correlation between any two Xs is equal 

X

Z

eY

FIGURE 2.3  ●  Two variables plus error determine Y

FIGURE 2.4  ● � A path diagram with path coefficients, which can be 
used to compute correlations between variables
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24    Scale Development

to the product of the coefficients for the arrows forming a route, through Y, 
between the X variables in question. For example, the correlation between  
X1 and X5 is calculated by multiplying the two standardized path coefficients 
that join them via Y. Thus, r1,5 = .6 × .1 = .06. Variables X6 and X7 also share Y as 
a common source, but the route connecting them is longer. However, the rule 
still applies. Beginning at X7, we can trace back to Y and then forward again to 
X6 (or in the other direction, from X6 to X7). The result is .3 × .3 × .4 × .2 = .0072. 
Thus, r6,7 = .0072.

This relationship between path coefficients and correlations provides a basis 
for estimating paths between a latent variable and the items that it influences. 
Even though the latent variable is hypothetical and unmeasurable, the items 
are real and the correlations among them can be directly computed. By using 
these correlations, the simple rule just discussed, and some assumptions about 
the relationships among items and the true score, we can come up with esti-
mates for the paths between the items and the latent variable. We can begin 
with a set of correlations among variables. Then, working backward from the 
relationship among paths and correlations, we can determine what the values 
of certain paths must be if the assumptions are correct. Let us consider the 
example in Figure 2.5.

This diagram is similar to the example considered earlier in Figure 2.4, 
except that there are no path values, the variables X6 and X7 have been dropped, 
the remaining X variables represent scale items, and each item has a variable 
(error) other than Y influencing it. These e variables are unique in the case of 
each item and represent the residual variation in each item not explained by Y.  
This diagram indicates that all the items are influenced by Y. In addition, each 
is influenced by a unique set of variables other than Y that are collectively 
treated as error.

Y

X5

X4

X3

X2

X1
e1

e2

e3

e4

e5

FIGURE 2.5  ●  A path diagram with error terms
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Chapter 2  •  Understanding the Latent Variable    25

This revised diagram represents how five individual items are related to a 
single latent variable, Y. The numerical subscripts given to the es and Xs indi-
cate that the five items are different and that the five sources of error, one for 
each item, are also different. The diagram has no arrows going directly from 
one X to another X or going from an e to another e or from an e to an X other 
than the one with which it is associated. These aspects of the diagram represent 
assumptions that will be discussed later.

If we had five actual items that a group of people had completed, we would 
have item scores that we could then correlate with one another. The rule exam-
ined earlier allowed the computations of correlations from path coefficients. 
With the addition of some assumptions, it also lets us compute path coefficients 
from correlations—that is, correlations computed from actual items can be used 
to determine how each item relates to the latent variable. If, for example, X1

 and 
X4 have a correlation of .49, then we know that the product of the values for 
the path leading from Y to X1 and the path leading from Y to X4 is equal to .49. 
We know this because our rule established that the correlation of two variables 
equals the product of the path coefficients along the route that joins them. If 
we also assume that the two path values are equal, then they both must be .70.1

Further Elaboration of t	he  
Measurement Model

Classical Measurement Assumptions
The classical measurement model—which asserts that an observed score, X, 

results from the summation of a true score, T, plus error, e—starts with com-
mon assumptions about items and their relationships to the latent variable and 
sources of error:

1.	 The amount of error associated with individual items varies randomly. 
The error associated with individual items has a mean of zero when 
aggregated across a large number of people. Thus, items’ means tend to 
be unaffected by error when a large number of respondents complete 
the items.

2.	 One item’s error term is not correlated with another item’s error term; 
the only routes linking items always pass through the latent variable, 
never through any error term.

3.	 Error terms are not correlated with the true score of the latent variable. 
Note that the paths emanating from the latent variable do not extend 
outward to the error terms. The arrow between an item and its error 
term aims the other way.

The first two assumptions above are common statistical assumptions that 
underlie many analytic procedures. The third amounts to defining “error” as 
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26    Scale Development

the residual remaining after considering all the relationships between a set 
of predictors and an outcome or in this case, a set of items and their latent 
variable.

Parallel Tests
Classical measurement theory, in its most orthodox form, is based on the 
assumption of parallel tests. The term parallel tests stems from the fact that one 
can view each individual item as a “test” for the value of the latent variable. For 
our purposes, referring to parallel items would be more accurate. However, we 
will defer to convention and use the traditional name.

A virtue of the parallel tests model is that its assumptions make it quite easy 
to reach useful conclusions about how individual items relate to the latent vari-
able based on our observations of how the items relate to one another. Earlier, 
we suggested that, with knowledge of the correlations among items and with 
certain assumptions, one could make inferences about the paths leading from 
a causal variable to an item. As will be shown in the next chapter, being able to 
assign a numerical value to the relationships between the latent variable and 
the items themselves is quite important. Thus, in this section, I will examine 
in some detail how the assumptions of parallel tests lead to certain conclusions 
that make this possible.

The rationale underlying the model of parallel tests is that each item of a 
scale is precisely as good a measure of the latent variable as any other of the 
scale items. The individual items are thus strictly parallel, which is to say that 
each item’s relationship to the latent variable is presumed identical to every 
other item’s relationship to that variable and the amount of error present in 
each item is also presumed to be identical. Diagrammatically, this model can 
be represented as shown in Figure 2.6.

This model adds two assumptions to those listed earlier:

1.	 The amount of influence from the latent variable to each item is 
assumed to be the same for all items.

2.	 Each item is assumed to have the same amount of error as any other 
item, meaning that the influence of factors other than the latent 
variable is equal for all items.

These added assumptions mean that the correlations of each item with the 
true score are identical. Being able to assert that these correlations are equal is 
important because it leads to a means of determining the value for each of these 
identical correlations. This, in turn, leads to a means of quantifying reliability, 
which will be discussed in the next chapter.

Asserting that correlations between the true score and each item are equal 
requires both of the preceding assumptions. A squared correlation is the propor-
tion of variance shared between two variables. So if correlations between the 
true score and each of two items are equal, the proportions of variance shared 
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between the true score and each item also must be equal. Assume that a true 
score contributes the same amount of variance to each of two items. This amount 
can be an equal proportion of total variance for each item only if the items have 
identical total variances. In order for the total variances to be equal for the two 
items, the amount of variance each item receives from sources other than the 
true score must also be equal. As all variation sources other than the true score 
are lumped together as error, this means that the two items must have equal 
error variances. For example, if X1 got 9 arbitrary units of variation from its true 
score and 1 from error, the true score proportion would be 90% of total varia-
tion. If X2 also got 9 units of variation from the true score, these 9 units could be 
90% of the total only if the total variation were 10. The total could equal 10 only 
if error contributed 1 unit to X2 as it did to X1. The correlation between each item 
and the true score then would equal the square root of the proportion of each 
item’s variance that is attributable to the true score or roughly .95 in this case.

Thus, because the parallel tests model assumes that the amount of influence 
from the latent variable is the same for each item and that the amount from 
other sources (error) is the same for each item, the proportions of item variance 
attributable to the latent variable and to error are equal for all items. This also 
means that, under the assumptions of parallel tests, standardized path coeffi-
cients from the latent variable to each item are equal for all items. It was assum-
ing that standardized path coefficients were equal that made it possible, in an 
earlier example, to compute path coefficients from correlations between items. 
The path diagram rule relating path coefficients to correlations, discussed ear-
lier, should help us understand why these equalities hold when one accepts the 
preceding assumptions.

L

a1 a2 a3

X1

e1 e2 e3

X2 X3

FIGURE 2.6  ● � A diagram of a parallel tests model, in which all 
pathways from the latent variable (L) to the items 
(X1, X2, X3) are equal in value to one another, as are all 
pathways from the error terms to the items
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The assumptions of this model also imply that correlations among items are 
identical (e.g., the correlation between X1 and X2 is identical to the correlation 
between X1 and X3 or X2 and X3). How do we arrive at this conclusion from the 
assumptions? The correlations are all the same because the only mechanism to 
account for the correlation between any two items is the route through the latent 
variable that links those items. For example, X1 and X2 are linked only by the route 
made up of paths a1 and a2. The correlation can be computed by tracing the route 
joining the two items in question and multiplying the path values. For any two 
items, this entails multiplying two paths that have identical values (i.e., a1 = a2 = a3).  
Correlations computed by multiplying equal values will, of course, be equal.

The assumptions also imply that each of these correlations between items 
equals the square of any path from the latent variable to an individual item. 
How do we reach this conclusion? The product of two different paths (e.g., a1 

and a2) is identical to the square of either path because both path coefficients 
are identical. If a1 = a2 = a3 and (a1 × a2) = (a1 × a3) = (a2 × a3), then each of these 
latter products must also equal the value of any of the paths multiplied by 
itself. Looking back at Figure 2.6 may make these relationships and their impli-
cations clearer.

It also follows from the assumptions of this model that the proportion of 
error associated with each item is the complement of the proportion of vari-
ance that is related to the latent variable. In other words, any effect on a given 
item that is not explained by the latent variable must be explained by error. 
Together, these two effects explain 100% of the variation in any given item. 
This is so simply because the error term (e) is defined as encompassing all 
sources of variation in the item other than the latent variable.

These assumptions support at least one other conclusion: Because each item 
is influenced equally by the latent variable and each error term’s influence on 
its corresponding item is also equal, the items all have equal means and equal 
variances. If the only two sources that can influence the mean are identical for 
all items, then clearly the means for the items also will be identical. This rea-
soning also holds for the item variances.

In conclusion, the parallel tests model assumes the following:

1.	 Error is random.

2.	 Errors are not correlated with one another.

3.	 Errors are not correlated with true score.

4.	 The latent variable affects all items equally.

5.	 The amount of error for each item is equal.

These assumptions allow us to reach a variety of interesting conclusions. 
Furthermore, the model enables us to make inferences about the latent variable 
based on the items’ correlations with one another. However, the model accom-
plishes this feat by setting forth fairly stringent assumptions.
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Alternative Models
As it happens, all the narrowly restrictive assumptions associated with strictly 
parallel tests are not necessary in order to make useful inferences about the rela-
tionship of true scores to observed scores. A model based on what are techni-
cally called tau-equivalent tests makes a more liberal assumption—namely, that 
the amount of error variance associated with a given item need not equal the 
error variance of the other items (e.g., Allen & Yen, 1979). Tau-equivalent tests 
still require identical true scores for items, although a slight loosening of that 
assumption defines essentially tau-equivalent tests (or occasionally, randomly par-
allel tests). Any pair of items adhering to essential tau equivalence may have true 
scores that differ by some constant. Of course, adding a constant to one item has 
no effect on any correlation involving that item because correlations are stan-
dardized expressions. Consequently, the correlation between any pair of items 
or between an item’s true score and the item’s obtained score is not affected 
by relaxing the assumptions of strict tau equivalence to those of essential tau 
equivalence. So what we have said thus far about tau equivalence also applies 
to essential tau equivalence. In either of these cases, the standardized values of 
the paths from the latent variable to each item may not be equal. However, the 
unstandardized values of the path from the latent variable to each item (i.e., the 
amount as opposed to proportion of influence that the latent variable has on each 
item) are still presumed to be identical for all items. This means that items are 
parallel with respect to how much they are influenced by the latent variable 
but are not necessarily influenced to exactly the same extent by extraneous fac-
tors that are lumped together as error. Under strictly parallel assumptions, not 
only do different items tap the true score to the same degree; their error com-
ponents are also the same. Tau equivalency (tau is the Greek equivalent to t, as 
in true score) is much easier to live with because it does not impose the “equal 
errors” condition. Because errors may vary, item means and variances may also 
vary. The more liberal assumptions of this model are attractive because finding 
equivalent measures of equal variance are rare. This model allows us to reach 
many of the same conclusions as with strictly parallel tests but with less restric-
tive assumptions. Readers may wish to compare this model with Nunnally and 
Bernstein’s (1994) discussion of the domain sampling model.

Some scale developers consider even the essentially tau-equivalent model 
too restrictive. After all, how often can we assume that each item is influenced 
by the latent variable to the same degree? Tests developed under what is called 
the congeneric model (Jöreskog, 1971) are subject to an even more relaxed set 
of assumptions (see Carmines & McIver, 1981, for a discussion of congeneric 
tests). This model assumes (beyond the basic measurement assumptions) 
merely that all the items share a common latent variable. They need not bear 
equally strong relationships to the latent variable, and their error variances 
need not be equal. One must assume only that each item reflects the true score 
to some degree. Of course, the more strongly each item correlates with the true 
score, the more reliable the scale will be.
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An even less constrained approach is the general factor model, which allows 
multiple latent variables to underlie a given set of items. Carmines and McIver 
(1981), Loehlin (1998), and Long (1983) have discussed the merits of this type 
of very general model, chief among them being its improved correspondence 
to real-world data. Structural equation modeling approaches often incorporate 
factor analyses into their measurement models; situations in which multiple 
latent variables underlie a set of indicators exemplify the general factor model 
(Loehlin, 1998).

The congeneric model is a special case of the factor model (i.e., a single-
factor case). Likewise, an essentially tau-equivalent measure is a special case of 
a congeneric measure—one for which the relationships of items to their latent 
variable are assumed to be equal. Finally, a strictly parallel test is a special case 
of an essentially tau-equivalent one, adding the assumption of equal relation-
ships between each item and its associated sources of error.

Another measurement strategy should be mentioned. This strategy is item 
response theory (IRT). This approach has been used primarily but not exclu-
sively with dichotomous-response (e.g., correct versus incorrect) items in 
developing ability tests. IRT assumes that each individual item has its own char-
acteristic sensitivity to the latent variable, represented by an item-characteristic 
curve—a plot of the relationship between the value of the latent variable (e.g., 
ability) and the probability of a certain response to an item (e.g., answering it 
correctly). Thus, the curve reveals how much ability an item demands to be 
answered correctly. We will consider IRT further in Chapter 8.

In Chapters 6, 7, and 8, we will look at factor analysis, indices, and item 
response theory respectively. In those chapters, we will necessarily go beyond 
the models we have discussed so far. In Chapters 1 through 5, however, we will 
focus primarily on parallel and essentially tau-equivalent models for several 
reasons. First, they exemplify “classical” measurement theory. Second, discuss-
ing the mechanisms by which other models operate can quickly complicate 
topics unnecessarily if those models are not necessary to a basic understand-
ing. Finally, classical models have proven very useful for social scientists with 
primary interests other than measurement who, nonetheless, take careful mea-
surement seriously. This group is the audience for whom the present text has 
been written. For these individuals, the scale development procedures that fol-
low from a classical model generally yield satisfactory scales. Indeed, to my 
knowledge although no tally is readily available, I suspect that (outside ability 
testing) a substantial majority of the well-known and highly regarded scales 
used in social science research were developed using such procedures.

Choosing a Causal Model
Choosing the causal model that underpins a variable, when feasible, can be 
an important aspect of measurement. The very conceptualization of a vari-
able can sometimes be subtly adapted at the outset of a research project to 
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make its eventual measurement more manageable. As an example, consider 
a researcher who wants to assess how the physical work environment affects 
employee productivity. One approach might be to develop a long list of envi-
ronmental factors that are thought to influence productivity—such as light-
ing, sense of privacy, or access to a computer—and develop an instrument 
that has workers rate the extent to which those factors are present in a given 
workplace. A problem with this approach is that the instrument may end up 
being an index rather than a scale or perhaps a hybrid of the two (topics 
we discuss in Chapter 7). That is, the indicators (e.g., good lighting, reason-
able privacy, computer access) might not really share a common cause but 
rather a common effect, namely, an improvement in the work environment. 
If, instead, the investigator considered the eventual measurement problem 
early on in the research process, he or she may have decided to conceptualize 
the variable somewhat differently. For example, had the investigator defined 
the variable of interest as employees’ perceptions of the work environment, 
that definition may have led to a more tractable set of items. For example, 
employees could be asked to endorse items such as, “My workplace environ-
ment provides the basic equipment I need to do my job effectively.” Here, the 
latent variable is not a feature of the environment per se but the employees’ 
perceptions. How the employees perceive the environment is the common 
cause driving their responses to individual items. It may be easier to assume 
that an employee has a sense of the work environment that will give rise to 
answers across a set of questions about its adequacy than to imagine the envi-
ronment itself as a cause of employee responses. Moreover, the psychological 
nature of employee perceptions may actually be closer to what the investiga-
tor considered relevant to productivity than the mere presence or absence of 
specific environmental features. That is, whether a given worker perceives the 
environment as conducive to productivity may be a more relevant variable 
than someone else’s judgment regarding the adequacy of the work environ-
ment. So conceptualizing the variable of interest in this way may serve the 
underlying research question well while also potentially facilitating the even-
tual measurement of the variable.

Of course, if the variable simply does not lend itself to a causal conceptual-
ization consistent with a straightforward measurement strategy, the integrity 
of the variable of interest should not be compromised. Chapter 7 offers ways 
to proceed in those instances. Certain approaches may help the investigator 
work around the limitations inherent in the variable and the way in which it is 
operationalized. But if an acceptable alternative conceptualization of the vari-
able and the model relating it to its indicators can be simplified, it well may be 
possible to develop a measurement tool that meets a simpler set of assumptions 
and thus can be explored using less complex analytic tools. Having the tools 
to handle the more complex situations is certainly a good thing, but avoiding 
those complexities and precluding the need for those more advanced tools may 
be even better, assuming that it does justice to the construct.
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32    Scale Development

Exercises

1.	 How can we infer the relationship between the latent variable and two 

items related to it based on the correlations between the two items?

2.	 What is the chief difference in assumptions between the parallel tests 

and essentially tau-equivalent models?

3.	 Which measurement model assumes, beyond the basic assumptions 

common to all measurement approaches, only that the items share a 

common latent variable?

4.	 Assume an essentially tau-equivalent model with true score T and 

indicators A, B, and C. In such a model, any two indicators (e.g., A and B)  

that share a common true score must have a covariance identical to the 

covariance between any other two indicators (e.g., B and C) sharing 

that true score. However, the correlations between different pairs of 

indicators need not be equal. Explain why this is so.

Note

1.	 Although -.70 is also an allowable square root of .49, deciding between 

the positive or negative root is typically of less concern than one would 

think. As long as all the items can be made to correlate positively with 

one another (if necessary, by reverse scoring certain items, as discussed 

in Chapter 5), then the signs of the path coefficients from the latent 

variable to the individual items will be the same and are arbitrary. 

Note, however, that giving positive signs to these paths implies that 

the items indicate more of the construct, whereas negative coefficients 

would imply the opposite.
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