
2
REVIEW OF BASIC STATISTICS

OBJECTIVES OF THIS CHAPTER

This chapter reviews descriptive statistics, simple linear regression, multiple linear
regression, and the chi-square test using R. When introducing each type of inferential
statistics, an example of research design is provided followed by the research questions, the
R command, and the output. The R commands are explained and the output is
interpreted in detail. In addition, a sample of reporting the results for each analysis is
provided. Finally, the commands for creating publication-quality tables using R are
introduced, and the guidelines for reporting results are discussed. This chapter focuses
on conducting basic statistical analyses using R, as well as on interpreting and presenting
the results. After reading this chapter, you should be able to:

· Conduct analysis of descriptive statistics for continuous and categorical
variables.

· Conduct simple linear regression and multiple regression.

· Conduct the chi-square test.

· Interpret R output for these analyses.

· Make publication-quality tables using R.

· Write results for research reports.

This section reviews the basic statistics covered in most introductory statistics courses.
It shows you how to use R to perform basic statistics analyses in descriptive statistics,
simple linear regression, multiple regression, and the chi-square test.
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2.1 UNDERSTAND YOUR DATA USING
DESCRIPTIVE STATISTICS
Descriptive statistics should never be overlooked. Whenever you conduct statistical
analysis, you first need to understand your data. The descriptive statistics analysis
helps you describe your data by showing you types of data, graphs of the distribution
of variables, and various statistical indices, such as the central tendency and
variability of your data. For continuous variables, you can draw graphs, such as
histograms, box plots, and stem-and-leaf plots to show frequency distributions of
your data. You can also create a scatterplot to check the relationship between two
variables.

The central tendency of a variable tells you the central values of a distribution.
Common measures of central tendency include the mean, median, and mode. The
mean of a variable is the arithmetic average of scores, the median is the middle score
when all values of a variable are ordered, and the mode is the score that is most
frequently occurring. In addition to the central tendency of a distribution, we also
need to understand its variability. Measures of variability show the spread of a var-
iable. They include the range, variance, and standard deviation. The range is simply
the difference between the highest and lowest scores. Variance is the average summed
square of each score from the mean. To compute the variance of a set of scores, we
need to follow three steps. First, subtract each score from the mean. Second, square
each deviation score from the first step and sum them together to get the total sum of
squares. Third, get the average sum of squares by dividing the total sum of squares
by the number of scores. The standard deviation is just the square root of the
variance.

2.2 DESCRIPTIVE STATISTICS FOR
CONTINUOUS VARIABLES USING R

2.2.1 The summary() Function
The summary() function can be used for descriptive statistics analysis. It
provides the basic descriptive statistics, such as the minimum, the first quartile, the
mean, the median, the third quartile, and the maximum values for a continuous
variable and frequencies for a categorical variable. Before running a descriptive
analysis, you may want to know whether the missing values are properly coded,
and how they are coded. Although you may browse the data, you may not be able
to identify all types of missing values. A better way is to use the summary()

function.
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The output shows the minimum, the first quartile, the mean, the median, the third
quartile, and the maximum values for a continuous variable and frequencies for a
categorical variable. For example, let us look at the first variable age, which is the age
of the respondent. It is numeric with a range from 18 to 89.

We can also use the head(chp2) command to see the first six cases of all the
variables in the dataset.

The summary(chp2) command provides descriptive statistics for all the variables in
the dataset named chp2. If you want to get descriptive statistics for a particular var-
iable, you just enter the variable name within the parentheses of the function. Let us

> # Import GSS 2016 Stata data file

> library(foreign)

> chp2 <- read.dta("C:/CDA/gss2016-chap1.dta")

> attach(chp2)

> summary(chp2)

age degree educ health

Min. :18.00 high school :940 Min. : 0.00 excellent:414

1st Qu. :35.00 bachelor :358 1st Qu.:12.00 good :914

Median :50.00 graduate :220 Median :14.00 fair :427

Mean :49.95 lt high school:216 Mean :13.79 poor :118

3rd Qu. :63.00 junior college:139 3rd Qu.:16.00 dk : 0

Max. :89.00 dk : 0 Max. :20.00 iap : 0

(Other) : 0 na : 0

marital race realinc realrinc

married :819 white:1374 Min. : 234 Min. : 234

widowed :170 black: 315 1st Qu.: 11115 1st Qu.: 8775

divorced :325 other: 184 Median : 25740 Median : 17550

separated : 65 iap : 0 Mean : 32484 Mean : 24140

never married:494 3rd Qu.: 38610 3rd Qu.: 31590

na : 0 Max. :131677 Max. :164382

NA’s :168 NA’s :798

sex

male : 831

female:1042

> head(chp2)

age degree educ health marital race realinc realrinc sex

1 47 bachelor 16 good married white 131676.7 164382 male

2 72 bachelor 16 good married white 38610.0 NA male

3 43 high school 12 good married white 131676.7 5265 female

4 55 graduate 18 excellent married white 131676.7 936 female

5 50 high school 14 poor married white 131676.7 164382 male

6 23 high school 11 good married other 15210.0 7605 female
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take a look at the summary of the variable age, which is the age of a respondent to the
General Social Survey 2016 (GSS 2016) and run an analysis of descriptive statistics
with the summary(age) command.

> summary(age)

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.00 35.00 50.00 49.95 63.00 89.00

The R output displays the minimum, the first quartile, the mean, the median, the third
quartile, and the maximum values of the variable. The mean age is 49.95 years. The
minimum age is 18 years old, and the maximum is 89 years old.

We can also use the str(age) command to look at the structure of the variable age.
The output shows that the class of the variable age is integer and there are 1,873
observations.

> str(age)

int [1:1873] 47 72 43 55 50 23 45 71 86 33 ...

We can use the mean() function, sd() function, max() function, min() func-
tion, and length() function to obtain the mean, standard deviation, maximum,
minimum, and number of observations of the variable age, respectively. The
na.rm5TRUE argument is used to delete the missing values.

> mean(age, na.rm5TRUE)

[1] 49.95462

> sd(age, na.rm5TRUE)

[1] 17.44434

> max(age, na.rm5TRUE)

[1] 89

> min(age, na.rm5TRUE)

[1] 18

> length(age)

[1] 1873

2.2.2 The tapply() Function for Grouped Summaries
In R, if you are interested in descriptive statistics of a variable by another grouping
variable, we can use the tapply() function to split the data file and apply a function.
In this example, we would like to see the descriptive statistics for male and female
respondents, respectively. We first use the mean <- tapply(age, sex, mean,

na.rm5TRUE) command to obtain the mean for the variable age for each category
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of sex. In the tapply() function, age is the continuous variable in which we are
interested, sex is the grouping variable with two categories, and mean is the function.
The na.rm5TRUE argument is used to remove the missing values. The computed
means for the two groups are named the object mean. Then we repeat the process to
obtain the standard deviations (sd), maximums (max), minimums (min), and numbers
of observations (length) of age for males and female separately. Finally, we use the
cbind(mean, sd, max, min, length) command to combine the results.

> # Descriptive statistics by group: method 1

> mean <- tapply(age, sex, mean, na.rm5TRUE)

> sd <- tapply(age, sex, sd, na.rm5TRUE)

> max <- tapply(age, sex, max, na.rm5TRUE)

> min <- tapply(age, sex, min, na.rm5TRUE)

> length <- tapply(age, sex, length)

> cbind(mean, sd, max, min, length)

mean sd max min length

male 48.62214 17.07903 89 18 831

female 51.01727 17.66650 89 18 1042

The R output shows the descriptive statistics of age for males and female separately. Of
831 male respondents, the mean of the age is 48.622 years and the standard deviation is
17.079 years. Of 1,042 female respondents, the average age is 51.017 years and the
standard deviation is 17.667 years.

2.2.3 The group_by() Function and the summarize()

Function for Grouped Summaries
Another option is to use the group_by() function and the summarize()

function in the dplyr package (Wickham et al., 2021). If not installed, you need to
install the package first by typing install.packages(“dplyr”) and then load
it by using the library(dplyr) function. In the following example, we first use
the gender <- group_by(chp2, sex) function to create a grouping variable
and name it as an object gender. In the group_by() function, chp2 is the data
frame and sex is the grouping variable. We then use the summarize() function to
compute the descriptive statistics for age for the two categories of the variable sex.
The following is the output.

> # Descriptive statistics by group: method 2

> library(dplyr)

> gender <- group_by(chp2, sex)

> summarize(gender, mean(age, na.rm5TRUE), sd(age, na.rm5TRUE), max(age, na.rm5TRUE), min(age,

na.rm5TRUE))

# A tibble: 2 x 5

sex `mean(age, na.rm ; `sd(age, na.rm 5; `max(age, na.rm; `min(age, na.rm;
<fct> <dbl> <dbl> <int> <int>

1 male 48.6 17.1 89 18

2 female 51.0 17.7 89 18
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2.3.4 The group_by() Function and the descr() Function for
Grouped Summaries
The third option is to use the group_by() function in the dplyr package and the
descr() function in the sjmisc package (Lüdecke, 2018a). Since both the dplyr
and sjmisc packages have been loaded, we do not need to load them again. This
single-line chp2 %>% group_by(sex) %>% descr(age) command tells R to
run it as a chain. We first take the data frame chp2, then split the data by the grouping
variable sex, and finally compute the descriptive statistics of age for the two cate-
gories of the variable sex. In this command, the pipe operator %>% means “then,”
which helps us to run a series of functions in sequence.

2.2.5 Descriptive Statistics for Multiple Variables With
stat.desc()

The previous examples focus on the descriptive statistics for one continuous vari-
able. If you would like to see the descriptive statistics for more than one variable,
simply use the stat.desc() function in the pastecs package (Grosjean et al.,
2018) and list the variables in the c() function. You need to install the package
first by typing install.packages(“pastecs”) and then load the pack-
age with the library(pastecs) command. In the following example, we use
the stat.desc(chp2[, c("age", "educ")]) command to compute the
descriptive statistics for the two variables age and educ. The following results
are displayed.

> # Descriptive statistics by group: method 3

> # library(sjmisc)

> # library(dplyr)

> chp2 %>% group_by(sex) %>% descr(age)

## Basic descriptive statistics

Grouped by: male

var type label n NA.prc mean sd se md trimmed range skew

age Integer age 831 0 48.62 17.08 0.59 48 48.09 71 (18-89) 0.18

Grouped by: female

var type label n NA.prc mean sd se md trimmed range skew

age integer age 1042 0 51.02 17.67 0.55 52 50.62 71 (18-89) 0.12
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> # Descriptive statistics for two variables

> # Install pastecs by using install.packages()

> library(pastecs)

> stat.desc(chp2[, c("age", "educ")])

age educ

nbr.val 1.873000e103 1.873000e103

nbr.null 0.000000e100 2.000000e100

nbr.na 0.000000e100 0.000000e100

min 1.800000e101 0.000000e100

max 8.900000e101 2.000000e101

range 7.100000e101 2.000000e101

sum 9.356500e104 2.582100e104

median 5.000000e101 1.400000e101

mean 4.995462e101 1.378590e101

SE.mean 4.030749e-01 6.953498e-02

CI.mean.0.95 7.905233e-01 1.363742e-01

var 3.043051e102 9.056169e100

std.dev 1.744434e101 3.009347e100

coef.var 3.492038e-01 2.182916e-01

The output shows that the means of age and educ are 49.955 and 13.786,
respectively. The variable educ is the highest year of school completed. The smallest
value is 0, whereas the largest value is 20. The variance is 9.056, and the standard
deviation of 3.009.

2.2.6 Descriptive Statistics for Multiple Variables With
descr()

Another option is to use the descr() function in the sjmisc package. You need to
install the package first by typing install.packages(“sjmisc”) and then
load it with the library(sjmisc) command. In the descr(chp2, age,

educ) command, chp2 is the data frame and age and educ are the two selected
variables in the data.

> # Descriptive statistics for two variables: method 2

> library(sjmisc)

> descr(chp2, age, educ)

## Basic descriptive statistics

var type label n NA.prc mean sd se md trimmed range skew

age integer age 1873 0 49.95 17.44 0.40 50 49.48 71 (18-89) 0.15

educ integer educ 1873 0 13.79 3.01 0.07 14 13.80 20 (0-20) -0.20
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The output shows the variable name, type, label, total number, percentage of missing
data, mean, standard deviation, standard error, mode, range, and skewness. For
example, the mean age is 49.95 years and the standard deviation is 17.44 years.
The range is 71 years. The skewness is .15, which is less than 1. It indicates that the
distribution is almost symmetric. We can use the Shapiro–Wilk test with the
shapiro.test() function to test normality.

2.2.7 The group_by() Function and the descr() Function for
Grouped Summaries of Multiple Variables
If we would like to see the mean of these two continuous variables across the categories
of a third variable, we can use the chp2 %>% group_by(sex) %>%

select(age, educ) %>% descr() command. The following example displays
each mean of age and educ for males and females separately.

The R output shows the descriptive statistics of age and educ for males and female
separately. In the first table, the mean, standard deviation, minimum, and maximum of

# Descriptive statistics for multiple variables by group

> chp2 %>% group_by(sex) %>% select(age, educ) %>% descr()

## Basic descriptive statistics

Grouped by: male

var type label n NA.prc mean sd se md trimmed range

age integer age 831 0 48.62 17.08 0.59 48 48.09 71 (18-89)

educ integer educ 831 0 13.74 2.99 0.10 14 13.76 20 (0-20)

skew

0.18

-0.29

Grouped by: female

var type label n NA.prc mean sd se md trimmed range

age integer age 1042 0 51.02 17.67 0.55 52 50.62 71 (18-89)

educ integer educ 1042 0 13.82 3.03 0.09 14 13.83 20 (0-20)

skew

0.12

-0.13
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the variable age for males are 48.62, 17.08, 18, and 89, respectively. In addition, the
mean, standard deviation, minimum, and maximum of the variable educ for males are
13.74, 2.99, 0, and 20, respectively. The descriptive statistics of age and educ for
female are displayed in the second table.

2.3 FREQUENCY DISTRIBUTION FOR
CATEGORICAL VARIABLES USING R
For categorical variables, such as gender or ethnicity, it does not make much sense to
get summary statistics, such as the mean and the standard deviation. Instead we nor-
mally do a frequency analysis to get the frequency of each value for categorical variables.
The table() function is used for creating frequency tables. The following example
shows you how to create a frequency table for the nominal variable degree from the
GSS 2016 dataset. Before we start, let us take a look at the structure of this variable
with the str(degree) command first.

> str(degree)

Factor w/ 8 levels "lt high school",..: 4 4 2 5 2 2 2 3 2 2 ...

The output shows that degree is a factor variable with eight levels. To see detailed
levels and frequency for each level, we use the table() function below.

2.3.1 The table() Function for a Single Categorical Variable
Next, let us look at the frequency table of the variable degree using the
table(degree) command. We can also use the table(marital) command
for the other categorical variable, marital.

> # Frequency table for a factor or categorical variable

> table(degree)

degree

lt high school high school junior college bachelor graduate

216 940 139 358 220

dk iap na

0 0 0
> table(marital)

marital

married widowed divorced separated never married

819 170 325 65 494

na

0
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The table(degree) command displays the frequency for each level or category of
the variable degree. The output shows eight categories. Since “iap” (i.e., inappli-
cable), “dk” (i.e., don’t know), and “na” (i.e., no answer) represent the missing values in
the Stata dataset for this chapter, there are five actual levels ranging from “lt high
school” to “graduate.”

2.3.2 The frq() Function in the sjmisc Package for a Single
Categorical Variable
To see more detailed information such as percentages and cumulative percentages in a
frequency table, we use the frq() function in the sjmisc package. The package
needs to be loaded first. In the frq(chp2, degree) command, chp2 is the data
frame and degree is the categorical variable. We also use the same frq() function
for marital.

# Frequency table with frq() in sjmisc

> # library(sjmisc)

> frq(chp2, degree)

degree <categorical>

# total N51873 valid N51873 mean52.69 sd51.24

Value | N | Raw % | Valid % | Cum. %

—————————————————————————————————————————————————————

lt high school | 216 | 11.53 | 11.53 | 11.53

high school | 940 | 50.19 | 50.19 | 61.72

junior college | 139 | 7.42 | 7.42 | 69.14

bachelor | 358 | 19.11 | 19.11 | 88.25

graduate | 220 | 11.75 | 11.75 | 100.00

dk | 0 | 0.00 | 0.00 | 100.00

iap | 0 | 0.00 | 0.00 | 100.00

na | 0 | 0.00 | 0.00 | 100.00

<NA> | 0 | 0.00 | <NA> | <NA>

> frq(chp2, marital)

marital <categorical>

# total N51873 valid N51873 mean52.60 sd51.66

Value | N | Raw % | Valid % | Cum. %

————————————————————————————————————————————————————

married | 819 | 43.73 | 43.73 | 43.73

widowed | 170 | 9.08 | 9.08 | 52.80

divorced | 325 | 17.35 | 17.35 | 70.15

separated | 65 | 3.47 | 3.47 | 73.63

never married | 494 | 26.37 | 26.37 | 100.00

na | 0 | 0.00 | 0.00 | 100.00

<NA> | 0 | 0.00 | <NA> | <NA>
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Interpreting R Output

The output shows the number of observations, valid observations with no missing
values, mean, and standard deviation on the top of the frequency table. In the first
table, the first column shows the levels of the degree, the labels of the categories. The
frequency column (labeled “frq”) shows the number of respondents who reported
their highest degrees. The Raw % column shows that 11.53% of respondents have a
degree less than high school, 50.19% have a high-school degree, 7.42% have a junior
college degree, 19.11% have a bachelor’s degree, and 11.75% have a graduate degree.
The percentages from the missing values which are coded as “iap,” “dk,” “na,” and
“NA” are 0%. The Valid % column shows the percentages for data with no missing
values. The last column labeled Cum. % provides the cumulative percentage for each
category. For example, the cumulative percent of having a junior college degree or less is
69.14%, which equals the percent of respondents having less than a high-school degree
(11.53%) plus the percent having a high-school degree (50.19%), plus the percent
having a junior college degree (7.42%). The other frequency table for the variable
marital can be interpreted in the same way.

2.3.3 The table() Function for a Two-Way Table
If we want to get a two-way cross-tabulation table for two categorical variables, we use
the table() function with the two variables which are separated by a comma within
the parentheses. For example, the command tab <- table(degree, race) tells
R to create a two-way table of frequency counts for two nominal variables degree and
race and assign tab as the object name. The ftable(tab) command also
produces the same frequency table. To get the marginal totals of the rows and columns
of the table, we use the addmargins (tab) command.

> # Cross-tabulation

> tab <- table(degree, race)

> summary(tab)

Number of cases in table: 1873

Number of factors: 2

Test for independence of all factors:

Chisq 5 NaN, df 5 21, p-value 5 NA

Chi-squared approximation may be incorrect

> tab

race

degree white black other iap

lt high school 132 40 44 0

high school 683 186 71 0

junior college 104 23 12 0

bachelor 286 44 28 0

graduate 169 22 29 0

dk 0 0 0 0

iap 0 0 0 0

na 0 0 0 0
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Interpreting R Output

The output produced by the table(degree, race) command or the ftable

(tab) command displays a two-way cross-tabulation table, where the first column lists
the categories for the variable degree and the first row lists the categories for the
variable race. The variable degree is the row variable since its categories are across the
rows of the table. The variable race is the column variable since its categories are across
the top of the table. Each cell shows a relative frequency of subjects in each subgroup. For
example, there were 176 White respondents who did not have a high-school degree.

The table produced by the addmargins(tab) command displays the marginal
totals of the rows and columns. The last column is the row total. It shows the total
frequency for each of the five degree levels. The last row is the column total. It provides
the total frequency for each of the three categories of the variable race. The row and
column totals are also called marginal totals or frequencies.

2.3.4 The CrossTable() Function in the gmodels Package
To get the relative frequency of each cell within its row and column, we use the
CrossTable() function in the gmodels package (Warnes et al., 2018). We need
to install the package first by typing install.packages(“gmodels”) and
then load it by using the library(gmodels) command. In the following example,
we use the CrossTable(degree, race, digits52) command to create a
frequency table. In the function, degree and race are the two categorical variables
and the argument digits52 specifies the number of decimals.

> ftable(tab)

race

degree white black other iap

lt high school 132 40 44 0

high school 683 186 71 0

junior college 104 23 12 0

bachelor 286 44 28 0

graduate 169 22 29 0

dk 0 0 0 0

iap 0 0 0 0

na 0 0 0 0

> addmargins(tab)

race

degree white black other iap Sum

lt high school 132 40 44 0 216

high school 683 186 71 0 940

junior college 104 23 12 0 139

bachelor 286 44 28 0 358

graduate 169 22 29 0 220

dk 0 0 0 0 0

iap 0 0 0 0 0

na 0 0 0 0 0

Sum 1374 315 184 0 1873
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> # Cross-tabulation with CrossTable() in gmodels

> library(gmodels)

> CrossTable(degree, race, digits52)

Cell Contents

| ——————————————————————— |

| N |

| Chi-square contribution |

| N / Row Total |

| N / Col Total |

| N / Table Total |

| ——————————————————————— |

Total Observations in Table: 1873

| race

degree | white | black | other | Row Total |

————————————— | ————————— | ————————— | ————————— | ————————— |

lt high school | 132 | 40 | 44 | 216 |

| 4.42 | 0.37 | 24.46 | |

| 0.61 | 0.19 | 0.20 | 0.12 |

| 0.10 | 0.13 | 0.24 | |

| 0.07 | 0.02 | 0.02 | |

————————————— | ————————— | ————————— | ————————— | ————————— |

high school | 683 | 186 | 71 | 940 |

| 0.06 | 4.93 | 4.93 | |

| 0.73 | 0.20 | 0.08 | 0.50 |

| 0.50 | 0.59 | 0.39 | |

| 0.36 | 0.10 | 0.04 | |

————————————— | ————————— | ————————— | ————————— | ————————— |

junior college | 104 | 23 | 12 | 139 |

| 0.04 | 0.01 | 0.20 | |

| 0.75 | 0.17 | 0.09 | 0.07 |

| 0.08 | 0.07 | 0.07 | |

| 0.06 | 0.01 | 0.01 | |

————————————— | ————————— | ————————— | ————————— | ————————— |

bachelor | 286 | 44 | 28 | 358 |

| 2.08 | 4.36 | 1.46 | |

| 0.80 | 0.12 | 0.08 | 0.19 |

| 0.21 | 0.14 | 0.15 | |

| 0.15 | 0.02 | 0.01 | |

————————————— | ————————— | ————————— | ————————— | ————————— |

graduate | 169 | 22 | 29 | 220 |

| 0.36 | 6.08 | 2.53 | |

| 0.77 | 0.10 | 0.13 | 0.12 |

| 0.12 | 0.07 | 0.16 | |

| 0.09 | 0.01 | 0.02 | |

————————————— | ————————— | ————————— | ————————— | ————————— |

Column Total | 1374 | 315 | 184 | 1873 |

| 0.73 | 0.17 | 0.10 | |

————————————— | ————————— | ————————— | ————————— | ————————— |

> chisq.test(degree, race)

Pearson’s Chi-squared test

data: degree and race

X-squared 5 56.286, df 5 8, p-value 5 2.481e-09
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Interpreting R Output

In the output, each category of the first variable degree takes one row, and each
category of the second variable race takes one column. The row percentage displays
the relative frequency of a cell within each row (i.e., each degree level), and the column
percentage displays the relative frequency of a cell with each category of race. For
example, 683 White respondents had a high-school degree, which was 73% of the 940
respondents who had a high-school degree (683/940 5 73%). Its column percentage
was 50%. This means 50% of the 1,374 White respondents had a high-school degree
(683/1,374 5 50%).

2.4 SIMPLE LINEAR REGRESSION

2.4.1 Simple Linear Regression: An Introduction
Regression is used when we predict a dependent variable from an independent variable
or multiple independent variables. When there is only one independent variable, the
regression is simple linear regression; when there are two or more independent vari-
ables, it is called multiple linear regression. The independent variable is the explanatory
or predictor variable, whereas the dependent variable is the outcome or response var-
iable, the one we are interested in predicting from the predictor variable. In linear
regression, the dependent variable is continuous and the independent variable(s) can be
either continuous or categorical. The simple linear regression can be expressed as
follows:

Y ¼ b01b1X1 1 e (2:1)

where Y is the observed value of the dependent variable, X1 is the value of the inde-
pendent variable, b0 is the intercept, b1 is the regression coefficient that is the slope of
the regression line, and e is the error term, also known as the residual. The error term e
is the difference between the observed value and the predicted value of the dependent
variable. It is assumed to have a normal distribution with a mean of 0 and a constant
variance at every value of the independent variable. The values of e are mutually
independent from each other.
The simple linear regression can also be expressed as a sample equation, which is the
predicted regression equation:

Ŷ ¼ b0 1 b1X1 (2:2)

where Ŷ is the predicted or fitted value of the dependent variable, b0 is the intercept,
and b1 is the regression coefficient. The estimated intercept and coefficient can also be
expressed as b̂0 and b̂1, respectively.

To estimate the intercept b0 and the regression coefficient b1, the method of ordinary
least squares (OLS) is used, which minimizes the sum of squared residuals. Since the
residual e is the difference between the observed value Y and predicted value Ŷ , of the
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dependent variable, the estimated intercept and regression coefficients are the values
when the total amount of the squared errors is as small as possible.

In the following example, we are interested in how well annual family income can be
predicted by a respondent’s individual income using the GSS 2016 dataset. The
dependent variable is annual family income, and the independent variable is the
respondent’s annual income.

Research Questions:

1. Can an individual’s income predict the family income?

2. How well can the annual family income be predicted from an individual’s
income?

2.4.2 The lm() Function and Extractor Functions
The lm() function is used for linear regression analysis. The model formula in lm()

specifies the dependent variable and the predictor variable(s), which are separated by
the tilde (;). For example, in simple linear regression, there is only one dependent
variable and one independent variable, so the model syntax in the function is y ; x,
where y is the dependent variable and x is the independent variable. The command
lm(y ; x, data 5 data1) tells R to run a simple regression analysis predicting
the dependent variable y with an independent variable x. The data argument is
data 5 data1. When there is more than one predictor variable in the formula, they
are connected by plus (1) symbols. For more details on how to use this command, type
help(lm) in the command prompt.

Once a model is fitted, we can use extractor functions to extract specific results. For
example, we can use the summary() function to display the summary results of the
fitted model, use the coef() function to extract the coefficients, use the confint()
function to request the confidence intervals of the coefficients, and use the anova()
function to request the ANOVA table. Other useful extractor functions include the
fitted() function for creating the fitted values, the residuals() function for the
residual values, the predict() function for the predicted values of an outcome
variable at specific values of a predictor variable or multiple predictor variables, the
AIC() function for the AIC statistic, and the plot() function for diagnostic plots.
These are the generic functions and most of them can be applied to other models
introduced in the book.

In the following example, the command slm <-lm(realinc1 ; realrinc1)

tells R to predict the dependent variable realinc1 from the independent variable
realrinc1. The fitted model is named slm. The output is shown by the summary
(slm) command.
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2.4.3 Interpreting R Output: The Coefficients Table
Two new variables realinc1 and realrinc1 are created so that the family
income and the respondent’s income are on a scale of $10,000. With this trans-
formation, the R output would show the results properly. In the R output for the
regression analysis, the first part is the call, which shows the R command for the model.
The second part shows the residuals. The minimum, first quarter, median, third
quarter, and maximum values of the residuals are shown here. The third part shows the
coefficients table including the parameter estimates for the predictor variable and the
intercept, their standard errors, the t statistics, and the associated p values. The fourth
part shows the residual standard error and the degrees of freedom. The fifth part shows
the multiple R2 and the adjusted multiple R2. Finally, the sixth part shows the F sta-
tistic, the degrees of freedom, and the associate p value.

First, let us take a look at the regression table. In this model, we have one independent
variable, or the predictor, and the constant. The null hypothesis for the t test is that the
coefficient of the predictor variable is zero, and the alternative hypothesis is that the
coefficient of the predictor variable is significantly different from zero. In this example,
b1 5 .787 is the regression coefficient. The t statistic tests whether the regression
coefficient of the independent variable, respondent’s income, is significantly different
from zero. In other words, it tests whether the effect of the independent variable on the
dependent variable is significant.

> # Simple linear regression

> realinc1 <- realinc/10000

> realrinc1 <- realrinc/10000

> slm <- lm(realinc1 ; realrinc1)

> summary(slm)

Call:

lm(formula 5 realinc1 ; realrinc1)

Residuals:

Min 1Q Median 3Q Max

-1.8654 -1.4220 -0.7374 0.5563 11.2236

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.87035 0.08842 21.15 <2e-16 ***

realrinc1 0.78711 0.02284 34.46 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.211 on 1045 degrees of freedom

(826 observations deleted due to missingness)

Multiple R-squared: 0.5319, Adjusted R-squared: 0.5315

F-statistic: 1188 on 1 and 1045 DF, p-value: < 2.2e-16
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The t statistic equals the parameter estimate divided by its standard error. For the
predictor variable realrinc1, t 5 .787/.023 5 34.46. The associated p value,
Pr(>|t|) < .001, which means that the probability of having a t value larger than
the absolute value of the observed t value of 34.46 is less than .001 if the null
hypothesis is true, so we reject the null hypothesis. The rejection of the null hypothesis
indicates that the regression coefficient of the independent variable, respondent’s
income, is significantly different from zero. Therefore, the predictor variable, respon-
dent’s income (realrinc1) is a significant predictor of the dependent variable,
family income (realinc1).

In the model, the estimated constant (b0) is shown as (Intercept), 5 1.870. This
is the mean family income when the value of the independent variable equals zero.

The estimated regression coefficient b1 5 .787. It can be interpreted as follows: For a
one-unit increase in the respondent’s annual income, the dependent variable, the family
income, is increased by a value of .787.

Substituting the values of the constant and regression coefficient into the equation of
the estimated regression model:

Ŷ ¼ b0 1 b1X1

We get:

Ŷ ¼ 1:8701 :787X1

When X1 5 0, the predicted outcome variable 5 1.870, which is the constant.

Next, the output reports the residual standard error and the degrees of freedom. The
residual standard error 5 2.211, which is the square root of the mean squares of
variance for the Residual. The degrees of freedom for the residual 5 n 2 1 2 k 5
1,047 2 1 2 1 5 1,045 since n 5 1,047 and the number of predictors k 5 1.

2.4.4 Interpreting R Output: The Multiple R2 and the F Statistic
Further, the multiple R2 and the adjusted multiple R2 are reported. R2 is called the
coefficient of determination, indicating the strength of the prediction. It is the pro-
portion of error variance explained by the predictor. R2 5 .532, which indicates that
53.2% of the variance in the family income is explained by the respondent’s income.
The adjusted R2 takes the sample size and the number of predictors into consideration,
and it is a less biased estimate of the population R2. Adjusted R2 5 .352.

Finally, the output shows the F statistic, the degrees of freedom, and the associate p
value. The F statistic tests whether the overall model with one predictor in this example
can significantly predict the dependent variable.

Null hypothesis: The overall model with one predictor in this example can
significantly predict the dependent variable.
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Alternative hypothesis: The overall model with one predictor in this example
cannot significantly predict the dependent variable.

F(1, 1,045) 5 1187.50, p < .001, which indicates that the model with one predictor,
respondent’s income, is significantly different from zero.

2.4.5 The ANOVA Table
We use the anova() function to request the ANOVA table, which was discussed in
the one-way ANOVA section.

> anova(slm)

Analysis of Variance Table

Response: realinc1

Df Sum Sq Mean Sq F value Pr(>F)

realrinc1 1 5805.0 5805.0 1187.5 < 2.2e-16 ***

Residuals 1045 5108.4 4.9

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The source of variance includes three components: the variance for the model, the
variance for the residuals, and the total variance. The total sum of squares of the
variance (SST) is partitioned into the model sum of squares (SSM) and the residual sum
of squares (SSR). Since this model has only one independent variable or predictor
variable, the SSM is the sum squares of the predictor variable realrinc1. The
Analysis of Variance table displays the variance for realrinc1 and the residuals, so
we can compute the SST as follows.

SST ¼ SSM1 SSR ¼ 5; 8051 5; 108:4 ¼ 10; 913:4

The Df column lists the degrees of freedom for their respective variances. The total
degrees of freedom 5 n 2 1 5 1,047 2 1 5 1,046. The degrees of freedom for the
model equal the number of predictors k5 1. The degrees of freedom for the residual5
n 2 1 2 k 5 1,047 2 2 5 1,045.

The Mean Sq column lists the mean squares of the variance, which is the ratio of the
sum squares and the corresponding degrees of freedom. For example, MS (model) 5
5,805.0/1 5 5,805.0.

The F statistic equals the ratio of the mean squares of variance for the model (i.e., real
rinc1) to themean squares of variance for theResiduals. F5MSM/MSR5 5,805.0/
4.95 1,187.50. F(1, 1,045)5 1,187.50.
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2.4.6 The coef() Function and the confint() Function
The regression coefficient and the constant can also be obtained using the
coef(slm) command and their confident intervals can be obtained with
confint(slm).

> coef(slm)

(Intercept) realrinc1

1.8703542 0.7871115

> confint(slm)

2.5 % 97.5 %

(Intercept) 1.6968568 2.0438516

realrinc1 0.7422919 0.8319312

2.4.7 Effect Size With the eta_sq() Function
We can also compute the effect size using use the eta_sq() function in the
sjstats package (Lüdecke, 2021). You need to install the package first by typing
install.packages(“sjstats”) and then load it with library

(sjstats). In the following example, we use the eta_sq(slm) command to
compute the eta square (h2).

> # Install sjstats using install.packages()

> library(sjstats)

> eta_sq(slm)

term etasq

1 realrinc1 0.532

In the output, the overall model h2 5 .532, which is the same as R2 in the output of the
summary(slm) command above.

2.4.8 Reporting the Results

A simple regression analysis was conducted to investigate whether an
individual’s annual income was a predictor of the family income and how
accurate the prediction was: F(1, 1,045) 5 1,187.50, p < .001, which indicated
that the model with one predictor, respondent’s income, was significantly
different from zero. The regression coefficient b 5 .787, p < .001, which
indicates that there was a significant effect of respondent’s income on the
dependent variable, family income. For a one-unit increase in the respon-
dent’s annual income, the family income was increased by a factor of .787.
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2.5 MULTIPLE LINEAR REGRESSION

2.5.1 Multiple Linear Regression: An Introduction
Multiple linear regression is simply an extension of the simple linear regression when
there are two or more independent variables. It is used to predict a continuous
dependent variable from a combination of predictors that can be either continuous or
categorical variables. Similar to simple regression, multiple linear regression can be
expressed as follows:

Y ¼ b0 1b1X1 1b2X2 1…1bkXk 1 e

where Y is the continuous dependent variable; X1, X2, …, and Xk are a set of inde-
pendent variables; b0 is the intercept; and b1, b2, and bk are the regression coefficients
for predictors. As with simple linear regression, the intercept and regression coefficients
are estimated using the OLS method.
In the following example, we are interested in how well the family income can be
predicted by a combination of three independent variables using the GSS 2016 dataset.
The dependent variable is the annual family income, and the independent variables are
the respondent’s annual income, the highest years of education completed, and age.

Research Question: How accurately can the family income be predicted from a set of
three independent variables, the respondent’s annual income, the highest years of
education completed, and age?

2.5.2 The lm() Function
As with simple regression, the function for multiple regression is still the same lm()
function. The model formula in lm() specifies the dependent variable and the pre-
dictor variable(s), which are separated by the tilde (;). When there are multiple
predictor variables, they are connected by plus (1) symbols. For more details on how to
use this command, type help(lm) in the command prompt.

In the following example, the command mlm <- lm(realinc1; realrinc11
educ 1 age) tells R to predict the dependent variable realinc1 from the three
independent variables realrinc1, educ, and age. The fitted model is named
mlm. The output is shown by the summary(mlm) command.

# Multiple linear regression

> mlm <- lm(realinc1 ; realrinc1 1 educ 1 age, data5chp2)

> summary(mlm)

Call:

lm(formula 5 realinc1 ; realrinc1 1 educ 1 age, data 5 chp2)

Residuals:

Min 1Q Median 3Q Max

-3.3887 -1.2862 -0.6401 0.5646 11.6320
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.219610 0.394154 -3.094 0.002026 **

realrinc1 0.733981 0.023196 31.642 < 2e-16 ***

educ 0.168181 0.023660 7.108 2.17e-12 ***

age 0.018453 0.004787 3.855 0.000123 ***

______

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.147 on 1043 degrees of freedom

(826 observations deleted due to missingness)

Multiple R-squared: 0.5594, Adjusted R-squared: 0.5581

F-statistic: 441.4 on 3 and 1043 DF, p-value: < 2.2e-16

2.5.3 Interpreting R Output: The Coefficients Table
In the R output for the regression analysis, the first part is the call, which shows the R
command for the model. The second part shows the residuals. The minimum, first
quarter, median, third quarter, and maximum values of the residuals are shown here.
The third part shows the coefficients table including the parameter estimates for the
predictor variable and the intercept, their standard errors, the t statistics, and the
associated p values. The fourth part shows the residual standard error and the degrees of
freedom. The fifth part shows the multiple R2 and the adjusted multiple R2. Finally, the
sixth part shows the F statistic, the degrees of freedom, and the associated p value.

First, in the regression model table, we can see the estimated regression coefficients,
their standard errors, the t values, and the associated p values for the constant and the
three predictor variables. The 95% confident intervals can be obtained with the
confint(mlm) command, which will be introduced later in this section.

The t statistic in the regression table tests whether each regression coefficient of the
three independent variables is significantly different from zero, controlling for the other
independent variables. It is the ratio of the estimated regression coefficient to its
standard error.

The regression coefficient for the first predictor, respondent’s annual income
(realrinc1), b 5 .734. The t value equals the ratio of the regression coefficient to
its standard error: t 5 .7340/.0232 5 31.642.

Under the heading, P(>|t|), p < 2e-16. This means that the probability of having
a t value larger than the absolute value of 31.64 is close to zero if the null hypothesis is
true. Since p < .001, we can conclude that the regression coefficient of the independent
variable, respondent’s income, is significantly different from zero when holding the
other two predictors constant. Therefore, the respondent’s income is a significant
predictor of the dependent variable, family income.
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The regression coefficient b1 5 .734. This can be interpreted as follows: For a one-unit
increase in the respondent’s annual income, the dependent variable, the family income,
is increased by a factor of .734 when holding the other two predictors constant.

The regression coefficient for the second predictor, the highest years of education
completed (educ), b2 5 .168, t 5 .1682/.0237 5 7.10.

Under the heading, P(>|t|), p < 2e-16. This means that the probability of having
a t value larger than the absolute value of 7.10 is almost zero if the null hypothesis is
true. Since p < .001, we can conclude that the regression coefficient of the independent
variable, the highest years of education completed, is significantly different from zero
when holding the other two predictors constant. Therefore, the predictor, the highest
years of education completed, is a significant predictor of the dependent variable, family
income.

The regression coefficient b2 5 .168, which means that for a one-unit increase in the
highest years of education completed, the dependent variable, the family income, is
increased by a factor of .168 when holding the other two predictors constant.

The regression coefficient for the third predictor age (age), b3 5 .018. t 5 .0185/
.0048 5 3.854.

Under the heading, P(>|t|), p < .001. We can conclude that the regression
coefficient of the independent variable, age, is significantly different from zero when
controlling for the other two predictors. Therefore, the predictor, age, is a significant
predictor of the dependent variable, family income.

In the model, the constant (b0), shown as (Intercept), 5 21.220. It is also
known as the intercept of the model and is the mean family income when the values of
the independent variables equal zero.

Substituting the values of the constant and regression coefficients into the equation of
the estimated regression model:

Ŷ ¼ b0 1b1X1 1b2X2 1b3X3

We get:

Ŷ ¼ 2 1:2201 0:734X1 1 0:168X2 1 0:018X3

Next, the output reports the residual standard error and the degrees of freedom. The
residual standard error 5 2.147, which is the square root of the mean squares for the
residual (i.e., mean square error). The degrees of freedom for the residual5 n2 12 k5
1,047 2 1 2 3 5 1,043 since n 5 1,047 and the number of predictors k 5 3.

2.5.4 Interpreting R Output: The Multiple R2 and the F Statistic
Further, the multiple R2 and the adjusted multiple R2 are reported. R2 is the coefficient
of multiple determination, which tells us the strength of the prediction with a set of
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predictors. It is the proportion of error variance explained by the model with all the
predictors. R2 5 .559, which indicates that 55.9% of the variance in the family income
is explained using a fitted model with the three predictors overall. The adjusted R2 takes
the sample size and the number of predictors into consideration, and it is a less biased
estimate of the population R2. Adjusted R2 5 .558.

Finally, the output shows the F statistic, the degrees of freedom, and the associate p
value. The F statistic in the multiple regression tests whether the overall model with all
the predictors can significantly predict the dependent variable.

Null hypothesis: The regression coefficients of all three independent variables are
equal to zero (b1 5 b2 5 b3 5 0).

In other words, all three independent variables are not significant predictors of the
dependent variable, family income.

Alternative hypothesis: At least one of the three regression coefficients of the
independent variables is different from zero, controlling for the others. (At
least one bj is not equal to 0.)

In other words, at least one of the three independent variables is a significant predictor
of the dependent variable, family income.

F(3, 1,043) 5 441.4, p < .001, which indicates that the overall model with three
predictors, respondent’s income, the highest years of education completed, and age, is
significant. In other words, at least one independent variable significantly predicts the
dependent variable.

2.5.5 The coef() Function and the confint() Function
The regression coefficient and the constant can also be obtained using the
coef(mlm) command and their confident intervals can be obtained with the
confint(mlm) command.

> coef(mlm)

(Intercept) realrinc1 educ age

-1.2196105 0.7339815 0.1681815 0.0184535

> confint(mlm)

2.5 % 97.5 %

(Intercept) -1.993036447 -0.44618454

realrinc1 0.688464467 0.77949850

educ 0.121755538 0.21460741

age 0.009059685 0.02784731
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A 95% confidence interval for a regression coefficient means that we are 95% confident
that this interval contains the true coefficient with repeated samples. The 95% confi-
dence interval for the predictor realrinc1 is [.688, .779]. It can be interpreted as
follows: For a one-unit change in the respondent’s annual income, we are 95%
confident that the change in the dependent variable, the family income, is between
.668 and .779 when controlling for the other two variables.

The 95% confidence interval for the predictor educ is [.122, .215]. This means that
for a one-unit change in the highest years of education completed, we are 95%
confident that the change in the dependent variable, the family income, is between
.122 and .215 when holding the other two predictors constant.

The 95% confidence interval for the predictor age can be interpreted in a similar way.

2.5.6 The ANOVA Table
We use the anova() function to request the ANOVA table, which was discussed in
the one-way ANOVA section. The command anova(mlm) requests the ANOVA
table for the multiple regression model.

> anova(mlm)

Analysis of Variance Table

Response: realinc1

Df Sum Sq Mean Sq F value Pr(>F)

realrinc1 1 5805.0 5805.0 1259.157 < 2.2e-16 ***

educ 1 231.4 231.4 50.188 2.567e-12 ***

age 1 68.5 68.5 14.859 0.000123 ***

Residuals 1043 4808.5 4.6

______

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Just as explained for simple regression, in the ANOVA table, the Sum Sq column
displays the sum of squares for each predictor variable and the sum of squares for the
residuals (also called the sum of squared errors). The total sum of squares can be
obtained by adding all the sum of squares. The Df column displays the respective
degrees of freedom related to each type of sum of squares. The Mean Sq column shows
the mean squares of the variance, which is the ratio of the sum squares to the corre-
sponding degrees of freedom. The F value column shows the F statistics. Finally, the
Pr(>F) column displays the associated p values.

2.5.7 Effect Size With the eta_sq() Function
We again use the eta_sq() function in the sjstats package to compute the effect
size. Since we have loaded the package in the previous section for simple linear
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regression, you do not need to load it again. We can also use the anova_stats()
function in the sjstats package to compute more effect size statistics. In the
following example, we use the eta_sq(mlm, ci.lvl 5 .95) command to
compute the eta square (h2). In the eta_sq() function, mlm is the model object and
the ci.lvl 5 .95 argument requests the 95% confidence interval.

> eta_sq(mlm, ci.lvl 5 .95)

term etasq conf.low conf.high

1 realrinc1 0.532 0.466 0.598

2 educ 0.021 0.010 0.033

3 age 0.006 0.001 0.012

The h2 for respondent’s annual income (realrinc1) is .532, which indicates that
53.2% of the variance in the family income is explained by this predictor variable. The
eta squares (h2) for the other two predictor variables educ and age can be interpreted
in the same way. The same results can be obtained with the effectsize::

eta_squared(mlm, partial = FALSE) command.

We can also use the eta_sq(mlm, partial5TRUE, ci.lvl 5 .95) com-
mand to compute the partial h2. The output is as follows.

> eta_sq(mlm, partial5TRUE, ci.lvl 5 .95)

term partial.etasq conf.low conf.high

1 realrinc1 0.547 0.510 0.580

2 educ 0.046 0.024 0.073

3 age 0.014 0.003 0.031

In the output, the partial h2 for respondent’s annual income (realreinc1) is .547,
which indicates that 54.7% of the variance in the family income is explained by this
predictor variable while excluding variance explained by the other two predictor vari-
ables. The partial eta squares (h2) for the other two predictor variables educ and age

can be interpreted in the same way.

2.5.8 Computing the Predicted Values With the ggpredict()

Function in ggeffects

The ggpredict() function in the ggeffects package (Lüdecke, 2018b) is used
to compute the predicted outcome variable if we know the specified values of a pre-
dictor variable or multiple predictor variables. This command is particularly useful for
generalized linear models that will be introduced in the following chapters. The
ggeffects package needs to be installed first by typing install.packages

(“ggeffects”). We then load it with library(ggeffects). In the first
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example, we compute the predicted values of the outcome variable when the predictor
variable educ is specified at the values of 12, 14, and 16 and the other two predictors
are held at their means. Please note when predictor variables are non-numeric or cat-
egorical, they are held at the reference level or category. The command is as follows:
mlm.educ <- ggpredict(mlm, terms5"educ[12, 14, 16]"). In the
ggpredict() function, mlm is the model object and the terms5"educ[12,

14, 16]" option specifies the predictor variable educ at the values of 12, 14, and
16. When there are more than one variable, the terms option can specify up to
four variables, including the second to fourth grouping variables. In this example,
we include only one variable in the terms option. The output is assigned to an
object named mlm.educ. Either the as.data.frame() function or the
sqrt(diag(vcov())) function can be used to request the standard errors of the
predicted values.

> # Predicted values with ggpredict() in ggeffects

> # Install ggeffects using install.packages()

> library(ggeffects)

> mlm.educ <-ggpredict(mlm, terms5"educ[12, 14, 16]")

> mlm.educ

# Predicted values of realinc1

educ | Predicted | 95% CI

——————————————————————————————————

12 | 3.41 | [3.25, 3.58]

14 | 3.75 | [3.62, 3.88]

16 | 4.09 | [3.93, 4.24]

Adjusted for:

* realrinc1 5 2.46

* age 5 44.00

> as.data.frame(mlm.educ)

x predicted std.error conf.low conf.high group

1 12 3.413709 0.08459629 3.247904 3.579515 1

2 14 3.750072 0.06672711 3.619290 3.880855 1

3 16 4.086435 0.07890954 3.931775 4.241095 1

> sqrt(diag(vcov(mlm.educ)))

1 2 3

0.08459629 0.06672711 0.07890954

> plot(mlm.educ)

Loading required namespace: ggplot2
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In the output, when educ equals 8, 13, and 16 and the two predicator variables
realreinc1 and age are held at their means, 2.46, and 44.00, respectively, the
mean predicted outcomes are 3.41, 3.75, and 4.09, respectively. The same values can
be obtained if we substitute the specified values of educ and the means of the other
two predictor variables into the multiple regression equation provided earlier. Figure
2.1 shows the predicted values of the outcome variable for educ at 12, 14, and 16
when the other two predictor variables are held at their means.

In the second example, we compute the predicted values of the outcome variable when
the three predictor variables are specified at their mean values and at one standard
deviation below and above the mean values with the meansd option. The command is
as follows: mlm.m <- ggpredict(mlm, terms5c("educ[meansd]",

"realrinc1[meansd]", "age[meansd]")). In the ggpredict()func-
tion, mlm is the model object and the terms5 c("educ[meansd]",

"realrinc1[meansd]", "age[meansd]") option specifies the mean value
and at one standard deviation below and above the mean value for each predictor
variable. In this example, we use the c() function to include the three variables in the
terms option. The output is assigned to an object named mlm.m.

FIGURE 2.1 Predicted Values of the Outcome Variable for educ at 12, 14,
and 16 With Others Fixed at Their Means
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> mlm.m <- ggpredict(mlm, terms5c("educ[meansd]", "realrinc1[meansd]", "age

[meansd]"))

> mlm.m

# Predicted values of realinc1

# realrinc1 5 -0.54

# age 5 31.1

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 0.86 | [0.62, 1.10]

14.20 | 1.35 | [1.12, 1.57]

17.10 | 1.83 | [1.55, 2.11]

# realrinc1 5 2.46

# age 5 31.1

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 3.06 | [2.83, 3.29]

14.20 | 3.55 | [3.36, 3.73]

17.10 | 4.04 | [3.81, 4.26]

# realrinc1 5 5.45

# age 5 31.1

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 5.25 | [4.97, 5.54]

14.20 | 5.74 | [5.51, 5.98]

17.10 | 6.23 | [5.98, 6.48]

# realrinc1 5 -0.54

# age 5 45

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 1.11 | [0.91, 1.32]

14.20 | 1.60 | [1.41, 1.79]

17.10 | 2.09 | [1.84, 2.34]

# realrinc1 5 2.46

# age 5 45

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 3.32 | [3.13, 3.50]

14.20 | 3.80 | [3.67, 3.93]

17.10 | 4.29 | [4.11, 4.48]
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Since each predictor variable is specified at the three values, the mean value and at one
standard deviation below and above the mean value, the output displays nine tables for
the combinations of the three variables. The mean for educ is 14.20 and the values for
one standard deviation below and above the mean value are 11.30 and 17.10,
respectively. Similarly, the mean for realrinc1 is 2.46 and the values for one
standard deviation below and above the mean value are 2.54 and 5.45, respectively;

# realrinc1 5 5.45

# age 5 45

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 5.51 | [5.26, 5.76]

14.20 | 6.00 | [5.81, 6.19]

17.10 | 6.49 | [6.28, 6.69]

# realrinc1 5 -0.54

# age 5 59

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 1.37 | [1.12, 1.62]

14.20 | 1.86 | [1.63, 2.10]

17.10 | 2.35 | [2.06, 2.64]

# realrinc1 5 2.46

# age 5 59

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 3.58 | [3.35, 3.80]

14.20 | 4.06 | [3.88, 4.25]

17.10 | 4.55 | [4.32, 4.78]

# realrinc1 5 5.45

# age 5 59

educ | Predicted | 95% CI

———————————————————————————————————

11.30 | 5.77 | [5.49, 6.05]

14.20 | 6.26 | [6.03, 6.48]

17.10 | 6.75 | [6.50, 6.99]
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the mean for age is 45.00 and the values for one standard deviation below and above
the mean value are 31.10 and 59.00, respectively.

Let us take a look at the first table in the output. When educ5 11.30, realrinc15
2.54, and age5 31.10, the estimated margin or the mean predicted outcome (Ŷ ) is .86.
When educ 5 14.20, realrinc1 5 2.54, and age 5 31.10, the estimated
margin or the mean predicted outcome (Ŷ ) is 1.35. When educ 5 17.10,
realrinc1 5 2.54, and age 5 31.10, the estimated margin or the mean
predicted outcome (Ŷ ) is 1.83.

When all three predictor variables are held at their means (i.e., educ 5 14.20,
realrinc1 5 2.46, and age 5 45.00), the mean predicted outcome (Ŷ ) is 3.80.
The same result is displayed in the fifth table in the output.

2.5.9 Reporting the Results

A multiple regression analysis was conducted to predict the annual family
income using three predictors, the respondent’s annual income, the highest
years of education completed, and age. F(3, 1,043) 5 441.4, p < .001, which
indicated that the overall model with the three predictors was significant.
R2 5 .559, which indicated that 55.9% of the variance in the family income
was explained by the fitted model with the three predictors overall. Adjusted
R2 5 .558.

The respondent’s income was a significant predictor of the dependent
variable, family income (b 5 .734, t 5 31.642, p <.001). For a one-unit
increase in the respondent’s annual income, the dependent variable, the
family income, was increased by a factor of .734 when holding the other two
predictors constant.

The predictor, the highest years of education completed, was also a
significant predictor of the dependent variable, family income (b 5 .168, t 5
7.108, p <.001). For a one-unit increase in the highest years of education
completed, the dependent variable, the family income, was increased by a
factor of .168 when holding the other two predictors constant.

In addition, age was a significant predictor of the dependent variable,
family income (b 5 .018, t 5 3.855, p < .001). For a one-unit increase in age,
the family income was increased by a factor of .018 when holding the other
two predictors constant.
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2.6 CHI-SQUARE TEST

2.6.1 The Chi-Square Test: An Introduction
The chi-square test of independence is used to investigate the relationship between two
categorical variables. Each categorical variable has two or more levels/categories. A two-
way contingency table can be constructed with one variable as the row variable and the
other as the column variable. The rows list different levels of the row variable, and the
columns represent categories of the column variable. For example, a 4 3 5 contingency
table shows frequencies for a row variable with four levels and a column variable with
five levels.

A simple case for the chi-square test is a two-by-two frequency table, which includes
two categorical variables with two levels for each category. In it the rows represent two
categories of one variable and the columns represent two categories of the other. Each
cell where a row and column intersects tells the frequency number of participants that
fall into each subgroup.

In the following example, we are interested in whether two categorical variables, health
status and marital status, are related using the GSS 2016 dataset. One variable, health
status, has four levels, including poor, fair, good, and excellent. The other variable,
marital status, has five levels: married, widowed, divorced, separated, and never
married.

Research Question: Is there a relationship between the two categorical variables, health
status and marital status? Or, in other words, are health status and marital status
independent of each other?

Null hypothesis: There is a relationship between the two categorical variables,
health status and marital status.

Alternative hypothesis: There is no relationship between the two categorical
variables, health status and marital status.

2.6.2 The CrossTable() Function in the gmodels Package
To get the relative frequency of each cell within its row and column, we use the
CrossTable() function in the gmodels package. Since the package has been
installed earlier in this chapter, we just need to load it with library(gmodels). If
it has been loaded, you do not need to load it again. In the following example, we use
the CrossTable(health, marital, digits52) command to create a
frequency table. In the function, health and marital are the two categorical
variables and the argument digits52 specifies the number of decimals.
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Interpreting R Output

The output provides a two-way contingency table. The row variable, health status, has
four levels, and the column variable, marital status, has five levels. The last row shows
the column totals (819, 170, 325, 65, and 494), and the last column displays the row
totals (414, 914, 427, and 118). The row and column totals are also called the marginal
totals according to the places where they are located. The total number of observations
is shown at the lower right bottom of the table (n 5 1,873). The row percentage and
column percentage are also displayed in the table.

2.6.3 The chisq.test() Function
We use the chisq.test() function to conduct the chi-square test for the two
categorical variables health and marital. The command is chisq.

test(health, marital) and the resulting output is displayed as follows.

> chisq.test(health, marital)

Pearson’s Chi-squared test

data: health and marital

X-squared 5 49.423, df 5 12, p-value 5 1.764e-06

Warning message:

In chisq.test(health, marital) : Chi-squared approximation may be incorrect

The Pearson x2 5 49.423 with the degrees of freedom of 12. The number of degrees of
freedom in the x2 test 5 (r 2 1) 3 (c 2 1) 5 3 3 4 5 12 since r is the number of
rows and c is the number of columns.

x2
(12) 5 49.423, p < .001, which indicates that there is a significant relationship

between health status and marital status.

2.6.4 Cramér’s V

There are several ways to compute the Cramér’s V. We first use the xtab_

statistics() function in the sjstats package. The sjstats package needs
to be installed first by typing install.packages(“sjstats”). We then load
it with library(sjstats).

Before we use the xtab_statistics() function, we need to work on the data
frame to correctly code the missing values as “NA.” The current data frame includes
missing values coded as “iap” (i.e., inapplicable), “dk” (i.e., don’t know), and “na” (i.e.,
no answer). These three types of missing values need to be coded as “NA” in R. We
first load the data frame chp2.bs, then we select the two factor variables health
and marital by using the dplyr::select(health, marital) command.
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In the command, dplyr::select means that we use the select () function
from the dplyr package with::, the double colons. Finally, we recoded the three
types of missing values to “NA” by using the mutate () function in the dplyr

package and the rec () function in the sjmisc packages. Since both the dplyr
and sjmisc packages have been loaded in the previous section, we do not need to
load them again. You need to load them if you have not done so. The command is as
follows: dplyr::mutate(health_re 5 rec(health, rec 5 "iap5NA;

dk5NA; na5NA; else5copy"), marital_re 5 rec(marital, rec 5
"na5NA; else5copy")). The recoded two variables are named health_re

and marital_re, respectively. The pipe operator %>% is used to run a series of
functions in sequence. The new data frame is named as the object new.

> # Recode user-defined missing values to NA

> new<-chp2 %>%

1 dplyr::select(health, marital) %>%

1 dplyr::mutate(health_re 5 rec(health, rec 5 "iap5NA; dk5NA; na5NA; else5copy"),

marital_re 5 rec(marital, rec 5 "na5NA; else5copy") )

One or more of the old values are recoded into identical new values.

Please check if you correctly specified the recode-pattern,

else separate multiple values with comma, e.g. rec5"a,b,c51; d,e,f52".

To check if the two variables are correctly recoded, we use the table

(new$health_re, new$marital_re) command to create a two-way cross-
tabulation table.

> table(new$health_re, new$marital_re)

divorced married never married separated widowed

excellent 60 196 116 7 35

fair 65 160 135 21 46

good 162 430 214 32 76

poor 38 33 29 5 13

Since “iap,” “dk,” and “na” are not shown in the cross-tabulation table, these missing
values are coded correctly.

We use the xtab_statistics() function in the sjstats package to compute
the Cramér’s V. In the xtab_statistics(new, health_re, marital_

re) command, new is the data frame and health_re and marital_re are the
two recoded factor variables.
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# Compute chi-square test statistic and Cramer’s V

> library(sjstats)

> xtab_statistics(new, health_re, marital_re)

# Measure of Association for Contingency Tables

(using Fisher’s Exact Test)

Chi-squared: 49.4229

Cramer’s V : 0.0938

p-value : <0.001

In the output, Cramér’s V 5 .094. It also shows that the Pearson x2 5 49.423 and
p < .001.

The second method to compute the Cramér’s V is to use the cramer() function in
the sjstats package. In the cramer() function, health_re ; marital_re

is the model equation and data5new is the data argument. The command and the
resulting output are as follows.

> cramer(health_re ; marital_re, data5new)

[1] 0.09378524

The third method to compute the Cramér’s V is to use the assocstats() function
in the vcd package (Meyer et al., 2020). The vcd package needs to be installed first
by typing install.packages(“vcd”). We then load it with library

(vcd). We first create a two-way table by using the tab <- table(new

$health_re, new$marital_re) command and the table is assigned to an
object named tab. Then we use the summary(assocstats(tab)) command
to display the statistics of association between the two factor variables.

> # Install vcd by using install.packages()

> library(vcd)

Loading required package: grid

> tab <- table(new$health_re, new$marital_re)

> summary(assocstats(tab))

Number of cases in table: 1873

Number of factors: 2

Test for independence of all factors:

Chisq 5 49.42, df 5 12, p-value 5 1.764e-06

Chi-squared approximation may be incorrect

X^2 df P(> X^2)

Likelihood Ratio 47.973 12 3.1603e-06

Pearson 49.423 12 1.7639e-06

Phi-Coefficient : NA

Contingency Coeff. : 0.16

Cramer’s V : 0.094

Chapter 2 n Review of Basic Statistics 83

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



The output displays the likelihood ratio x2 test statistic, the Pearson x2 test statistic, the
contingency coefficient, and the Cramér’s V. The results are the same as those above.

We can also compute the Cramér’s V manually by following the equation

Cramér’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2

Npðk2 1Þ

s

where x2 is the Pearson chi-square statistic, N is the sample size, and k is the smaller
number of categories of the two variables. In this example, x2 5 49.423 and N 5
1,873. Since the numbers of categories for health_re and marital_re are 4 and
5, respectively, the smaller number of categories is 4. k 2 1 5 3. We compute the
Cramér’s V as follows.

> # Compute the Cramer’s V

> sqrt(49.423/1873/3)

[1] 0.09378536

Cramér’s V indicates the strength of association between two categorical variables. Its
size lies between 0 and 1. In the output, Cramér’s V 5 .094, which indicates that the
relationship between two variables is weak.

In the output, we can easily see that each cell displays the row and column percentages
in addition to the frequency. The row percentage equals the number of counts in a cell
divided by its corresponding row total at the margin (i.e., the marginal total).

2.6.5 Follow-Up Chi-Square Test With the chisq.test()

Function
The Pearson x2 test discussed earlier indicated that there is a significant relationship
between health status and marital status. It is an omnibus test for the overall model. If
we are interested in the relationship between the variables for subcategories, then we
can conduct follow-up tests. For example, we can examine the health status between
married and widowed. The research question would be as follows: Do the married and
the widowed differ among the levels of health status?

Since we know the frequency distribution from the earlier output, we can use the
matrix() function to create a 4 by 2 matrix with the command matrix(c(196,

35, 160, 46, 430, 76, 33, 13), nrow54, byrow5T) and the matrix is
assigned to an object named list. We then conduct a chi-square test with the
chisq.test(list) command.

> # Create a matrix and conduct a chi-square test

> list <- matrix(c(196, 35, 160, 46, 430, 76, 33, 13), nrow54, byrow5T)

> chisq.test(list)
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Pearson’s Chi-squared test

data: list

X-squared 5 10.133, df 5 3, p-value 5 0.01747

x2
(3) 5 10.133, p < .05, which indicates that there is a significant relationship between

health status and marital status and that the married have better health status levels than
the widowed.

Other follow-up comparisons can be done in a similar way. To control the Type I error
due to multiple comparisons, we need to adjust the significant level. To do this, we can
use the Bonferroni adjustment.

2.6.6 Reporting the Results

A Pearson chi-square test was conducted to investigate the relationship
between two categorical variables, health status and marital status, using
the GSS 2016 dataset. x2

(12) 5 49.423, p < .001, which indicated that there
was a significant relationship between health status and marital status.
Cramér’s V was used to indicate the strength of association between two
categorical variables. Cramér’s V 5 .094, which indicated that the relation-
ship between two variables was weak.

2.7 MAKING PUBLICATION-QUALITY TABLES
USING R
Once you have conducted statistical analyses and interpreted results, the final step of the
research process is to report the results and submit your manuscript for publication.
While writing the manuscript, you may find that you need to summarize your research
findings and display them in tables. You might wonder whether there are any tools to
reduce your workload, or automatically combine results from the fitted models and
generate a single publication-style regression table.

R has several user-written packages to accomplish this job with no hassle. We use the
stargazer package (Hlavac, 2018) and the texreg package (Leifeld, 2013) to
produce regression tables throughout this book since they work with most of the
models covered here.

To install these two add-on packages, you can use the install.packages()

function and then load it with library() function. For example, if you would like
to install stargazer, type install.packages(“stargazer”), choose a
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mirror close to you, and then install the package. To use it, you need to load it with the
library(stargazer) command.

The help files of these two packages provide various examples with explanations on how
to use them. The following is an example of using the stargazer() function in the
stargazer package to make a table for the results of two regression models. After
fitting the single-predictor model slm and the multiple-predictor model mlm intro-
duced in the previous section, we use the stargazer(slm, mlm, type5
"text", align5TRUE, out5"chp2.lrmod.txt") command to create a
table. In the stargazer() function, we first specify slm and mlm, the two model
objects to be presented, and then the type of the table with the type5"text"

> library(stargazer)

Please cite as:

Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.

R package version 5.2.2. https://CRAN.R-project.org/package5stargazer

> stargazer(slm, mlm, type5"text", align5TRUE, out5"chp2.lrmod.txt")

5555555555555555555555555555555555555555555555555555555555555555555
Dependent variable:

——————————————————————————————————————————————————————————————————

realinc1

(1) (2)

——————————————————————————————————————————————————————————————————————————————————————————————

realrinc1 0.787*** 0.734***

(0.023) (0.023)

educ 0.168***

(0.024)

age 0.018***

(0.005)

Constant 1.870*** -1.220***

(0.088) (0.394)

——————————————————————————————————————————————————————————————————————————————————————————————

Observations 1,047 1,047

R2 0.532 0.559

Adjusted R2 0.531 0.558

Residual Std. Error 2.211 (df 5 1045) 2.147 (df 5 1043)

F Statistic 1,187.513*** (df 5 1; 1045) 441.401*** (df 5 3; 1043)

5555555555555555555555555555555555555555555555555555555555555555555
Note: *p<0.1; **p<0.05; ***p<0.01

> stargazer(slm, mlm, type5"html", align5TRUE, out5"chp2.lrmod.htm")
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argument. The align5TRUE argument requests to align the results of the two
models. The out5"chp2.lrmod.txt" argument saves the output named
chp2.lrmod.txt.

Table 2.1 shows the results of two regression models using the stargazer()

function.

A similar table can be created if you use the screenreg() and htmlreg()

functions from the texreg package. You need to install texreg first by typing
install.packages(“texreg”) if you haven’t already done so and then load
the package by typing library(texreg). To create a plain text table similar to
Table 2.1, we use the screenreg(list(slm, mlm)) command. In the
screenreg() function, we specify the two model objects to be presented with the
list() function. We can also use the htmlreg() function to create the same
regression table and save it to a Microsoft Word file named chap2.doc with the

TABLE 2.1 Results of Two Regression Models: An Example

Dependent variable:

realinc1

(1) (2)

realrinc1 0.787*** 0.734***

(0.023) (0.023)

educ 0.168***

(0.024)

age 0.018***

(0.005)

Constant 1.870*** –1.220***

(0.088) (0.394)

Observations 1,047 1,047

R2 0.532 0.559

Adjusted R2 0.531 0.558

Residual Std. Error 2.211 (df 5 1,045) 2.147 (df 5 1,043)

F Statistic 1,187.513*** (df 5 1; 1,045) 441.401*** (df 5 3; 1,043)

Note:
*p < 0.1
**p < 0.05
***p < 0.01
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following command: htmlreg(list(slm, mlm), file5"chap2.doc",

doctype5TRUE, html.tag5TRUE, head.tag5TRUE). To save space, the
created table is omitted here.

Both the stargazer package and the texreg package can be of good help when
creating a regression table since you do not need to start from scratch. They are
particularly useful when you fit a series of models and need to summarize parameter
estimates from each model. Please note that different fields or journals have different
requirements for the table format. You still need to do some editing to the created
tables in the manuscript submitted for publication.

2.8 GENERAL GUIDELINES FOR
REPORTING RESULTS
Once the data analysis is complete, the next step is to present and interpret the results,
which normally are included in the results section of a research report. When reporting
the results of your statistical analyses, a general rule is to provide sufficient information
for readers to understand your analyses and the findings of your study. What are the
major elements that should be included in the results section? The answer varies since
different disciplines and journals may have their own reporting requirements, and one
statistic commonly reported in one field may not be needed by another field. We
provide the following general guidelines for reporting results.

First, describe the analyses you have conducted, explain the variables with descriptive
statistics, and state what research questions have been addressed.

Second, when reporting the results of a statistical test, provide the value of the test, the
degrees of freedom, and the associated p value, followed with an explanation of the
meaning of your findings. You may also need to form a conclusion about whether
the test is significant. If the test is significant, provide the effect size if available. The
reporting of the effect sizes was recommended in APA (2020), and various measures of
effect size for continuous and categorical outcome variables and their estimation
methods were introduced in Kline (2013).

Third, when summarizing numerical information in tables, make sure they can be
easily interpreted. The labels, categories, and numbers in the tables should be concise
and clear, so that readers can understand them without much effort. Complex tables
may confuse readers with excessive information.

Fourth, tables and written text should be complementary to each other. If the results
can be summarized in a sentence, you do not need a table. On the other hand, if you
have many categorical variables and you need report frequencies for all categories, it will
be tedious to report them in paragraph after paragraph in written text, and it will be
boring for readers to read your description. Instead, a table containing these frequencies
is sufficient to help readers quickly understand this information.
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Fifth, after the results of statistical tests are presented, you also need to interpret them.
Readers are more interested in the meaning of the statistical results than in the technical
information related to the tests. The numerical information is important since it is the
evidence supporting your conclusion. To help readers understand these statistics, you
need to interpret them in a clear manner.

Finally, when summarizing the results, also keep the audience in mind. If you submit
your article to a journal for publication, reviewers are interested in reading the statistics,
tables, and graphs. You might receive feedback from them asking you to provide more
statistics. However, if your readers have limited backgrounds in statistics, you will need
to explain your results in plain English in addition to the statistics you provide in the
text.

2.9 SUMMARY OF R COMMANDS IN
THIS CHAPTER

# Chap 2 R Script

# Remove all objects

rm(list 5 ls(all5TRUE))

# Set a working directory; here we create a folder named CDA in the C drive (C:) first

setwd("C:/CDA")

# The following user-written packages need to be installed first by using

install.packages(“ ”) and then by loading it with library()

# library(dplyr) # It is already installed for Chapter 1

# library(sjmisc) # It is already installed for Chapter 1

# library(gmodels)

# library(ggeffects)

# library(pastecs)

# library(stargazer)

# library(sjstats)

# library(vcd)

# Import GSS 2016 Stata data file

library(foreign)

chp2 <- read.dta("C:/CDA/gss2016-chap1.dta")

attach(chp2)

summary(chp2)

head(chp2)

str(age)

summary(age)

mean(age, na.rm5TRUE)

sd(age, na.rm5TRUE)

max(age, na.rm5TRUE)

min(age, na.rm5TRUE)

length(age)
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# Descriptive statistics by group: method 1

mean <- tapply(age, sex, mean, na.rm5TRUE)

sd <- tapply(age, sex, sd, na.rm5TRUE)

max <- tapply(age, sex, max, na.rm5TRUE)

min <- tapply(age, sex, min, na.rm5TRUE)

length <- tapply(age, sex, length)

cbind(mean, sd, max, min, length)

# Descriptive statistics by group: method 2

library(dplyr)

gender <- group_by(chp2, sex)

summarize(gender, mean(age, na.rm5TRUE), sd(age, na.rm5TRUE), max(age, na.rm5TRUE),

min(age, na.rm5TRUE))

# Descriptive statistics by group: method 3

library(sjmisc)

chp2 %>% group_by(sex) %>% descr(age)

# Descriptive statistics for two variables

library(pastecs)

stat.desc(chp2[, c("age","educ")])

# Descriptive statistics for two variables: method 2

#library(sjmisc)

descr(chp2, age, educ)

# Descriptive statistics for multiple variables by group

chp2 %>% group_by(sex) %>% select(age, educ) %>% descr()

# Frequency table for a factor or categorical variable

str(degree)

table(degree)

table(marital)

# Frequency table with frq() in sjmisc

#library(sjmisc)

frq(chp2, degree)

frq(chp2, marital)

# Cross-tabulation

tab <- table(degree, race)

summary(tab)

tab

ftable(tab)

addmargins(tab)

prop.table(tab)

# Cross-tabulation with CrossTable() in gmodels

library(gmodels)

CrossTable(degree, race, digits52)

chisq.test(degree, race)

# Simple linear regression

realinc1 <- realinc/10000
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realrinc1 <- realrinc/10000

slm <- lm(realinc1 ; realrinc1)

summary(slm)

anova(slm)

coef(slm)

confint(slm)

library(sjstats)

eta_sq(slm)

# Multiple linear regression

mlm <- lm(realinc1 ; realrinc1 1 educ 1 age, data5chp2)

summary(mlm)

anova(mlm)

coef(mlm)

confint(mlm)

eta_sq(mlm, ci.lvl 5 .95)

eta_sq(mlm, partial5TRUE, ci.lvl 5 .95)

anova_stats(mlm, digits 5 3)

# Predicted values with ggpredict() in ggeffects

library(ggeffects)

mlm.educ <- ggpredict(mlm, terms5"educ[12, 14, 16]")

mlm.educ

as.data.frame(mlm.educ)

sqrt(diag(vcov(mlm.educ)))

plot(mlm.educ)

mlm.m <- ggpredict(mlm, terms5c("educ[meansd]", "realrinc1[meansd]", "age

[meansd]"))

mlm.m

# Create a results table with stargazer()

library(stargazer)

stargazer(slm, mlm, type5"text", align5TRUE, out5"chp2.lrmod.txt")

stargazer(slm, mlm, type5"html", align5TRUE, out5"chp2.lrmod.htm")

# Cross-tabulation with CrossTable() in gmodels

library(gmodels)

CrossTable(health, marital, digits52)

chisq.test(health, marital)

# Recode user-defined missing values to NA

new <- chp2 %>%

dplyr::select(health, marital) %>%

dplyr::mutate(health_re5rec(health,rec5"iap5NA; dk5NA;na5NA;else5copy"),

marital_re 5 rec(marital, rec 5 "na5NA; else5copy" ) )

table(new$health_re, new$marital_re)

# Compute chi-square test statistic and Cramer’s V

library(sjstats)

xtab_statistics(new, health_re, marital_re)

cramer(health_re ; marital_re, data5new)
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library(vcd)

tab <- table(new$health_re, new$marital_re)

summary(assocstats(tab))

# Compute the Cramer’s V

sqrt(49.423/1873/3)

# Create a matrix and conduct a chi-square test

list <- matrix(c(196, 35, 160, 46, 430, 76, 33, 13), nrow54, byrow5T)

chisq.test(list)

detach(chp2)
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Glossary

Descriptive statistics helps you describe your data by showing types of data, graphs of the distribution
of variables, and various statistical indices, such as the central tendency and variability of your data.

Frequency analysis provides the frequency of each value for categorical variables.

Multiple linear regression is used when we predict a dependent variable from two or more independent
variables.

Simple linear regression is used when we predict a dependent variable from an independent variable.

The chi-square test of independence is used to investigate the relationship between two categorical
variables.

Exercises

Use the GSS 2016 data available at https://edge.sagepub.com/liu1e for the following problems.

1. Run a descriptive statistics analysis for coninc and interpret the results.

2. Conduct a frequency analysis for happy. What percentages of respondents are very happy?

3. Make a two-way table for degree and class.

4. Run a chi-square test to investigate the relationship between degree and class.

5. Conduct a multiple regression analysis to estimate tvhours from the two predictor variables educ

and age.

a. Write a research question.

b. Find the F statistic from the output and interpret whether the overall model is statistically
significant.

c. Which predictor variables are significant? Interpret the coefficients for the two predictor
variables.

d. Produce a table for the regression output using stargazer.

e. Write a concise report to summarize the results.
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