
1
R BASICS

OBJECTIVES OF THIS CHAPTER

This chapter begins with an introduction to the basics of R. The first section shows novice R
users the interface, menus, and R toolbar. It introduces the RStudio and R Commander, the
graphical user interfaces (GUIs), which make the use of R easier. It also introduces objects in
R and R functions and arguments and shows how to install R and add-on packages, create
script files, and import data. The second section shows readers several commonly used data
types and various data management techniques, such as how to select cases and variables,
create and recode variables, label categories for factors, and label variables. Further, it
introduces tidyverse and how to use both the dplyr package in tidyverse and
the sjmisc package for data management. The third section introduces basic graphic
functions and the ggplot2 package. After reading this chapter, you should be able to:

· Install, start, and exit R.

· Open existing data files.

· Enter commands, create a script file, and save output.

· Select cases and variables, create new variables, recode and label variables, and
label values for categorical variables.

· Draw different types of graphs.

1.1 INTRODUCTION TO R
R is a programming language. It was developed by Ross Ihaka and Robert Gentleman in
the 1990s based on the S programming language. After several years of development, R
version 1.0.0 was officially released in 2000. R is now developed by the R Development

1

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Core Team. It can be run on almost all operating systems across Windows, Mac, Linux,
and Unix. R has different names. It is also called a program, a package, a system, or an
environment. In this book, we treat R as a general-purpose statistical package and a pro-
gramming language. Just like IBM SPSS, SAS, and Stata, R is also a general-purpose
statistical tool for data management, data analysis, and graphing.

R is a powerful tool for data management, graphics, and data analyses. It is capable of
conducting various statistical analyses, from basic statistical analyses to more complex
models, such as generalized linear models, generalized additive models, multivariate
analyses, time series, survival analysis, propensity score analysis, multilevel modeling,
structural equation modeling, cluster analysis, machine learning, and Bayesian statistics.
As an R user, you will be amazed at the capacities of R for statistical analysis. If I claim
that R can do any statistical analysis, it may sound like I am exaggerating. However, if
you name a modern statistical method, it is very likely that you can find an R package
or function which has been developed for that method.

R has extensive programming capabilities. You can write packages with new functions
which can be shared with other users in the R community. With the contributions of
experts from various fields, new statistical techniques can be quickly implemented in R.
For example, the user-written package ordinal was developed for ordinal regression
models, the VGAM package was developed for generalized linear and additive models,
and the lme4 package was developed for mixed-effects models or multilevel models.
We can install these user-written packages using the install.packages()

function. After installation, these add-on packages can be executed in the same way as
the base package in R. So, when functions of interest are unavailable in the base
package in R, users can search online to see if they have been developed by other users.

R provides more than one solution for your statistical analysis. You may find multiple
packages with similar functions for a statistical method. For example, you can use either
the clm() function in the ordinal package or the vglm() function in the VGAM
package to fit ordinal logistic regression models. There are also several packages
developed for multinomial logistic regression models, such as the vglm() function in
VGAM, the multimon() function in nnet, and the mlogit() function in
mlogit. Therefore, you have a variety of choices to solve your problems. In addition,
the results can be cross-validated if multiple packages are used for the same analysis.

R is an open-source programming language. This means that the source code is freely
available to use. You can also modify the source code, create your own, and share it
with your colleagues or in the R community.

R is free. It is free to download, install, and use. The benefit of having a free statistical
package is self-evident.

1.1.1 Installing, Starting, and Exiting R
To install R on your computer, you need to download it from the Comprehensive R
Archive Network (CRAN) at http://cran.r-project.org/. The CRAN is the online
network for storing the R software, add-on packages, and documentation. Choose the

2 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

http://cran.r-project.org/
http://cran.r-project.org/


link for the R installation file for Windows, Linux, or macOS operating systems. At
the time of writing, the R version is R 4.1.0 (R Core Team, 2021). The installation of
R is just as easy as the installation of any other program on these operating systems. For
example, to install R on Windows, run the installation file by right clicking it and then
select Run as Administrator. Then follow the steps to install it.

You can install 32-bit, 64-bit, or both versions on your computer. The advantage of the
64-bit version is that it can handle large data as long as your computer memory allows
for it. Install 64-bit version if your computer supports 64-bit. To update R, you simply
download and install the latest version following the procedures introduced above. You
can either uninstall or keep the old version on your computer. In this book, we focus
on R for Windows.

R can be started in two ways. First, you can run R by double-clicking the icon on the
desktop. Second, you can start it by clicking the Start Menu on Windows, All App,
and then R.

To exit R, you can either type the command q() and press Enter or use the pull-down
menu. To use the menu, go to File and then click on Exit.

R is mainly a command-driven statistical package. To execute a command, you need to
enter it on the command line and press the Enter key. Why do we still need to type
commands in R instead of using point-and-click menus in other statistical packages?
There is nothing wrong with using the graphic user interface (GUI) pull-down menus,
but you may find that it will be more efficient to type commands. There are three
reasons for this efficiency. First, it saves you time. For example, to run a simple
regression analysis with a dependent variable y and an independent variable x in the
data1 dataset, you simply type:

lm(y ; x, data 5 data1)

Second, it helps reproducible research. You can save all your commands to a script file
so that you can replicate your analysis easily and share it with others. In addition, you
can edit your script file for other analyses. For example, if we have three independent
variables in a linear regression analysis, then we can modify the previous command as
follows:

lm(y ; x1 1 x2 1 x3, data 5 data1)

Third, it is extensible with add-on packages. You can use a variety of packages
and functions in R which are not readily available on the GUI pull-down menus
in other statistical packages. Due to R’s extensive programming capacity, the
number of add-on packages increases tremendously each year. You have more
opportunities to find the right package to get your job done. In addition, you can
write your own functions or edit the existing functions in R to make your work
more efficient.

Chapter 1 n R Basics 3

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/


1.1.2 R at First Sight: R Console, Menus, and Toolbar
R Console

Once you start R, you will see the R Console windows (Figure 1.1).

In the R Console window, you need to type a command next to the > symbol and press
the Enter key to execute it. You can copy a command from a Notepad and paste it here.
You can also edit a command before execution. You can only execute one command at a
time in this window, whereas you can run a series of commands via the script file which
will be explained later in the chapter. R is interactive. After you execute a command, the
output is displayed below. The more commands you type, the more results you get. The
output can be copied and pasted into a text file or a Word document. It can also be saved
into a text file, which will be explained in more detail next.

R Menus

R has seven pull-down main menus, including File, Edit, View, Misc, Packages,
Windows, and Help. These menus provide basic tools and features that can be used by
pointing and clicking.

File menu: The purpose of this menu is to help you with files. Options in this
menu help you open and save a script file, load and save a workspace, load and
save a history file, change directory, print results, and exit R.

FIGURE 1.1 R Console Window

4 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Edit menu: The Edit menu helps you copy texts from the R Console window
and paste them in the same or another location. It also provides the Data
Editor and the GUI Preference Editor.

View menu: The View menu shows you the tool bar and the status bar.

Misc menu: The Misc menu helps you stop the current computation, stop all
computations, list objects, remove objects, and list search path.

Packages menu: The Packages menu helps you install, update, and load
packages, select CRAN mirrors, and select repositories.

Windows menu: This menu helps you organize the R Console window. Several
options include Cascade, Tile Horizontally, and Tile Vertically.

Help menu: This menu provides FAQ on R, R manuals in PDF, help on R
functions, html help, search help, search for words in help list archives and
documentation, and the links for R project and CRAN home pages, respectively.

Please note that R does not provide menus for data management, graphs, and statistics.
If you need a GUI for such functions, you need to install an add-on package, the R
Commander package (i.e., Rcmdr), which was developed by John Fox and his col-
leagues. An introduction to this package is provided in a later section.

R Toolbar

The toolbar, located below the main menus, comprises a set of icons. It helps you
quickly access the most frequently used features. Familiarizing yourself with these icons
will make the use of R more efficient.

These icons include Open Scripts, Load Workspace, Save Workspace, Copy, Paste,
Copy and Paste, Stop Current Computation, and Print. Table 1.1 shows the icons of
the toolbar, their titles, and their functions.

1.1.3 RStudio
RStudio (RStudio Team, 2020) is a free, open-source integrated development envi-
ronment (IDE) for R. An IDE basically is a program that makes programming easier.
RStudio includes an R console, a text editor, and tools for workspace, history, plots,
packages, and help. RStudio not only makes R look fancy, but also provides a variety of
tools which make R more user-friendly and more convenient.

You can download RStudio at https://rstudio.com/. At the website, go to Products, click on
RStudio, and then choose the open-source edition. Follow the steps to install it on your

Chapter 1 n R Basics 5

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

https://rstudio.com/
https://rstudio.com/


computer. You need to install R first and then install RStudio. At the time of this writing,
the RStudio version is RStudio 1.4.1717-3. Figure 1.2 shows the screenshot of RStudio.

· The upper left panel is the R script editor, an enhanced text-editor with
highlighting. You can type R commands and create a script file.

· The lower left panel is the R console. The output is displayed after you
execute R commands in the R script editor. You can also type and execute R
commands in the R console.

· The upper right panel contains the workspace and history of commands. The
workspace displays the existing and temporary datasets and other objects
which you create. The history tab shows the history of R commands.

· The lower right panel shows the tabs for files, plots, packages, help, and
viewer. The Files tab helps you see file directories and manage files; the Plots tab
displays the graphs you create; the Packages tab displays the installed packages;
the Help tab provides documentation and other help files or pages for R
functions and packages; and the Viewer tab does not provide much information,
but it can be useful for a particular package to display local web content.

TABLE 1.1 Icons of the Toolbar, Their Titles, and Their Functions

Icon Icon Title Functions

Open Scripts Opens an existing script file (i.e., .R file)

Load Workspace Opens an existing workspace file (i.e, .RData file)

Save Workspace Saves the current workspace file (i.e, .RData file) to
your computer

Copy Copies the selected text

Paste Pastes the copied text

Copy and Paste Copies and pastes the selected text to the current
command line

Stop Current Computation Stops executing the current program

Print Prints your R output

6 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

https://rstudio.com/
https://rstudio.com/


1.1.4 R Commander
R is a programming language, which does not have a well-built GUI system itself. The
R Commander package (i.e., Rcmdr), which was developed by John Fox and his
colleagues (Fox, 2005, 2017), provides a GUI for R. It is a menu system for reading
data and conducting statistical analysis, which facilitates users to learn about the pro-
gram. Users can use point-and-click menus to familiarize themselves with the features
of importing data, recoding variables, making graphics, and choosing a variety of
methods for statistical analysis. It is useful for novices or users who are familiar with
other statistical packages such as IBM SPSS. It serves as a nice transitional tool to ease
the anxiety of importing data and conducting data analysis without programming.

To install the Rcmdr package, use the following command.

install.packages(“Rcmdr”, dependencies 5 TRUE)

Choose the mirror close to you and then install it. To use the package, you need to load
it using the library(Rcmdr) command. The screenshot is displayed in Figure 1.3.

The R Commander window provides a script file window at the top, an output window in
the middle, and a messages window at the bottom. Just like IBM SPSS, you can load a
dataset and then choose the statistical method of interest. You can also use menus to
complete data management tasks, such as creating, deleting, and recoding variables, adding

FIGURE 1.2 Panels of RStudio

Chapter 1 n R Basics 7

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



observations, and converting variables to factors. When you perform an analysis using the R
Commander package, it displays the corresponding command in the script file window and
the output in the output window. You can then save the command for future use.

There is nothing wrong with using the GUI pull-down menus to get the job done. As
you become an experienced R user however, you will find that it will be more efficient
to type commands and you will have a wide range of choices of packages.

1.1.5 R Base Package and Add-on Packages
The R base package is on your computer once R is installed. It contains many built-in
functions for statistical analysis and graphing, such as mean() for means, lm() for
linear regression models, and glm() for generalized linear models. The add-on
packages are the user-written packages, also known as the third-party packages. They
complement the base package by extending the capabilities of R. They are free and can
easily be installed. They are normally stored on the CRAN.

You need to install the package of interest either by using the install.pack-

ages() function with the name of the package placed in quotation marks or by using

FIGURE 1.3 Screenshot of R Commander

8 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



the pull-down menu in RStudio or R. For example, the ordinal package is the user-
written package for ordinal regression models. To install it by typing the command in R,
you need to type: install.packages(“ordinal”). Choose the mirror close to
you and then follow steps to install it. If you want to install the package in RStudio, you
type the install.packages(“ordinal”) command in the script editor window
and run the command by highlighting it. You only need to install it once. To see the
installed packages in RStudio, click on the Packages tab in the lower right panel.

You also need to load it after the installation by using the library(ordinal)

command. It needs to be loaded again if you restart the R session. An error message will
be displayed if you load a package which has not been installed. As of the writing, there
are more than 15,000 packages available on the CRAN. The rapidly increasing add-on
packages promote R’s popularity.

1.1.6 Objects in R
R is an object-oriented language. In other words, everything in R can be treated as an
object. Therefore, a data frame, a graph, a function, and a fitted model are all objects in R.
For novices, this seems a confusing concept if no examples are provided. To clarify, let us
see an example. We assign the value 5 to an object named x with the following command.

x <- 5

The assignment operator, <-, which is composed of a less than sign (<) immediately
followed by a hyphen (-), is used to assign the value to the object. The value being
assigned to the object is on the right-hand side of the assignment operator and the
object name is on the left-hand side. We can also use the equal sign, 5, as the
assignment operator.

We can assign a linear model to an object named mod using the following command.

mod <- lm(y ; x)

In each of the two examples, the object has a name and content. Typing the object
name shows the content of the object. Although you can use any name you like, it is
always good practice to have a meaningful and concise object name. Having a mean-
ingful name helps you understand the object. Also, it is preferable to have a concise
name rather than a lengthy one. An object name can be a combination of letters,
numbers, and dots. There are several basic rules for naming objects.

1. Object names should not start with a number. They should start with a letter
or dot. For example, 1.mod is not a correct object name, but mod.1 is.

2. Object names allow letters, numbers, underscore characters (_), and dots (.).
You should avoid space and special characters such as @, #, $, %, and &. For
example, you can have an object named mod.1 or mod_1, but not mod$1
since $ is an operator for accessing a variable.

3. R is case-sensitive. This rule also applies to object names, so the object
mod.1 is different from Mod.1.

Chapter 1 n R Basics 9

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.1.7 Functions and Arguments in R
Functions in R are just like commands or procedures in other statistical packages. They
are simply a set of instructions to perform a specific task. The form of an existing function
in R is the function name with an argument or a set of arguments within the parentheses.
In a programming language, arguments are inputs or parameters in a function, which are
like options in other statistical packages. Let us see an example of a built-in function,
mean(). To compute the mean of the variable x1, we use the mean(x1) command.
In the command, mean() is the function for means and x1 is the argument or input.
Executing the command returns the output. When there are multiple arguments, they are
separated by commas. For example, in the mean(x1, na.rm 5 TRUE) command,
there are two arguments. One argument is the variable object and the other argument
na.rm 5 TRUE is used to remove missing values. In a programming language, when
executing a code in a function, we also say that we call a function. A call to that function
just means that we execute that function. In the two examples above, we call the
mean() function with the parentheses containing the arguments.

If you would like to create a new function, you can use the function() function.
You need to assign the function a new name and have a body of statements. The body
of a function is always enclosed by curly braces.

1.1.8 R Script Files
If you use the Console window to enter commands, you can enter one piece at a time. An
R script file is a text file containing a list of R commands. R script files can help you put a
list of commands in one file and execute them together as a batch. Using script-files helps
you to organize commands, keep a record, and understand what you have done when you
need them in the future. It is also helpful when you collaborate with other researchers on
a research project. Your colleagues can simply replicate the analyses using the script files
you provide, and they can modify them for new analyses. It will save you time when you
need to replicate your statistical analyses. If you are an instructor, these script files are also
helpful when preparing your instruction and for grading students’ assignments.

To create a new script file in R, go to File and then click on New Script. You will see a
new Untitled-R Editor window. To open an existed script in R, go to File and then
click on Open Script. To run the script, you can highlight the commands, right click it
and choose Run line or selection. You can also click on Select all and then run all the
commands at once.

To save your script file in R, go to File and then click on Save as. Save the script with an
“.R” extension.

RStudio has a highlighting text editor for script files, also known as a script editor. To
create a new script file in RStudio, go to File, New File, and then click on New Script.
One advantage to using the script editor in RStudio is that RStudio automatically loads
the latest script when you open the program. Therefore, if you forget to save the script
file in the last session, you can still do so. To run the script in RStudio, highlight the
commands and click on Run at the upper right corner of the script editor.

10 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



In this book, all the R commands are saved as R scripts files in RStudio. The R scripts
are provided at the end of each chapter. They are also available online to download so
you can replicate all the analysis.

You should save the script file to the current working directory. A working directory is the
place where R scripts, data files, output, and graphs are stored. Although it is not required
to set a working directory to run R, it is cumbersome to type the full path with the file
name to access that file each time. By setting the working directory, you can access the file
folder directly without providing the full file path. Use the setwd(“ ”) function with
the full path in the quotation marks to set the working directory. For example,
the setwd(“C:/CDA”) command sets the existing folder named CDA in the C drive as
the working directory. You need to create the folder first before setting is as the working
directory. To check your current working directory, type the command getwd().

A good habit when you create a script file is to have comments in the file. Comments in an
R script file are lines beginning with a pound sign or a hash symbol (#). The comments
may include time, project name, who wrote it, and for what purposes. The clearer your
comments are, the better your documentation will be. The comments immediately
following # in the script files will not be executed but will be displayed in your output.

1.1.9 How to Open an Existing Dataset via the Command
Line or the Menus in RStudio
A dataset is called a data frame in R. A data frame is a rectangular-shaped dataset with
variables in columns and observations in rows. The data frame in R is similar to the
dataset in an Excel spreadsheet or statistical packages such as IBM SPSS, SAS, and
Stata. R has other data structures, such as vectors, lists, matrices, and factors, which will
be introduced in the following section.

If you work on a research project using R, the first question you may ask is “How can I
open or import an existing IBM SPSS, SAS, Stata, or Excel dataset into R?” For
novices, importing an existing dataset into R can be a daunting task or frustrating
experience. Since R is a programming language, you cannot double click the dataset to
open it. If you are not using the R Commander package (i.e., Rcmdr), you cannot
open the dataset via the R pull-down menu, either. One solution is to use the
foreign package which has functions to read SAS, SPSS, Stata, Systat, and other
formats of data into R. The other solution is to open the dataset via the pull-down
menus in RStudio. We will introduce both methods next.

The foreign package is now part of the R base installation, so you do not need to
install it. However, if you would like to update it to the latest version, you can use the
install.packages(“foreign”) command to install it. To use this package,
we use the library(foreign) command to load it first.

Importing a Stata Dataset

In the following example, we would like to directly open the GSS:2016 dataset, which
is a Stata data file with the .dta extension format. We use the read.dta() function
with the file name enclosed in quotation marks. The basic syntax is as follows.

read.dta(file 5 “ ”)

Chapter 1 n R Basics 11

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



To read a Stata 13 or higher dataset, use the read.dta13() function in the
readstata13 package. You need to install the readstata13 package first by
typing install.packages(“readstata13”) since it is a user-written pack-
age. After installation, load the package by typing library(readstata13).

Importing a SPSS Dataset

To read a SPSS dataset with the .sav extension, use the read.spss() function.

Importing a SAS Dataset

To read a SAS permanent dataset, use the read.ssd() function; to read a SAS
transport format, use the read.xport() function.

We can also use the read_sas() function in the haven package to open a SAS
dataset. You need to install the haven package first by typing install.pack-

ages(“haven”) and then load the package by typing library(haven).

Importing an Excel Dataset

To read an Excel dataset with the .csv extension, use the read.table() function or
the read.csv() function.

To read an Excel dataset with the .xls extension, use the read.xls() function in the
gdata package. You need to use install.packages("gdata") to install the
package first and then load it with the library(gdata) command.

Importing a Delimited Text Dataset

To read an ASCII text dataset with the .txt extension, use the read.table()

function.

R has its own data file format which has the .RData extension. You can use the
save() function to save the data. For example, in the save(data1, file 5
“data1.RData”) command, data1 is the data object name and file 5
“data1.RData” specifies the data format.

Importing a Dataset Through the Menus in RStudio

In addition to typing the commands in the command line, it is also easy and handy to
import an existing dataset through the menu system in RStudio with the following steps:

· First, go to File on the RStudio main menu and then click on Import
Dataset. Select From Text, From Excel, From SPSS, From SAS, or From
Stata according to your data file format and then click on it. You may be
prompted to install the required packages. After you click on Yes, RStudio
will automatically install them for you (Figure 1.4).

· Second, in the pop-up window, click on Browse to locate the dataset on your
computer, select it, and click on Open (Figure 1.5).

12 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



FIGURE 1.4 Screenshot of Selecting a Dataset via RStudio

FIGURE 1.5 Screenshot of Opening a Dataset via RStudio

Chapter 1 n R Basics 13

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



· Third, once previewing the dataset and clicking on Import, you will see the
imported dataset shown in the upper left panel and the R command echoed
in the lower left R console.

1.1.10 How to Save R Output
When you execute a command in the R Console window, R will display the output
following the command. There are several ways to save the output. Three ways are
introduced as follows. First, a simple way is to copy and paste it. You can copy the
selected output as text and paste it into a Word document or a text file. If you paste it
into a Word document, then you may specify the font as Courier New and set the
font size to 9 or smaller to show the results properly. Second, we can use the sink()
function to save the results in a plain text format. This function needs to be used before
we conduct statistical analysis, so we can save all of the results at the beginning of your
R session. For example, the sink(“filename.txt”) command saves the output to
a file named filename.txt in the current working directory. If you are uncertain of
your working directory, type getwd() in the Command window. You can use the
setwd(“ ”) function with the path in the quotation marks to change the working
directory. Please note that output will not be shown in the R console when we use the
sink() function. Third, you may use the knitr package (Xie, 2015, 2021) to save
the R code, the notes, the output, and graphs in one document which can be a Word
document, a pdf file, a presentation, or a web page. This package is useful for repro-
ducible research since the R code, the analysis, and the reporting are well documented
and easily replicated.

1.1.11 What If I Have a Question? How Do I Get Help?
We have many questions when we use R. Thankfully, R provides rich resources for
users in different ways.

First, R itself provides help with the documentation of packages and functions. You can
use the help() function to display the documentation for a package or a function.
For example, the help(lm) command provides the documentation for linear
regression models. A shortcut is to type ? followed by the name of a package or
function. For example, using ?lm is the same as using help(lm) to obtain the
documentation for linear regression models.

Second, R has online help and search facilities, which provide a wide range of help. If
you have a question for a particular command, you can either click on Help from the
menu or type help.search() with the function name enclosed in quotation marks
within the parentheses or type ?? followed by the function name. For example, if you
are looking for the help files for the glm() function for generalized linear models, you
could type help.search(“glm”). The screenshot shown in Figure 1.6 shows the
help page for the glm() function.

The same screenshot can be reached if you use the pull-down menu. Go toHelp on the
menu, click on Search help, and then enter glm in the box. You can see the search
results after clicking on OK.

14 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Third, if you would like to get a more detailed introduction to a package, use the
help(package 5 “ ”) command with the package function name enclosed in
quotation marks. To look for help files for a function in a package, include both the
function name and the package name in parentheses following the help() function.
For example, help(vglm, package 5 “VGAM”) command displays the docu-
mentation for the vglm() function.

Fourth, to search the web for help, use the RSiteSearch(“ ”) function with the
key word enclosed in quotation marks. This function provides a keyword search.

Fifth, go to http://www.r-project.org/ to access the R manuals. R has provided com-
plete PDF documentation. Users can also have access to these manuals directly from
the menu or the installation folder within R.

Finally, you can get help from the following two websites:

· R seek: Search engine for R topics at https://rseek.org

· https://stackoverflow.com provides a general discussion forum for R users.

1.2 R DATA STRUCTURES: VECTORS,
MATRICES, DATA FRAMES, AND LISTS
R includes several commonly used data structures, such as vectors, factors, matrices,
data frames, and lists. We briefly discuss each data structure or data type as follows.

FIGURE 1.6 Screenshot of the help.search(“glm”) Command

Chapter 1 n R Basics 15

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://rseek.org/
https://stackoverflow.com


1.2.1 Vector
Numeric Vector

A vector is a sequence of data elements of the same type. There are several different
types of vectors, including numeric, character, complex, and logical vectors. In this
section, we introduce two basic types of vectors, numeric and character vectors, which
are a list of numeric values and characters or strings, respectively. We use the c()

function, the concatenation function, to combine a list of numeric values or characters.
For example, we would like to create a vector for a numeric variable named age using
the function. The commands are as follows.

age <- c(47, 72, 43, 55, 50, 23, 45, 71, 86, 33)

age

In the first command, the c() function is used to combine the ages of 10 people and
the created vector is assigned to an object named age. The second command is the
vector name age. By typing the vector name, we get all the values of the vector. The
output is as follows.

> # Use c() to create vectors

> age <- c(47, 72, 43, 55, 50, 23, 45, 71, 86, 33)

> age

[1] 47 72 43 55 50 23 45 71 86 33

In the output, the first line shows the c() function with 10 values within the
parentheses and the assigned object name age. The second line shows the vector name
age. The third line shows the 10 values for age. [1] means that this line begins with
the first value.

Character Vector

We can also use the c() function to combine a list of characters or strings for a
character vector. For example, we want to create a vector for a character variable named
gender by using the c() function. The characters are placed in quotation marks in
the command as follows.

gender <-

c("male", "male", "female", "female", "male", "female", "male", "male", "female",

"female")

> gender <-

c("male", "male", "female", "female", "male", "female", "male", "male", "female", "female")

16 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



The command gender lists all the characters of the vector. The output is as follows.

> gender

[1] "male" "male" "female" "female" "male" "female" "male" "male"

[9] "female" "female"

In the output, [1] means that this first line begins with the first character value and
[9] means that the second line begins with the ninth value.

Indexing a Vector

We can use indexing to access an individual element of a vector. Following the vector
name, we use square brackets to place the position number. For example, the age[5]
command references the fifth value of the age vector, which is 50. The output is as
follows.

> # Index a vector

> age[5]

[1] 50

In the second example, the gender[3] command references the third value of the
gender vector, which is “female.” The output is as follows.

> gender[3]

[1] "female"

Factor

A factor is a vector for categories or levels. In other words, a factor or a factor variable is a
categorical variable with multiple levels. It includes categories or levels which are internally
coded as integer values with labels for the corresponding categories. For example, the factor
variable health has four categories with labels, including 1 5 poor health, 2 5 fair
health, 3 5 good health, and 4 5 excellent health. We use the factor() function to
create a factor or categorical variable. In this example, we use the following command.

health <- factor(health, levels 5 c(1, 2, 3, 4), labels 5 c(“poor health”, “fair

health”, “good health”, “excellent health”))

In the command, health is the variable name, levels 5 c(1, 2, 3, 4)

specifies the four categories, and labels 5 c(“poor health”, “fair

health”, “good health”, “excellent health”) specifies the labels with
the characters enclosed in the quotation marks. The levels 5 argument is optional
and can be omitted.

Chapter 1 n R Basics 17

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



A factor can be either a nominal or ordinal categorical variable. It is an ordinal variable
when the categories are ordered. With the ordered 5 TRUE argument, we create an
ordered factor as follows.

health <- factor(health, levels 5 c(1, 2, 3, 4), labels 5 c(“poor health”, “fair

health”, “good health”, “excellent health” ), ordered 5 TRUE)

1.2.2 Matrix
A matrix in R is a data structure with columns and rows in a two-dimensional rectangular
layout with the same data type. Therefore, we cannot mix numeric and character data in a
matrix. We use the matrix() function to create a matrix. For example, we use the m1
<- matrix(1:8, nrow 5 4, ncol 5 2) command to create the following 4 by 2
matrix which includes 4 rows and 2 columns. In the command, 1:8 represents the
numbers from 1 to 8, which is a shortcut for the vector including the numbers from 1 to 8;
nrow 5 4 specifies that the row number is 4; and ncol 5 2 specifies that the column
number is 2. This matrix will be filled by columns since the byrow5 argument is not
specified. The resulting matrix is assigned to an object named m1.

> # Use matrix() to create matrices

> m1 <- matrix(1:8, nrow 5 4, ncol 5 2)

> m1

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

If we would like the matrix to be filled by rows, we use the byrow 5 TRUE argument
in the command. By running the m2 <- matrix(1:8, nrow 5 4, ncol 5 2,

byrow 5 TRUE ) command, we get the following output.

> m2 <- matrix(1:8, nrow 5 4, ncol 5 2, byrow 5 TRUE)

> m2

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

Indexing a Matrix

We also use square brackets to reference elements in matrices. The row and column
indices are enclosed in square brackets and are separated by a comma like this: [row,
column]. For example, we use the m1[2, 1] command to access the element for the
second row and the first column in the m1 matrix. The output is as follows.

18 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> # Index a matrix

> m1[2, 1]

[1] 2

The m1[ , 2] command accesses all the elements for the second column in the m1
matrix. When the row index is not specified, all the rows in the matrix are selected. The
output is as follows.

> m1[ , 2]

[1] 5 6 7 8

When the column index is not specified, all the columns are selected. The m1[4, ]

command accesses all the elements for the fourth row in the m1 matrix.

> m1[4, ]

[1] 4 8

1.2.3 Data Frame
As introduced in the previous section, a data frame in R is a rectangular-shaped dataset
with variables in columns and observations in rows. It is also referred to as a dataset in
other statistical packages. A data frame can include different types of variables or
vectors, such as numeric variables, character variables, and factor variables. We use the
data.frame() function to create data frames. When we work on research projects,
in most situations we work on data frames.

In the following example, we use the gss <- data.frame(age, gender)

command to create a data frame named gss. In the command, the two variables age
and gender are separated by a comma.

> # Use data.frame() to create a data frame

> age <- c(47, 72, 43, 55, 50, 23, 45, 71, 86, 33)

> gender <-

c("male", "male", "female", "female", "male", "female", "male", "male", "female", "female")

> gss <- data.frame(age, gender)

> gss

age gender

1 47 male

2 72 male

3 43 female

4 55 female

5 50 male

6 23 female

7 45 male

8 71 male

9 86 female

10 33 female

Chapter 1 n R Basics 19

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Several functions such as str(), dim(), and names() are useful to inspect a data
frame. In this example, we use the str() function to display the structure of the gss
dataset. The output shows that there are 10 observations and two variables in the
dataset. The names and types of the two variables are shown next.

> str(gss)

’data.frame’: 10 obs. of 2 variables:

$ age : num 47 72 43 55 50 23 45 71 86 33

$ gender: Factor w/ 2 levels "female","male": 2 2 1 1 2 1 2 2 1 1

We can also use the dim() function to display the dimension of the dataset.

> dim(gss)

[1] 10 2

The output also shows that there are 10 observations and two variables in the dataset.
We use the names() function to display the names of the variables in the dataset.

> names(gss)

[1] "age" "gender"

Accessing a Variable in a Data Frame

After we create or import a data frame, variables in the data frame are not automatically
available to us for analysis. We can use the dollar sign ($) to access a variable from a
data frame by placing $ between the name of the data frame and the variable of interest.
For example, to access age in the gss data frame, we use gss$age. The output is as
follows.

> # Reference a variable in a data frame

> gss$age

[1] 47 72 43 55 50 23 45 71 86 33

Useful Functions for Descriptive Statistics

We can use several useful functions to conduct basic descriptive statistics. These
functions include the mean() function, the sd() function, the min() function, the
max() function, and the length() function to obtain the mean, standard
deviation, maximum, minimum, and number of observations of a variable, respectively.
In the following example, we use these functions to compute descriptive statistics
for age.

20 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> mean(gss$age)

[1] 52.5

> sd(gss$age)

[1] 19.10352

> min(gss$age)

[1] 23

> max(gss$age)

[1] 86

> length(gss$age)

[1] 10

To access a variable in a data frame, we can also use the attach() function to attach
the data frame. In this way, we do not need to repeatedly type the name of the data frame
followed by the $ operator. If we attach more than one dataset with the same variable
name, the variable in the first dataset will be masked or replaced by the second one or the
newest one with the same name. Therefore, once completing the analysis on one dataset,
it is a good practice to use the detach() function to detach it from the R session.

1.2.4 List
A list is simply a combination of objects. We can combine a vector, a matrix, and a data
frame into a list. We use the list() function to create a list. In the following
example, we use the list.gss <- list(age, m1, gss) command to create a
list named list.gss with three components. In the command, there are three
components separated by commas: age is the vector, m1 is the matrix, and gss is the
data frame. The output is as follows.

> # Use list() to create a list

> list.gss <- list(age, m1, gss)

> list.gss

[[1]]

[1] 47 72 43 55 50 23 45 71 86 33

[[2]]

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

[[3]]

age gender

1 47 male

2 72 male

3 43 female

4 55 female

5 50 male

6 23 female

7 45 male

8 71 male

9 86 female

10 33 female

Chapter 1 n R Basics 21

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



We can add the names for the three components in the list. The output is as follows.

> list.gss2 <- list(age 5 age, matrix1 5 m1, gssdata 5 gss)

> list.gss2

$`age`

[1] 47 72 43 55 50 23 45 71 86 33

$matrix1

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

$gssdata

age gender

1 47 male

2 72 male

3 43 female

4 55 female

5 50 male

6 23 female

7 45 male

8 71 male

9 86 female

10 33 female

1.3 DATA MANAGEMENT
Before conducting data analysis, we need to work on various data management tasks to
make the data ready for analysis. This section introduces some commonly used func-
tions for basic data management tasks, such as selecting variables and observations,
creating a new variable, recoding a variable, dummy coding, reverse coding, labeling a
variable, labeling values for a factor variable, dealing with missing values, combining
data, reshaping data, and converting data types. We also briefly introduce the dplyr
(Wickham et al., 2021) and sjmisc packages (Lüdecke, 2018a) and the pipe operator
%>% for data management.

1.3.1 Selecting Variables
To select variables from a dataset, we first use the indexing method with square brackets
following the name of the dataset. The basic syntax is dataset[, c(“var1”,

“var2”, “var3”)]. In the command, we use the c() function to select variables
with the variable names in quotation marks. In the square brackets, rows are not
specified since all rows are selected.

The second method is to use the subset() function to select variables. The basic
syntax of the function is subset(dataset, select 5 c(var1, var2,

22 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



var3)). In the command, we first specify the data frame named dataset. Then we
use the select 5 c(var1, var2, var3) argument to select variables of interest.

The third method is to the use the select() function in the dplyr package. You
need to install the package first by typing install.packages(“dplyr”) and
then load it with the library(dplyr) function. The basic syntax is
select(dataset, var1, var2, var3). In the command, we first specify the
dataset and then specify the three variables which are separated by commas. The
quotation marks are not needed for each variable. Examples of using the dplyr

package are introduced in Section 1.4.

1.3.2 Selecting Observations
To select observations from a dataset, we again use the indexing method with square
brackets. For example, to select the first 100 observations in a dataset, we use the
generic command, dataset[c(1:100), ]. In the command, we use the c()

function to select observations from 1 to 100. In the square brackets, following the
comma, columns or variables are not specified since all variables are selected. We can
also specify conditions using the indexing method. For example, in the dataset

[age > 50 & gender 5 5 “female”, ] command, we select the observations
for age larger than 50 and select observations for females. The & sign means that both
conditions are met. The double equal sign “55” is different from the single equal sign
“5”. The former sign is one of the logical operators.

Another method to select observations is to use the subset() function. The generic
structure of the function is subset(dataset, age > 50 & gender 5 5
“female”). In the command, we first specify the dataset. Then we use the age >
50 & gender 5 5 “female” argument to select observations.

The third method is to the use the filter() function in the dplyr package. You
need to install the package first by typing install.packages(“dplyr”)

and then load it with the library(dplyr) function. The syntax is filter

(dataset, age > 50 & gender 5 5 “female”).

1.3.3 Selecting Observations and Variables
To select observations and variables simultaneously from a dataset, we use the same three
methods introduced above. For example, with the indexing method, the dataset[age
> 50 & gender 5 5 “female”, c(“var1”, “var2”, “var3”)] command
selects the observations for age larger than 50 and observations for females for the three
variables. The same results can be obtained using the subset(dataset, age > 50 &

gender55 “female”, select5 c(var1, var2, var3)) command. In the
command, we first specify the data frame, and then specify the conditions for selecting
observations, and finally specify the selected variables.

If we use the dplyr package, we need to first use filter(dataset, age > 50 &

gender 5 5 “female”) to select observations and then use the select(da-
taset, var1, var2, var3) command to select the three variables.

Chapter 1 n R Basics 23

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.3.4 Creating a New Variable
When you work on a research project, you often need to create new variables, recode an
existing variable to a new variable, or combine several variables into one variable. There
are also situations when you need to label a variable or label values for a categorical
variable. In this section, we will briefly introduce commands to fulfill these tasks.

The assignment operator, <- , is used to create a new variable.

var2 <- var1

This command creates a variable var2, which is the same as the original variable
var1.

var3 <- var1 1 var2

This command creates a variable var3, which is the sum of the two variables var1
and var2.

Another method is to the use the mutate() function in the dplyr package. If we
would like to create a variable which is a sum of the two other variables, the basic syntax
is mutate(dataset, var3 5 var1 1 var2). In the command, the first argu-
ment is dataset and the new variable var3 equals the sum of var1 and var2.

Now, let us see an example using the General Social Survey 2016 (GSS 2016) dataset. I
would like to create a new variable realinc1, which is the variable realinc/

10000. We first load the foreign package, import the data with the read.dta()
function, and then attach the dataset. The realinc1 <- realinc/10000

command is used to create the new variable realinc1.

> # Remove all objects

> rm(list 5 ls(all 5 TRUE))

# Import the Stata data with the foreign package

> library(foreign)

> chp1 <- read.dta("C:/CDA/gss2016-chap1.dta")

> attach(chp1)

> # Create a new variable

> realinc1 <- realinc/10000

The second method is to use the mutate() function in the dplyr package. We first
load the package and then use the chp1.n <- mutate(chp1, realinc2 5
realinc/10000) command. In this command, chp1 is the dataset and real-

inc2 is the new variable, which equals realinc/10000.

> # Create a new variable using mutate()

> library(dplyr)

> chp1.n <- mutate(chp1, realinc2 5 realinc/10000)

24 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.3.5 Recoding a Variable
There are several ways to recode a variable. Three methods are introduced in this
section. For example, we would like to create a new categorical variable SES,
according to the family income realinc. The first method is to use the indexing
method with conditions within square brackets ([ ]). We enter the following five
commands:

> # Recode a variable

> chp1$SES <- NA

> chp1$SES[chp1$realinc >5 0 & chp1$realinc <5 11114] <- 1

> chp1$SES[chp1$realinc >5 11115 & chp1$realinc <5 25739] <- 2

> chp1$SES[chp1$realinc >5 25740 & chp1$realinc <5 38609] <- 3

> chp1$SES[chp1$realinc >5 38610] <- 4

> chp1$SES <- factor(chp1$SES)

The first command creates a new variable SES with NA for the missing values. The
object chp1$SES refers to the variable SES in the dataset chp1. The second
command creates the level 1 for SES if the value of realinc is equal to or greater
than 0 and less than 11,114. The third command creates the level 2 for SES if the
value of realinc is equal to or greater than 11,115 and less than 25,739. The fourth
command creates the level 3 for SES if the value of realinc is equal to or greater
than 25,740 and less than 38,609. The fifth command creates the level 4 for SES if the
value of realinc is equal to or greater than 38,610.

We then use the factor() function to convert SES into a factor variable with the
command chp1$SES <- factor(chp1$SES). The table() function is used
to display the frequencies for the four categories.

> # Create a factor

> chp1$SES <- factor(chp1$SES)

> table(chp1$SES)

1 2 3 4

394 439 307 565

To convert SES to an ordered factor variable with labels, we use the command
chp1$SES <- factor(chp1$SES, labels 5 c("low SES", "low-

middle SES", "upper-middle SES", "high SES"), ordered 5
TRUE). In the command, labels 5 c("low SES", "low-middle SES",

"upper-middle SES", "high SES") specifies the labels and ordered 5
TRUE specifies that the variable is ordinal. The table() function is used to display
the frequencies for the four categories.

Chapter 1 n R Basics 25

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> # Create a factor with labels

> chp1$SES<- factor(chp1$SES, labels5 c("low SES", "low-middle SES", "upper-middle

SES", "high SES"), ordered 5 TRUE)

> table(chp1$SES)

low SES low-middle SES upper-middle SES high SES

394 439 307 565

The second method is to use the recode() function in the car package (Fox &
Weisberg, 2019). You need to install the package first by typing install.pack-

ages(“car”) and then load it by using the library(car) function. Since the
car package also contains a function with the same name as that in the dplyr

package, we use car::recode to access the recode() function in the car

package.

> # Recode a variable using recode() in the car package

> install.packages("car")

> library(car)

Loading required package: carData

Attaching package: ‘car’

> chp1$SES2 <- car::recode(chp1$realinc, "0:11114 5 1; 11115:25739 5 2; 25740:

38609 5 3; 38610:hi 5 4; else 5 NA")

In this command, chp1$realinc is the original variable realinc in the dataset
chp1 and "0:11114 5 1; 11115:25739 5 2; 25740:38609 5 3;

38610:hi 5 4; else 5 NA" specifies how the ranges of the original values are
coded to the new values. The recode specifications are separated by semicolons (;) and
the argument is placed in the quotation marks. In the specifications, hi indicates the
highest value and else 5 NA specifies the missing values. The recoded variable is
named chp1$SES2 which means SES2 in the dataset chp1.

We again use the factor() function to convert SES2 into a factor variable. The
table() function is used to display the frequencies for the four categories.

> chp1$SES2 <- factor(chp1$SES2)

> table(chp1$SES2)

1 2 3 4

394 439 307 565

We also convert SES2 to an ordered factor variable with labels and use the table()
function to display the frequencies for the four categories.

26 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> chp1$SES2 <- factor(chp1$SES, labels 5 c("low SES", "low-middle SES", "upper-

middle SES", "high SES"), ordered 5 TRUE)

> table(chp1$SES2)

low SES low-middle SES upper-middle SES high SES

394 439 307 565

The third method is to use the rec() function in the sjmisc package. You need to
install the package first by typing install.packages(“sjmisc”) and then
load it by using the library(sjmisc) command. In the rec() function, the
first argument can be either a data frame or a variable. If the first argument is a data
frame, then the rec() function creates a new data frame; if the first argument is a
variable, then the function creates a new variable. In the following two examples, we
first demonstrate how to recode a variable and create a new variable. We also
demonstrate how to recode that variable and then create a new data frame.

In the following command, chp1$realinc is the original variable realinc in the
dataset chp1, so the function will create a new variable. The rec 5 "0:11114 5
1; 11115: 25739 5 2; 25740:38609 5 3; 38610:hi 5 4; else 5 NA"

argument specifies how the ranges of the original values are coded to the new values
with the rec5 argument. Just like the recode() function in the car package, in
the rec() function, the recode specifications are separated by semicolons (;) and the
argument is placed in quotation marks. In the specifications, hi indicates the highest
value and else 5 NA specifies the missing values. The recoded variable is named
chp1$SES3 which means SES2 in the dataset chp1. The table() function
displays the frequencies, and the results are the same as those using the first two
methods.

> # Recode a variable using rec () in the sjmisc package: method 1

> # Install sjmisc by using install.packages(“sjmisc”)

> library(sjmisc)

> chp1$SES3 <- rec(chp1$realinc, rec 5 "0:11114 5 1; 11115: 25739 5 2; 25740:38609

5 3; 38610:hi 5 4; else 5 NA")

> table(chp1$SES3)

1 2 3 4

394 439 307 565

In the next command, with everything else the same, the first argument is the data frame
chp1 and the second argument is the variable, so the function will create a new data
frame. This data frame named chp1.re contains the recoded variable realinc_r

only. The new variable name realinc_r is automatically assigned and is the com-
bination of the original name realinc and the suffix _r. We use the add_

columns() function in the sjmisc package to add the new data frame to the original

Chapter 1 n R Basics 27

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



data frame. In the chp1 <- add_columns(chp1.re, chp1, replace 5
FALSE) command, chp1.re is the new data frame and chp1 is the original data
frame. The replace5 FALSE argument specifies that both data frames are kept. The
combined dataset is named chp1. The table() function displays the same fre-
quencies as above.

> # Recode a variable using rec() in the sjmisc package: method 2

> chp1.re <- rec(chp1, realinc, rec 5 "0:11114 5 1; 11115:

25739 5 2; 25740:38609 5 3; 38610:hi 5 4; else 5 NA", append 5 FALSE)

> chp1 <- add_columns(chp1.re, chp1, replace 5 FALSE)

> table(chp1.re$realinc_r)

1 2 3 4

394 439 307 565

1.3.6 Creating a Dummy or Binary Variable
We can also use the rec() function to create a dummy or binary variable. For
example, let us create a variable education with a value of 1 for respondents’ highest
year of school completed greater than 13.79 years, and a value of 0 otherwise. The
table() function is used to display the frequencies of the two categories.

> # Create a binary or dummy variable: method 1

> chp1$education <- rec(chp1$educ, rec 5 "min:13.7950; 14:hi51; else 5 NA")

> table(chp1$education)

0 1

929 944

Another method to create a dummy variable is to use the dicho() function in the
sjmisc package. In the chp1$education2 <- dicho(chp1$educ,

dich.by 5 13.79, append 5 TRUE) command, chp1$educ is the variable,
the dich.by 5 13.79 argument splits the variable into two groups by the value of
13.79, and the append 5 TRUE argument adds the new variable to the data frame.
The table() function displays the same frequencies as those above.

> # Create a binary or dummy variable: method 2 using dicho() in sjmisc

> chp1$education2 <- dicho(chp1$educ, dich.by 5 13.79, append 5 TRUE)

> table(chp1$education2)

0 1

929 944

28 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.3.7 Reverse Coding with rec()

You can use the rec() function to reverse categories of a variable. For example, a
survey item uses a four-point scale of 1–4, with 1 5 excellent and 4 5 poor. You want
to reverse the order and define poor to be 1 and strongly excellent to be 4. In the
following example, we first recode the character labels to the numeric labels with
excellent 5 1 and poor 5 4. The table() function displays the frequencies.

> # Reverse coding with rec()

> table(health)

health

excellent good fair poor dk iap na

414 914 427 118 0 0 0

> chp1$health.n <- rec(chp1$health, rec 5 "excellent51; good52; fair53; poor54;

else 5 NA")

> table(chp1$health.n)

1 2 3 4

414 914 427 118

For simplicity, we can also use the rec 5 "rev" argument in the rec() function
for reverse coding. In the example, with the rec 5 "rev" argument, we reverse the
order of the categories of the variable named health.rev. The table() function
displays the frequencies. As we can see, the categories are reversed in the frequency
table.

> chp1$health.rev <- rec(chp1$health.n, rec 5 "rev")

> table(chp1$health.rev)

1 2 3 4

118 427 914 414

1.3.8 Labeling Values for Factor Variables
We can use the factor() function to recode a numeric variable to a factor variable.
As introduced above, we can also use the rec() function in the sjmisc package to
recode the values to the categories and then label them. The purpose of labeling values
is to define the numeric values of a categorical variable. This will make your analysis
easier and interpretation clearer. Once you label values of a categorical variable, the
label will appear in your output when you conduct an analysis. In the following
example, we use the str() function to display the structure of the recoded variable
health.rev.

Chapter 1 n R Basics 29

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> str(chp1$health.rev)

num [1:1873] 3 3 3 4 1 3 3 3 1 4 ...

The output shows that health.rev is numeric with 1,873 observations. We can use
the factor() function to convert the numeric variable to a factor with labels. In the
command, chp1$health.rev refers to the variable health.rev in the dataset,
chp1, levels 5 c(1, 2, 3, 4) specifies the values of the four categories, and
labels 5 c("poor", "fair", "good", "excellent") specifies the
labels. The resulting output by the table() function displays the frequencies of the
four categories with labels.

> # Label a factor

> chp1$health.rev <- factor(chp1$health.rev, levels 5 c(1, 2, 3, 4), labels 5
c("poor", "fair", "good", "excellent"))

> table(chp1$health.rev)

poor fair good excellent

118 427 914 414

1.3.9 Labeling a Variable
Labeling shows the meaning of a variable. To label a variable, the first method is to use
the label() function in the Hmisc package. You need to install the package first by
typing install.packages(“Hmisc”) and then load it using the library

(Hmisc) function. The basic syntax is label(varname) <- “label text”.

For example, if you want to label a variable health.rev with the text recoded
health status, type the following command.

label(health.rev) <- “recoded health status”

1.3.10 The row_sums() and row_means() Functions in the
sjmisc Package
We can use the row_sums() function in sjmisc package to create a new variable,
which is a summation of several items in a survey. For example, if we would like to
create a sum score for five variables, we use the following command:

row_sums(dataset, var1:var5, n 5 5)

In the command, dataset is the name of the data frame, var1:var5 specifies the
five variables, and n55 specifies the minimum number of non-missing values per row.
In this example, we specify n 5 5 since there are no missing values in these five

30 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



variables. This command creates a variable with a total row score of var1, var2,
var3, var4, and var5.

We can also use the row_means() function in the sjmisc package to create a
variable with a row mean score of a set of variables. The basic syntax is row_

means(dataset, var1:var5, n55).

1.3.11 How to Deal With Missing Values When Recoding
Variables
Missing data need to be coded as NA so R can recognize them correctly. If datasets
from other software packages are imported into R, missing data need to be coded
correctly since the datasets may include user-defined missing values, such as 999, na,
and iap. We can use the rec() function in the sjmisc package to recode these user-
defined missing values to NA.

If we want to exclude missing values in a data frame, we can use the no.omit()

function with the name of the data frame enclosed in parentheses and create a new data
frame like this: data.new <- no.omit(dataname).

1.3.12 Other Useful Data Management Functions
The following commands will be briefly introduced, but examples using real data will
be omitted here due to space limitations:

1. Combining data

· The rbind() function can be used to add cases to the existing
variables. When we have two datasets containing the same variables with
the same variable types, this command can be applied to combine
different cases into one dataset.

· The cbind() can be used to add variables from two datasets without a
common unique identification variable. If the two datasets have a common
identification variable, we can use the merge() function. The generic
structure of the merge() function is merge(data1, data2,

by 5 “ID”, all 5 TRUE, sort 5 TRUE). In the command,
data1 and data2 are the two datasets, by5 “ID” specifies the sorting
ID, all 5 TRUE keeps the unmatched cases from both datasets, and
sort 5 TRUE specifies that the ID variable should be sorted.

2. Reshaping data
The reshape package (Wickham, 2007) is useful when we reorganize data
into different forms. You need to install the package first by typing
install.packages(“reshape”) and then load it with the
library(reshape) function. The melt() function reorganizes the
dataset in the long form, whereas the cast() function transforms the dataset
in the wide form. For example, in longitudinal data analysis, a person-level

Chapter 1 n R Basics 31

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



dataset is in the wide form, a multivariate layout with one record per individual;
on the other hand, a person-period dataset is in the long form with multiple
records for each individual, representing each time-point for data collection.

3. Converting variable types
A variable can be coded in either a numeric or a string format. A numeric
variable deals with numbers, whereas a character or a string variable contains
text data. The as.numeric() function can be used to convert a character
variable into a numeric variable, whereas the as.character() function
can be used to convert a numeric variable into a character variable. The
factor() function can be used to convert a numeric variable or a character
variable into a factor variable.

1.4 DATA MANAGEMENT WITH THE
tidyverse AND sjmisc PACKAGES
The tidyverse (Wickham et al., 2019) is not one package, but a collection of
several packages that make importing, cleaning, exploring, managing, and visualizing
data in R much easier. It includes the following major packages:

· readr for importing datasets

· tibble for creating data frames

· dplyr for data management or data munging

· tidyr for creating tidy data

· ggplot2 for visualizing data

· purr for functional programming

· stringr for string management

· forcat for handling factors

You can use the install.packages(“tidyverse”) command to install all
the packages above and then use the library(tidyverse) command to load
them. In this chapter, we mainly focus on the dplyr and ggplot2 packages in
tidyverse.

In the previous section, we discussed several useful functions in the dplyr and
sjmisc packages for data management. Specifically, in the dplyr package, we
introduced the filter() function for selecting observations, the select() func-
tion for selecting variables by their names, the mutate() function for creating new
variables; in the sjmisc package, we introduced the rec() function for recoding
variables, the add_columns() function for adding created variables to a data frame,
and the dicho() function for creating dummy variables; we also introduced how to

32 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



use the row_sums() function and row_means() function to create a sum score
and a mean score for a set of variables, respectively.

In the dplyr package (Wickham et al., 2021), there are other useful functions. For
example, we can also use the arrange() function to sort a variable or a set of
variables in a data frame, use the group_by() function to group data by a factor or
categorical variable, and use the summarize() function to summarize data. Further,
we can use the pipe operator %>% to follow each function which you would like to
pipe. The pipe %>% means “then” when we execute these functions sequentially. In
other words, you run a function and then conduct the second one by specify %>%

between these two functions or steps. You continue to run functions as a chain with
%>% until you complete the work. The strength of using pipes is to execute a series of
functions in sequence without creating temporary data frames. A summary of the major
functions in the dplyr package is as follows.

· filter() function for selecting observations

· select() function for selecting variables

· mutate() function for creating new variables

· arrange() function for sorting variables

· group_by() function for grouping data by a factor variable

· summarize() function for summarizing data

Please note that the summarize() function can be also written as summarise().
In addition, the pipe operator %>% is a part of the magrittr package, which is
automatically loaded when you load the dplyr package or tidyverse.

In the sjmisc package (Lüdecke, 2018a), there are other useful functions for data
management, which are summarized below.

· rec() function for recoding variables

· add_columns() function for adding variables as columns to a data frame

· dicho() function for creating dummy variables

· row_sums() function for creating a sum score for a set of variables

· row_means() function for creating a mean score for a set of variables

· to_factor() function for recoding a variable into a factor variable with
labels

· var_rename() function for renaming variables

· to_long() function for transforming a data frame from wide format to
long format

Chapter 1 n R Basics 33

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



· descr() function for descriptive statistics

· frq() function for creating a frequency table for factor variables

Since all the functions in the sjmisc package work together with the dplyr

package, using both packages makes the data management tasks easier. In addition, the
pipe operator %>% works with both packages, which makes the commands more
concise.

In the first example, we would like to select the two variables, sex and age, from
the data frame chp1. We then would like to split the data by the grouping variable
sex and conduct descriptive statistics of age by the two groups of sex. We use
the select() and the group_by() function in the dplyr package and the
descr() function in the sjmisc package with pipes. This single-line chp1 %>
% select(sex,age) %>% group_by(sex) %>% descr(age) com-
mand tells R to run it as a chain. It reads “load dataset chp1, then select sex and
age, then group the data by sex, and then describe age.” The output is as
follows.

> # Data management using the dplyr and sjmisc packages with the pipe operator %>%

> library(dplyr)

> library(sjmisc)

> chp1 %>% select(sex,age) %>% group_by(sex) %>% descr(age)

## Basic descriptive statistics

Grouped by: male

var type label n NA.prc mean sd se md trimmed range skew

age integer age 831 0 48.62 17.08 0.59 48 48.09 71 (18-89) 0.18

Grouped by: female

var type label n NA.prc mean sd se md trimmed range skew

age integer age 1042 0 51.02 17.67 0.55 52 50.62 71 (18-89)0.12

In the second example, we would like to select the two variables, sex and health,
from the data frame chp1. We then also would like to split the data by the grouping
variable sex and create a frequency table of health grouped by sex. We use the
select() and the group_by() function in the dplyr package and the frq()
function in the sjmisc package with pipes. The chp1 %>% select(sex,

health) %>% group_by(sex) %>% frq(health) command tells R to load
the dataset, select sex and age, group the data by sex, and then create the frequency
table for health. The output is as follows.

34 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> chp1 %>% select(sex,health) %>% group_by(sex) %>% frq(health)

health <categorical>

# grouped by: male

# total N5831 valid N5831 mean52.15 sd50.83

Value | N | Raw % | Valid % | Cum. %

————————————————————————————————————————————————————————————————

excellent | 180 | 21.66 | 21.66 | 21.66

good | 402 | 48.38 | 48.38 | 70.04

fair | 197 | 23.71 | 23.71 | 93.74

poor | 52 | 6.26 | 6.26 | 100.00

Dk | 0 | 0.00 | 0.00 | 100.00

Iap | 0 | 0.00 | 0.00 | 100.00

Na | 0 | 0.00 | 0.00 | 100.00

<NA> | 0 | 0.00 | <NA> | <NA>

health <categorical>

# grouped by: female

# total N51042 valid N51042 mean52.12 sd50.83

Value | N | Raw % | Valid % | Cum. %

———————————————————————————————————————————————————————————————

excellent | 234 | 22.46 | 22.46 | 22.46

good | 512 | 49.14 | 49.14 | 71.59

fair | 230 | 22.07 | 22.07 | 93.67

poor | 66 | 6.33 | 6.33 | 100.00

Dk | 0 | 0.00 | 0.00 | 100.00

Iap | 0 | 0.00 | 0.00 | 100.00

Na | 0 | 0.00 | 0.00 | 100.00

<NA> | 0 | 0.00 | <NA> | <NA>

1.5 GRAPHS
R is powerful in drawing various graphs. In this section, some basic functions in R
will be introduced. We will focus on the hist() function for histograms, the
barplot() function for bar charts, the boxplot() function for box plots, and
the plot() function for scatterplots. In addition, the ggplot2 package will be
introduced.

For each type of graph, R offers rich options, which may seem complicated. You can
save the commands into a script file so that the graphs can be easily reproduced or
edited.

In the following sections, I will show you how to create basic graphs, such as histo-
grams, bar charts, box plots, and scatterplots.

Chapter 1 n R Basics 35

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.5.1 Histograms
The histogram is one of the most frequently used graphs, and is used to present in a
visual manner a frequency distribution of data. In a histogram, scores appear on a
horizontal scale and frequency counts are displayed on a vertical scale. Histograms are
normally used for continuous variables. They can also be used for ordinal variables if
their underlying traits are continuous.

The function for histograms is hist(). For example, to see the distribution of the
variable age using the gss data file, simply enter the hist(age) command. The
histogram is shown in Figure 1.7.

> # Create a histogram

> hist(age)

We can customize the graph by adding more arguments or parameters to the
hist() function. For example, we can use the main5 argument to add a title for
the graph, use the xlab and ylab arguments to provide labels for the x axis and y
axis, respectively, use the xlim and ylim arguments to specify ranges of the axes,
and use the col5 argument to choose colors. We can also use the breaks5

FIGURE 1.7 Histogram of Age

Age

20 30 40 50 60 70 80 90

0
1

2
3

4

Fr
eq

ue
nc

y

Histogram of age

36 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



argument to specify the number of cells and use the freq 5 FALSE argument to
request the percentages instead of the frequencies. The following is a command with
customized arguments: hist(age, main 5 "Histogram of Age in GSS",

xlab 5 "Age", xlim 5 c(20,90), col 5 "lightblue", freq 5
FALSE). The updated histogram is shown in Figure 1.8.

> # Create a histogram with customized arguments

> hist(age, main5"Histogram of Age in GSS",

1 xlab5"Age", xlim5c(20,90), col5"lightblue", freq5FALSE)

1.5.2 Bar Charts
Bar charts are normally used to display frequencies for categorical variables. The bar-
plot() function is used for bar charts. For example, to draw a bar chart for a categorical
variable gender, type the following command: barplot(table(gender)).
In the command, we use the table() function to get the frequencies since gender is
a factor or categorical variable. We will then see the following output and the graph
shown in Figure 1.9.

FIGURE 1.8 Histogram of Age in GSS

Age

20 30 40 50 60 70 80 90

D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

Histogram of Age in GSS

Chapter 1 n R Basics 37

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> # Create a bar plot

> barplot(table(gender))

We can also customize the bar chart by using the main5 argument to add a title for
the graph, using the xlab5 and ylab5 arguments to provide labels for x axis and y
axis, respectively, using the names.arg5 argument to name bars, and using col5
to specify colors.

1.5.3 Box Plots
Box plots are useful for displaying a distribution and to identify outliers for a
continuous variable. They display the 25th and 75th percentiles, median, whiskers, and
outliers. In a box plot, the lower and upper ends of the box indicate the 25th and 75th
percentiles, respectively. The width of the box indicates the interquartile range. The
horizontal line in the box is the median, which is the 50th percentile. The lines below
and above the box are whiskers, which indicate the spread of your data. Observations
beyond the whiskers are shown as dots, which are outliers.

FIGURE 1.9 Bar Chart of Gender

0
1

2
3

4
5

Female Male

38 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



We use the boxplot(age) command to draw a box plot for age (Figure 1.10).

> # Create a box plot

> boxplot(age)

We can also customize the box plot by using the main5 argument to add a title, using
the xlab5 and ylab5 arguments to provide labels for the x axis and y axis,
respectively, using col5 to specify colors, and using the horizontal 5 TRUE

argument to make the graph horizontally.

To display several box plots in one graph, we use the boxplot() function with the
model equation for the variables enclosed in parentheses. For example, the box-

plot(age ; gender) command produces the boxplots for age by the grouping
variable gender (Figure 1.11).

> # Create a box plot grouped by gender

> boxplot(age ; gender)

FIGURE 1.10 Box Plot of Age

30
40

50
60

70
80

Chapter 1 n R Basics 39

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.5.4 Scatterplots
Scatterplots are used to show a relationship between two variables. They are two-
dimensional graphs, with the x axis displaying values of one variable and the y axis
displaying values for another variable.

To see a scatterplot of two variables var1 and var2, type the following command:

plot(var1, var2)

This command tells R to draw a two-way scatterplot for var1 and var2.

For example, we would like to draw a scatterplot for the pre- and post-math tests. We
first use the c() function to create two variables and then use the data.frame()
function to create a data frame named math. After attaching the dataset, we use the
plot() function to draw the graph.

FIGURE 1.11 Box Plots of Age by Gender

30
40

50

A
ge

60
70

80

Female

Gender

Male

40 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



> # Create a data frame for a scatterplot

> pretest <- c(80, 90, 68, 88, 75, 71, 83, 75, 95, 86, 77, 90, 97, 94, 89)

> posttest <- c(83, 95, 70, 89, 80, 73, 85, 78, 94, 89, 77, 92, 98, 95, 90)

> math <- data.frame(pretest,posttest)

> # Create a scatterplot

> plot(pretest, posttest)

The graph is displayed in Figure 1.12.

We can also customize the box plot by using the main5 argument to add a title, using
the sub5 argument to add a subtitle, using the xlab5 and ylab5 arguments to
provide labels for x axis and y axis, respectively, and using col5 to specify colors.

FIGURE 1.12 Scatterplot of the Pretest and Posttest of Math Achievement

70
75

80
85

90
95

70 75 80 85 90 95

Pretest

P
os

tte
st

Chapter 1 n R Basics 41

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



We can also use the scatterplot(var1, var2) function in the car package to
draw scatterplots. An example is not provided here.

1.5.5 Scatterplots with ggplots2

The ggplot2 package (Wickham, 2016), developed by Hadley Wickham, is a
popular package for R graphing with a unified framework. It is powerful in providing a
variety of types of graphs. It is flexible since you have a variety of options for
customizing color, height, size, and shape of graphs. You can use the install.

packages(“ggplot2”) command to install the package and then use the
library(ggplot2) command to load it. This package is a part of tidyverse,
so if you have installed tidyverse, you do not need to reinstall ggplot2.

The ggplot() function in the ggplot2 package includes three major elements:
data, aesthetics (aes), and geometry (geometric objects).

1. Data: we need to specify a data frame.

2. Aesthetics (aes): this argument specifies the x and y lines, colors, point size,
and point shape.

3. Geoms: this argument specifies many types of graphs. For example, we can
specify histogram (geom_histogram), line (geom_line), box plot
(geom_boxplot), bar (geom_bar), point (geom_point), and many
other types of graphs.

In the following example, we use the ggplot(math, aes(x5pretest,

y5posttest)) 1 geom_point() command to draw the scatterplot for the two
variables, pretest and posttest. In the command, math is the dataset,
aes(x5pretest, y5posttest)) specifies the x and y variables, and geom_

point() specifies that the type of graph is a scatterplot with the point geom. The R
code is shown below, and the graph is displayed in Figure 1.13.

> # Create a scatterplot using ggplot() in ggplot2

> library(ggplot2)

> ggplot(math, aes(x5pretest, y5posttest)) 1 geom_point()

In addition to the point plot, we can also make a line plot with geom_line(). Further,
to add a regression line to the graph, we use the ggplot(math, aes(x5pretest,

y5posttest)) 1 geom_point() 1 stat_smooth(method5lm) com-
mand. In the command, the stat_smooth(method5lm) function specifies that the
method of linear regression is used to fit the regression line. The stat_smooth()

42 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



function also produces a 95% confidence interval for the regression line. The R code is
shown below, and the resulting graph is displayed in Figure 1.14.

1.5.6 How to Save Graphs
R does not automatically save the graphs you create. To save your graph if you are
running RStudio, you can either save it from the plot panel or enter the command. For
example, if you would like to use the menu in the plot panel in RStudio, go to Plots
and click on Export. You can choose to Save as Image or Save as PDF. Or, if you

FIGURE 1.13 Scatterplot with the Point Goem in ggplot2

70

70

80

90

80

Pretest

P
os

tte
st

90

> ggplot(math, aes(x5pretest, y5posttest)) 1 geom_point() 1 stat_smooth(method5lm)

Chapter 1 n R Basics 43

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



would like to save a graph created by the ggplot() function, use the ggsave()
function to save the file.

The created graph can be copied and pasted into a Word document, but this method
would be tedious if you needed to save a lot of graphs all at one time.

FIGURE 1.14 Scatterplot with the Regression Line

70 80 90

70

80

90

100

Pretest

P
os

tte
st

44 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.6 SUMMARY OF R COMMANDS IN
THIS CHAPTER

# Chapter 1 R Script

# The following user-written packages need to be installed first by using install.packages(“ ”) and then

by loading it with library()

# library(dplyr)

# library(sjmisc)

# library(car)

# library(ggplot2)

# Section 1.2

# Use c() to create vectors

age <- c(47, 72, 43, 55, 50, 23, 45, 71, 86, 33)

age

gender <-

c("male", "male", "female", "female", "male", "female", "male", "male", "female", "female")

gender

# Index a vector

age[5]

gender[3]

# Use matrix() to create matrices

m1 <- matrix(1:8, nrow54, ncol52)

m1

m2 <- matrix(1:8, nrow54, ncol52, byrow5TRUE)

m2

# Index a matrix

m1[2, 1]

m1[4, ]

m1[ ,2]

# Use data.frame() to create a data frame

gss <- data.frame(age, gender)

gss

str(gss)

dim(gss)

names(gss)

# Reference a variable in a data frame

gss$age

# Several functions for descriptive statistics

mean(gss$age)

sd(gss$age)

min(gss$age)

max(gss$age)

length(gss$age)

# Use list() to create a list

list.gss <- list(age, m1, gss)

list.gss

list.gss2 <- list(age5age, matrix15m1, gssdata5gss)

list.gss2

Chapter 1 n R Basics 45

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



# Remove all objects

rm(list 5 ls(all5TRUE))

# Section 1.3

library(foreign)

chp1 <- read.dta("C:/CDA/gss2016-chap1.dta")

attach(chp1)

str(chp1)

# Create a new variable

realinc1 <- realinc/10000

# Create a new variable using mutate()

library(dplyr)

chp1.n <- mutate(chp1, realinc25realinc/10000)

mean(realinc1, na.rm5TRUE)

mean(chp1.n$realinc2, na.rm5TRUE)

# Recode a variable

chp1$SES <- NA

chp1$SES[chp1$realinc>50 & chp1$realinc <5 11114] <- 1

chp1$SES[chp1$realinc >5 11115 & chp1$realinc <5 25739] <- 2

chp1$SES[chp1$realinc >5 25740 & chp1$realinc <5 38609] <- 3

chp1$SES[chp1$realinc>5 38610] <- 4

# Create a factor

chp1$SES <- factor(chp1$SES)

table(chp1$SES)

# Create a factor with labels

chp1$SES <- factor(chp1$SES, labels 5 c("low SES", "low-middle SES", "upper-middle SES", "high SES"),

ordered 5 TRUE)

table(chp1$SES)

# Recode a variable using recode() in the car package

# install.packages("car")

library(car)

chp1$SES2 <- car::recode(chp1$realinc, "0:11114 5 1; 11115: 25739 5 2; 25740:38609 5 3; 38610:hi 5 4;

else 5 NA")

chp1$SES2 <- factor(chp1$SES2)

chp1$SES2<- factor(chp1$SES, labels5 c("low SES", "low-middle SES", "upper-middle SES", "high SES"),

ordered 5 TRUE)

table(chp1$SES2)

# Recode a variable using rec () in the sjmisc package: method 1

library(sjmisc)

chp1$SES3 <- rec(chp1$realinc, rec 5 "0:11114 5 1; 11115: 25739 5 2; 25740:38609 5 3; 38610:hi 5 4;

else 5 NA")

table(chp1$SES3)

# Recode a variable using rec () in the sjmisc package: method 2

chp1.re <- rec(chp1, realinc, rec 5 "0:11114 5 1; 11115:25739 5 2; 25740:38609 5 3; 38610:hi 5 4; else

5 NA", append 5 FALSE)

chp1 <- add_columns(chp1.re, chp1, replace 5 FALSE)

table(chp1.re$realinc_r)

# Create a binary or dummy variable: method 1

chp1$education <- rec(chp1$educ, rec 5 "min:13.7950; 14:hi51; else 5 NA")

table(chp1$education)

46 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



# Create a binary or dummy variable: method 2 using dicho() in sjmisc

chp1$education2 <- dicho(chp1$educ, dich.by 5 13.79, append 5 TRUE)

table(chp1$education2)

# Reverse coding with rec()

table(health)

chp1$health.n <- rec(chp1$health, rec 5 "excellent51; good52; fair53; poor54; else 5 NA")

table(chp1$health.n)

chp1$health.rev <- rec(chp1$health.n, rec 5 "rev")

table(chp1$health.rev)

str(chp1$health.rev)

# Label a factor

chp1$health.rev <- factor(chp1$health.rev, levels5c(1, 2, 3, 4), labels 5 c("poor", "fair", "good",

"excellent"))

table(chp1$health.rev)

table(chp1$sex)

# Section 1.4

# Data management using the dplyr and sjmisc packages with the pipe operator %>%

library(dplyr)

library(sjmisc)

chp1 %>% select(sex,age) %>% group_by(sex) %>% descr(age)

chp1 %>% select(sex,health) %>% group_by(sex) %>% frq(health)

# Section 1.5

age <- c(47, 72, 43, 55, 50, 23, 45, 71, 86, 33)

gender <-

c("male", "male", "female", "female", "male", "female", "male", "male", "female", "female")

gss <- data.frame(age, gender)

# Create a histogram

hist(age)

# Create a histogram with customized arguments

hist(age, main5"Histogram of Age in GSS",

xlab5"Age", xlim5c(20,90), col5"lightblue", freq5FALSE)

# Create a bar plot

barplot(table(gender))

# Create a box plot

boxplot(age)

# Create a box plot grouped by gender

boxplot(age ; gender)

# Create a data frame for a scatterplot

pretest <- c(80, 90, 68, 88, 75, 71, 83, 75, 95, 86, 77, 90, 97, 94, 89)

posttest <- c(83, 95, 70, 89, 80, 73, 85, 78, 94, 89, 77, 92, 98, 95, 90)

math <- data.frame(pretest,posttest)

# Create a scatterplot

plot(pretest, posttest)

# Create a scatterplot using ggplot() in ggplot2

library(ggplot2)

ggplot(math, aes(x5pretest, y5posttest)) 1 geom_point()

ggplot(math, aes(x5pretest, y5posttest)) 1 geom_line()

ggplot(math, aes(x5pretest, y5posttest)) 1 geom_point() 1 stat_smooth(method5lm)

Chapter 1 n R Basics 47

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Glossary

Data frame A rectangular-shaped dataset in R with variables in columns and observations in rows, also
referred to as a dataset in other statistical packages.

Factor A categorical variable or a factor variable with multiple levels.

Functions A set of instructions to perform a specific task in R, just like commands or procedures in
other statistical packages.

ggplot2 An add-on package for R graphing with a unified framework, also a part of tidyverse.

Matrix A data structure in R with columns and rows in a two-dimensional rectangular layout with the
same data type.

R A programming language and a general-purpose statistical tool for data management, data analysis,
and graphing.

R Commander (i.e., Rcmdr) An add-on package providing a graphic user interface (GUI) system for R.

R script file A text file containing a list of R commands.

RStudio A free, open-source integrated development environment (IDE) for R that makes programming
easier.

sjmisc An add-on package for data transformation and management.

tidyverse A collection of several add-on packages that make importing, cleaning, exploring, managing,
and visualizing data in R easier.

Vector A sequence of data elements of the same type.

Exercises

Use the GSS 2016 data available at https://edge.sagepub.com/liu1e for the following problems.

1. Find the variable happy and recode it to a new variable happyrev. Recode the values of 1, 2, and 3
in happy into the values of 3, 2, and 1, respectively, for the new variable.

2. Label the new variable happyrev, happiness, and then label its values 1 “not too happy”, 2 “pretty
happy”, and 3 “very happy”.

3. Produce a histogram for educ.

4. Draw a scatterplot to explore the relationship between educ and coninc.

48 Categorical Data Analysis and Multilevel Modeling Using R

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

https://edge.sagepub.com/liu1e

	1. R Basics
	1.1 Introduction to R
	1.1.1 Installing, Starting, and Exiting R
	1.1.2 R at First Sight: R Console, Menus, and Toolbar
	R Console
	R Menus
	R Toolbar

	1.1.3 RStudio
	1.1.4 R Commander
	1.1.5 R Base Package and Add-on Packages
	1.1.6 Objects in R
	1.1.7 Functions and Arguments in R
	1.1.8 R Script Files
	1.1.9 How to Open an Existing Dataset via the Command Line or the Menus in RStudio
	Importing a Stata Dataset
	Importing a SPSS Dataset
	Importing a SAS Dataset
	Importing an Excel Dataset
	Importing a Delimited Text Dataset
	Importing a Dataset Through the Menus in RStudio

	1.1.10 How to Save R Output
	1.1.11 What If I Have a Question? How Do I Get Help?

	1.2 R Data Structures: Vectors, Matrices, Data Frames, and Lists
	1.2.1 Vector
	Numeric Vector
	Character Vector
	Indexing a Vector
	Factor

	1.2.2 Matrix
	Indexing a Matrix

	1.2.3 Data Frame
	Accessing a Variable in a Data Frame
	Useful Functions for Descriptive Statistics

	1.2.4 List

	1.3 Data Management
	1.3.1 Selecting Variables
	1.3.2 Selecting Observations
	1.3.3 Selecting Observations and Variables
	1.3.4 Creating a New Variable
	1.3.5 Recoding a Variable
	1.3.6 Creating a Dummy or Binary Variable
	1.3.7 Reverse Coding with rec()
	1.3.8 Labeling Values for Factor Variables
	1.3.9 Labeling a Variable
	1.3.10 The row_sums() and row_means() Functions in the sjmisc Package
	1.3.11 How to Deal With Missing Values When Recoding Variables
	1.3.12 Other Useful Data Management Functions

	1.4 Data Management with the tidyverse and sjmisc Packages
	1.5 Graphs
	1.5.1 Histograms
	1.5.2 Bar Charts
	1.5.3 Box Plots
	1.5.4 Scatterplots
	1.5.5 Scatterplots with ggplots2
	1.5.6 How to Save Graphs

	1.6 Summary of R Commands in This Chapter




