
A
Abduction

Abduction is a form of reasoning distinct from 
deductive and inductive reasoning. It has often 
been referred to as the commonsense approach to 
reasoning because it is used in everyday life as well 
as in scientific argumentation. It has also been 
called  inference to the best explanation because 
people reason from something that has been 
observed to an explanation for it. The philosopher 
Charles Sanders Peirce (1839–1914) first described 
this form of reasoning as guessing because he 
noted that you must leap to a possible explanation 
without knowing with certainty whether or not it 
is true. Abductive reasoning is a critical notion in 
philosophy, including the philosophy of science, as 
well as that of history, law, and many other disci-
plines. It is also a basic function of the human 
mind in everyday life.

Abduction in Everyday Life

Abductive reasoning is used in daily life as a com-
monsense approach to explaining anomalies. One 
of the most common examples given is that of 
walking out of a house to find that the grass in the 
lawn is wet. Because the grass is wet, one may 
infer that it had recently rained. If it had rained, 
then the fact that the grass is wet would be noth-
ing out of the ordinary. That it had rained explains 
the fact that the grass is wet.

Another such case used to illustrate the process 
of abduction is that of a faulty light fixture. If one 

comes home and flips a light switch to  on, but the 
light does not turn on, then one may infer that the 
power is out or the breaker switch has been 
flipped. Suppose that, although the light is still off, 
one sees that the clock on the microwave is on and 
appears to be functioning correctly. If the power 
were off in the whole house, then this contradic-
tion would not occur because the microwave 
clock would be off as well. Now, given this new 
evidence, one may infer a simpler explanation to 
account for the light being off, namely that the 
light bulb has burned out and needs to be changed. 
In this way, abduction is the process of inferring 
explanations to account for the evidence or facts 
that are observed. The explanation can never be 
proven but rather only inferred.

As a generic tool of human reasoning, abduc-
tion has been of interest to philosophers because, 
unlike deductive reasoning, abduction is not a 
formalized system of proofs. In fact, the subjectivity 
required to decide which explanation is best has 
been one of the difficulties in applying abduction 
to science and other domains. 

Abduction in Use

Abduction is commonly used in philosophical 
inquiry, in belief revision, in academic and profes-
sional disciplines such as medicine and anthropol-
ogy, and in work-related reasoning. Philosophers of 
science also draw on abduction as  inference to the 
best explanation to be one of the primary tools in 
scientific realism. Abduction is a component part of 
human reasoning. There have been attempts to 

1
Copyright ©2023 by SAGE Publications, Inc. 

This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



2 Abduction

formalize abductive reasoning to meet the needs of 
particular jobs or sectors of society. Some decisions 
require a type of validation, or rules to decide which 
possible explanation for an observed effect is best. 
On the most basic level, abduction has no such rules. 
It is minimalistic in this aspect and allows for subjec-
tivity in determining the best explanation, often 
leading to revising previously held beliefs. For the 
hypothesis to be a useful one, it should be explana-
tory, testable, and economical. The simplest expla-
nation is usually expected to be the best, though the 
subjective view can never escape the possibility for 
error. Below are several areas of application, and 
many of the uses of abduction take place among 
practitioners or clinicians within a particular field.

Logical Reasoning

Logical reasoning has often been split into 
deductive and inductive reasoning. The former 
begins with reasoning from a general premise to 
an entailed, or necessary, conclusion. There is 
room for error if the formal rules of logic have 
been followed. The latter, on the other hand, is 
reasoning from specific evidence or premises to a 
probable conclusion. The rules are not formally 
set out, but evidence can be collected until it suf-
ficiently can support a conclusion.

Abductive reasoning, according to Peirce, pro-
vides a third type of reasoning by which one rea-
sons from a conclusion to a possible explanation. 
This presents some particular difficulties in the 
realm of formal logic. Formal logic would propose 
that the process of inferring is deductive, as in the 
instance that follows:

All bachelors are male.

John is a bachelor.

Therefore, John is male.

Formally, this is written as follows where A is the 
antecedent and C is the consequent:

AC

A

______

∴ C

In this example of modus ponens, we see that 
given the two premises (AC and A), we must 
conclude that the conclusion (C) is valid. Whether 
or not it is true is not a concern. Logical validity 
is established by adhering to certain rules of 
deduction. Reasoning, then, happens from the 
given premise to infer a necessary conclusion. 
Abduction, however, operates in the reverse.

Abduction begins with a given conclusion or 
consequent, C and then seeks to infer an explana-
tion for C. This is the formal logical fallacy of 
affirming the consequent because there is no guar-
antee that by knowing C one can infer A. That is, 
returning to the example above, that if John is 
male, there is no guarantee that John is a bachelor. 
Thus, abduction is a form of inference that vio-
lates formal logic, but is nonetheless critical to 
human thinking and philosophical reasoning. For-
mally, this would be written as follows:

AC

C

________

A “Invalid”

While it is clear that abduction and deduction 
are quite different types of reasoning, the distinc-
tion between abduction and induction is less clear. 
Since inductive reasoning is the process of learn-
ing from example, some have proposed that 
induction is only a case of abduction. That is, 
inductive reasoning can be reduced to the more 
primal abductive reasoning. Other philosophers, 
who view induction as creating a theory to 
account for facts, have proposed that abduction is 
actually only a case of inductive reasoning. Peirce’s 
triad of reasoning can be found to have overlap in 
actual use. Thus, some have proposed to use the 
terminology of  explanatory reasoning to account 
for the specific process and product of abduction 
specifically.

Medical Sciences

The medical sciences make use of abduction, 
especially in clinical practice, through observing 
the symptoms of a patient and reasoning as to 
what might have caused the current condition. A 
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3Abduction

physician may attempt to explain the cause of 
several symptoms experienced by a patient. Some-
times, the coexistence of several symptoms may 
complicate the diagnostic process as a doctor 
seeks to identify the root cause. Usually, the expla-
nation that seems to explain all of the symptoms 
is preferable to diagnosis of several causes, thus 
drawing on abductive reasoning’s simplicity to 
pinpoint a probable cause that can then be treated. 
Diagnosis and clinical evaluation are examples of 
abduction in medicine.

Law

Legal experts and lawyers often utilize abduc-
tive reasoning. Specifically within criminal cases, a 
jury makes a judgment regarding whether the 
prosecution’s case sufficiently explains the evi-
dence. The burden, then, is on the prosecution to 
present a plausible abduction that a judge or jury 
could endorse as a true narrative of events leading 
to the crime. The defense, on the other hand, needs 
only to present an alternative abduction or cast 
reasonable doubt on the prosecution’s explana-
tion of the evidence, to secure the verdict of not 
guilty. Developing a theory that can be inferred 
from and explain the evidence is critical in 
jurisprudence.

Statistics and Applied Mathematics

Abduction has been influential in applied math-
ematics and inferential statistics. Bayesian inferen-
tial statistics, for example, has been a useful way 
to make decisions based on statistical data. 
Through statistical evidence, one could reject or 
accept a hypothesis depending on whether the 
probability is sufficient for a particular cause to 
have produced the observed effect. The level of 
probability represents the most likely explanation, 
and tells the statistician which hypothesis is most 
statistically likely, though not necessarily the best, 
explanation for a consequent. This helps to remove 
some of the subjectivity innate to abduction. It 
restricts  the best explanation to that which is  
most likely.

Abduction also has been used to develop artifi-
cial intelligence in computer programing. Param-
eters for abductive processes can be set, which 
would allow machines to analyze data and make 
inferences to explain that data. By modeling 

artificial intelligence with abduction, machines 
can mimic human thinking. Abduction allows for 
the detection of faults in computer systems, as 
well as belief revision. This is contrasted with 
deduction, which would require preprograming 
all possible data so the machine can abide by the 
formal rules of logic.

Philosophy of Science

The influence of abduction as an area of study 
is perhaps most clearly seen in the philosophy of 
science. Since the emphasis in abductive reasoning 
is to infer possible explanations, it can be seen that 
abduction does not lead to proof or certainty. As 
noted in the logical fallacy above, one cannot 
determine the antecedent from the consequent 
with absolute certainty. One may only infer that 
the antecedent is a probable cause for the conse-
quent because the presence of the antecedent 
would sufficiently explain the consequent. Abduc-
tion, then, has been foundational in the area of 
scientific reasoning and, more broadly, what 
counts as science. Biological diversity, for exam-
ple, can be explained by many theories. Two of the 
most debated are Charles Darwin’s account of 
natural selection and creationist accounts of a 
divine maker. Though either of the two could serve 
as reasons for biological diversity, the majority of 
modern-day scientists have appealed to abductive 
reasoning to validate Darwinian evolution as the 
operating theory. Since one could claim that Dar-
win’s approach sufficiently explains biological 
diversity, and is more plausible than a divine 
maker, scientists reason that the best explanation 
for biological diversity is natural selection. Sci-
ence, then, allows for uncertain and unobserved 
possible causes to be taken as operational  truth or  
fact insofar as they explain the evidence well 
enough. This necessarily introduces a degree of 
subjectivity.

The Subjectivity of Abduction

Abduction has been the target of some critique, 
specifically regarding the inherent subjectivity. For 
example, the association with abduction as the  
inference to the best explanation would require an 
interpretive move as to what is considered the  best 
explanation for the accepted evidence. Additionally, 
it has fallen under criticism because it is used as a 
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4 Abduction

form of knowledge discovery, not as scientific veri-
fication. Thus, abduction is sometimes seen simply 
as hypothesis forming, and not as a valid form of 
logic or hypothesis verification. In epistemology, 
abduction can never achieve  truth or  proof claims 
but can only propose possible explanations.

A Scientific Example of Abduction

Abduction is a fundamental concept in philoso-
phy of science. Examples of abduction can be 
found frequently in scientific inferences. However, 
one example that serves to illustrate the point is 
the scientific discovery of the earth’s orbit and 
rotation. Through observation of the sun, moon, 
and stars, one would be tempted to think that the 
earth is the center of the universe and that celes-
tial bodies revolve around it. Ptolemy’s (ca. 127–
145 C.E.) geocentric view was certainly influential, 
and it was accepted as true since it best accounted 
for the evidence at hand. Surely, this is what the 
ancients thought and indeed how they lived their 
lives. They observed the phenomena that the sun 
rises in the east and sets in the west, and the most 
clear-cut explanation is that the sun revolves 
around the earth. Some observers sought to 
explain that it was not the sun that was moving, 
but the earth that was rotating. Philolaus, the 
Pythagorean (470 B.C.E.–385 B.C.E.), for exam-
ple, attempted to account for the same observance 
by theorizing that there was actually a non-earth 
fire-center around which the sun, moon, and 
planets circulated. The view was quite compli-
cated and largely dismissed. Others had thought it 
possible that the earth rotated, thereby giving the 
appearance that the sun rose and set, but these 
views had failed to explain all of the cosmic 
observations and left early scientists believing that 
geocentricism was the best explanation. It was not 
until Nicolaus Copernicus (1473–1543 C.E.) 
developed his heliocentric view that the seeming 
anomalies in the cosmos were better explained.

Prior to Copernicus, no system naturally 
explained retrograde planetary motion where, at 
some times of the year, planets would seem to 
move backward in their orbits, and then forward 
again. Ptolemy’s system needed to appeal to epi-
cycles, the idea that planets were on smaller orbits 
which were themselves on larger orbits around the 
earth, to explain the qualitative features of 

retrograde motion. Thus, the models presented 
were highly complicated and made little theoreti-
cal sense though they were inferred from the 
observational evidence. When Copernicus devel-
oped his version of heliocentrism, he made infer-
ences from his observations that the way to best 
explain the celestial movements would be if the 
sun was in the center and all of the planets 
revolved around it. This would make some planets 
appear to move backward because the earth 
would catch up to them in the orbit and bypass 
them. Copernicus’ system also used epicycles, in 
fact just as many as did Ptolemy’s, but only for 
quantitative features of things. The explanation 
for the observations was then simplified. Surely, 
the claim that the sun was the center of the solar 
system and that the earth revolved around it and 
rotated on its axis was not without its challengers. 
But through further scientific validation it was 
commonly accepted, verified, and improved upon. 
What began with observation of the sky ended 
with an inference as to what could possibly 
account for these observations. No one could 
actually sit on the knees of God, so to speak, and 
see the universe’s workings, but from one perspec-
tive the workings of the universe could be inferred. 
Thus, science, as well as philosophy, relies on the 
inference to the best explanation, or abduction, to 
understand what may cause observed effects.

Joseph C. Rumenapp

See also Deduction; Explanation; Fact Versus Theory; 
Induction; Inference; Inference to the Best 
Explanation; Theory Construction; Values in Science
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5Abstract Knowledge

AbstrAct Knowledge

The term abstract originates from the Latin 
abstractus, from the prefix ab-, meaning “from,” 
“of”; and “trahere,” which means “pull,” “drag 
away.” It refers to the mode of thinking that 
allows for the isolation of elements. The topic of 
abstract thinking can be examined from a philo-
sophical, psychological, and even a neurophysio-
logical standpoint. It generally assumes that the 
individual is capable of mentally deconstructing a 
whole into its parts, in order to analyze a situation 
simultaneously from different angles. In this way, 
the practice of abstract thought leads to abstract 
knowledge, which builds upon the individual’s 
ability to find common properties among elements 
or ideas, to plan and assume hypothetically, and to 
think and act symbolically.

Abstract Thought and the Human World

Among the disciplines that study abstract knowl-
edge are biology-related sciences. Ever since 
Charles Darwin’s (1809–1882) theories of natural 
selection emerged, scientists have tried to identify 
which physical elements differentiate human 
beings, and their thinking processes, from those of 
other animals. Theorists believe that as humans 
created increasingly complex social models, these 
led to more conceptually sophisticated forms of 
thinking and knowledge. In order to survive and 
thrive, for example, humans had to develop ways 
of understanding the world from multiple per-
spectives, to draw inferences about social patterns, 
and regulate their own thinking and emotions 
according to normative group standards. Under-
standing and incorporating societal cues and 
norms form the trove of abstract knowledge that 
allows humans to navigate the social world 
around them. Language and culture, for example, 
were born from the need to cooperate and create 
complex thinking models in order to grow. What 
differentiates humans from other animals, as some 
scientists propose, are forms of thinking, learning, 
and cognition engendered by collaborative and 
communicative interaction. These interactions rely 
on information constructed from symbols and 
assumptions, which require the capability of 
abstract thought.

In time, humans developed cognitive capacities 
far more powerful than was necessary for a hunt-
ing-and-gathering group to cooperate and survive. 
Darwin believed that the capacity and use of lan-
guage might have shaped the highly complex 
human brain. Subsequently, however, both biology 
and the cognitive sciences long evaded the issue. 
Some behaviorists perceived abstract thinking 
simply as normal animal communication rather 
than as manifestations of intelligence and lan-
guage. The brain, working mechanically, was 
capable of self-organizing in order to save and 
process new input, such as words. Words, how-
ever, are inseparably tied to the concepts they 
represent. As such, they are part of a cognitive 
process that merges thinking and words into sym-
bolic representation and meaningful combina-
tions, so as to form a learned language. Therefore, 
language is considered one of the many instances 
of human abstract knowledge.

Psychologists have also been interested in devel-
oping theories of abstract knowledge. Abstract 
thought is different from concrete thinking, which 
is based on real, lived experiences. Early in life, 
individuals come to understand their daily experi-
ences as real and as based upon interaction with 
concrete objects. In time, they begin to develop 
abstract thinking, that is, their own ideas or con-
cepts. It is relevant to mention the work of Swiss 
psychologist Jean Piaget (1896–1980), who pos-
ited that abstract thinking actually develops at 
around 12 years of age. At this point, humans 
move from concrete thinking to being able to 
mentally explore abstract or immaterial ideas. 
Before that, children are more reliant on concrete 
thinking. An example of concrete thinking would 
be the case of very young children who believe 
that if they cover their eyes, they cannot be seen 
by others, because they, themselves, cannot see. 
Unless they have some mental impairment, how-
ever, adolescents and adults can understand 
abstract concepts, such as comprehending that the 
phrase “a bad taste in my mouth” can refer to a 
feeling that something is false, deceitful, or unfair, 
rather than the literal feeling of having a disagree-
able taste in the mouth. In other words, abstract 
knowledge makes it is possible to comprehend 
metaphors and similes as symbolic representations 
or approximations of ideas. Not all metaphors, 
however, refer to abstract ideas. The phrase “Get 
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6 Abstract Knowledge

out of here!” may have a real as well as a meta-
phorical meaning, the latter referring to an expres-
sion of incredulity. People can understand the 
difference because, inevitably, abstract knowledge 
is often built upon concrete concepts.

Early philosophical concepts of abstract think-
ing were first developed by the ancient Greek 
philosopher Aristotle (384–322 B.C.E.), especially 
in his theory of universals. Abstraction is a mental 
activity in which a conceptual property is detached 
from the whole, so that it may be reflected upon 
and analyzed, separated from the rest. Whereas 
Aristotle’s teacher Plato (ca. 429–348 B.C.E.) 
believed that all objects and ideas had an essence 
or pure form, which could be perceived intuitively 
by humans, Aristotle posited that universal ideas 
exist but that these must be founded upon empiri-
cal data or observation. In other words, abstract 
knowledge must be built upon concrete informa-
tion. In that way, the idea of tree comes from the 
experience and comparison of many trees, from 
which aggregate an individual may extrapolate a 
general concept of tree, which shares the charac-
teristics of what they all have in common. It is 
then by comparing multiple objects that a prop-
erty considered shared by all may be isolated or 
abstracted, and the isolated object is a universal. 
The individual then forms an idea of what a tree, 
which represents all trees, is. This becomes abstract 
knowledge, based upon exercising abstract think-
ing. Abstract thinking is not necessarily based on 
concrete or material experiences but on the capac-
ity of making projections and building conjectures 
on a purely abstract and intangible plane. In this 
sense, many also call it theoretical, considered 
separate from material or concrete existence. One 
example of abstract thinking, for example, is 
developed in mathematics and physics, as well as 
in many philosophical concepts that deal with 
intangible ideas. Others have compared abstract 
thinking with the metaphorical plane, which 
implies the ability to represent ideas 
symbolically.

It is important to highlight that mental repre-
sentations of real objects are aided by language. 
Abstract knowledge is based on formal schemas, 
which are thought units by which knowledge is 
represented. Schemas make it possible for people 
to have foresight and think in terms of probabili-
ties. They also allow the people to categorize and 

integrate new information. Abstract thinking is 
fundamental to all human beings because it allows 
the capacity of induction and deduction, to syn-
thesize information, and to extrapolate what is 
important to learn from all situations, as well as 
to compare, arrive at conclusions, and engage in 
critical thinking. In short, abstract thinking builds 
up abstract knowledge, which allows individuals 
to interpret the concrete phenomena they come 
across. One of the characteristics of higher level 
abstract thought is the capacity of simultaneously 
observing myriad details and evaluating various 
functions, as well as processing several problems, 
defining priorities, and responding to several 
tasks. Besides judgment, foresight, and reasoning, 
abstract thinking is also related to creativity, 
insight, and mental flexibility in general.

Abstract Thinking and Language

Abstract knowledge relies on language in order to 
conceptualize intangible concepts, such as honor, 
freedom, and justice, as opposed to more concrete 
items, such as table and tree. Abstract language is 
also necessary in order to relay the ideas behind 
metaphors, allegories, similes, idioms, and other 
figures of speech. Concrete language is used, for 
example, to explain more textual instructions, 
such as in manuals, medical protocols, or cooking 
recipes. Abstract language is used to explain more 
abstract ideas, such as calculus or equations.

Abstract language is also related to relative con-
cepts. There are, of course, many degrees of 
abstraction. Intellectual development, as noted 
earlier, is tied to the gradual process of moving 
from the very concrete to extremely abstract think-
ing across a wide range of areas. In many ways, 
both the concrete and the abstract are specific to a 
particular area. For some experts, familiarity with 
an area makes the topic, however abstract, increas-
ingly concrete. In this manner, then, abstract con-
cepts can become relatively concrete to some while 
remaining highly abstract to others. For instance, a 
mathematician might find concepts of differential 
equations to be relatively concrete, although they 
remain abstract to others; an atom may be a con-
crete entity to a physicist, while it may be consid-
ered an abstract concept by nonexperts.

Language is a system of word-based communi-
cation that relies on both symbolic and conventional 
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7Abstract Knowledge

characteristics and which is complemented by 
culturally based nonverbal communication and 
word content. Culture is the framework that 
mediates social actions. In order to acquire lan-
guage, humans must move from learning language 
to developing an internal language, also known as 
thinking. This knowledge, although abstract and 
internal, is mediated by culture and society. Piag-
et’s theory of cognitive constructivism, for exam-
ple, views language as an element of symbolic 
function in society. Language has a semiotic func-
tion, a process of articulation between figurative 
elements and their actions. The figurative elements 
of language are the signifiers and signified, what 
the words are and what they mean. Semiotics, a 
theory of language, is an example of knowledge 
which uses concrete and abstract ways of think-
ing, developed by scholars such as Charles Sanders 
Peirce and Ferdinand de Saussure.

Language and abstract thought, then, are intrin-
sically related in many ways. Although the ability 
of children to manage abstract concepts develops 
as they acquire language, spoken language is not 
the sole component in abstract thinking. Children 
who have been born deaf, for example, can under-
stand many abstract concepts even though they 
may not develop speech language fluently. They 
can, however, express themselves symbolically by 
way of signed language and other forms of com-
munication available to them. Abstract knowl-
edge, then, is based on multiple forms of language 
and communication.

By thinking abstractly, individuals elaborate 
relationships of meanings, such as similarities, dif-
ferences, and causalities, with symbolic meaning 
represented by way of language. There are three 
general types of thinking related to language: con-
ceptual, judgment, and reasoning. Conceptual 
thinking refers to the representation of an object 
by way of abstraction and generalization. Abstrac-
tion provides the selection of the properties of that 
object which distinguish it from others, and gener-
alizing refers to the assignation of common char-
acteristics to all of those objects that share the 
same characteristics. Generalizations allow for 
different levels of depth and directions of thought 
that can be taken. For every problem, there are 
some specific directions and levels that may be 
more useful than others. A computer, however, can 
be programmed to generalize concepts to levels of 

abstraction and proliferation that presumably 
would exceed human capabilities, such as in 
chess-playing programs. Abstract thought is the 
skill, and abstract and concrete knowledge pro-
vide the tools that enable an individual to identify 
which directions and levels are more useful, or 
which direction is the most interesting. It is in 
these decisions that human individuality often 
shines forth and in which human imagination 
often beats the computer program.

Judgment allows the elaboration of premises 
that will determine the truth or falseness of a 
conclu sion and reasoning allows the elaboration 
of analysis by establishing the relationship between 
one or more judgments or premises. Reasoning 
includes deductive and inductive thinking, in 
where deduction refers to conclusions that are 
arrived by way of going from the general to the 
specific, and induction goes from the specific to 
the general. An example of deductive thinking 
might be the formulation of the following: All 
humans are intelligent. All those present here are 
human. Therefore, all those present here are intel-
ligent. An example of inductive thinking might be 
as follows: Copper expands with heat. Bronze 
expands with heat. Both are metals. Therefore, all 
metals expand with heat.

One of the most explicit theories relating lan-
guage and thought is the theory of linguistic rela-
tivity developed by Benjamin Whorf (1897–1941). 
Whorf argued that the language structure used by 
an individual originates from their particular con-
ception of the world. Different people see the 
world in a unique way and employ language 
accordingly. Therefore, an individual’s language 
expresses a person’s determined concept of the 
world. Many scholars believe that the cognition, 
thinking processes, and abstract knowledge of an 
individual are inevitably affected by the particular 
language structure of each person. For Whorf, the 
range of vocabulary that a person learns influences 
the range of activities that the person may conceive 
related to a particular area. It may also influence 
the range of creativity and abstract ideas that the 
person may reach. Whorf’s hypothesis has two 
main versions. One states that language directly 
impacts thought. Another, more nuanced, states 
that language affects thought when a particular 
task depends directly on the properties of a specific 
language system. There is very little in the way of 
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8 Abstract Knowledge

proof, to date, on the first version of Whorf’s 
hypothesis. Language, however, is generally con-
sidered as one of the dominant elements in abstract 
thinking and knowledge. The abstracting process 
that is ever-present in language can be considered 
as representative of this intellectual activity.

Another important theorist who has written on 
language and abstract knowledge is the Soviet 
psychologist Lev Vygotsky (1896–1934). Vygotsky’s 
theories on the relationship between thinking, 
knowledge, and language have had great impact 
in contemporary psychology, especially in the 
arena of evolutionary psychology. Vygotsky argues 
that thinking and language, high-level mental 
activities, have different genetic and ontogenic 
roots, yet have developed reciprocally. His stance 
is the opposite of Piaget’s, who believed that both 
capacities, mental abstraction and language, were 
directly related. Vygotsky also critiqued behavior-
ist philosophies of language, finding that they 
highlighted types of conduct which were condi-
tioned. For Vygotsky, the functions of thinking 
and language develop independently. He did 
acknowledge a close relationship between both, 
based on developmental mental stages, and argued 
that language could determine the development of 
thought and other cognitive capabilities, such as 
abstract knowledge.

Many contemporary experts agree not only 
that there are innate predispositions toward devel-
oping language in humans but also that some 
language competencies are independent from gen-
eral cognition. Today, a variety of disciplines, from 
philosophy to the neurosciences, agree that lan-
guage is a combination of many different abilities 
and processes. Neuroscience research, for exam-
ple, posits that most of these processes may be 
studied independently of each other, which takes 
after Vygotsky’s proposals; however, this relative 
autonomy is also based on understanding lan-
guage as a composite of structures and subpro-
cesses that enable the production of language, 
knowledge, and related cognitive processes.

Abstract Knowledge and Moral Sense

Many thinkers have long been concerned with the 
relationship between abstract knowledge and the 
development of a moral or ethical sense. Although 
specific differences between morals and ethics exist, 

both are concerned with principles, rules of conduct, 
or habits with respect to correct behavior and with 
the consequences of wrongful actions. Some experts 
have taken a biological approach. Recently, some 
neuroscientists located the seat of concrete thinking 
and morality—understood as rule-following—in the 
frontal lobes or prefrontal area of the brain. Others, 
from a psychological standpoint, examine how 
people’s level of abstract thinking impacts how they 
develop morality and an ethical sense, with both 
understood by experts as a kind of abstract knowl-
edge. Some explain that, with higher abstract skills, 
people become better at looking at the big picture 
and visualizing myriad and far-reaching conse-
quences. Moreover, people better skilled at abstract 
thinking are more prone to considering fairness and 
harm as the basis of ethical norms. Recently, 
researchers found that when people are thinking 
abstractly, they are likelier to make judgments on 
the basis of core values that are applied repeatedly 
and across many contexts. A recent Yale University 
psychological study found that participants aligned 
with the idea that concern about justice and welfare 
are the core of moral values, particularly when 
engaging in higher level abstract thinking, such as 
considering far-reaching consequences or the big 
picture perspective. Views about harm and fairness 
are elements of human morality that prove more 
enduring across time than obedience to authority 
and in-group loyalties, which rely on concrete 
knowledge. Authority and in-group dynamics are 
much more contextual factors; that is, based on 
temporal or situational events, which makes them 
linked more closely to concrete thinking.

Moral foundations, however, transcend basic 
concepts of harm and fairness and physical brain 
functions and capabilities. The issue of moral 
knowledge and its relationship to abstract thinking 
has been examined from different perspectives by 
philosophers since the ancient Greeks. More 
recently, modern philosophers from Immanuel 
Kant (1724–1804) to Jürgen Habermas have writ-
ten about abstract knowledge and critical thinking 
as related to concepts of the common good. Kant 
advanced the notion of deep abstract thinking in 
order to develop a personal and political ethics. 
Critics of this view, however, have argued that a 
highly abstracted view of morals ignores the con-
crete circumstances of events and may fall into 
rigid adherence to abstract principles that do not 
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9Abstract Knowledge

take into account nuanced social contexts and 
complexities. Nevertheless, Kant’s work was invalu-
able in positing that only freely chosen actions can 
be moral. Humans, however, cannot freely choose 
any type of conduct that is dictated by laws that 
they cannot comprehend nor control, which con-
tradicts the biology-based behaviorist model. 
Because each moral human behavior must be rea-
soned, in the Kantian view, it places the onus of a 
moral sense on abstract thinking and knowledge.

Habermas (1929–), like Kant, views morality 
within a framework of rational principles. Reason-
ing, one of the abstract modes of thinking, is of 
essential importance in preparing for moral action. 
Morality itself is the consequence of acting in a way 
that reflects a stable will in the midst of constantly 
changing events. In other words, moral action is 
based on reasoning and remains constant through 
different concrete contexts. Other modern thinkers 
equate ethics with mathematics, in that both are 
based on abstract concepts and universal principles. 
It is important to note, however, that applied ethics 
are always related to real cases, which brings indi-
viduals back to the concrete and contextual.

Most experts believe that in order to develop 
an ethical and socially responsible citizenry, it is 
necessary to cultivate not only their critical think-
ing skills, foresight capabilities, and moral imagi-
nations but also the tools to act on what is 
ethically correct. There are concrete ways of devel-
oping these skills, such as engaging in punishment 
and rewards in order to foster mechanical learning 
of what is right and wrong. These, however, can 
go only so far, and often fail to provide individuals 
with the information, knowledge, and abstract 
thinking skills necessary for more profound moral 
decisions. It is also important to cultivate the 
abstract knowledge, concepts of justice and 
democracy, for example, that fosters the desire to 
be an ethical citizen of the world. Critical thinking 
skills, which are fundamentally based on abstract 
capacity, are crucial to developing an ethical edu-
cation, moral will, and imagination or abstract 
knowledge necessary to engage in empathetic 
interaction with others.

Although most scholars often separate the funda-
mental thinking processes into concrete and abstract, 
they are not strictly separated. People often begin a 
thought process by engaging in concrete thinking 
skills and need concrete examples in order to 

understand abstract concepts. Terms such as free-
dom, morality, racism, hate, and others are highly 
abstract and can mean different things in different 
social contexts. It is necessary to contextualize with 
concrete examples so that people may understand 
how the concept is being used. The human mind is 
formed by a network of very rich and complex pro-
cesses; striving to separate clearly its myriad thought 
forms and activities is often nearly impossible.

Developing Abstract Knowledge

Thinking strategies, from abstraction and general-
ization to synthesis and evaluation, serve humans 
in interpreting reality. Higher levels of thinking 
depend upon skillfully combining concrete and 
abstract mental processes; that is, transferring 
what is learned in one context to another. For 
example, learning the categorization of elements in 
a science class or the organization of an essay in an 
English class may be skills used in organizing infor-
mation and content in a social science class. Some 
individuals are more skillful than others at build-
ing abstract knowledge, which may be the result of 
a wide range of factors. Some of them may be to 
natural predispositions, and extreme cases of dif-
ficulty in abstract thinking may be related to men-
tal illness, frontal lobe injury, and other impairments. 
While there is no known specific treatment that 
will develop all forms of abstract thinking, some 
experts posit that it is possible to practice some 
exercises that may help, such as logic problems, 
mathematics puzzles, and other brain teasers. 
However, these are of limited use. The brain and 
mind processes are highly complex, and while an 
individual may be a proficient abstract thinker in 
one area, they may remain a very concrete thinker 
in others. Thus, somebody who excels at mathe-
matics may have difficulty in literary theory. Exer-
cises that help in one area of abstract thinking may 
not necessarily improve in others. Other strategies 
that may help with improving abstract thinking 
skills are memory problems, problem-solving, 
organization techniques, and cognition.

In some cases, people can adjust the environ-
ment to help concrete thinkers better understand 
information and content. Some of these include 
adopting concrete language, avoiding metaphorical 
concepts or deep levels of abstraction, and always 
explaining abstract concepts in relation to concrete 
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10 Abstraction 

examples. For example, a complex social hierarchy 
system in a different part of the world, which may 
seem extremely complex to a concrete thinker, can 
be made easier to comprehend by explaining it in 
terms of kin or social systems with which they are 
familiar. It is important to understand, however, 
that for a very concrete thinker, the progress 
achieved by these exercises may not translate to 
other content, academic, or social areas. It does, 
however, help the individual build up their reposi-
tory of abstract knowledge in at least one area.

It is a common assumption, to a certain extent, 
that before the inception of adolescence, very 
young children do not have any ability to engage 
in abstract thinking. This is a misconception. 
Young children begin to develop abstract thinking 
skills and knowledge through their early pre-
school years. One of the ways in which they 
develop these is through pretend play, which can 
be taken to a high level of abstraction. For exam-
ple, children may take an ordinary object to rep-
resent something entirely different. They can also 
engage in complex role-playing conducts which 
are, basically, variants of symbolic actions. Chil-
dren learn how to read and to add and subtract by 
way of symbols, developing the skills that will 
help them later on to develop more abstract read-
ing comprehension and mathematical skills, such 
as problem-solving, algebra, and calculus. There 
are many ways in which children engage in 
abstract knowledge building. Alphabets and num-
bers are, after all, symbols. They represent some-
thing other than their form, such as sounds and 
quantities. Children also draw doodles they take 
to represent something else. When told stories, 
they can imagine scenes and offer different takes 
on the storyline. All of these skills involve abstract 
thinking, which are the necessary stepping-stones 
to developing strong problem-solving and critical 
thinking skills later on. It will also be important 
for developing empathy and a moral self. Abstract 
skills enable individuals to place themselves in the 
position of other people and imagine their suffer-
ing; in other words, they help develop empathy. 
These are some of the reasons why experts recom-
mend encouraging and aiding young children to 
develop abstract thinking skills through a variety 
of educational programs, games, and exercises.

Trudy Mercadal

See also Abstraction; Conceptual Analysis; Evolutionary 
Psychology; Knowledge, Logic, Formal and Informal; 
Thought Experiments, Scientific and Philosophical
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AbstrAction 

Abstraction is defined as the development of cog-
nitive signifiers that represent physical objects, 
actions, or constructs. The word chair, for exam-
ple, might conjure up an image in the mind of a 
real-world object, a chair. The mind’s chair is an 
abstraction while the physical chair is not, they 
are different in that one is an approximation, a set 
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11Abstraction 

of rules, and the other is an entity. Abstraction is 
the development of a prototype, or set of rules, 
that may focus only on a limited set of details. 
Therefore, it is also integral to the understanding 
of any theory. We cannot discuss evolution, 
morality, or quantum dynamics without abstrac-
tion. Abstraction is not, however, just a mental 
process, it can be physical as it is in language, 
math, computer science, and genetics. Abstraction 
is sometimes defined as mapping a representation 
of a problem within another representation. 
Abstractions are meant to provide insights and 
clarify a series of observation or to provide a 
framework for future data analysis. As observa-
tions morph, based on an increasing number of 
documented exceptions, we modify the model  
little by little until eventually a new model is 
devised which supplants or augments the original 
model. This new prototype becomes an added tool 
with which to measure reality. This entry focuses 
on defining abstraction through a series of  
historical usages, defines several schools of thought 
regarding abstraction, and addresses the concept 
of abstraction in several commonly studied  
theoretical fields. 

The Theory of Abstraction

It is a little circular that we must have a theory 
regarding abstraction, as abstraction is a process 
by which our minds develop theories, that is, by 
the organization and categorizing of subjects. The 
term itself is derived from the Latin word abstra-
here or to draw away from. Within the definition 
of abstraction, we must presume that anything 
that we look at and interpret with our mind is an 
abstraction and therefore, so too is the theory to 
define the term abstraction. Abstraction is, in sim-
plest terms, to distill what is generalizable and 
important about a subject. Our mind does this all 
the time, in processes that we have only begun to 
define scientifically. To clarify this concept, let us 
go back as early as we can in human history. 
Paintings on cave walls may be one of our first 
look at human abstraction: a man, a killing tool, 
and an animal painted on a cave wall. What we 
have presented is a prototype of the simplest ele-
ments necessary for the hunt, an abstraction. The 
three objects—man, tool, and animal as target—
existed first, and from it we abstracted the hunt. It 

is a distillation of something general, with super-
fluous details taken out. We can see this in the 
picture, and we can readily understand it, but it 
does not show us reality, it shows us an approxi-
mation of reality which we call abstraction. 
 Terminology is important when we describe the 
subjects of abstractions; an abstraction is said to 
be conceptual if it abstracts a concept and objec-
tual if it abstracts an object. Therefore, we know 
that abstraction can indicate at least two types of 
subjects: objects and concepts. But more than just 
a generalization of a subject, abstraction is an 
attempt to define the essential in a subject, win-
nowing it down to only what is necessary. The 
following sections aim to describe each of these 
principles, generalization and essentials, through a 
survey of historical perspectives.

Language

Language is the most primal and fundamental 
example of symbolic abstraction. Human lan-
guages are at the root of all other complex 
abstract modeling. Words are the representations 
of subjects; concepts and objects as encountered 
above. They reside both in our minds and on our 
tongues. Linguists believe that abstraction is only 
possible as a consequence of acquired language, 
that is, verbalizations. The concept of red is an 
abstraction, not possible, for instance, without 
verbal ability in which all objects that are red can 
be divided from other objects only by this shared 
feature. Before language, one can argue that there 
were apples, but not red apples or green apples, as 
the feature red could not be segregated from the 
object by a mental representation until it could be 
generalized to define a specific detail. Written lan-
guage in turn made visual symbols of sounds, 
further categorizing the detailed parts of words. 
Natural language constructs used in language and 
linguistics are a well-established and formalized 
form of symbolic concept and object abstraction. 
Work from the visual languages has suggested that 
abstraction occurs within this framework as well. 
A word or hand gesture is used as a representation 
of a concept. Furthermore, in linguistics, the sepa-
ration of concepts into deeper categorization, 
described as the parts of speech, allows for even 
more elegant rules to be derived about the nature 
of language itself as well as to foster easier 
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12 Abstraction 

learning of syntax and grammar. Generally, knowl-
edge acquisition via model construction is accom-
plished through analysis of verbal or written 
terminology; in other words, the abstraction of 
language, as we will see from the discussion of the 
historical root of abstraction described in the next 
section.

Ancient Abstractions

The ancient Greek philosopher Parmenides of 
Elea, in his one surviving work, focused on the 
power and human tendency toward abstraction. 
In the poem he talks of the way of truth and the 
way of opinion. Truth, he says, is timeless, 
unchanging, and what-is, but opinion, he says, is 
the way our sensory faculties lead to constructs, 
mostly false. Parmenides’s opinion is what we call 
abstraction, and like his view on opinion, what we 
construct though abstraction is mostly false, or at 
least approximate. Later we will see how nature 
and then science have played a role in rectifying at 
least some of the falsehoods in our abstract models. 
The Athenians attempted to make a world that 
was as real as possible. Paul Feyerabend described 
the Athenian view of abstraction in five principles 
from Aristotle. The first is that the boundaries 
between reality and appearance cannot be estab-
lished scientifically. There is a normative or exis-
tential component. Second, the normative 
component leads to debate as to the true nature of 
reality. Third, different lifestyles lead to different 
interpretations of reality. Fourth, science contains 
different traditions, and scientific viewpoints are 
not the only viewpoint. Indeed, many nonscien-
tific cultures suggest that there is more than one 
way to define a reality that works. And finally, the 
fifth premise is that science is incomplete and frag-
mented. What this means is that to the ancient 
Athenians the world is highly parsed, and no uni-
fied view of reality exists. Today we just have 
more elaborate fragments. Reality then, to the 
ancients, is an abstraction seen differently depend-
ing on what details we make important.  

Of note, it was the theological scholar William 
of Ockham, known for the principle referred to as 
Occam’s razor (viz., explanations that posit fewer 
entities are to be preferred to explanations that 
posit more), who pioneered the field of nominal-
ism, in which he claims that universals, generaliza-
tions, are the products of abstraction and have no 

extra-mental existence. Nominalism is a position 
that suggests that only specific objects exist but 
not universal entities; this stands in contrast to the 
position of nihilism, which denies that even simple 
objects exist, only mental images do. Finally, real-
ism is in contrast to both nominalism and nihil-
ism, in that it suggests that all things are physical, 
not mental. In these metaphysical world views, we 
are confronted with the notion of a mental and 
physical plane. Each philosophy, however, inti-
mates the existence of the abstract, with varying 
degrees of grounding in the features of the physi-
cal world. Though greatly simplified in this discus-
sion, abstractions are considered the properties of 
real objects in realism, mental interpretations in 
nominalism, and the only thing that exists in nihil-
ism. Abstraction in this sense means that objects 
and concepts may not exist before we sense them 
or at least as we sense them. The idea of some-
thing from nothing has been a fundamental con-
flict between secular and religious scholars, but 
with the concept of abstraction we find the ability 
to take not only what is real and formulate non-
existent prototypes (i.e., universals), but also the 
ability to create patterns, where before there was 
nothing at all.  

Natural and Scientific Abstraction

The behaviorist view is that abstraction only has 
bearing on reality in so far as it affects actions. 
Behaviors can be predicated by abstract thought, 
if we know the abstract model utilized, but it is the 
outcome that matters. Unlike the aforementioned 
philosophical viewpoints, naturalists believe that 
nothing exists outside of space-time. From this 
perspective, all abstractions exist within and as a 
part of natural phenomena; in other words, every-
thing can be reduced to a physical account, even 
conceptions. Other viewpoints, such as Ockham’s, 
which state that there are certain things that can-
not be rationally examined, are not interpretable 
by our rule sticks and therefore not useful in the-
ory design. Nature, however, played an important 
role in the development of abstract worldviews 
before a systematic scientific perspective came 
about. As mentioned previously,  Aristotle believed 
that while many viewpoints existed, they were all 
required to be successful if they were to persist. 
Abstractions were valuable in so far as they helped 
to predict or guide successful human behavior. In 
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13Abstraction 

many cases, these early abstractions were the 
models for morality and ethics on the cultural 
level. For example, the perception of the Egyptians 
that beer was a product of the gods led to wide-
spread consumption, which in turn kept bacteria 
at bay and paid for the building of the pyramids. 
Abstraction, from this perspective, is a view of the 
world that allows for better control of it.  

Another natural view of abstraction comes 
from the art world, where abstraction has been 
emphasized as an inspiration for all artistic forms. 
Abstract art is not, as the uninformed may assume, 
a mass of scribbles on a canvas but is inspired by 
an artistic attempt to eliminate unnecessary ele-
ments while retaining the universal. In art theory, 
abstraction is taught to aspiring artists as the pro-
cess of stripping down to the essential. It is 
thought that some abstraction occurs in every 
form of art, and it is this essence that the artist is 
intending to elucidate with their work. This is in 
effect a reversal of nature impinging on our inter-
nal model; in art we have an external model 
reflecting nature’s essence. In both domains, we 
find the first seeds of scientific abstraction, that is, 
the beginning of detailed perspectives in the devel-
opment of better modeling systems.  

Science is the way we try to decipher our world 
into manageable chunks. The formalization of 
abstract thought into symbolic chunks called lan-
guage paved the way for a deeper analysis of real-
ity. We have heard that Aristotle believed that 
science could not fully interpret reality, that Ock-
ham believed that there were ideas that could not 
be divined through rational thought, but despite 
this, the environment influences our model and 
artists have tried to distill the fundamental in their 
works. Likewise, scientists have continued to push 
the bevel incrementally forward. From a strictly 
scientific perspective, abstractions are the subdivi-
sion of data packets, information, into their small-
est unit of representation. By systematically 
categorizing, science has devised abstractions of 
our world that are superior to the abstractions of 
the past. Scientific abstraction is meant to better 
predict the outcomes of our interaction with real-
ity; again, this is achieved by narrowing down to 
what is essential or universal in a process. One 
way to do this was to attempt to remove ourselves 
from the equation, to form a detachment from the 
principles with which we wish to form theories. 
The scientific method was one way to achieve 

that, and this has been done at least twice more in 
human history with great success. The first was 
with human language, described earlier in this 
entry, and the second was with mathematics. Both 
of these symbolic systems, which distill objects 
and concepts into universal icons, are fundamen-
tally systems of abstraction.  

Mathematics

Though some have argued that mathematics is a 
self-contained system, no system that is used to 
represent another system can be defined as any-
thing other than an abstraction. Mathematics is 
the second most pivotal example of abstract mod-
eling devised by man and has allowed us to visual-
ize, though symbol, scales of magnitude far greater 
and far smaller than our bodies could comprehend 
otherwise. From it, we have developed rocket pro-
pulsion, physics, and computer science. While 
arguably more or less important than language in 
understanding reality, math most likely could not 
have been derived without it. Indeed, mathematics 
is perhaps a better abstract modeling tool than 
language because it is more detached from human 
emotions and anthropomorphic properties.  

Mathematical abstraction requires utilization 
of everyday words, but in a very precisely defined 
relationship to mathematically unique symbols. 
Additionally, mathematics consists of sets of rules 
for operating on mathematical objects. Therefore, 
symbolic objects and concepts are manipulated by 
a specific set of rules to form a self-contained 
abstract modeling system. Like all abstract sys-
tems, the rules and the subjects are generalized; 
universals represent other structures. Numbers, 
for example, were initially mathematical symbols 
that represented quantity. Later, axiomic systems 
arrived that were considered independent of quan-
tity, which emphasized the abstract nature of the 
mathematical objects and suggested that they may 
exist apart from external reference. Again, if you 
recall, abstractions can be representations of real-
world objects, such as a dozen, or they can be 
representations of things that do not physically 
exist; mathematics reminds us of the nihilistic 
view that nothing physically exists.  

One interesting mathematical concept, which we 
will see again in computer science, is the mathemat-
ical map. A mathematical map is a function used to 
describe a class by a specific parameter, such as the 
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14 Abstraction 

linear transformation in algebra. As such, a math-
ematical map is an abstraction, which is defined by 
mathematical abstractions. There are of course 
many other cases of recursive abstraction. It is 
math’s real-world utility that makes it a powerful 
abstraction tool, from calculating a monthly bud-
get without cash in front of you to developing a 
video game using a simulated physics engine.  

Psychology

Schema-abstraction, defined in the psychology  
literature, is the process of learning concepts from 
examples. Schema-abstraction theories assume 
that some information is abstracted during learn-
ing and stored for classification of new examples. 
And these theories are distinguished from one 
another based on how information is character-
ized, retained, and utilized in the classification of 
new incidences. In schema-abstraction studies, 
either a prototype model, in which an abstract 
prototype is constructed and all other examples are 
compared to it, or an instance-only model, in 
which no abstraction is performed and only train-
ing examples are stored, is postulated. Determining 
the difference between these types of interpretive 
models has been conducted within psychology 
research in collaboration with computer science, 
where the research tools are developed. For exam-
ple, using a computer mapping program, a series of 
experiments meant to examine what effect sequence 
presentation has on conceptual learning was con-
ducted, whereby subjects are asked to devise a rule 
based on observation of a series of figures given in 
a specific sequence. However, an explicit definition 
of the abstraction process has made these studies 
difficult. For instance, some have argued that 
learning is dependent on the sequence of presenta-
tion of events; others, however, have only seen 
weak results in experiments looking to replicate 
this principle. The primary function of schema-
abstraction theory investigation is to attempt to 
delineate which aspects of a model are generalized 
and when this generalization takes place.

Computer Science

The use of computer programming to generate a 
number of plausible mappings (gmaps) of sym-
bolic object associations has been used in the study 

of the cognitive abstraction processes described 
above. Mapping, in computer science, is derived 
from the mathematics and is used to describe the 
process of converting associative arrays of data 
from one form to another. Typically, these pro-
grams consist of several modules including the 
map generator and the structural evaluator, which 
acts to providing alternate gmap evaluation scores 
as well as other descriptive modeling tools. Studies 
in this area have loosely defined abstraction strate-
gies into two classes limiting case models, includ-
ing exemplars only, and combination models, 
including an IF-THEN-Rule Generator. In com-
puter-aided modeling, investigators can investigate 
several models at the same time. Each model pre-
dicts a different type of mental rule formation and 
can therefore help to define what part of an obser-
vation is being processed as an abstraction. Devel-
oping investigation tools is only part of interest for 
computer scientists in abstraction modeling. The 
binary code of 1s and 0s represents an attempt to 
distill the information found in analog data into a 
simpler form. Combining mathematical rules and 
computer science has led to the creation of intri-
cate simulated environments, sometimes called 
engines, which have been used to analyze  everything 
from engineering to biology. Computer scientists 
have used abstractions from web browsing histo-
ries to predict customer activity, which has been 
used by search engine companies to target prod-
ucts to consumers. Another lucrative area of 
research in abstraction is in the field of artificial 
intelligence (AI). Indeed, understanding the pieces 
of information used in conceptual abstraction can 
influence the design of computer systems to create 
more efficient information processing, one of 
many goals in creating advanced AI.  

From Cognition to AI

Simpler models act as the starting point for 
more complex modeling. But in contrast to what 
one might expect, the derivative symbolism from 
the simpler models allows us to formulate complex 
models in simpler terms. Like the mathematical 
map, this is the nature of abstraction. One abstrac-
tion can become embedded in another abstraction, 
reducing the size of the data. By ignoring the irrel-
evant details, abstract models take many subjects 
and combine them into one subject. We have seen 
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this in philosophy, where Ockham suggested that 
the simplest solution usually fits best and called 
that solution God. We have seen this in language, 
whereby one word, such as chair, defines a whole 
category of objects. We have seen it in math, where 
one number, for example 5, is the defining factor 
that generalizes a multitude of instances. We have 
seen how it can be applied to schema-abstraction 
models in which either a prototype or exemplar 
exists. We know that computer scientists are using 
abstractions today to track the behavior of indi-
viduals and market products to each individual 
accordingly. But these are just the beginning. 
Abstract models beget more abstract models, which 
again work to condense multiple objects into sym-
bols representative of them all. The biological pro-
cess of cognition is thought to use abstraction, 
which is why it created language and math, and is 
rooted in the symbolic DNA code of four base 
pairs, which represent 20 amino acids, from which 
countless protein structures are generated. Several 
structures of the human brain are called pattern 
generators. Humans intuitively try to associate 
objects and concepts into clusters called patterns; 
in other words, we naturally abstract. Perhaps now 
we can see the purpose of abstraction, a storable 
code that represents a much more complex system. 
Data are easier to manage in this simpler form and 
take up less space. Indeed, humans have extrapo-
lated that the ultimate abstractions would be the 
ones that define all subjects as one essential cate-
gory: the unified theory, the Big Bang, God, and so 
forth. Finally, at the forefront of science, individuals 
are piecing together the processes found in numer-
ous fields to generate an abstraction of human 
thought that can fuel an artificial mind. Whereas 
human cognition is still hundreds of orders of mag-
nitude more efficient than the currently most 
advanced computer operating system, the growing 
field of AI has an overwhelming need to define 
abstractions to fit more information into a finite 
system. These are the yet-to-be-defined abstract 
information processing algorithms.

Conclusion

Abstraction, as explained in the preceding sec-
tions of this entry, is the process of condensing 
relevant information and disregarding irrelevant 
information. It is used in commonsense reasoning 

in order to simplify conceptualizations and to 
focus attention on specific details. Our processing 
of reality occurs in the form of abstraction. Fur-
thermore, language and mathematics, two for-
malized abstract models, have led in turn to 
refinement of our abstract characterizations and 
were required for advanced scientific discoveries 
in biology, psychology, and computer science. To 
abstract is to focus on establishing the essential in 
every system. This is the nature of abstraction: to 
ever refine and reduce subjects to their simplest 
and most essential characterizations. Abstraction 
therefore is one of the most useful tools in theo-
retical analysis.

Ian C. Clift

See also Artificial Intelligence; Information Theory; 
Mental Models; Metaphysics; Data Models
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AccurAcy

The concept of accuracy is central to the scientific 
method; this article focuses on how it is employed 
in scientific practice. In common parlance, a state-
ment is said to be accurate when it is factual. In 
turn, a statement is factual when it is expressing a 
proposition that is in agreement with facts or 
actual states of affairs. In that sense, asserting that 
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16 Accuracy

a statement is accurate is equivalent to asserting 
that the statement is true. Moreover, the term accu-
rate is often used as a quasi-synonym for other 
terms such as exact, precise, correct, literal, and 
similar expressions in the same semantic field. 
However, in scientific parlance, there are significant 
differences between the meanings of those terms.

The concept of accuracy is closest to what phi-
losophers of science call approximate truth.  
(Other terms used in philosophy of science with 
similar meanings include truthlikeness and veri-
similarity.) This is reflected in the normative ter-
minological proposals of the International 
Organization for Standardization (ISO, 2012) 
where the term trueness is used to describe the 
accuracy of a measurement method (). (The ISO 
standards also uses the term precision to describe 
accuracy. However, we will not follow this usage 
here since it conflicts with standard usage in 
mathematics and computer science, where accu-
racy and precision are sharply distinguished.) As 
such, accuracy is a concept that is related to other 
methodological concepts such as precision, error, 
and uncertainty, and this article will sketch how 
the relation is fleshed out in experimental and 
computational contexts, which are the two main 
scientific contexts in which assessments of accu-
racy are required.

Accuracy is a concept used to characterize 
statements semantically, just like approximate 
truth. Thus, whereas truth (and accuracy in its col-
loquial sense) is used to provide a binary semantic 
evaluation—true or false, with no admissible 
intermediate—accuracy and approximate truth 
allow for intermediary semantic assessments that 
admit of degrees. But due to its intrinsic vagueness 
and lack of general criteria of application, the con-
cept of approximate truth has received some harsh 
criticisms in the philosophy of science literature. 
For instance, Laudan (1981) has argued that dis-
cussions relying on approximate truth are “just so 
much mumbo-jumbo.” Indeed, what would it 
mean for the statement Orgone exists to be 
approximately true? Such qualms, however, are 
dissipated once we observe that approximate truth 
and accuracy are concepts that do not apply to the 
semantic evaluation of all kinds of statements.

The scope of application of the concept of 
accuracy can be rigorously delineated using Car-
nap’s distinction between classificatory (also 

known as qualitative), comparative, and quantita-
tive concepts. Firstly, a classificatory concept is a 
concept that places an object within a certain 
class. For instance, when we assert that whales are 
mammals or that electrons are fermions, or when 
we make an existentially quantified assertion such 
as “dark matter exists,” we are making simple 
claims about classificatory concepts. Such con-
cepts can typically only be meaningfully evaluated 
semantically using a binary scale—true or false. 
Thus, neither the concept of accuracy nor that of 
approximate truth apply. Secondly, a comparative 
concept is one for which it is meaningful to pro-
vide an ordinal ranking of the degree to which the 
concept applies. For instance, if we consider the 
classificatory concept tall, we could only assert 
that a given person is tall or not. With the com-
parative concept taller than, we are now in a posi-
tion to say that individual a is taller than b, that b 
is taller than c, and so on. However, quantitative 
concepts are purely ordinal. Thus, the concept  
taller than does not offer resources to assess how 
much taller a is, b is, and so on.

Finally, quantitative concepts are those for 
which there is a numerical value on some scale that 
is used to determine whether the concept applies. If 
we consider the concept of distance, we would 
mathematically specify with a number or a func-
tion what the distance of a line segment is. There 
are many subtleties and complications involved 
with the selection of a proper scale to assign 
numerical values as Scott and Suppes make clear in 
their 1958 essay “Foundational aspects of theories 
of measurement”. However, the point that is 
important for our discussion is that if we assert 

 MThe line segment has length  (1)

when in fact it would be true to say that 

 LThe line segment has length ., (2)

we can give a semantic assessment of statement 
(1) more refined that just observing that it is false. 
To the extent that M is close to L, we will say that 
statement (1) is more or less accurate. We then 
define the quantity Δ

 == −−∆ M L  (3)

as the error. The smaller the error, the more accu-
rate a statement is. Thus, statements containing 
quantitative concepts are within the scope of 
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17Accuracy

Figure 1   Floating-Point Numbers. (a) Structure of Single-Precision Floating-Point Numbers. There Is a Bit for the Sign, 
8 Bits for the Exponent, and the Remaining 23 Bits Are for the Fractional Part. (b) Discreteness of the 
Floating-Point Number Line, With Variable Density

application of the semantic concepts of accuracy 
and approximate truth.

However, there is a difficulty related to the 
assessment of the accuracy of a statement that 
fundamentally entangles it with a related episte-
mological problem. Indeed, if we knew what the 
exact (or true) value of the quantitative parameter 
in the first place, we would have asserted the true 
statement. Thus, the problem is that we need to 
assess the accuracy of statements without know-
ing which value is the exact one. This epistemo-
logical problem is central to two methodologically 
important branches of science, namely, scientific 
computing and experimental measurement. We 
discuss them in the remaining two sections of this 
article.

Accuracy of Computation

The concept of accuracy plays an essential role in 
computational mathematics because exact solu-
tions to the mathematical equations arising from 
the construction of realistic models typically do 
not afford exact solutions. Numerical algorithms 
are then used to extract information about what 
the solution to model equations might look like. 
However, since the computed solutions are typi-
cally not exact, an assessment of accuracy is 
required to validate results.

Computational errors are essentially of three 
types. Truncation error amounts to replacing 
functions f(x) (often characterizing vector fields) 
and integrals ( )f x dx#  (often characterizing the 
motion of a body in phase space) by truncated 
asymptotic series in a perturbation parameter ε, 
that is, 

∑∑==ε φ ε
==

f x f x( , ) ( ) ( ),k k
k

N

0

for some collection of gauge functions φ ≤≤ ≤≤Ν{ }i i0  
(see the entry on Perturbation Theory in this ency-
clopedia). Expressions of this sort have to be trun-
cated, since we often have no closed-form 
solutions, and it is impossible to add an infinite 
number of terms in series. Secondly, discretization 
error is the error incurred by replacing a continu-
ous parametrized flow µ(( ))(( ))==x f t x t, ;

 in phase 
space by a discrete map of the form 

µ== ……Φ++x t x x h f( , , , , , , ).k k k1 0

This substitution is the basis for most methods 
of numerical differentiation and integration. 
Finally, we typically do not compute the value of 
functions using field arithmetic (e.g., the familiar 
arithmetic of real numbers), since computers can-
not handle such infinitary entities. Thus, it is 
replaced with a finite computer arithmetic known 
as floating-point arithmetic (see Figure 1). 

In essence, it involves replacing the real line by 
a floating-point number line. As we see in Figure 
1(b), it is not really a line; this is why it is impor-
tant to consider the role of roundoff error in 
mathematical representation. All of these compu-
tational approximations are made because we can 
only execute finite, discrete operations on a digital 
computer.

There are three ways of measuring computa-
tional error. (For a more extensive explication of 
these notions, see Corless and Fillion (2013), 
Higham (2002), or Deuflhard and Hohmann 
(2003).) Mathematical problems can be thought 
of as maps from a set of input data to a set of 

Bit type S

1 2 9 10

0 1 2

32

E E E E E E E E F F F F F F F F F F F F F F F F F F F F F F F

Bit number
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18 Accuracy

output data, that is, as : I Oϕ →→ . The mapping 
itself will typically be given as

 {{ }}(( )) →→ ==φϕx y x y| , 0 ,  (4)

where x is the input data, y is the solution sought, 
ϕ is the defining function, and ϕ(x, y) = 0 is the 
defining equation (or condition). However, as we 
have seen, when we use a computer for computa-
tions, we engineer a modified problem ϕ̂  so that 
it can be implemented and efficiently executed on 
a digital computer using schemata for discretiza-
tion, truncated, and rounding off. In general, for a 
problem such as the one in equation (4), the dif-
ference between the exact solution y and the 
approximate solution ŷ will be denoted Δy and 
will be called the forward error. The concept of 
forward error is typically the one that is referred 
to when people talk about error; when they refer 
to a computed solution as being accurate or 
approximately true, one means that the forward 
error is small.

Even if the forward error is the most common, 
in many contexts this is by no means the most 
insightful, because we have no direct way of cal-
culating Δ when we don’t know what y is. For this 
reason, there are two other measures of error 
known as the backward error and the residual. 
(For the former, see Fillion and Corless (2014), 
and for the latter, see the article Perturbation 
Theory in this encyclopedia.) However, whatever 
measure of error is used, assessment of accuracy is 
typically done by reference to the forward error. 
Since it is typically impossible to obtain an exact 
quantification of the error, numerical analysts 
typically analyze the algorithms used and prove 
that the error must be smaller than a certain quan-
tity or function, known as an error bound. As a 
result, even if the exact error is not known, we 
know that it lies within a certain interval. If the 
interval is sufficiently restrictive for the intended 
purposes, then the computed solution is judged 
sufficiently accurate.

Accuracy of Measurements

The construction of a model susceptible of  
generating prediction (or retrodiction) and expla-
nation of the behavior of a system requires the 

specification of the value for some parameters. 
Those parameters may be the primitive quantities 
in which the states of the system are expressed—
examples include position, momentum, tempera-
ture, pressure, spin, and so on—or some other 
derived quantity. In either case, the value of this 
parameter will be supplied on the basis of mea-
surements. Nonetheless, no scientist would argue 
with the fact that all experimental data have some 
degree of imperfection, in that experimental results 
always contain errors. As a result, numerical values 
gathered in experiments are always likely to be 
wrong (i.e., inexact). This, however, does not imply 
that the values reported are bad, for they may con-
vey entirely satisfactory information if the mea-
surements are sufficiently accurate. To ensure that 
inexact values reported are informative, scientists 
have to diagnose the possible sources of measure-
ment error and must try to design an experimental 
setup that will ensure that the error is minimized 
(or satisfactorily small, given what is already 
known). That is, one must establish the value of a 
parameter with a methodology that will also make 
it possible to assess the accuracy of the value.

However, here again it is not possible to exactly 
quantify the measurement error directly for the 
value of the parameter being measured is 
unknown. The key to assessing the accuracy is not 
to directly quantify the error but to specify an 
interval within which the error is. Thus, the role 
of measurements of parameters is to determine (1) 
a value of the parameter and (2) an estimate of 
the uncertainty associated with the measurement. 
The central concepts involved in a theory of mea-
surement are thus the concepts of accuracy, error, 
and uncertainty. 

The discussion to follow is based on the so-
called GUM approach to the theory of measure-
ment (“GUM” stands for “Guide to the expression 
of Uncertainty in Measurement”). The relevant 
technical documentation includes the guidelines of 
the National Institute for Standards and Technol-
ogy and the technical reports from the Bureau 
International des Poids et Mesures. In what fol-
lows, the terminology is used according to the 
International Organization for Standardization 
(2004).

A measurement is a process involving a system 
and an apparatus. The quantity that is subject to 
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measurement is called the measurand. The value 
resulting from the measurement using a certain 
apparatus is known as the indication value. The 
difference between the value of the measurand 
(what is often called the true value) and the indi-
cation value is the error. Again, error is a seman-
tic notion, relating to a matter of fact relating 
two numerical values. It is not about what we 
know, ignore, wish to know, or even can know. It 
must be distinguished from the epistemological 
notion of uncertainty, since “the result of a mea-
surement after correction can unknowably be 
very close to the unknown value of the measur-
and, and thus have negligible error, even though 
it might have a large uncertainty.” It is important 
to stress the distinction since they may appear 
identical as both are understood as intervals 
within which the true value lies. All the scientist 
can do is to provide an estimate of the error 
based on what is known about the system and 
the measurement apparatus. (“In general, the 
error of measurement is unknown because the 
value of the measurand is unknown. However, 
the uncertainty of the result of a measurement 
may be evaluated.)”

This is why, in modern expositions of the the-
ory of measurement, the role of uncertainty is 
given priority over that of error for the formula-
tion of methodological rules. The first step toward 
a correct estimation of the uncertainty of the 
results of a measurement is a diagnosis of the pos-
sible sources of measurement error, which are of 
two kinds: (1) random error and (2) systematic 
error.

They are also often referred to as Type A and-
Type B error, respectively. On the one hand, 
random errors are unpredictable. They are varia-
tions in the measurements that the experimenter 
cannot control (or can control only very limit-
edly). In terms of probability, it is an error that 
is just as likely to be above or below the real 
value; so, for random error, averaging a large 
number of measured values should, in principle, 
largely reduce the magnitude of the error. On the 
other hand, systematic error cannot be con-
trolled as random error, that is, averaging will be 
of no help. Systematic error is caused by the 
design of the experiment. Its impact can only be 
alleviated by modifying the design; however, it is 

often very hard to find a setup that has no sys-
tematic error. See Table 1 for examples. System-
atic error is particularly problematic, from an 
epistemological point of view, because there is 
no way to determine whether there is a system-
atic error. (“Like the value of the measurand, 
systematic error and its causes cannot be com-
pletely known.)” 

Table 1 Examples of Random and Systematic Error

Random Error Systematic Error

Vibration in the floor → 
fluctuation in balance

During the time 
 required to measure the 
mass of a fluid, some 
evaporates

Air currents → 
fluctuation in balance

During the time 
required to measure 
length, the temperature 
is not controlled and 
changes

Electrical noise in a 
multimeter

Miscalibrated  balance 
will cause all the 
measured masses to be 
wrong

Each of the uncertainty components that con-
tribute to the uncertainty of the measurement are 
represented by an estimated standard deviation, 
termed standard uncertainty. This standard devia-
tion may be or may not be evaluated statistically, 
as Case A or B may be. We talk of Type A and 
Type B evaluation of uncertainty. Type A uses any 
appropriate statistical method. However, the pro-
cedure is not as straightforward for the assessment 
of Type B uncertainty components: 

A Type B evaluation of standard uncertainty is 
usually based on scientific judgment using all the 
relevant information available, which may include

•	 previous measurement data, 
•	 experience with, or general knowledge of, the 

behavior and property of relevant materials and 
instruments, 

•	 manufacturer’s specifications, 
•	 data provided in calibration and other reports, 

and 
•	 uncertainties assigned to reference data taken 

from handbooks.
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20 Accuracy

Repeating the experiment can be used to suc-
cessfully control error arising from random effects. 
By carefully considering the factors mentioned, 
replicating the experiment can be used to success-
fully control error arising from systematic effects. 
(It is important to distinguish repeatability and 
replicability. Repeatability consists in doing the 
measurement multiple times with the same appa-
ratus; replicability involves changing the appara-
tus, each having their own systematic biases.)

The task that remains is to find the combined 
standard uncertainty of a measurement result. The 
combined standard uncertainty, as its name sug-
gests, combines together all the uncertainty com-
ponents of Type A and B to generate a total 
estimate of uncertainty. The usual method used to 
combine uncertainty is the common statistical 
method used to combine standard deviations 
known as law of propagation of uncertainty. 

We have seen that the concepts of error and 
uncertainty are intrinsic aspects of the values of the 
experimentally measured parameters. What does 
the presence of error and uncertainty imply for the 
mathematics used to analyze such data? The key 
challenge here is to develop mathematical tech-
niques that permit us to deal adequately with opera-
tions on quantities not known exactly. The most 
basic approach to do this is that based on signifi-
cant figures (or, alternatively, significant digits). The 
idea is easily understood from the following joke: 

Bazooka Joe is showing a friend a fossilized 
bone. The friend asks how old it is and Bazooka 
Joe responds that it is one hundred million and 
three years old. “How do you know that?” asks 
the friend. Bazooka Joe responds “The museum 
expert told me it was a hundred million years old 
and that was three years ago.” (reported by 
Ruekberg, 1994)

The author then explains the pedagogical rele-
vance of the joke as follows: 

The author readily admits that the joke is not 
very funny. That it is funny at all is because even 
children, just old enough to chew gum without 
swallowing it, realize that something is wrong 
about Bazooka Joe’s computation: the accurate 
three years cannot be added to the ball park fig-
ure of a hundred million years. (Ruekberg, 1994) 

The computation is wrong even if, arithmetically 
speaking, it is irreproachable. Thus, when there is 
uncertainty, there is a methodologically impor-
tant sense of “correctly using mathematics” that 
differs from the standard one. Understood as a 
tool occupying a central place in a strategy for 
the management of uncertainty, the first role of 
significant figures is to faithfully report the 
uncertainty in experimental measurements. More 
precisely, significant figures are a tool to faith-
fully report the accuracy and the precision of the 
results of a measurement, given the resolution of 
the measuring device. It is important to keep in 
mind the distinction between accuracy and preci-
sion. Accuracy is about having the answer right, 
that is, about having a small error. Precision is 
about having many digits. For instance, 
3.166666666666667 is a very precise (16 digits) 
but (for many purposes) very inaccurate (two 
digits) approximation to π. On the other hand, 
4.54 × 10−5 is a not very precise (three digits) but 
quite accurate (precise to the order 10−6) approx-
imation to −−e 10 . Similarly, a measuring instru-
ment can be very precise, and yet inaccurate. As 
W. Kahan and Joseph D. Darcy (1998) explain, 
“[p]recision is to accuracy as intent is to accom-
plishment.” A basic objective of the use of sig-
nificant figures is to not be fooled by measurements 
that are more precise than accurate; thus, a basic 
rule is to not report results of measurements with 
more digits than are accurate, for those extra 
digits would not be significant. Precision is a 
property of a linguistic object (namely, of the 
numeral representing a number in a given num-
ber system), whereas accuracy is a semantic 
notion. Limiting the number of figures reported 
to the significant figures is a way to make the 
semantics transparent by showing it in the form 
of the linguistic expressions used to report 
results.

The resolution of an instrument is the maxi-
mum error that the instrument produces under 
prespecified circumstances (e.g., value range, 
ambient temperature, humidity, pressure). (The 
manufacturers of equipment often indicate how 
accurately and precisely it can measure.) How-
ever, the resolution cannot be smaller than the 
precision of the instrument. To illustrate this 
point with a simple example, if a ruler’s smallest 
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division is 1 millimeter, then we cannot specify 
what a length is by measuring with this ruler is to 
less than half of a millimeter. What we obtain 
from an instrument with this precision is a num-
ber having the format x.yyz centimeter, where x is 
the integer part, yy are the certain digits, and z is 
the uncertain digit (there is only one of those, the 
last one). The last digit is only an estimation. 
Moreover, under the prespecified conditions men-
tioned earlier, if the instrument is properly cali-
brated, then each digit within the precision of the 
instrument is taken to be significant. Accordingly, 
the significant figures of a number are those digits 
that carry meaning contributing to its precision, 
and indirectly contributing to its accuracy, pro-
vided that some assumptions about calibration 
are satisfied. (Of course, if the prespecified condi-
tions of calibration are not met, then the reason-
ing does not hold.) Thus, the significant figures of 
a number are the digits necessary to specify our 
knowledge of that number’s precision; and in nice 
contexts, this also reveals the accuracy.

Whereas this first role of significant figures is 
to represent uncertainty numerically by imposing 
conditions on precision, the second role of sig-
nificant figures is to permit the formulation of 
computation rules to determine how uncertainty 
propagates. Those rules are typically formulated 
in terms of limits on the numbers of significant 
digits (or significant decimal places) that may be 
retained in order to faithfully track uncertainty. 
Here are some standard rules: 

 1. Exact numbers do not affect the number of 
significant figures. 

 2. For addition and subtraction, the answer 
contains the same number of decimal places as 
the least precise operand used in the calculation. 
The idea is that you cannot add to or subtract 
from something not known. 

 3. For multiplication and addition, the answer 
contains the same number of significant figures 
as the least precise operand used in the 
calculation. 

 4. For logarithms, only those numbers to the right 
of the decimal place of the operand count as 
significant. 

Such a set of rules constitute what is called a 
significance arithmetic. 

Now, these rules should not be thought of as 
being perfectly reliable. Rather, they work as 
rules of thumb. One might be surprised that 
there are, well into the 20th century, many pub-
lications debating how significant digits should 
be analyzed and understood. This is because for 
any set of such rules based on significant digits it 
would be relatively straightforward to generate 
problematic cases. Thus, we see that as an 
attempt to provide context-independent syntac-
tic rules meant to support management of uncer-
tainty and its propagation, significance arithmetic 
has limitations. More refined mathematical 
methods of assessing error and uncertainty prop-
agation in order to properly assess accuracy in a 
more robust way include sensitivity analysis and 
perturbation theory.

Nicolas Fillion

See also Data Models; Measurement; Perturbation 
Theory

Further Readings

Carnap, R. (1966). Philosophical foundations of physics: 
An introduction to the philosophy of science 
(300 pp.). Basic Books.

Corless, R. M., & Fillion, N. (2013). A graduate 
introduction to numerical methods, from the 
viewpoint of backward error analysis (868 pp.). 
Springer.

Deuflhard, P., & Hohmann, A. (2003). Numerical 
analysis in modern scientific computing: an 
introduction (Vol. 43). Springer Verlag.

Fillion, N., & Corless, R. M. (2014). On the 
epistemological analysis of modeling and 
computational error in the mathematical sciences. 
Synthese, 191, 1451–1467.

Higham, N. J. (2002). Accuracy and stability of 
numerical algorithms (2nd ed.). SIAM.

International Organization for Standardization. (2004). 
International vocabulary of basic and general terms in 
metrology (VIM). Technical Report DGUIDE 99999. 
Revised from the original 1993 edition.

International Organization for Standardization. (2012). 
Accuracy (trueness and precision) of measurement 
methods and results, Part 1. Technical Report 5725-1. 
Revised from the original 1994 edition.

Joint Committee for Guides in Metrology. (2008). 
Evaluation of measurement data—Guide to the 

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



22 Actor–Network Theory

expression of uncertainty in measurement. Technical 
Report JCGM 100:2008. Bureau International des 
Poids et Mesures. Revised Edition of GUM 1995.

Joint Committee for Guides in Metrology. (2009). 
Evaluation of measurement data—an introduction to 
“guide to the expression of uncertainty in 
measurement” and related documents. Technical 
Report JCGM 104:2009. Bureau International des 
Poids et Mesures.

Kahan, W., & Darcy, J. D. (1998). How Java’s floating-
point hurts everyone everywhere [Presentation]. ACM 
workshop on Java for high-performance network 
computing, Stanford University, CA.

Laudan, L. (1981). A confutation of convergent realism. 
Philosophy of Science, 48, 19–48.

Ruekberg, B. (1994). A joke based on significant figures. 
Journal of Chemical Education, 71(4), 306.

Schwartz, L. (1985). Propagation of significant figures. 
Journal of Chemical Education, 62(8), 693.

Scott, D., & Suppes, P. (1958). Foundational aspects of 
theories of measurement. Journal of Symbolic Logic, 
23, 113–128.

Taylor, B. N., & Kuyatt, C. E. (1994). Guidelines for 
evaluating and expressing the uncertainty of nist 
measurement results. Technical Report NIST 
Technical Note 1297, National Institute of Standards 
and Technology.

Actor–networK theory

Actor–network theory (ANT) developed within 
the wider interdisciplinary field of science and 
technology studies (STS), and more specifically, 
out of debates within the sociology of scientific 
knowledge (SSK). SSK, in a series of case studies 
of scientific controversies, demonstrated that the 
acquisition of scientific knowledge could not be 
fully explained by its logic, method, or normative 
institutions. Taking the work of Thomas Kuhn 
(1922–1996) as a starting point, SSK demon-
strated that the very content of scientific knowl-
edge, including mathematics, was socially 
constructed. As Bruno Latour (1947–) most 
explicitly argued, however, SSK inadvertently 
replaced the natural determinism of the philoso-
phy of science with a social determinism that was 
no more tenable. In addressing this criticism, 
ANT’s seminal case studies such as Latour’s The 
Pasteurization of France and Michel Callon’s 

“Some Elements of a Sociology of Translation” 
followed the process of heterogeneous engineering 
by which technoscientific objects and truths were 
assembled and made durable through networks of 
human and nonhuman actors. Thus, ANT 
extended SSK’s symmetry principle, which held 
that the same types of causes should be used to 
explain both true and false beliefs, to a generalized 
symmetry that treated humans and nonhumans as 
actors with agency. Though the exact construal of 
nonhuman agency within ANT remains subject to 
debate, largely around whether to preserve inten-
tionality as an analytically distinct feature of 
human action, ANT immediately gained attention 
as an approach to studying how the social is con-
tinuously enacted as relational networks of 
humans and nonhumans. In ANT’s subsequent 
articulations as a general framework for studying 
social order, three of its concepts, heterogeneity, 
material relationality, and punctualization, initiate 
a radical reconceptualization of agency, social 
action, and society itself. This entry addresses each 
concept, in turn, as well as its consequences for 
humanistic social theory.

ANT insists that social phenomena are hetero-
geneously constituted. That is, its objects of 
inquiry—whether scientific facts, nation-states, 
organizations, and so on—are made up of both 
human and nonhuman components. ANT empha-
sizes that a potentially endless array of actants, a 
term borrowed from literary theory and semiotics 
to designate any human or nonhuman that can 
accomplish action in a network, may constitute an 
object of interest. An aspect of ANT’s empirical 
concern thus lies in identifying, or following, the 
specific actants that are relevant in shaping the 
phenomena in question. In the case of California 
state formation, for example, Patrick Carroll 
argues that it is one of the most productive agri-
cultural centers in the world only so long as levees, 
dams, irrigation, farmers, metering devices, state 
agents, and so on, are networked together. Hetero-
geneity greatly distinguishes ANT from humanist 
social sciences that, in this example, would over-
look the relationship between state territories and 
their material infrastructures; that is, how the 
historicity of material culture shapes the state of 
California. Under an actor–network formulation, 
then, the state’s ontology is composed of heteroge-
neous elements rather than viewed as a single, 
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23Actor–Network Theory

coherent actor that is distinct from society. So, an 
initial premise of ANT is that the social is made 
up of a heterogeneous collection of humans and 
nonhumans, though their relationality is always 
an empirical question.

To the heterogeneity of the social, add ANT’s 
concern for material relationality and this is how 
ANT proposes to study the social world: not from 
a priori, binary divisions between humans/nonhu-
mans, nature/culture, state/market, and so on, but 
in terms of how such phenomena are constituted 
in the continuous unfolding of heterogeneous rela-
tions. This second actor–network concept argues 
that entities have no essential reality apart from 
the web of relations in which they are produced. In 
other words, social phenomena are generated by 
human and nonhuman actor–networks and it is 
the relationality between heterogeneous elements 
that ANT’s case studies pursue. This concern for 
relationality orients ANT toward the way things 
are, the ontological character of the heterogeneous 
actor–networks through which the world is made. 
ANT argues that what gives objects, forms of 
knowledge, and other social phenomena their 
meaning, stability, or power, must be examined in 
terms of how their bits and pieces are held together.

In the decades-old project of damming the  
Mississippi River, for example, an effective levee-
building science develops in relation to the resis-
tance of the river itself. Andrew Pickering captures 
this relational process as a dance of agency between 
engineers who build dams, a river that resists their 
control, and the subsequent redesign of their mate-
rials. The result is an engineering science that has 
become increasingly more attuned to the sedimen-
tary composition and currents of the river. ANT 
case studies emphasize this always contingent, 
never final, way in which humans and nonhumans 
form more durable wholes through complex mate-
rial relations. In this sense, ANT shares an emphasis 
on the unfolding and processual dimensions of the 
social world characteristic of poststructural, ethno-
methodological, and pragmatist philosophies.

When taken together, heterogeneity and mate-
rial relationality are significant both for the empir-
ical study of scientific practice as well as for ANT’s 
theory of social action. With respect to the former, 
ANT suggests that the work of technoscientists is 
not simply to follow a method, conduct experi-
ments, and reveal the truth about the natural 

world. Rather, technoscience is a complex and 
strategic practice in which the diverse materials 
encountered must be assembled into a durable, 
material network that can overcome unforeseen 
obstacles. For example, Bruno Latour’s seminal 
case study rejected the familiar story that attri-
butes Louis Pasteur’s success to his genius mind. 
Instead, Latour pointed to Pasteur’s technoscien-
tific practice, the material arrangement of a hetero-
geneous actor–network composed of laboratories, 
domesticated bacteria, statistics, notebooks, 
microscopes, and more, as the explanation for his 
triumph. Pasteur’s success, in other words, is an 
effect of organizing these heterogeneous compo-
nents into a stable, material arrangement. Thus, in 
ANT’s reformulation of social action, it was not 
Pasteur’s rational mind that distinguished him 
from other technoscientists, but the collective 
strength of the heterogeneous actants he assem-
bled as a network. This insight further supports 
the STS thesis that science is a social and cultural 
activity, and in a final move, further reconceptual-
izes social action.

The third concept, punctualization, refers to the 
process by which a heterogeneous network stands 
as a singular and coherent object or actor. It sug-
gests that when Pasteur-the-great-researcher is 
evoked as a scientific hero it is as an effect of his 
heterogeneous network. Crucially, punctualization 
entails an oscillation between powerful individuals 
or objects and the contingent, network-building 
practices through which they become recognizable 
as such. The concept can thus be viewed as an 
alternative to human-centered histories and phi-
losophies of science that tend to black box the 
process of knowledge production; that is, attribute 
knowledge itself to the brilliance of a solitary indi-
vidual. As ANT instead directs empirical attention 
to precisely the activities through which a matter 
of fact is successfully constructed, it explains Pas-
teur’s success as a heterogeneous and collective 
achievement, an effect of the associations of mul-
tiple heterogeneous actants. Under an actor– 
network formulation, Pasteur cannot become a 
brilliant technoscientist of eventual world renown 
apart from a durable network. Still more radically, 
Pasteur’s achievement is the collective achievement 
of a heterogeneous actor–network for which he, 
when evoked as a singular individual, becomes a 
spokesperson.
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24 Ad Hoc Hypothesis

In conclusion, ANT argues that agency, social 
action, and society itself are empirically complex 
and in need of explanation. Whereas humanist 
social sciences tend to privilege a social world 
made up of intentional, human actors and defined 
by boundaries such as state/society, nature/culture, 
and social/scientific, ANT proposes an ontology in 
which nonhumans and humans are analytically 
symmetrical in collective assemblages. It is these 
collective assemblages, in their complex and mate-
rial relationality, that ought to be explored. ANT’s 
concepts of heterogeneity, material relationality, 
and punctualization, lead to a distributed concep-
tion of social action concerned with a multiplicity 
of human and nonhuman actants. Such a thesis 
not only moves ANT closer to what feminist STS 
has considered post-humanism, it also orients its 
analytic tools to the ontological complexity of 
action in the world.

Sam Haraway and Patrick Carroll
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Ad hoc hypothesis

The topic of this entry, the ad hoc hypothesis, is a 
small and recent footnote in a long tradition of 
debating how best to determine scientific truth. 

On the surface, the concept is straightforward: a 
hypothesis is formed ad hoc, that is, in response to 
a particular situation instead of in anticipation of 
a general application. A host of validity issues are 
prompted by the introduction of an explanation 
ad hoc: validity of the theory, of the investigation, 
of the findings, and of the generalizations that 
may follow. These issues are the context in which 
the term must be understood, beginning with the 
fact that it is usually associated with pseudosci-
ence, that is, conclusions which cannot be verified 
independently. That said, it is important to recog-
nize a new context in which ad hoc hypotheses 
figure: belief revision within computer program-
ming for artificial intelligence. 

The term itself has prompted great debate con-
cerning its definition, its purpose, and its value. 
Let us first consider the term ad hoc, a Latin 
phrase meaning for this, which is used in reference 
to something that is one-off, that is, not an estab-
lished and predictable routine, but formed for a 
specific and short-term purpose. An ad hoc com-
mittee functions as a task force with a brief to 
address one issue, and then it is disbanded once 
the issue is addressed. The colonial militias were 
ad hoc because they formed in response to an 
immediate threat after which the solders reverted 
to their chosen occupations. In contrast, a stand-
ing committee or a standing army will have well-
defined continuous roles in relation to the agencies 
they serve, and their members develop more pro-
fessional expertise, whereas ad hoc groups operate 
on the common sense and skills of the average 
agency member. This adds to the more casual 
association attached to ad hoc hypotheses, which 
are also considered less rigorously developed and 
less valuable. An ad hoc hypothesis is produced to 
account for anomalies that are inconsistent with 
the original hypothesis. 

Hypotheses are propositions of general truth, 
that is, a prediction of an outcome that will natu-
rally occur based on the logic of a theory or belief. 
These statements are formal interpretations of the 
hunches and guesses that prompt researchers to 
investigate phenomena. Hypotheses are used to 
limit the scope of the investigation that is intended 
to test the validity of the theory prompting the 
research question. If the findings are inconsistent 
with the predictions of the theory, the theory itself 
is then in doubt. The value of a theory lies in its 
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capacity to explain naturally occurring phenom-
ena and to help people predict and perhaps con-
trol future events. This reasoning is based on a 
positivist orientation to reality, meaning that the 
world is understood to be fairly stable and, given 
enough rigorous observation, its patterns can be 
recognized with some confidence and in turn used 
with confidence in similar situations. At issue is 
the presence of anomalies that are inconsistent 
with the theorized expectations, and whether they 
should be used to discard the theory or inform the 
theory. Empirical investigations are designed to 
test hypotheses in a systematic way so that others 
can replicate the procedure and thereby test the 
validity of the findings. Adding weight to this 
debate is the pride of integrity that prompts many 
researchers to distance themselves from practices 
inconsistent with their epistemological orientation 
and even to disparage those who appear to com-
promise the quality of rigor they seek. 

It is safe to say that there is a keen competition 
among academics to claim authority. A theory is 
considered less robust if it cannot withstand gen-
eral application without special adjustments to 
different circumstances. Whether termed ad hoc 
hypotheses or rival hypotheses or counterargu-
ments, statements are considered fallacies if they 
are based on factors that cannot be tested, such as 
paranormal activity, or fate, or superstition. They 
may be dismissed as simply unhelpful because 
they distract from the task at hand or may be 
found unattractive because they disregard the 
elegance of a simple equation. They rarely add 
persuasive plausibility. As found in the political 
arena, ad hoc explanations are called spin control 
and are associated with a cynical manipulation of 
language to camouflage the failure of the findings 
to be self-evident. Within a peer review of an 
investigator’s report, there will be keen criticism 
if the discussion introduces theory that was not 
established in the literature review justifying the 
research hypothesis. There is instead a convention 
of intellectual humility: to identify future research 
trajectories given the limitations of the study.

In the larger context of advancing scientific 
knowledge, however, the practice can be viewed as 
developmental in the professional researcher. The 
rigidity of a novice’s insistence on the absolutes of 
binary opposites gives way to the flexibility of an 
expert who can tolerate ambiguity, paradox, and 

multiple explanations in the process of evaluating 
the merits of a theory. The naïve and inexperi-
enced are motivated to defend a preconceived 
notion, while the more experienced will consider 
the pattern of empirical evidence. These are in fact 
the argumentational and rhetorical skills neces-
sary for scientific discourse: generating evidence 
and counterarguments to establish proof and cer-
tainty. Ad hoc hypotheses are a function not of the 
original experimental design but of its interpreta-
tion by the investigator. The investigator may 
believe that this modification improves the expla-
nation of the phenomenon, but the more tradi-
tional scientific community tends to regard this as 
an evasion, motivated by a desire to protect the 
theory in question from disputation. 

The role of ad hoc hypotheses could be absorbed 
into the fabric of basic scientific discourse were it 
not for a current interest in mechanizing the execu-
tive function of decision. Artificial intelligence is a 
contemporary field attempting to program com-
puters with all possible contingencies so that the 
program can actually learn; that is, revise its own 
procedures based on responses. A computer pro-
gram is a series of propositions requiring the pro-
grammer to predict the nature of decisions to be 
made, contingent on other actions. The algorithm 
by which the program proceeds through these deci-
sions is of course crucial to the outcome, for a 
simple reversal of steps can result in a significant 
change. Belief revision in this context does not 
mean a change in philosophical conviction about 
reality or morality, but a change in technological 
procedures that are, from the standpoint of the 
machine, the way things are. These are fundamen-
tal issues for the organization of information 
within all fields, so a belief revision theory launched 
a wide-ranging field of research. This theory is 
found in the  Alchourrón, Gärdenfors and Makin-
son (AGM) model, a formal framework for analyz-
ing ways to change beliefs in the context of 
computer programming. The three researchers col-
laborated from different fields to propose it, illus-
trating the multidisciplinary interest in this logic. 
Complex mathematical formulae are the currency 
of this discourse, akin to setting up an intricate 
series of dominoes in readiness for a simple action 
to trigger a long sequence of response. This enter-
prise assumes a closed system of variables; that is, 
it operates within a set of propositions, but as 
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databases accumulate, they must be updated, lead-
ing to an important concept of database priorities 
within truth maintenance systems. They are also 
deterministic in that given a set of beliefs respond-
ing to some input, the resulting belief set is well 
anticipated. A combination of operators may be 
used as an indeterministic operator that allow 
more than one admissible outcome. Ad hoc hypoth-
eses are thus a mainstay of the dynamic process.

Ad hoc hypotheses highlight the epistemologi-
cal distinctions between belief and knowledge, 
between intuition and theory, and between 
deductive and inductive approaches to problem-
solving. Opinions about what ad hoc hypothe-
ses are, and their value, reflect one’s orientation 
to identifying truth based on observed phenom-
ena, on principles derived from an accepted 
theory; for example, syllogisms associated with 
Aristotle, or on authoritative conclusions such 
as those demonstrated in Socratic dialogues, 
which used hypothetical situations for support 
of interpreting ideals. Modern rationalism fol-
lows René Descartes’ four steps of scientific 
thinking: skepticism (that nothing is true until 
proven so), reductionism (divide concepts into 
much smaller entities that are more easily 
observed), organization (ordering knowledge 
from simple to complex), and generalization 
(refining a theory to eliminate omissions and 
contradictions). Francis Bacon argued that the-
ory must be built from the ground up by first 
accumulating a large sample of data, then pro-
posing some preliminary axioms or predictable 
patterns, and finally generating a theory that 
would explain all the phenomena. 

Naomi Jeffery Petersen
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AnAlysis

According to the prevailing definition, analysis is 
a process that involves breaking something up 
into simpler or component parts. Indeed, the word 
analysis derives from the Greek ana for up and 
lysis for loosening or separation. But analysis can 
also be conceived as the search to determine prior 
principles, beginning from what is known—a con-
ception with roots in ancient geometry and with 
purchase in academic philosophy. Analysis can be 
contrasted with its converse, synthesis, which is 
the process of joining parts or elements together 
to create a more unified result. Both synthesis and 
analysis are directed toward the ends of elucida-
tion; through analysis, that which is being ana-
lyzed becomes better or more fully understood.

Analysis is a fundamental mode of inquiry and 
is applicable without restriction; one can conceiv-
ably analyze anything. As a result, it occurs 
throughout lay and specialized academic contexts. 
In their daily lives, people regularly engage in 
analysis, analyzing the texts they read or watch, 
the events they attend, the words, deeds, and 
behaviors of other people, and so on, discerning 
component parts of larger wholes. Similarly, schol-
ars employ analysis across a wide range of aca-
demic contexts, including the sciences, social 
sciences, arts, business fields, and in math and the 
humanities, where it is a basic building block of 
intellectual pursuit. Scholarly analysis is generally 
distinguished from lay analysis by a greater degree 
of rigor and formalization, though the extent to 
which it is either depends on the particular disci-
pline and method.

As a decompositional process, analysis includes 
both descriptive and pattern-seeking activities. As 
descriptive, analysis involves identifying the parts 
of a whole and providing an account of the rele-
vant features of those parts, in some greater or 
lesser degree of detail. As a result, it is closely tied 
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to observation; and the observation that drives 
analysis can involve any of the senses: visual, 
auditory, gustatory, tactile, or olfactory. More-
over, in order to facilitate analysis or, in some 
cases, even make it at all possible, one might uti-
lize instruments to augment one or more of the 
senses. The analysis of physical entities or quali-
ties, for examples, often involves the use of instru-
ments or tools. But perhaps more often than being 
purely descriptive, analysis also entails the search 
for patterns. Breaking a larger and more complex 
whole into smaller and more elementary parts 
brings the interactions between those parts into 
focus. And in analyzing, one classifies and groups, 
identifying relationships and drawing conclusions 
about them.

Analysis is a comprehensive term that refers to 
a highly generalized activity, which can be actual-
ized in innumerable different ways. For example, 
analysis can proceed at any level of abstraction. 
While a biologist might probe a tangible organism 
in order to analyze its concrete parts, philosophers 
use conceptual analysis to examine thoroughly 
abstract concepts like truth and knowledge. Levels 
of granularity also vary widely; coarse-grained 
macro-analyses assess relatively large-scale com-
ponents, while fine-grained micro-analyses con-
sider relatively small ones. One can even analyze 
analyses, as is the case in a meta-analysis. Indeed, 
there are innumerable different approaches and/or 
specific formalized methods one can employ in 
order to analyze a target of interest, some of which 
are outlined in the subsequent sections of this 
entry.

Analysis is an inherently interpretive activity. In 
the processes of analyzing, one makes decisions 
about where to direct attention, about what con-
stitute the meaningful parts of a whole, and con-
strues the existence of relationships and patterns. 
And while such judgments are sometimes rela-
tively clear-cut, they can also be uncertain and 
arguable. In the act of breaking something down 
into its component parts, therefore, we explain 
how to understand it and make a case for what it 
means. We render it otherwise. As a result, the 
terms analysis and interpretation are sometimes 
used synonymously. For example, an analysis of a 
poem might also be described as an interpretation 
of it. Interpretation, however, does not have the 
decompositional emphasis that analysis does. 

Moreover, interpretation often tackles questions 
of meaning that fall outside of the purview of 
analysis. Similarly, analysis differs from criticism, 
another related intellectual pursuit, in that it is not 
in essence evaluative.

An analysis is not only the act of breaking 
something down into component parts but also 
the communicated record or result of so doing. 
The form of that resultant analysis depends on the 
type of analysis one has done and the type of con-
text in which one has performed it.

Deductive Approaches

In deductive approaches to analysis, an existing 
hypothesis, theoretical model, or conceptual 
framework guides the descriptive and pattern-
seeking activities of analysis. Therefore, the 
hypothesis, theory, or framework directs atten-
tion, determining to some extent the parts, pat-
terns, and relationships delineated. As such, they 
can be characterized as offering a perspectival 
lens. For example, in a hypothetico-deductive 
experimental paradigm, one analyzes data in rela-
tion to a preidentified hypothesis to determine 
whether or not it supports that hypothesis. Simi-
larly, a deductive analysis of a dream guided by 
Freudianism will focus on features specified by or 
emphasized in Sigmund Freud’s psychoanalytic 
theory, such as repressed memories and uncon-
scious desires.

Within disciplines, certain conceptual frame-
works tend to predominate, becoming frequently 
engaged as analytic tools. In the humanities and 
social sciences, for example, psychoanalysis, 
Marxism, feminist theory, structuralism, critical 
theory, phenomenology, and deconstruction have 
all been commonly employed toward the ends of 
deductive analysis. Those employing these and 
other models in a deductive fashion must guard 
against confirmation bias, or the tendency to only 
look for/see that which confirms an existing 
hypothesis, overlooking those features that do not 
fit within its parameters. Similarly, deductive 
approaches are vulnerable to what is sometimes 
called cooker-cutter criticism, whereby a theoreti-
cal framework so strongly and narrowly governs 
analysis that it becomes a rote and mechanical 
application of theory with predetermined and not 
particularly insightful results.
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Although an explicitly acknowledged and artic-
ulated theoretical framework drives some analy-
ses, the principles that guide analysis in a deductive 
fashion are sometimes implicit. This is particularly 
true in lay contexts, where neither theoretical 
frameworks nor the process of analysis are typi-
cally formalized, but also occurs in scholarly con-
texts as well. Moreover, folk theories sometimes 
deductively underlie scholarly analysis in a covert 
fashion. The mobilization of implicit theoretical 
frameworks can be problematic given that the 
premises by which the analysis is guided are not 
articulated and may not be apparent to the person 
doing the analysis and/or the person encountering 
the results of the analysis, making them unavail-
able for discussion or critique.

Inductive Approaches

In inductive analysis, inquiry begins with the 
analysandum itself; one works with and from the 
object of interest in order to discern its meaningful 
parts and draw conclusions about the relation-
ships between those parts. That is, the breaking 
down of this form of analysis involves a building 
up from particulars as one moves from specific 
features to more general conclusions about parts 
and patterns. An example of a commonly employed 
inductive method of analysis in the humanities is 
close textual analysis, which involves paying scru-
pulous attention to the details of a selected work 
or works, from the use of commas to the over-
arching organization, to identify patterns within 
that work and/or among works.

However, though theory does not drive an 
inductive analysis, it must inevitably be guided by 
something, which often includes intuition or past 
experience with other texts. This raises the ques-
tion of the extent to which any analysis can in fact 
shelve theory, and whether inductive approaches 
are in fact inevitably theory-laden, even if that 
theory is of the informal and implicit kind that 
comprises intuition and develops out of experi-
ence. Moreover, philosophical debates about and 
psychological investigations into the theory-laden-
ness of observation are clearly applicable to analy-
sis given its reliance on observation.

The human impulse to see and seek patterns 
and connections not only results in a general  
affinity for analysis, but also a propensity to see 

patterns and perceive connections where there are 
none. This tendency underlies many superstitious 
and supernatural beliefs and is responsible for 
much of what is termed magical thinking, but it is 
also a tendency with implications for scholarly 
analysis. Overreading or overinterpretation are 
terms sometimes used to describe overly aggressive 
acts of analysis in which patterns are read into a 
text rather than being found there; and this prob-
lematic analytic misstep can be found in all sorts 
of analyses, from the poetic to the radiographic.

While deduction and induction are distinguish-
able orientations toward analysis, in practice the 
two often co-occur. They do so in a compelling 
way in the grounded theory method, a formalized 
methodology developed in the social sciences by 
which one self-consciously and systematically puts 
inductive analysis toward the ends of theory 
development. In using analysis to arrive at theory, 
one reverses the typical or traditional pattern by 
which theory precedes analysis. It is an iterative 
process in that one repeatedly moves back and 
forth between data and analysis, and between 
inductive and deductive modes of thought, becom-
ing increasingly abstract and theoretical as the 
process unfolds.

Quantitative Analysis

Quantitative analysis is the analysis of that which 
has been quantified; that is, calculated, counted, 
or measured. And in practice, it can take many 
different forms. Perhaps the simplest type of quan-
titative analysis is the discernment of relative 
quantities. A quantitative chemical analysis of this 
type, for instance, might determine the amounts of 
the various component parts of a more complex 
chemical. But quantitative analysis often moves 
beyond the relatively straightforward assessment 
of amounts, to discern patterns and relationships, 
which is a way of making numerical data mean-
ingful and/or useful. Quantitative analysis can 
also be put toward the ends of prediction. In pre-
dictive analysis, one looks at what has happened 
in the past and identifies patterns in order to pre-
dict future events, as in analyzing voting behavior 
in previous election cycles to predict outcomes in 
upcoming ones.

Statistical methods are mathematical tools for 
seeking out and delineating the patterns in a 
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quantified subject of analysis. Indeed, statistics, a 
branch of mathematics, is the science of quantita-
tive analysis. Statistics can be applied in a deduc-
tive fashion, as in confirmatory data analysis, 
whereby one identifies a hypothesis and employs 
statistical analysis in order to test it. Or one can 
use statistics in a more inductive fashion, applying 
them to a set of data in order to see what patterns 
emerge, a type of exploratory data analysis. There 
are two main branches of statistics, descriptive 
and inferential. Descriptive statistics are methods 
for characterizing the features of a given set of 
data; these include measures of central tendency 
(i.e., mean, median, and mode) and spread (i.e., 
range, variance, and deviation). Inferential statis-
tics are methods for using a sample in order to 
identify the parts, patterns, and relationships of a 
larger population; in doing so, the quality of the 
sampling process is key. Regression analysis also 
deserves mention as a set of powerful statistical 
processes for examining the relationships between 
variables, often independent and dependent ones.

In some quantitative studies, particularly those 
in the social sciences, coding is an important ini-
tial step in the analysis process. It is the procedure 
by which one applies shorthand labels to data 
items, such as parts of interview transcripts or 
field notes; in doing so, one not only categorizes 
them and enables them to be more readily sorted, 
but also makes them countable and thereby ame-
nable to analysis via quantitative techniques. For 
example, content analysis, a technique for analyz-
ing communicative acts, often employs coding 
toward the ends of quantification. When coding, 
one must decide on the unit of analysis (e.g., 
words, paragraphs, parts of images, entire photo-
graphs) and whether to use predetermined codes 
or to derive codes during the course of coding. 
The process of coding data does some analytical 
work in that it discerns recurring features. It also 
facilitates subsequent higher-level analysis. The 
reliability of the coding process is an important 
consideration, and studies often consider intra-
coder reliability, or the consistency with which a 
given person codes the data, and to enhance reli-
ability, some studies employ multiple coders, and 
consider inter-coder reliability, or the extent to 
which they agree with each other.

Visualization is also an integral part of quanti-
tative analysis. The results of quantitative analysis 

are often effectively presented in visual form, 
which can incisively convey patterns and relation-
ships between component parts. Tables and 
graphs, frequency distributions, bar charts, scat-
terplots, and histograms are all commonly used to 
present the results of a quantitative analysis. 
Moreover, data visualization is itself considered a 
method of quantitative analysis and a branch of 
descriptive statistics. As a method of analysis, we 
can consider the process of visualization itself as 
that which discerns meaningful components and 
their relationships.

As a result of advances in computing, quantita-
tive analysis has become not only more large-
scale and sophisticated, but also increasingly 
democratized. While the computing power neces-
sary to do complex statistical analysis used to be 
in the hands of only a few, it is now much more 
widely available. Moreover, there is now unprec-
edented access to vast data sets, such as those 
generated via new media, offering opportunities 
large-scale quantitative analysis with considerable 
potential across academic disciplines and for 
commercial purposes. In professional fields, the 
word analytics is often used to refer to the science 
of data analysis.

Qualitative Analysis

Qualitative analysis is the analysis of that which 
has not been (and perhaps cannot be) measured or 
quantified. It focuses on qualities and features 
rather than amounts. For instance, a qualitative 
chemical analysis might detail the characteristics 
of the component parts of a more complex com-
pound. As with quantitative analysis, qualitative 
analysis can proceed inductively or deductively; 
that is, one can take the detailed particulars of the 
analysandum as the analytic starting point or can 
proceed on the basis of a theoretical framework.

While the phrase qualitative analysis might 
well be used to identify a wide range of analytic 
inquiry, it is generally associated with a research 
paradigm in social science fields that emerged 
during the 20th century to develop and system-
atize qualitative methods as legitimate alterna-
tives to positivistic and quantitative ones. As a 
result, not all of those who engage in analysis 
that could certainly be described as qualitative 
would necessarily use that phrase to describe 
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their work, particularly those who work in the 
humanities. For example, philosophy’s tradition 
of conceptual analysis, which is solidified in the 
branch of philosophy known as analytic philoso-
phy, is certainly not quantitative, but philoso-
phers would not tend to identify it under the 
banners of qualitative analysis and qualitative 
research.

In the social sciences, qualitative analysis tends 
to be rather systematized and is often part of a 
research process with parallels to scientific 
research. For example, the qualitative data are 
often systematically generated or collected for the 
purposes of analysis; this is in contrast to the 
analysis of something preexisting and simply 
selected for study, as in a rhetorical analysis of an 
influential speech or the art historian’s analysis of 
a famous painting. Qualitative researchers in the 
social sciences might conduct interviews, run 
focus groups, and engage in participant observa-
tion, analyzing the transcripts or notes that result 
from these activities. These textual data are also 
often coded, a process that is not only an instru-
ment of quantification but is can be a means of 
sorting data and thereby facilitating qualitative 
analysis. Some of the specific approaches to 
qualitative analysis that are widely used in the 
social sciences include narrative analysis, dis-
course analysis, phenomenological analysis, and 
grounded theory.

Qualitative and quantitative analysis can be 
complementary ways of discerning the parts and 
patterns of a subject of interest, and many research 
projects, such as mixed-methods studies, use both. 
Moreover, social scientists sometimes use qualita-
tive analysis in order to engage in initial explora-
tion of a subject, followed by quantitative analysis 
to test hypotheses derived from those exploratory 
qualitative endeavors.

Critiques of Analysis

Alongside the widespread embrace of analysis as 
fundamental mode of intellectual engagement 
exists a strain of skepticism regarding its power to 
elucidate. The so-called paradox of analysis, asso-
ciated with C. H. Langford and G. E. Moore, is, 
essentially, the idea that to give a correct analysis 
of a concept, one already has to know and be able 
to identify its component parts. For instance, 

Moore provides the example of analyzing the con-
cept of brother into male and sibling, something 
that requires already knowing what a brother is. 
The analysis is trivial and does not provide any 
new insights. As a result, it follows that it is 
impossible for an analysis both to be correct and 
to inform us of something we do not already 
know. And although debates regarding paradox of 
analysis (which include attempts to resolve it) 
occur specifically in relation to philosophical con-
ceptual analysis, the paradox has relevance to 
analysis more broadly considered.

Others express concern regarding analysis’s 
essential reductiveness; by definition, analysis 
involves breaking things down, distilling the ele-
mentary parts from the more complex whole. Phi-
losophers such as Georg Wilhelm Friedrich Hegel 
and Friedrich Schiller have pointed toward the 
reductive dimension of analysis. Pierre  Teilhard de 
Chardin once described analysis as “that marvel-
lous instrument of scientific research to which we 
owe all our advances but which, breaking down 
synthesis after synthesis, allows one soul after 
another to escape, leaving us confronted with a 
pile of dismantled machinery, and evanescent par-
ticles” (1959, p. 283). That is, the elucidation of 
analytic dismantlement is not without its losses.

Michelle G. Gibbons

See also Abstraction; Conceptual Analysis;  
Generalization; Interpretation
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ApplicAbility of MAtheMAtics 
in science

Our understanding of nature, our explanations of 
natural phenomena, crucially depend on the use 
and interpretation of mathematics in scientific 
practice. Mathematics provides a common lan-
guage for the empirical (i.e., the natural and 
social) sciences, and through its tools, we get suc-
cessful predictions and empirical confirmations 
that are about the entities and the phenomena of 
these sciences. When this happens, we say that 
mathematics successfully applies in science. But 
the success of mathematics in science prompts the 
following question: How is it possible for the 
abstract entities of mathematics (numbers, equa-
tions, integrals, etc.) to say something interesting 
about phenomena and entities, as for instance 
nuclear reactions and proteins, which are studied 
by the empirical sciences and have a completely 
different nature? The issue is philosophical, and 
the research topic associated to it is known as the 
Applicability of Mathematics in Science. Follow-
ing a short introduction to the topic, this entry 
offers an overview of some accounts that have 
been proposed to tackle the philosophical issue. It 
also identifies some connections that have been 
established between the study of the applicability 
of mathematics in science and other debates in 
philosophy of science and philosophy of 
mathematics.

The Philosophical Challenge

When will Mars be closest to Earth? What is the 
distance covered by a falling body in a given time 
under the force of gravity? Given a protein with a 
specific amino acid sequence, what will its three-
dimensional structure be like? What is the average 

number of predators in a particular ecosystem? 
How can we maximize profit in a market econ-
omy with production constraints? Although these 
questions involve entities (planets, falling bodies, 
proteins, predators, production constraints) and 
empirical sciences (physics, computational biol-
ogy, ecology, economics) that are quite different 
from each other, there is a common path to answer 
them: Do the math! Surprisingly, mathematics 
works. This, of course, does not mean that math-
ematics always works when it is used, or applied, 
in the empirical sciences. Nevertheless, in many 
cases, mathematics provides a correct, empirically 
accurate, answer to our original question about 
planets, proteins, predators, and so on. Why 
should we be surprised about such effectiveness, 
or successful applicability, of mathematics? The 
issue is philosophical: Mathematical entities are 
generally regarded as abstract because they do not 
causally interact with anything (e.g., a number 
cannot break a glass) and have no spatiotemporal 
location (e.g., a number cannot be found in a cer-
tain place at a certain time); therefore, it is quite 
surprising that they can properly inform us on the 
behavior and properties of entities like planets or 
proteins, which are causally active and are located 
in space and time. Even more surprisingly, some-
times the mathematics that is successfully used in 
science is not developed from scratch to study an 
empirical problem, but it has been developed 
within a purely mathematical framework before 
being used with success in a specific context of 
application (the mathematics of group theory, for 
instance, was developed long before its introduc-
tion into quantum physics in the late 1920s).

It is exactly this particular feature of mathe-
matics, namely that of being applicable with suc-
cess outside its boundaries, that allows scientists 
to make extraordinary progress in the understand-
ing of nature. And the main goal of philosophers 
of science and mathematics working on the appli-
cability of mathematics in science is to investigate 
such features and account for the (successful) 
application of mathematics in science.

Facing the Challenge

The applicability of mathematics has a long-
standing philosophical pedigree. Indeed, the first 
reflections on the successful use of mathematics to 
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understand the world can be traced back at least 
to early Pythagoreanism (sixth through fourth 
centuries B.C.E.) and to the investigation of har-
monic intervals in terms of arithmetic. In classical 
Greece, harmonics was the science that investi-
gated the arrangements of pitched sounds that 
form the basis of musical melody and the princi-
ples that govern them. What the early Pythagore-
ans discovered is that some differences in pitch 
between two sounds, or intervals, were expressible 
by numerical ratios (e.g., they found that the three 
basic intervals of octave, fifth, and fourth were 
expressible as the numerical ratios 2:1, 3:2, and 
4:3). Thus, an arithmetical ratio could be success-
fully used to represent a perceptible phenomenon. 
To account for this fact, they proposed a meta-
physical system wherein everything is a number 
understood via discrete representations. In this 
“all is number” doctrine, which is illustrated in 
Aristotle’s Metaphysics, the world consists of cor-
poreal numbers, or units, and mathematics applies 
to the world because the world has such mathe-
matical structure.

Although the Pythagoreans pioneered the study 
of our topic, later attempts to explain the applica-
bility of mathematics in science departed from 
their view. The Greek philosophers Plato (ca. 
429–347 B.C.E.) and Aristotle (384–322 B.C.E.), 
for instance, developed different approaches to 
the applicability issue.

For Plato, the physical world and all of its con-
stituents are imperfect copies, approximations, of 
special abstract entities called Forms. The world 
and its constituents derive from Forms, which 
include—but are not limited to—mathematical 
entities and properties. For instance, a drawn 
square belongs to the material world, but it is an 
imperfect, approximate copy of the square as 
such, whose angles are exactly 90° and whose 
sides are perfectly straight. Because all copies are 
dependent on ideal Forms, the physical world is 
dependent on Forms. Therefore, for Plato, mathe-
matics is applicable to the physical world because 
it is a science of the ideal Forms from which the 
physical world is derived.

Aristotle disagreed with Plato about the nature 
of mathematical objects. While for Plato material 
objects are imperfect copies of ideal forms, and 
the former are derived from the latter, Aristotle 
maintains that mathematical objects are obtained 

from physical objects through a process of abstrac-
tion: We consider a physical object with respect to 
some of its attributes, next we take them out, and 
finally we create a new (abstract) object consisting 
in that object in only those respects. The result of 
this process is an object in its own right. The snub-
nose is Aristotle’s favorite example: If we consider 
a snub nose, the quality of snubness comes from 
sense perceptions and is concavity in the physical 
object nose; the mathematical quality of concav-
ity, on the other hand, is obtained by removing all 
the attributes of the nose with the exception of its 
shape. Thus, according to Aristotle, mathematics 
studies the objects formed by abstraction but not 
the material objects on which the abstraction pro-
cess operates. And this view provides an account 
of how mathematics applies to the world.

The philosophical standpoints proposed by 
Plato and Aristotle were very influential until the 
early modern period. The Italian astronomer, engi-
neer, and physicist Galileo Galilei (1564–1642), for 
instance, echoes both views in The Assayer (1623) 
and in the Dialogue Concerning the Two Chief 
World Systems (1632). But the mathematization of 
physics that took place during the 17th century, 
largely influenced by the publication of Isaac New-
ton’s Principia (1687), marked a radical departure 
from the dominant tradition of a natural philoso-
phy that aimed to give qualitative explanations of 
natural phenomena. In the new conceptual frame-
work that arose, where the objects of physics also 
included objects that were themselves mathemati-
cal (e.g., Newton’s concept of force), philosophical 
analysis such as those offered by the Pythagoreans, 
Plato, and Aristotle were insufficient to account for 
the applicability of mathematics. Therefore, phi-
losophers had to elaborate new strategies to 
explain the applicability of mathematics. Imman-
uel Kant (1724–1804), for instance, proposed—
within his transcendental idealism—the idea that it 
is the constitution of the subject that makes it 
necessary to describe the world mathematically. In 
his System of Logic (1843), John Stuart Mill 
argued that mathematics is itself empirical since 
mathematical truths are generalizations derived 
from experience. Other philosophical standpoints 
were offered. Nevertheless, as happened with the 
accounts proposed by the ancient Greeks, these 
conceptions had to be revised or even abandoned 
in light of new, unexpected interactions between 
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mathematics and science (e.g., the application of 
non-Euclidean geometry in Albert Einstein’s theory 
of general relativity undermined Kant’s view, and 
particularly his conception of the synthetic a priori 
character of geometry).

Successful interactions between mathematics 
and the empirical sciences have been growing 
massively since the first half of the 20th century. 
This phenomenon captured the attention of many 
scientists, as for instance the Nobel laureates in 
physics Eugene Wigner and Richard Feynman, 
and gave a new impetus to the philosophical study 
of the applicability of mathematics. Several analy-
ses were developed but, in general, we can identify 
three main strategies that have been adopted to 
address the applicability issue: (1) a logicist 
approach, (2) an attempt to explain the applicability 
of mathematics by focusing on the way in which 
mathematical concepts are introduced in scientific 
theory-building, and (3) a strategy that elaborates 
on the idea that the applicability of mathematics 
can be explained in terms of some correspon-
dences that can be established between a mathe-
matical domain and an empirical domain. Let us 
consider the three strategies in turn:

 1. In philosophy of mathematics, logicism is the 
view that mathematics, or part of it, can be 
reduced to logic. This view was developed by 
the philosopher Gottlob Frege at the end of the 
19th century. According to the logicist 
standpoint, mathematics can be applied to the 
description of the world because it contains 
only logical concepts, which can be applied to 
any possible domain of objects. Although 
Frege’s attempt to demonstrate logicism was 
undermined (because of an inconsistency that 
was found in his formal logical system), by the 
mid-1960s, some philosophers of mathematics 
tried to revive some of the core ideas of logicism 
and set in motion a philosophical movement 
that has been called neologicism. Neologicists 
defend Frege’s constraint (also known as 
application constraint), a principle that was one 
of the main tenets of Frege’s logicism and which 
requires that the empirical applications of a 
mathematical theory (or class of numbers) must 
be built directly into the formal characterization 
of the mathematical theory (or class of 
numbers). Thus, although in a renewed form, 

neologicist projects that meet Frege’s constraint 
continue to offer an account of the applicability 
of mathematics by demanding that an 
explanation of applicability be provided inside 
mathematics, by mathematical definitions.

 2. A second strategy, which was largely inspired by 
the emergence in the 1960s of a tradition in 
philosophy of mathematics that was concerned 
with the dynamics of mathematical discovery 
and the historical development of mathematics, 
focuses on the way in which the introduction of 
mathematical concepts is influenced by theory-
building in science. Philosophers who follow 
this route draw on analyses of the historical 
development of mathematics and present case 
studies in which mathematics and science 
simultaneously develop in a theory-building 
context. By emphasizing the interplay between 
mathematics and other kinds of practices that 
we find in theory-building (e.g., the practice of 
identifying analogies between different scientific 
theories), they argue that the effectiveness of 
mathematics in science is no longer surprising 
when we see that (and how) much mathematics 
is brought into being by the need to model one 
or more aspects of the world (an example of 
such an analysis can be found in the paper 
“Solving Wigner’s mystery,” written by the 
historian of mathematics and logic Ivor 
Grattan-Guinness and published in 2008).

 3. A third strategy, which has been the most 
influential since the first decade of the 21st 
century, gives an explanation of the applicability 
of mathematics in terms of mappings that are 
established between mathematics and the 
empirical systems we want to study. These 
mappings are mathematical and include not 
only isomorphisms but also other kinds of 
mathematical mappings like homomorphisms, 
epimorphisms, and monomorphisms. Mappings 
ensure that some crucial features of the 
empirical system are mirrored in the 
mathematical model used to study that system. 
Such an approach has been called the mapping 
account of applied mathematics. According to 
this view, the applicability of mathematics is 
fully accounted for by appreciating the relevant 
structural similarities between the empirical 
system under study and the mathematics used in 
the investigation of that system.
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There have been many attempts to implement 
the mapping account, but the most discussed has 
been that proposed by Otávio Bueno and Mark 
Colyvan in their 2011 paper “An inferential con-
ception of the application of mathematics.” Bueno 
and Colyvan retain the basic idea behind the map-
ping account (i.e., the idea that the successful 
application of mathematics amounts to establish-
ing a suitable mapping between mathematics and 
an empirical setup) and propose a view of applica-
bility, called the inferential conception, in terms of 
a three-step process: (a) immersion (a correspon-
dence between mathematics and the empirical 
setup is established via a suitable mapping), 
(b)  derivation (some consequences are generated 
from the mathematical formalism), and (c) inter-
pretation (the mathematical consequences 
obtained in the derivation step are interpreted in 
terms of the initial empirical setup, via a mapping 
that does not necessarily coincide with the map-
ping used in the immersion step).

Connections With Other Debates

The growth in successful interactions between 
mathematics and science played a motivating role 
in advancing analysis of the applicability issue. 
Nevertheless, philosophical interest in the applica-
bility of mathematics was also prompted by the 
investigation of three topics that have become 
increasingly central to the agenda of philosophers 
of science and mathematics since the 1970s: math-
ematical modeling in science, mathematical expla-
nation in science, and indispensability argument(s) 
for mathematical Platonism.

Mathematical Modeling in Science

Mathematical models are used in science to 
represent and study a selected part or aspect of the 
world, which is named the (model’s) target system. 
For instance, the so-called Lotka–Volterra model, 
developed by the mathematicians Alfred Lotka 
and Vito Volterra in the 1920s and consisting in a 
pair of differential equations, is used in popula-
tion ecology to represent a system of two interact-
ing species (a predator and a prey) and study its 
dynamics. Sometimes, a mathematical model can 
also be used to represent and study two different 
target systems (e.g., the same equation can be used 

to represent and study a swinging pendulum and 
an oscillating electric circuit). Furthermore, the 
target system represented in the model is usually 
an idealized version of the real system, namely a 
simplified or distorted version of it. For instance, 
when we study a swinging pendulum, we usually 
assume that the pendulum bob is a point mass and 
that the string is massless. With these idealizations 
in place, the target system becomes more tractable 
from a mathematical point of view.

It is therefore easy to see how the investigation 
of the applicability of mathematics is closely con-
nected to discussions of mathematical modeling in 
science: An account of how a mathematical model 
can be used to represent and study a target system 
prompts an explanation of how mathematics is 
applied with success to the physical world (or, if 
we consider the case of idealizations, an explana-
tion of how mathematics is applied with success 
to those idealizations that are about the physical 
world).

Mathematical Explanation in Science

To explain something is to give the reason why 
that something happens (rather than a mere 
description of it). For instance, to explain a solar 
eclipse is to give an answer to the question “Why 
did the solar eclipse occur?” rather than a simple 
description of the eclipse phenomenon. Explana-
tions are therefore particularly important in sci-
ence, which investigates the reasons why empirical 
phenomena (such as the solar eclipse) occur.

Many explanations in science appeal to causes. 
These causal explanations provide information 
about what caused the thing that we want to 
explain (e.g., a solar eclipse is caused by the inter-
position of the moon between the sun and the 
earth). Moreover, many scientists and philoso-
phers have argued that there also exist mathemati-
cal (and therefore noncausal) explanations in 
science. In this kind of explanation, it is mathe-
matics that unveils the reason why an empirical 
phenomenon occurs. Nevertheless, there could be 
no mathematical explanation of empirical phe-
nomena if mathematics were not successfully 
applied in the sciences dealing with such phenom-
ena (note that the converse of this conditional 
statement is not true since there may be successful 
applications of mathematics that are not 
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explanations). Therefore, articulating a plausible 
account of the applicability of mathematics in the 
empirical sciences is particularly important for 
those philosophers who maintain that mathemat-
ics can play an explanatory role in science.

Indispensability Argument(s)  
for Mathematical Platonism

Platonism in philosophy of mathematics is the 
view that mathematical objects exist (indepen-
dently of us and our language, thought, and prac-
tices). The indispensability argument is a 
philosophical argument used by Platonists to 
defend their view and argue that there are math-
ematical objects. There exist several versions of 
the argument but, in its original formulation 
(which is credited to the philosophers Willard Van 
Orman Quine and Hilary Putnam), the argument 
goes as follows: Since we ought to believe in the 
existence of those entities that are indispensable to 
our best scientific theories (like electrons or black 
holes), and since mathematical entities are indis-
pensable to our best scientific theories (i.e., our 
best scientific theories like quantum mechanics 
and general relativity cannot be formulated with-
out making reference to mathematical entities), 
then we ought to believe in the existence of math-
ematical entities. In this line of argument, mathe-
matical entities are seen to be on an epistemic par 
with other theoretical entities of science like elec-
trons or black holes (and so anyone who believes 
in the existence of the former should also believe 
in the existence of the latter). Furthermore, the 
argument crucially presupposes that mathematics 
successfully applies in science. Hence, again, we 
see how investigations into the applicability of 
mathematics are linked to, and triggered by, the 
study of a separate topic.

Although discussing other formulations of the 
indispensability argument is beyond the scope of 
this entry, it is worth noting that there is a version 
of the argument that relies on the notion of math-
ematical explanation in science. Early presenta-
tions of such an enhanced (or explanatory) 
indispensability argument can be found in philoso-
phy of mathematics before the end of the 20th cen-
tury, but an explicit formulation appears in 2005 in 
Alan Baker’s paper “Are there genuine mathemati-
cal explanations of physical phenomena?” Since, as 

discussed earlier in this entry, successful applica-
bility of mathematics is a necessary—although not 
sufficient—condition for mathematical explana-
tion in science, the issue of explaining why math-
ematics applies with success in science also arises 
in the context of the enhanced indispensability 
argument.

Daniele Molinini

See also Explanation; Inference to the Best Explanation; 
Laws (Scientific); Mathematics, 20th Century; 
Modeling; Philosophy of Science; Physics, 20th 
Century; Realism in Mathematics

Further Readings

Baker, A. (2005). Are there genuine mathematical 
explanations of physical phenomena? Mind, 
114(454), 223–238. https://doi.org/10.1093/mind/
fzi223

Bangu, S. (2012). The applicability of mathematics in 
science: Indispensability and ontology. Palgrave 
Macmillan.

Bueno, O., & Colyvan, M. (2011). An inferential 
conception of the application of mathematics. Noûs, 
45(2), 345–374. https://doi.org/10.1111/j.1468-0068 
.2010.00772.x

Bueno, O., & French, S. (2018). Applying mathematics: 
Immersion, inference, interpretation. Oxford 
University Press.

Gingras, Y. (2001). What did mathematics do to physics? 
History of Science, 39(4), 383–416. https://doi.org/10 
.1177%2F007327530103900401

Grattan-Guinness, I. (2008). Solving Wigner’s mystery: 
The reasonable (though perhaps limited) effectiveness 
of mathematics in the natural sciences. The 
Mathematical Intelligencer, 30(3), 7–17. https://doi 
.org/10.1007/BF02985373

Mancosu, P. (2018). Explanation in mathematics. In 
E. N. Zalta (Ed.), The Stanford encyclopedia of 
philosophy. https://plato.stanford.edu

Panza, M., & Molinini, D. (Forthcoming). L’applicabilité 
des mathématiques. In P. Wagner, M. Panza, F. 
Poggiolesi, & A. Arana (Eds.), Précis de philosophie 
des mathématiques et de la logique. Editions de la 
Sorbonne.

Pincock, C. (2004). A new perspective on the problem of 
applying mathematics. Philosophia Mathematica, 
12(2), 135–161.

Steiner, M. (1998). The applicability of mathematics as a 
philosophical problem. Harvard University Press.

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



36 Artificial Intelligence

Urquhart, A. (2008). Mathematics and physics: Strategies 
of assimilation. In P. Mancosu (Ed.), The philosophy 
of mathematical practice (pp. 588–620). Oxford 
University Press.

Wigner, E. P. (1960). The unreasonable effectiveness of 
mathematics in the natural sciences. Communications 
on Pure and Applied Mathematics, 13(1), 1–14.

ArtificiAl intelligence

Artificial intelligence (AI) is loosely defined as the 
capacity of machines that can accomplish tasks 
that humans would accomplish through thinking. 
This definition does not say anything about AI 
achieving this performance in ways similar to how 
we humans do it, however. The term artificial 
intelligence is used with two meanings. On the one 
hand, it refers to (artificially) intelligent machines 
and the ways of making them; in this sense, AI is 
primarily computer science and engineering. On 
the other hand, AI is also a transdisciplinary field 
of studying these machines. AI gurus such as Her-
bert Simon often emphasized that studying AI 
involves studying the human mind, and if we get it 
right, we will understand both AI and the human 
mind better in the end. Therefore, the field of AI 
involves various branches of hard sciences and 
engineering but beyond these also biology, psy-
chology, and philosophy. This entry introduces the 
types of AI and describes their origins and the 
ways in which the types differ from each other. 
Next, the entry pursues the question of what 
defines intelligence and whether AI machines can 
be said to think. The entry continues with a discus-
sion of the two paradigms of AI research, strong 
AI and weak AI. This is followed by an examina-
tion of the nature of knowledge and learning and 
the differences between AI and the human mind—
a distinction reinforced in concluding remarks on 
the importance of this essential consideration in 
shaping the future of humankind.

Types of AI

The term artificial intelligence was coined by the 
computer scientist and cognitive scientist John 
McCarthy during a 2-month workshop organized 

at Dartmouth College in summer 1956. At the 
time, only one program (discussed below) quali-
fied for the name, so it was the result of philoso-
phizing about what computers should be capable 
of. To unpack the concept of AI, it is useful to 
distinguish between the different types of AI and 
to delineate facts from beliefs in the process. In 
this section, the three main types of AI, namely 
symbolic reasoning systems, symbolic expert sys-
tems, and artificial neural networks (ANNs), are 
examined.

Symbolic Reasoning Systems

The first thinking machine—that is, the first AI 
implementation that worked—was called the 
Logic Theorist, or Logic Theory Machine. It was 
created in 1956 by the Nobel laureate Herbert 
Simon, his former PhD student Allen Newell, and 
Cliff Shaw from the RAND Corporation. The 
purpose of the Logic Theorist was “[ . . . ] to learn 
how it is possible to solve difficult problems such 
as proving mathematical theorems, discovering 
scientific laws from data, playing chess, or under-
standing the meaning of English prose” (Newell  
et al., 1963, p. 109). The Logic Theory Machine 
gradually evolved into the even more ambitious 
General Problem Solver, which was supposed to 
extend the original scope to all areas of human 
problem-solving. This was the first tentative 
attempt at what is today called artificial general 
intelligence (AGI).

The departure point was the philosopher 
Thomas Hobbes’s idea from the 17th century, 
popularized by AI pioneer Oliver Selfridge (1926–
2008), suggesting that all human problem-solving 
could be represented as a manipulation of sym-
bols. If this was true, Newell and Simon specu-
lated that computers should be able to solve 
real-world problems, not only arithmetic prob-
lems. They tried to achieve this by recording the 
steps of human problem-solving, using the think-
ing aloud technique: They asked problem solvers 
to note all the steps of their thinking. Newell and 
Simon figured that if they repeated the same in 
many areas of human problem-solving, they 
should be able to extract the general principles  
of reasoning, and by applying these principles  
and generic steps, AI should be able to work 
across multiple domains. The idea was a radical 
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departure from the optimization and operational 
research methods of the time, which started with 
a detailed model of the complete problem. The 
performance delivered by the Logic Theorist was 
astonishing; eventually, it proved 38 of the first 52 
theorems in the Principia Mathematica, a founda-
tional work in modern symbolic logic by Alfred 
North Whitehead and Bertrand Russell.

What are the facts and what are the beliefs of 
symbolic reasoning systems? The first problematic 
assumption is that all thinking can be represented 
as symbol manipulation; there is no convincing 
evidence, so it is just a belief. The second assump-
tion is that there are general principles that apply 
across all areas of problem-solving; it is difficult 
to imagine that there are some generic steps that 
apply from cooking a stew to designing a car or 
composing music. However, even if this does 
sound convincing, it is a mere belief. The third 
assumption is that playing chess or proving theo-
rems, which may arguably involve explicit logical 
steps, has anything in common with “understand-
ing the meaning of English prose” or anything that 
involves the achievement of meaning. It is nothing 
more than a belief. The fact is that the perfor-
mance of the Logic Theorist was impressive, and 
since then, similar AI solutions have proved many 
more theorems and suggested new ones. What has 
not happened is an AI finding a surprising or sig-
nificant theorem.

Symbolic Expert Systems

Often called the “father of symbolic expert sys-
tems” is Edward Feigenbaum (b. 1936), previ-
ously Simon’s PhD student. He abandoned the 
general principles of reasoning to focus on narrow 
domains of expertise. He figured that in order to 
deliver performance on par with a high level of 
expertise, AI would need to have an internal 
model; a representation of the problem, which 
would be reasoned. As he began working with 
scientists, Feigenbaum anchored his project in 
experimental design in order to make testing pos-
sible. Joined by the Nobel laureate Joshua Leder-
berg, he decided to build a system that would 
induce molecular topologies from mass spectra, in 
order to support the Mars probe looking for life, 
or the precursors of life, on Mars. The project was 

named DENDRAL. The input data were reliable, 
the calculations needed were beyond the usual but 
not beyond the AI capabilities of the time, and 
there was a chance to test the findings empirically. 
The DENDRAL ran for many years, involving an 
increasing number of experts, eventually covering 
a larger area than any of the individual experts 
did. Eventually, the program was performing on 
par with, and exceeding, top experts.

The DENDRAL was the first knowledge-based 
expert system. A system being knowledge-based 
refers to the internal model, called knowledge rep-
resentation, which is stored in the form of a 
knowledge base (this can be thought of as a clev-
erly designed database that stores knowledge), 
while the term expert system signifies, not surpris-
ingly, that expert knowledge was represented. The 
knowledge representation is obtained in the pro-
cess of knowledge acquisition, which is a subset of 
the overall process of knowledge engineering. The 
facilitator who works with the experts to model 
their knowledge is called the knowledge engineer. 
As DENDRAL was expanded, the complexity of 
the knowledge base increased, eventually threat-
ening the stability of the initial LISP (a program-
ming language focused on linked lists) system. 
Therefore, Feigenbaum’s colleague Bruce G. 
Buchanan reprogrammed the system, establishing 
what became the standard for knowledge bases: 
the “production rules,” or hierarchically organized 
“if . . . then” rules.

The facts about expert systems are that Feigen-
baum was meticulous in selecting a suitable prob-
lem for this type of AI: The problem was of the 
right size, the right level of complexity, experts 
were available, and there was a possibility of 
checking the outcome. This is still the crucial fea-
ture of expert systems today. In other words, Fei-
genbaum’s assumptions stood the test of time. 
Feigenbaum mentioned his belief in AI superintel-
ligence, but this was not used as an assumption for 
developing expert systems. For many years, expert 
systems were isolated, in the sense that there was 
no connection and interoperability between 
knowledge bases; today, knowledge bases can be 
connected and provide input to each other. The 
main limit of expert systems today is brittleness, 
meaning that although expert systems deliver high 
performance in their narrow domains, they are 
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completely useless even a tiny step beyond their 
domain’s boundary, as there is no representation 
of nonspecialist knowledge.

Knowledge-based expert systems dominated 
the AI landscape until the mid-1980s, producing a 
large number of successful implementations in a 
wide range of areas from science and manufactur-
ing through to medical treatments.

Artificial Neural Networks

The first ANN was conceptualized in 1943 by 
Warren McCulloch and Walter Pitts, while the first 
implementation, the SNARC (Stochastic Neural 
Analog Reinforcement Calculator), was created by 
Marvin Minsky and Dean Edmonds as part of 
their undergraduate work at Princeton University 
in 1950. The early ANNs were used to calculate 
mathematical functions; therefore, they should not 
be regarded as AI but rather as pre-AI. The popu-
larity of ANNs rose in the mid-1980s, when com-
puters became sufficiently fast to cope with ANNs 
of a useful size. Today, ANNs are the most often 
mentioned forms of AI; they occupy much of the 
AI landscape, including machine learning.

Any ANN consists of three sets of artificial 
neurons: There is an input layer, which receives a 
signal (stimulus); then, there is a hidden layer, 
which performs a translation or black-box opera-
tion; and finally, the output layer, which produces 
a response. The artificial neurons are connected to 
each other across the layers, resembling synapses 
in a brain. The response is compared with the 
expectations, the initial weights are amended, the 
process is repeated iteratively, and ANN will rela-
tively quickly adjust and produce the desired 
response. In other words, ANNs learn from a 
large number of learning examples how to repro-
duce their statistical frequency. The often-men-
tioned deep ANN and deep learning simply mean 
that there is more than one layer of artificial neu-
rons in the hidden layer.

When it comes to facts and beliefs, it is useful to 
consider how similar ANN is to the brain. The size 
of the human brain is estimated at around 80 to 
100 billion neurons, each with around 7,000 con-
nections on average, resulting in about 700 to 
1,000 trillion (1015) synapses in total. The largest 
ANN today consists of some 16 million artificial 
neurons, which roughly corresponds to the size of 

a frog’s brain. Thus, in terms of synapses, we may 
be about 8 to 10 orders of magnitude short of the 
size of the human brain. At the same time, an 
ANN of 16 million neurons is already so large that 
the architect cannot grasp it anymore, and it takes 
a long time to train even using supercomputers. 
So, if it is even possible to approach the size of the 
human brain, this will not happen any time soon.

Structurally, ANNs are layered, and the connec-
tions usually only go forward (in some networks, 
there are also within-layer connections). The human 
brain is a complex network of neurons, so the idea 
of layered structure may not apply, and there may 
be circular connections. Functionally, an ANN 
reflects what was known about biological neurons 
around the mid-20th century: At any time, neurons 
are either firing or not. Today, it seems that at least 
a small subset of neurons (perhaps a few million?) 
display more complex behavior; that is, the strength 
of the firing impulse seems to matter. Individual 
neurons also display very different behaviors in this 
respect, and the strength of firing impulse can vary 
two orders of magnitude. All this means that struc-
turally and functionally, ANN is rather limited in 
comparison with the human brain.

However, if ANN architects managed to con-
struct something that resembles an artificial brain 
in terms of size, structure, and function, there is 
another belief that must be confronted: that the 
artificial brain would produce an artificial mind. 
What is known so far is that brain and mind are 
somehow connected, and particular thinking pro-
cesses can be associated with activity in particular 
brain areas. We still lack an understanding of how 
the brain and the mind are linked.

Finally, according to recent research besides the 
brain, other organs, for example, the endocrine 
system, may be part of our cognitive system. It is 
not impossible that the mind is fully embodied, 
meaning that the whole body is part of it. So,  
an artificial brain may or may not produce an 
artificial mind.

Can AI Think?

Since the very beginning of AI, the big question 
has been: How do we know if AI should be con-
sidered (artificially) intelligent? The first crite-
rion, proposed by Alan Turing in 1950, is still the 
most popular today. The essence of the Turing 
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test is that if we communicate with an entity and 
cannot figure out whether it is a person or a 
machine, and in fact it is a machine, it means that 
the machine thinks, and it should be considered 
intelligent. At first sight, this argument may 
sound convincing; if the machine is not really 
thinking, we should recognize this. Not every-
thing is, however, as it seems. The first program 
that passed the Turing test was Joseph Weizen-
baum’s ELIZA, created in 1966, followed by 
many other programs, up to today’s chatbots. 
However, these programs passed the test with 
people who did not know that they were testing. 
The first experiment that was actually set up as a 
test was Eugene Goostman, the simulated 13-year-
old Ukrainian boy. The legitimacy of this test can 
be questioned, but, as noted by Stuart Russell and 
Peter Norvig, it fooled 33% of the untrained 
amateur judges. So, the judges might not be right 
and 33% is quite low. In addition, the setup cer-
tainly worked in favor of the outcome: having 
someone who is 13, from a country about which 
the testers do not know much, speaking English 
as a foreign language. As Russell and Norvig 
speculated, perhaps the Turing test is really a test 
of human gullibility.

It is possible, however, that an AI will at some 
point legitimately pass the Turing test—but there 
are further problems. Turing modeled his test after 
the imitation game. In this game, Person A pre-
tends to be Person B. If A has learned a lot about 
B, the testers may believe that A is B. However, 
this does not mean that A actually became B. The 
programs that passed the Turing test were designed 
with the purpose to pass the test, not with the 
purpose to think.

An excellent explanation of the Turing test is 
the Chinese room argument, proposed by the phi-
losopher John Searle. The essence of the argument 
is the following: A person who does not speak 
Chinese is in a room full of rule books, receiving 
messages in the form of Chinese symbols and 
looking up responses to those messages in the rule 
books. If the rule books are good, those reading 
the responses outside the room may believe that 
the person responding speaks Chinese. Similarly, 
passing the Turing test does not prove that the 
computer thinks, only that the program is good.

Of course, none of these instances prove that 
machines cannot think; they only point out the 

lack of conclusive proof. So, we are left to our 
respective beliefs.

AI Paradigms

The distinction between strong AI and weak AI, 
as the two paradigms of AI research, was intro-
duced by Searle, the author of the Chinese Room 
Argument. The strong AI paradigm postulates the 
idea of the thinking machine—of AI with a mind 
of its own, at least—as a desirable and achievable 
outcome. Most followers of strong AI do not 
believe that AI can currently actually think, but 
they do believe that it is only a matter of time until 
it will. Typically, this is fueled by the beliefs 
described in the previous and following sections 
of this entry. Marvin Minsky, a great proponent of 
strong AI, suggested that any endeavors in the 
field of AI, other than trying to create AGI, are 
meaningless.

In contrast, those who follow the weak AI 
paradigm see AI as a technology that can help 
produce useful and powerful tools. Many of them 
do not believe in the possibility of AGI, and none 
of them work on the AGI project. They argue that 
we cannot produce an artificial mind, as it would 
require the researchers to obtain a complete 
understanding of the mind, which they believe to 
be impossible. There is a very important conse-
quence of this belief on what and how the follow-
ers of weak AI try to achieve in their work. They 
do not try to replicate the human thinking pro-
cess; instead, they try to find a sensible way of 
achieving the same or similar performance. A pop-
ular metaphor used to describe this is the relation-
ship between the horse and the car. When the 
original creators dreamed up the first automobile, 
they did not attempt to replicate the muscles, 
joints, and metabolism of a horse; they used an 
internal combustion engine instead, and put it on 
wheels. The car can be an excellent replacement 
for some aspects of the horse; for instance, it can 
take passengers from one place to another (more 
passengers than a horse, more conveniently and 
usually faster). In other areas, however, such as 
playing polo or enjoying horseback riding, the car 
cannot deliver. Similarly, what weak AI research-
ers produce only works in a narrow area and in 
very different ways from how humans would deal 
with the task.
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Curiously, although their beliefs are fundamen-
tally different and they focus on different types of 
work in the area of AI, the followers of the two 
paradigms do agree about one thing: that what is 
missing to achieve a thinking machine is common 
sense. As all human beings have common sense, it 
is sometimes considered to be something simple—
but it is not. According to Minsky (1988, p. 22), 
common sense consists of “hard-earned practical 
ideas—of multitudes of life-learned rules and 
exceptions, dispositions and tendencies, balances 
and checks.” It only appears simple because we do 
not recall acquiring it.

AI and the Human Mind

There are several areas that people think of as par-
ticularly human, such as knowledge, learning, and 
creativity. It is useful to look at the differences 
between the human mind and AI along these 
dimensions that can be conclusively demonstrated.

The difference that is the easiest to identify 
along the knowledge dimension is that systems 
that rely on knowledge acquisition are necessarily 
limited to explicit knowledge. According to the 
Hungarian–British polymath Michael Polányi, all 
human knowledge is either tacit or rooted in that 
which is tacit, as all explicit knowledge relies on 
being tacitly understood and applied. The prob-
lem of common sense showcased in the previous 
section can be explained similarly: Common sense 
is predominantly tacit, and all human knowledge 
incorporates common sense. Intuition, which has 
been deemed valuable in relation to peak human 
achievements (such as scientific discovery, artistic 
creativity, and managerial decisions), also belongs 
to the tacit realm. Humans also know harmony 
and beauty, and this beauty usually drives creative 
achievements, deep thoughts, and simply provides 
joy. For instance, a human can admire the beauty 
of a rainbow despite knowing that it is the result 
of the prism effect. People also use analogical 
thinking, which refers to mental models analogi-
cal to reality. An extraordinary example of this is 
the Serbian–American inventor Nikola Tesla 
(1856–1943) designing his machines entirely in 
his mind, without using a blueprint. Finally, seeing 
the essence is an achievement unique to the high 
levels of human expertise. It consists of two parts: 
the big picture and the detail. Those who achieved 

a high level of expertise are known to see the big 
picture. However, they can also see any of the 
details, as well as the relationship between the 
details as well as the relationship of the details to 
the big picture, and they can rapidly switch from 
one to the other.

Besides the many aspects of knowledge that 
do not seem to be easy to replicate or emulate 
with AI, knowledge also relates to other aspects 
of our being. Humans also have feelings, which 
are manifestations of biological drives such as 
hunger, fear, longing for the company of other 
people, and so on. While humans can temporar-
ily override their feelings, using their knowl-
edge—for example, we do not need to eat right 
away when we start feeling hungry—emotions, 
in turn, can override knowledge. Our important 
decisions, such as whom to marry, where to live, 
or what organization to work for, have signifi-
cant emotional components. Minsky goes so far 
as to suggest that knowledge is impossible with-
out emotions. Humans also have values embed-
ded in their knowledge. For instance, sometimes 
they do not do what matches their well under-
stood preferences but what they think is the right 
thing to do.

The situation with learning is similar to the situ-
ation with knowledge. Reinforcement learning, 
which is how ANN learns, is only a tiny part of 
human learning. There was a time when psycholo-
gists thought that all human learning is a variant of 
reinforcement learning, but psychology has come a 
long way over the past 70 years. The significance of 
talent has been discovered, the significance of which 
is that people learn faster in areas in which they are 
talented, and learning in these areas feels mostly 
like playing. AI learns equally in all areas. People 
get inspired and interested in various things, and 
inspiration and interest can make them invest extra 
efforts in learning what they like. Furthermore, 
those who achieved the highest level of expertise all 
went through some form of master–apprentice rela-
tionship. All people have some such experience; for 
instance, this is how we learn our native language. 
This immensely complex form of learning builds on 
a deep personal connection between master and 
apprentice, and our understanding of how it works 
is very limited. What we do know, however, is that 
the master–apprentice relationship seems to be the 
only way of transferring tacit knowledge.

Copyright ©2023 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



41Assumption

Finally, there is a question if AI can be creative 
or not. It certainly outperformed top human 
experts in areas where creativity is considered 
important. Examples are Deep Blue winning 
against chess grandmaster Garry Kasparov in 
1997, and AlphaGo defeating Lee Sedol in 2016 
(as well as all the other Go grandmasters shortly 
after that). Human creativity is defined as the pro-
duction of a new and useful idea—AI has defi-
nitely produced new and useful things, but it can 
be argued that it has never produced an idea. 
However, AI can certainly support human creativ-
ity, producing patterns from large amounts of data 
as well as helping us transcend the boundaries of 
our knowledge traditions.

Concluding Remarks:  
How to Think and Talk About AI

This entry has described what AI can do and what 
its limitations are; the entry has also delineated 
the facts and beliefs regarding current perfor-
mance and future promises. AI comprises an 
exceptionally powerful set of technologies and 
may well be the most expensive human enterprise 
ever. If we use it well, it can greatly benefit the 
whole of humankind.

What can be done to get things right about AI? 
Perhaps it would be a good start to stop describ-
ing AI in human terms: Human–AI collaboration, 
thinking, learning, and making decisions are all 
terms that attribute intentionality to AI—something 
that it most definitely does not currently have, and 
possibly never will. Even when we talk about 
authentic AI, we usually think of a better fake 
human. Authentic AI, however, is not human-like; 
it is AI-like. For a human future in which AI plays 
a great role to the benefit of humankind, we need 
authentic humans as well as authentic AI.

Viktor Dörfler

See also Analysis; Cognitive Science; Intuition; Knowledge; 
Philosophy of Mind; Rationality; Reasoning
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AssuMption

Our contemporary word assumption is derived 
from the Latin word referring to the act of being 
taken up or received. In that context, the Catholic 
Church used the word to articulate the Assumption 
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of the Virgin Mary—that is, the official dogma that 
she was taken up bodily into Heaven. That use 
remains today, but beginning in the 13th century 
the word slowly took on the broader meaning of 
any idea, premise, or axiom that is taken up or 
taken for granted. With this latter meaning in 
mind, in what follows, a definition of assumption 
is offered and explained point by point, giving 
examples along the way as the term relates to both 
theory and human life. From there, a few addi-
tional examples are provided of the importance 
and place of assumptions in theory and theory 
building, spanning not only the physical sciences 
and mathematics but also the social sciences. The 
entry concludes with a brief summation of the 
place and importance of assumptions in theories.

What Is an Assumption?

Assumptions are beliefs of a particular kind—
namely, assumptions are propositions that persons 
(and in the aggregate, human groups or even 
entire societies) regard to be true, whether con-
sciously or tacitly, and which form the basis of—
rather than being conclusively inferred 
from—processes of reasoning and lived experi-
ence. This definition requires some unpacking. 
First, assumptions are propositional, but often-
times this is the case merely in the sense that, in 
principle, they could logically be articulated as 
propositional statements (unlike, for instance, 
some kinds of emotional states). In other words, 
assumptions are propositional not in the sense 
that they are necessarily or even usually pro-
pounded and spelled out in explicit propositional 
form. But assumptions are propositional in the 
sense that they make claims regarding what is true 
about reality and those understandings—even 
when left unstated—can be either true or false.

Secondly, assumptions are not free-floating 
ideas but are believed by persons and often also by 
groups, subcultures, or societies. It is not hard to 
grasp that persons hold fast to assumptions. But 
when persons gather, interact, or even share some 
common social identity from a distance, their 
association is likely to give rise to (or be premised 
upon) taken-for-granted ideas, values, and  
axioms. The first-generation college student group 
at the state university likely holds certain  
assumptions—about class mobility, equality, and 

the purpose of higher education—which take 
intentional work to see and to understand. It is 
also possible for the vast majority of a society to 
hold to an assumption that is rejected by a subcul-
tural subset within it. For example, the popular 
assumption in Western modernity that what is 
morally right and good is ultimately up to each 
individual to decide is rejected by many conserva-
tive religious thinkers and some philosophers.

Third, assumptions can function anywhere 
along a spectrum from conscious to routinized to 
subconscious, being explicit or left implicit. In 
some cases, assumptions are stated up front and 
explicitly recognized as providing the grounds for 
some subsequent argument, observation, or expe-
rience. This is the case, for instance, in many 
philosophical arguments (especially those in ana-
lytic philosophy using formal logic) as well as in 
the mathematical proofs, one undertakes in alge-
bra or geometry classrooms. In this sense, assump-
tions are rightly understood as taken-for-granted 
premises, the logical givens that set the stage for 
what comes next in the course of making a case or 
building an argument. In other cases, assumptions 
are known but nevertheless left unexpressed. For 
example, an evangelical Christian might try to 
organize her life and beliefs around the idea that 
the Bible alone is God’s authoritative Word to 
humans. Such a baseline assumption would pre-
sumably have a powerful guiding effect on her life 
and beliefs even if most days it does not come up 
in conversation, but if asked she would be readily 
able to express it.

At still other times, assumptions operate on a 
level that is wholly unrecognized and implicit. Per-
sons can hold assumptions without even knowing 
that they hold them, and persons can be powerfully 
influenced by those assumptions without recogniz-
ing it. Assumptions—as a particular kind of belief—
need not be reflected upon, consciously adopted, or 
able to be stated in order to be genuinely believed. 
This does not mean, though, that such assumptions 
must always stay at the prediscursive, implicit level 
of consciousness. It is often possible for another 
person to point out and articulate a previously 
unrecognized assumption, at which time that 
assumption might move from unrecognized to rec-
ognized, from implicit to explicit. It is even possible 
for a person to identify her own previously unrec-
ognized assumptions and change them if necessary. 
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Sometimes this is difficult, requiring study, dia-
logue, and critical reflection. Other times, this does 
not take much. Persons often do not realize they 
had been holding some assumption until it turns 
out to be false: You return home from a weeklong 
vacation only to discover that you had wrongly 
assumed that your spouse had locked the front 
door. You arrive at your favorite coffee shop to 
meet a friend, not having considered that she 
meant the one on the other side of town.

Fourth, assumptions are not (and cannot be) 
conclusively inferred or verified from reason or 
experience. Against the tradition of rationalism, 
taking assumptions seriously in life and in aca-
demic theorizing requires the recognition that 
reason, rationality, and logic are never the only 
factors at play. Likewise, against the tradition of 
empiricism, seriously accounting for the role of 
assumptions in life and theorizing necessitates 
moving beyond a strict focus only on what can be 
observed from experience and the five senses. 
Instead, assumptions are precommitments and 
premises that come before either reason or empiri-
cal experience. In the language of epistemology 
(the philosophy of knowledge), an assumption can 
be justified (i.e., a person is not always being cog-
nitively reckless or intellectually sloppy for believ-
ing it) without being justifiable (i.e., without being 
able to be verified through argumentation and 
evidence). This does not mean that assumptions 
cannot be supported or made compelling through 
reasoning and experience. If an assumption meshes 
well with one’s lived experience and helps to make 
the world intelligible, then there is good reason to 
hold to it. It is justified. But it cannot be conclu-
sively established or deduced with indubitable 
certainty through the use of reason or observa-
tion. It is not justifiable.

Fifthly, basic assumptions form the grounds for 
processes of reasoning—ranging from particular 
instances of philosophical argumentation and 
mathematical proofs to more general approaches 
to (or convictions about) what knowledge is and 
how humans can go about acquiring it. This is 
most easily seen in simple logical syllogisms, in 
which a major premise and a minor premise are 
used to deduce a conclusion. But even in more 
complex belief structures and systems of reason-
ing, assumptions can serve the role of basic (and 
powerfully life-guiding) beliefs. That is, certain 

kinds of beliefs—such as that a divine being exists, 
that one’s memories really do refer to actual past 
happenings, or that natural science is the only 
rational way to reach conclusions—can sit at the 
bottom, so to speak, of one’s system of beliefs or 
worldview. Such basic beliefs are not inferred 
from, or held on the grounds of, other beliefs that 
the knower regard to be true. And different per-
sons (and human groups) can and do hold to dif-
fering beliefs in this basic way. This pluralistic 
nature of basic starting points has led many phi-
losophers of knowledge away from foundational-
ism (i.e., the theory that all humans share some 
common, incorrigible foundation for knowledge) 
to what is known as post-foundationalism. This is 
also why it might seem like a life-altering para-
digm shift when one’s basic beliefs and assump-
tions, for some reason, are revised.

Sixth, assumptions and premises are crucial not 
only for theory and theorizing but also for human 
experience and life in the world more broadly. The 
propositional content of assumptions can range 
from the mundane (“Oh, I assumed you were 
going to buy the milk”) to big questions in the 
realms of epistemology, metaphysics, and ethics. 
And to the extent that abstract ethical, epistemo-
logical, and metaphysical issues and ways of 
thinking influence the ways persons live, even 
seemingly distant assumptions turn out to have 
serious consequences on actual experience. On 
this point, some philosophers and social scientists 
emphasize the principle of practical adequacy, 
which suggests that when the components of 
human knowledge systems (including one’s 
assumptions) rub up against practical activity in 
the world in a way that makes the world and life 
unintelligible or unlivable, there is good reason to 
suspect that some crucial part of that knowledge 
system is problematic (i.e., false) and thus may 
need to be reconsidered and revised.

Examples of Assumptions

Assumptions play a central role in theories and 
theory building in several ways. In the social sci-
ences, for example, assumptions about the nature 
(or lack thereof) of human beings are multiple and 
lead theorists in different directions. Some theo-
rists hold a social collectivist view that claims 
human beings are ultimately a product of the 
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cultural environments in which they are embed-
ded, such that they are primarily concerned with 
living out their society’s norms and values. Other 
theorists assume a fundamentally economistic 
view of humans as self-interested rational actors, 
seeing humans as driven by cost–benefit calcula-
tions in order to maximize their utility. Other theo-
rists, influenced by postmodernism and 
phenomenology, view human identity and self-
hood as fragmented, transient, and variably con-
structed across different situations—lacking any 
essential nature. Still other theorists adopt a socio-
biological and evolutionary view of humanity, in 
which all of human social life can be explained by 
reference to survival of the fittest and the function-
ing of genetic material. And some theorists hold to 
an Aristotelian view of human beings as persons 
with an essential shared human nature and a 
moral direction toward which to strive for their 
objective flourishing. Which of these models of 
human nature is taken for granted clearly would 
have a great impact on a social scientist’s explana-
tions and theories.

Another example can be drawn from the history 
of geometry. In the third century B.C.E., the Greek 
mathematician Euclid systematized geometry based 
on five axioms, from which more complex theo-
rems could be deduced. These five axioms involved 
the relationships between lines, points, and angles 
(e.g., between any two points there is only one line 
segment with those points as end points). For more 
than 2,000 years, this axiomatic system was the 
only version of geometry. But over the centuries, 
several thinkers questioned whether Euclid’s fifth 
axiom (namely, that for any line and a given point 
off that line, there is only one line that runs 
through that point and parallel to the first line) 
was self-evidently true. Several attempts to prove 
the fifth axiom based on the first four ended in 
failure. Beginning in the early 1800s, mathemati-
cians started to imagine what alternative geometric 
systems would look like if Euclid’s fifth axiom—
known as the parallel postulate—could be false. 
The result was a variety of non-Euclidean geome-
tries, in which the spatial grid on which geometry 
is done is not a boxy, straight Euclidean space, but 
instead is intrinsically curved in various ways. This 
questioning of Euclid’s fifth assumption and the 
recognition that spatial grids can be curved helped 
to shift the way physicists think about space and 

set the stage for Albert Einstein’s theory of general 
relativity and gravitational force.

Even the scientific method operates on the basis 
of a handful of assumptions that cannot be veri-
fied using the scientific method. For example, sci-
ence proceeds on the presupposition that there 
exists a real world about which scientists are 
 trying to gain knowledge and that this world has 
a structure and nature independent of our theories 
about it. Scientific inquiry and discovery also 
makes sense only if scientists believe that aspects 
of the physical world (such as the laws of physics 
or the basic features of biology) will work very 
similarly tomorrow as they have worked in the 
recent past. Likewise, the scientific method 
assumes that human cognitive and sensory facul-
ties are fairly reliable tools for gathering and inter-
preting data. Even more basically, science proceeds 
under the supposition that some beliefs and theo-
ries are closer to the truth than others; all is not 
relative. Science even makes moral assumptions—
such as that theories should be tested fairly, that 
findings should be reported honestly, and that it is 
better to believe what is true than what is false. As 
assumptions, such beliefs are not necessarily 
unjustified or wrong, but they are nevertheless not 
definitively verifiable by logical proofs, argu-
ments, or empirical observations.

Conclusion

It is not necessary—and probably not possible—
for every unverified assumption to be articulated 
in theory and research. But clearly, assumptions 
are both important and unavoidable. While some 
scholars may feel the urge to hide, ignore, or deny 
the premises and assumptions that underpin their 
work, it is best as much as possible to be aware of 
the assumptions that one is making. And beyond 
just reflecting upon and recognizing one’s assump-
tions, it is important as well to be willing to ques-
tion and possibly to change them when the data 
and evidence call for it. Even the most fair-minded 
scholarship does not operate with a God’s-eye 
view or with every idea or belief established with 
absolute certainty. But with sustained and critical 
attention to the assumptions undergirding schol-
arship, development of theory can proceed on a 
steady footing.

Brad Vermurlen
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See also Belief Revision; Epistemology; Warrant; 
Worldview
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Authority

The concept of authority is fundamentally related 
to the concepts of hierarchy, power, and obedi-
ence. In modern research on authority, the concept 
has been articulated and operationalized in a 
number of different ways. Scientific discourse is 
discussed in terms of its influence and paradig-
matic power, intrinsically linked to its authorita-
tiveness. Political scientists refer to systems of 
authority and how they relate the role of the state. 
Psychologists refer to the relationship between 
authority and obedient behavior. 

The word authority is etymologically rooted in 
Latin and is connected with the words auctoritas 
and auctor, which reference “one who originates 
or promotes ideas.” In Old French, the term auto-
rité is itself related to the Old English term for 
author, again referencing “one who originates.” 
These roots are reflected in the general concept of 
authority as “one who originates or issues com-
mand or orders,” ostensibly to be obeyed by those 
subservient to the person, their social role, and/or 
the orders. Conceptually speaking, these dynamics 
naturally invokes reference to the constructs of 
hierarchy and the power differentials that underlie 

and support a hierarchical social system. Philippe 
Aghion and Jean Tirole note the distinction between 
formal and real authority in organizations, the for-
mer being ascribed to an office who holds power 
by virtue of the position (e.g., a chief executive 
officer, or CEO, who may not actually make real 
decisions impacting organizational goals) and the 
latter having the ability to make decisions on the 
basis of authority granted by the superior.

This entry considers the varying conceptualiza-
tion of authority, and how they have been reified 
in scientific, political, religious, and psychological 
narratives. This list is by no means exhaustive but 
is meant to synopsize some of the most prominent 
discourses that have been developed around expli-
cating authority and how it structures human 
behavior.

Scientific Authority

Scientific discourse is powerful and influential to 
the extent that it is considered authoritative. 
Thomas Kuhn described the manner in which sci-
entific theories come to dominate others and even-
tually become widely accepted as lenses through 
which problems are both conceptualized and 
solved. In his influential book The Structure of 
Scientific Revolutions, published in 1970, Kuhn 
describes the social process whereby scientific 
theories become authoritative, a point to which he 
ascribes the term paradigm. Scientific paradigms 
do change over time, largely due to the presenta-
tion of anomalies that cannot adequately be 
addressed or resolved within the context of the 
dominant paradigm of the time. When this hap-
pens—and Kuhn suggests that it is ultimately 
inevitable—a paradigm shift occurs whereby 
novel, unanticipated solutions to the anomalies 
arise, and achieve acceptance in the wider scien-
tific community. Over time, the new paradigm 
comes to be accepted as authoritative among the 
scientific community and society in general.

Political Authority

Political authority is a concept that is intrinsically 
linked with the concepts of power and legitimacy. 
Power, in its most abstract conceptualization, typi-
cally entails the ability to influence others behav-
ior beyond what they would ordinarily do, and 
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legitimacy is most often conceptualized as a form 
of government which citizens believe is appropri-
ate for that society. C. W. Cassinelli noted that 
legitimacy and political authority almost always 
involve an element of coercion, but can never 
involve force or the explicit threat of it; to do so 
is to undermine the extent to which one is truly 
considered a political authority.

Max Weber (1864–1920) developed a typology 
of political authority in his treatise “The Three 
Types of Legitimate Rule”: traditional, legal-ratio-
nal, and charismatic. Weber’s three types of 
authority represent ideals, and thus do not neces-
sarily correspond precisely with any given socio-
political entity. In addition, authority can evolve 
from the lowest form into one of the other, more 
advanced, forms. Charismatic authority is 
described a social arrangement wherein leaders 
derive their power on the basis of their possession 
of some type of extraordinary attribute or super-
natural power. Those subject to this type of rule 
must inherently believe in the power granted the 
leader. A contemporary example of a state predi-
cated upon charismatic authority is North Korea 
under the totalitarian rule of the Kim family. The 
Kim family began their reign with Kim Il Sung, a 
leader whose persona was so elaborated by means 
of state-controlled propaganda, he continued to 
serve for years after his death as the world’s only 
posthumous president.

Traditional authority arises from longstanding 
custom and is the basis of authority for monar-
chies. The death of a charismatic leader can result 
in the formation of a system whose authority 
derives from tradition. This type of authority is 
oriented toward maintenance of the status quo 
ante and its inherent inequalities. Beyond the 
domain of nation-states and their form of political 
organization, an example of this type of authority 
can be found in patriarchal societies, wherein the 
inherent inequality between men and women has 
been established not on the basis of charisma (or 
rational principles) but solely on the basis of long-
standing custom.

The legal-rational system of authority is orga-
nized such that citizens are subservient to a legal 
structure that has been rationally constituted, 
rather than to a particular person, as is the case 
within a system predicated upon a charismatic or 
traditional form of authority. That legal structure 

can take the form of a constitution, a static form 
of bureaucratic organization, or rationally derived 
codified principles that establish the legality, 
responsibilities, and conditions of rule. Typically, 
under this form of authority, citizens are deferen-
tial to the office wherein power is vested, and not 
to the particular officeholder who happens to 
fulfill that social role. As an example, 21st-century 
Japanese, British, or Canadian political authority 
would be characterized as legal-rational in 
organization.

Religious Authority

Mark Chaves defines religious authority as “a 
social structure that seeks to enforce its order 
through the legitimate control of some supernatu-
ral component” (1994, p. 750); where authority 
withholds access to something vis-à-vis the legiti-
macy of the supernatural, that authority is reli-
gious. The goods that religious authority might 
control vary between religious traditions (e.g. 
eternal life, an end to suffering, or prosperity). 
Authoritarianism has been linked with religiosity 
and is a social attitude that refers to individuals 
who hold conservative principles and are gener-
ally accepting of established authorities. Authori-
tarians and deeply religious people tend to share 
common values, preferring the status quo over 
change, and employing a noninterpersonal moral-
ity that refers to external sources of authority 
(e.g., group norms).

Psychological Authority

The psychological literature has considered the 
nature of authority as it manifests itself in inter-
personal relationships (such as between parent 
and child) and how authority is related to obedi-
ent behavior. The scope of discourse surrounding 
parental authority generally concerns parents’ 
ability to utilize one of two types of control: psy-
chological control and behavioral control. Psy-
chological control involves any attempt by parents 
to encroach upon a child’s psychological and 
emotional development. It typically takes the form 
of manipulative tactics in order to achieve its goal. 
Behavioral control refers to parental attempts at 
managing a child’s behavior, such as correcting a 
child’s inappropriate behavior with punishment.
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Psychological control is most potent in young 
people before and during adolescence and is some-
times thought to be a parenting style as opposed 
to a parenting practice. This type of control does 
not necessarily involve parental pressure to feel 
and think in ways dictated by parents; it can 
merely embody parental pressure aimed at making 
the child behave in accordance with parental 
expectations. Tactics like guilt induction help par-
ents maintain legitimate parental authority over 
issues of concern, like child friendship affiliations. 
Parental control can sometimes intrude upon a 
child’s psychological development. Where it does, 
empirical evidence suggests that the negative con-
sequences of this control can be predictive of later 
mental health issues and behavioral disorders. 
Where it concerns behavioral control, research on 
parental authority suggests that it is not counter-
productive unless it impairs the bond between 
parent and child; harsh or erratic levels of punish-
ment are predictive of later involvement in activi-
ties such as delinquent behavior.

Parents are encouraged to balance appropriate 
control over their children’s behavior with devel-
opmentally appropriate attempts to give them 
autonomy as they grow older. Younger children 
are more accepting of parental authority and its 
legitimacy; however, some have found that as chil-
dren aged, their views on parental authority 
become less positive. Where it concerns the scope 
of parental authority, there appear to be clear 
boundaries with regard to what constitutes legiti-
mate parental authority and what should remain 
under the jurisdiction of children.

Stanley Milgram  
and Obedience to Authority

One of the most controversial and thought- 
provoking research projects aimed at understanding 
the nature of authority was psychologist Stanley 
Milgram’s work at Yale University concerning obe-
dience to authority figures. His research, first 
described in the Journal of Abnormal and Social 
Psychology, was published contemporaneously with 
Hannah Arendt’s coverage in 1961 of the Adolf 
Eichmann trial for The New Yorker magazine, the 
hugely consequential trial of a former German 
bureaucrat instrumental in supervising, organizing, 
and facilitating the systematic extermination of 

European Jews, or Jewish Affairs, as it was euphe-
mistically put in German bureaucratese. Fifteen 
years after the close of the war,  Eichmann had been 
discovered living in Argentina by the Simon Wiesen-
thal organization; he was subsequently abducted by 
Mossad, the Israeli intelligence agency and smug-
gled back to Israel on a commercial flight to stand 
trial as personally accountable for his role in the 
murder of 6 million Jews.

Milgram was explicit about his interest in 
exploring the social dynamics that had facilitated 
the implementation of the Final Solution to the 
Jewish Question, the event now formally referred 
to as the Holocaust, and intended to compare levels 
of compliance in Germany with those in the United 
States. Aside from inspiring an onslaught of critique 
from research ethicists, his 1974 book Obedience 
to Authority: An Experimental View exposed a 
social dynamic whereby free will can be truncated, 
overridden, in the name of obedience to those who 
are perceived to constitute legitimate authorities.

The experimental design saw to it that experi-
mental subjects administered an incrementally 
more intense series of electric punishment shocks to 
an ostensible subject (in reality a confederate of the 
experimenter) under the guise of its being a test of 
negative punishment’s effect on learning capability. 
The coercive prompting of a confederate researcher, 
playing the role of a legitimate authority figure, 
insisted at appropriate times that subjects continue 
with the experiment despite any protests they might 
have to delivering increasingly strong electrical 
shocks to the victim, the bogus subject. Milgram 
performed many permutations of the relationship 
between the various actors involved in the 
 experiment—altering in varying degrees the prox-
imity of the victim, confederate researcher, and the 
experimental subject in order to test whether social 
distancing had an impact on a subject’s obedience 
to orders, which was generally found to be the case.

Replications of the shock experiments were 
canceled in Hamburg, Germany, when Milgram 
found levels of compliance in the United States 
(the control group) high enough to rule out mean-
ingful comparison with what he originally conjec-
tured would be a more obedient German 
population. To the lament of the predictions of the 
psychiatrists Milgram had surveyed beforehand, 
roughly two-thirds (66%) of the subjects in 
 Milgram’s experiments were fully compliant in 
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harming (and ostensibly killing) the confederate 
victim. The dynamic that Milgram exposed was 
one whereby personally injurious behavior need 
not be related to any moral, psychological, or bio-
logical factors impacting the experimental subject. 
Milgram’s overall findings are compatible with 
the sincerity of the defense cliché espoused by 
those tried for offenses against humanity at 
Nuremberg and elsewhere: that they were merely 
following the orders of their superiors, presum-
ably because they did not have the grounds to 
question the legitimacy of that authority, or the 
commands issued forth.

Douglas J. Dallier and Olivia M. Lewis

See also Evidence; Fact Versus Theory; Warrant
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AxioM scheMA

An axiom schema (plural: schemata or schemas, 
from the Greek skhēma, meaning form or figure) 
is a template for an axiom, accompanied by a rule 
that tells us how to instantiate the template with 

specific expressions in some (formal) language to 
produce an axiom. Thus, in developing an axiom-
atic theory in logic, mathematics, or science, one 
uses axiom schemas to specify a collection of axi-
oms representing the basic or fundamental 
assumptions of the theory, from which one derives 
all other implications of the theory (i.e., its theo-
rems). However, there will typically be infinitely 
many such axioms and so some method is needed 
to specify all of them at once by finite means. It is 
primarily because of this that we require the tem-
plates for axioms known as axiom schemas.

It is worth noting that axiom schemas are just 
one instance of the slightly broader notion of a 
schema, used in both logic and mathematics. The 
broader notion includes templates both for the 
axioms of a theory and so-called rules of infer-
ence, that is, rules for deducing consequences from 
the theory’s axioms or from previously established 
theorems or previously made assumptions. Because 
there will also be an infinite number of ways of 
applying a given rule of inference, a schema for 
representing this rule by finite means is also 
needed. This entry discusses examples of axiom 
schemas in both logic and mathematics.

Axiom Schemas in Logic

Axiomatic systems in logic, often called formal 
systems or logical calculi, allow us to determine 
which statements in a formal language are logical 
validities, either because they are axioms them-
selves or because they are logical consequences of 
axioms. For example, in a Hilbert system for 
propositional logic, an approach that emphasizes 
axioms and minimizes the role of deductive infer-
ence rules, the following expressions are examples 
of axiom schemas:

P1: →→φ φ( )

P2: (( ))(( ))→→ →→φ ψ φ

P3: (( ))(( )) (( ))(( )) (( )) (( ))→→ →→ →→ →→ →→ →→φ ψ χ φ ψ φ χ

                                (( ))(( )) (( ))(( )) (( )) (( ))→→ →→ →→ →→ →→ →→φ ψ χ φ ψ φ χ

P4: (( ))(( ))(( )) (( )) (( ))→→ →→ →→φ ψ ψ φ~ ~

In each of these four axiom schemas, we have 
expressions representing logical connectives; here 
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49Axiom Schema

the arrow, “→ ,” represents material implication 
and the tilde “~” represents negation. Other sys-
tems might also involve symbols for disjunction 
(“∨”), conjunction (“∧”), and the biconditional 
(“↔”). Technically, the left and right parentheses 
are also part of this logical vocabulary, necessary 
for indicating and disambiguating the scope of 
the logical constants. We also have the expres-
sions “φ,” “ψ,” and “χ” representing arbitrary 
well-formed formulae in the formal language in 
which the system is expressed. These latter expres-
sions are sometimes called metalinguistic vari-
ables as they are not themselves expressions in the 
formal language of the system but are expressions 
from the metalanguage, the language we use to 
talk about and study the formal language and 
properties of the system. Thus, in contrast to the 
metalanguage, the language of the system itself is 
called the object language, and, in the context of 
propositional logic, the metalinguistic variables 
range over the class of well-formed formulae (or 
wffs) in the object language. Most commonly 
either Greek letters or uppercase Latin letters  
(A, B, C, . . .) are used to denote metalinguistic 
variables. 

Each of P1 through P4 is thus a template in 
the sense of being a string of symbols that out-
lines and represents the shape or form that an 
axiom in the Hilbert system of propositional 
logic can take. However, these axiom schemas 
also implicitly involve a rule indicating how they 
are to be instantiated or filled in for the sake of 
producing a genuine axiom expressed in the lan-
guage of the system itself. That rule is implicit in 
the range of values that the metalinguistic vari-
ables, “φ,” “ψ,” and “χ” can take, which is here 
stipulated to be the class of well-formed formu-
las of the formal language of propositional logic. 
To show what these instances might look like we 
can first briefly sketch a formal language for the 
propositional logic embodied in this Hilbert 
System:

Let LPROP be the language of propositional 
logic, defined as the following set of wffs:

 i. ∈∈P L ,PROPi  for every ∈∈i 

 ii. If ∈∈φ LPROP  then ∈∈(φ) LPROP

 iii. If ∈∈φ, ψ LPROP  then →→ ∈∈(φ χ) LPROP

 iv. Only expressions formed by applications of  
(i)–(iii) are wffs of LPROP.

Thus, applying these formation rules, the fol-
lowing strings of symbols are all examples of well-
formed formulae in LPROP:

a. →→ →→P P P( )1 4 23

b. (( ))(( ))(( )) (( ))→→ →→ →→ →→P P P P P~ ~2 217 1300 14723 0

c. (( ))(( ))(( ))→→ →→ →→P P P P~5 7 9 11

Procedurally, having first specified a formal 
language for propositional logic so that we now 
know what counts as a wff, the axiom schemas P1 
through P4 are then introduced to specify which 
specific wffs in the language count as axioms of 
the deductive system. The following are therefore 
axioms of the system as they are instances of the 
axiom schemas P1 through P4, respectively:

P P

P P P

P P P

P P P P

P P P P~ ~

7 7

7 10 7

2 111 6455

2 111 2 6455

5 108044 108044 5
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(( )) (( ))
(( ))
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→→ →→ →→
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→→ →→ →→

The following more complicated formulae are 
also axioms and instances of P1 through P4, 
respectively:
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50 Axiom Schema

The axioms can thus become almost arbitrarily 
complex. In a Hilbert system for propositional 
logic, the axiom schemas are typically also supple-
mented with a schema for a rule of inference indi-
cating how one formula may be permissibly 
transformed into another within the system. A 
common example of a rule used in this context is 
modus ponens:

(( ))→→φ ψ
 φ               

ψ

This rule tells us that from any pair of formulae 
that have the schematic forms represented by 
“(ϕ → ψ)” and “ϕ” we can infer a formula with 
the form represented by “ψ.” Again, there will be 
infinitely many pairs of formulae that have this 
form, and so the modus ponens schema allows us 
to generalize over all of them by finite means.

In more powerful logical languages and sys-
tems, such as the first-order predicate calculus and 
axiomatic systems of first-order logic, axiom sche-
mas are again used to specify an infinite collection 
of axioms by finite means. However, unlike with 
those of propositional logic, the templates and 
rules for axiom schemas in first-order logic also 
deal with expressions of types other than just the 
wffs in the language, in line with the greater 
expressive power of the predicate calculus. The 
following axiom schemas for the universal quanti-
fier ‘∀’ in first-order logic illustrate this 
difference:

PC1: (( ))(( )) (( ))∀∀ →→α φ φ β α/

PC2: (( ))(( ))(( )) (( )) (( ))∀∀ →→ →→ ∀∀ →→ ∀∀α φ ψ α φ α ψ

PC3: (( ))(( ))→→ ∀∀φ α φ  when “α” is not free in ϕ

In PC1, the expression “ϕ(β/α)” indicates a 
metalinguistic variable for a wff that is exactly the 
same as that instantiating the metalinguistic vari-
able “ϕ” except that it may differ (at most) in hav-
ing the term that instantiates the metalinguistic 
variable “β” substituted for all occurrences of the 
bound term instantiating the metalinguistic vari-
able “α.” PC2 is more straightforward, indicating 
that the universal quantifier binding a term dis-
tributes over the material conditional. Finally, PC3 

tells us that all instances of the conditional “(ϕ → 
∀α(ϕ))” are axioms whenever the bound term 
instantiating the metalinguistic variable “α” does 
not occur unbound (free) in the wff instantiating 
the metalinguistic variable “ϕ.” As such, we can 
see that axiom schemas for axiomatic systems of 
first-order logic require variables for expressions 
other than wffs, that is, they require variables for 
terms (where the terms include variables, con-
stants, and function applications in the language 
of the predicate calculus). Relative to a first-order 
language with variable terms “x0, x1, x3 ...,” con-
stant terms “c0, c2, c3 ...,” (unary) function terms  
“f0, f1, f3 ...,” and (monadic) predicate terms  
“F0, F1, F3 ... .” Some possible instances of PC1–
PC3, respectively, are the following: 

As with the language of propositional logic, 
there will be infinitely many such axioms, most of 
which will be much more complicated than these 
three. The value of these axiom schemas is that we 
don’t have to worry about the impossible task of 
specifying these axioms individually, since the 
schemas allow us to capture them all in one fell 
swoop.

Axiom Schemas in Mathematics

Moving from logic to mathematics, axiom sche-
mas are also indispensable in the formal study 
of axiomatic theories. However, it is perhaps 
worth noting that the techniques and practices 
of most working mathematicians are typically 
less emphatically formal than those of logi-
cians. Two well-known examples are worth 
considering, however. The first is from first-
order Zermelo–Fraenkel set theory and is 
known as the axiom schema of separation. One 
possible formulation of this axiom schema is as 
follows:

(( ))(( ))(( ))(( ))(( ))(( ))∀∀ ∃∃ ∀∀ ∈∈ ↔↔ ∈∈ ∧∧ φs s s s s s s0 1 2 2 1 2 0

(( ))
(( ))

(( ))
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(( ))

(( )) (( ))
(( )) (( )) (( ))
(( )) (( ))
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F f c x F f c
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51Axiom Schema

Here, the metalinguistic variable “ϕ” can be 
replaced by any formula in the language of first-
order set theory. In practice, “ϕ” will typically be 
instantiated with a formula in which the variable 
“s2” occurs free. Hence, the formula instantiating 
“ϕ” will represent some condition that the values 
of “s2” must satisfy, thus separating out from the 
sets that are the values for the variable “s0,” those 
subsets whose members all satisfy the condition in 
question. For example, an instance of the axiom 
schema of separation is

(( ))(( ))(( ))(( )) (( )) (( ))(( ))∀∀ ∃∃ ∀∀ ∈∈ ↔↔ ∈∈ ∧∧ ∀∀ ∈∈ →→ ∃∃ ∈∈s s s s s s s s s s s s s~0 1 2 2 1 2 0 3 3 2 4 4 3

(( ))(( ))(( ))(( )) (( )) (( ))(( ))∀∀ ∃∃ ∀∀ ∈∈ ↔↔ ∈∈ ∧∧ ∀∀ ∈∈ →→ ∃∃ ∈∈s s s s s s s s s s s s s~0 1 2 2 1 2 0 3 3 2 4 4 3

This instance of the schema is an axiom telling 
us that there is a (possibly empty) subset of every 
set where the members of that subset are such that 
their own members do not have any members 
themselves. 

Another indispensable axiom schema shows up 
in formal theories of arithmetic. This is the axiom 
schema of induction, telling us that if zero satisfies 
some condition—that is, the value of the metalin-
guistic variable “ϕ”—and any number satisfying 
this condition implies that its successor also satis-
fies the condition, then all numbers satisfy the 
condition

 

For example, here is one instance of the axiom 
of induction where the condition specified by the 
wff instantiating the metalinguistic variable, 

 “ϕ( ),” is the condition ∑∑ (( )) (( ))
==

++(( ))
==

i
i i 1

2i 0
 (I have 

omitted the numerical subscripts on the bound 
variable “x” for readability):

Again, the impossible task of individually speci-
fying every numerical property that we might 
want to deploy in an axiom of induction is side-
stepped thanks to the use of an axiom schema.

Concluding Remarks

Throughout this entry, the notion of a metalin-
guistic variable has been ubiquitous. Indeed, the 
distinction between the object language (e.g., the 
formal languages of propositional logic, the predi-
cate calculus, and first-order set theory) and the 
metalanguage (here, the language of English sup-
plemented with symbols like the Greek letters 
used as variables) is arguably the essential techni-
cal distinction underlying the use of axiom sche-
mas. The point of this distinction was made 
vividly by Tarski (1983, chap. 8) in his proposal of 
the T-schema, an axiom schema for axiomatizing 
the concept of true sentence in a formal 
language:

� � SFor any ,   is true if and only ifφ φ  

Here the corner quotes surrounding “ϕ” indi-
cate that we are not talking about what it takes 
for “ϕ” to be true, as this symbol is only a meta-
linguistic variable over sentences in the object 
language, not an actual sentence in the object 
language. Meanwhile, S is a variable representing 
the translation of the value of “ϕ” into the meta-
language. As Tarski helped to make clear, the dis-
tinction between the object language and 
metalanguage is needed to avoid semantic closure, 
in which the language has expressions that refer to 
other expressions within the same  language. As 
MacFarlane makes clear on pages  61–65 in his 
textbook, avoiding this kind of closure, and thus 
avoiding the so-called semantic paradoxes, is 
another primary motivation for making use of 
axiom schemas in logic and mathematics. 

Richard J. Teague

See also Formal Sciences; Logic and Language; 
Mathematics, 20th Century; Theories, Semantic 
Conception of; Set Theory
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AxioMAtic theory

In ancient Greek philosophy, axioms were first 
principles that required no reasoning or justifica-
tion as they could be believed to be immediately 
apparent. In modern philosophy of science, at 
least in the non-statement view of metascientific 
structuralism, axioms are part of a formal recon-
struction of a theory which, according to the 
founders of this movement in philosophy of sci-
ence, abated the longish discussion in the commu-
nity of the translatability between observational 
and theoretical terms and statements. This entry 
traces the development of axiomatic theory from 
its origins, describes the elements of the theory 
and its models, and concludes with a note on its 
applications in various sciences.

Observational and Theoretical Statements

Rudolf Carnap, in his Philosophical Foundations 
of Physics, still found “the distinction between 
what may be called . . . empirical laws and theo-
retical laws” [ . . . ] “one of the most important 
distinctions between two types of laws in sci-
ence,” empirical laws referring to “properties 
directly perceived by the senses” such as “blue,” 
“hard,” “hot” from the point of view of the phi-
losopher, or properties “that can be measured in a 
relatively simple way” (Carnap, 1966, p. 225). 
But the distinction between properties perceivable 
by the senses and those measured in a relatively 
simple way is not really clear-cut, and the simplic-
ity of a measurement is not clearly definable 
either. Moreover, the problem persists that 

theoretical laws were formulated in theoretical 
terms, whereas empirical laws were formulated in 
observable terms.

Hence, it became necessary to introduce so-
called correspondence rules for a translation 
between the two kinds of terms, for instance 
between the temperature of a gas as an observable 
in Carnap’s wider sense—temperature being a 
term of the observational language—and the 
mean kinetic energy of its molecules as a theoreti-
cal term in the theoretical language, or to give an 
example from the social sciences, between the 
answer to a question such as “How much confi-
dence do you have in President Joseph Biden?” 
with possible answers “a lot of confidence, some 
confidence, not too much confidence, no confi-
dence at all” as an observable and the propensity 
to cast a vote in favor of President Biden, the latter 
being a theoretical term, because not even the 
interviewee would be able to give a numerical 
value to their probability to vote in the oncoming 
election for the incumbent candidate. The latter 
example shows that what is often called the oper-
ationalization of a theoretical term can be merely 
arbitrary with the help of one or more such 
observable answers to a related question. Another 
collection of possible answers, for example, 11 or 
10 or 5 instead of 4 possible answers, would lead 
to another operationalization result. To keep this 
example, one could even argue that one needs 
some other theory relating the propensity to vote 
for a certain candidate to the propensity to give 
certain answers to certain questions, such that 
correspondence rules would be necessary to link 
attitudes, voting, and answer propensities to 
answers given in a certain interview situation.

The so-called syntactic view of theory structure 
uses these correspondence rules to translate 
between observational and theoretical language 
(but this kind of translation is obviously not of the 
same kind as a translation between, say, English 
and Chinese).

The first but incomplete attempt to overcome 
the dichotomy between observable and theoretical 
terms was made by Frank P. Ramsey in what is 
called the Ramsey sentence of a theory  
(also referred to as a Carnap sentence),  
which eliminates the theoretical terms from a 
theoretical law. If the interpreted theory 
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(( ))(( ))== ∧∧τ τ τ τ ω ωTC T C, , , , ; , ,n i i m1 1k1
  

 is the 

conjunction of all theoretical postulates T (all of 
them formulated in the theoretical language) and 
all necessary correspondence rules C (these in turn 
using terms from both languages, observational 
and theoretical), then it is possible to replace the 
theoretical terms τij  which occur in the corre-
spondence rules (with its observables ω ωn1 ) 

with new variables φi and replace the interpreted 
theory with its Ramsey sentence, which postulates 
that (( ))∃∃ ∃∃ϕ ϕ ϕ ϕ ω ωTC , , , , ,k k n1 1 1    now 
claims that substitutions exist for the uninter-
preted theoretical terms.

This elimination, however, leaves open the 
question of how theories are linked together, as in 
the voting propensity example above. The solu-
tion came with the so-called semantic view of 
theory structure, which introduced set-theoretical 
entities instead of linguistic ones; this was John D. 
Sneed’s effort to define the logical structure of a 
theory with set-theoretic predicates instead of 
speaking about statements whether they are obser-
vational or theoretical (which is why this view on 
theories is called the non-statement view).

Elements of the Theory and Its Models

The structuralist program, which builds upon 
Sneed’s work, is centered on the definition of the-
ory elements. A theory element is a mathematical 
structure consisting of a theory core and a set of 
intended applications, whereby the theory core 
describes what can be said about the intended 
applications of the theory core. Theory elements 
are usually one or a few laws within a scientific 
discipline, for instance Hooke’s spring law (HSL) 
or classical particle mechanics dealing with masses, 
forces, velocities, and so on, as the origin of struc-
turalist consideration was clearly within physics, 
mainly because in physics mathematical formal-
izations have a long tradition dating at least as far 
back as Newton and Kepler.

The theory core is a set-theoretic predicate 
which is typically defined as follows:

T is a theory element if and only if there exist sets 
of partial potential models Mpp, of potential 

models Mp, of models M, of constraints GC, of 
links GL and of intended applications I such that

==K M M M GC GL, , , ,pp p  is a theory core,

==T K I,  is the theory element and

⊆⊆I Mpp

The set of partial potential models Mpp is  
defining its elements x as another mathematical 
structure listing all terms which are necessary  
to speak about the theory in question. In the case 
of Hooke’s law, this list contains a finite set of 
springs S, a finite set of identical pieces of metal  
or some other material which can easily brought 
into an identical form (weights) W, three functions 
n(w, s), l(w, s), and k(w, s) = l(w, s)/n(w, s) yielding 
the number of weights in a collection w of these 
weights hanging from a spring and the length of 
the extension of the spring caused by the weight 
collection w, whereas k(w, s) is the outcome of an 
experiment with spring s and weight collection w. 
In this simple example, the difference between Mp 
and Mpp is very small; it consists of the observa-
tion that for small lengths of the extension of the 
spring, k does not depend on w. The terms s, w, n, 
l and k can each separately be defined without 
knowing anything about mechanics: Springs and 
weights can be identified as such, weights in a col-
lection can be counted, extension lengths can be 
measured, and the quotient k can be calculated. It 
is only the assumption that k does not depend on 
the size of the collection of weights but only on 
the characteristics of the spring that allows for a 
redefinition of k(s) = l(w, s)/n(w, s) and separates 
partial potential models from potential models, as 
the full model is a potential model for which the 
axiom of Hooke’s spring law holds, namely that 
for all collections of weights and for each spring 
which is not extended beyond a certain maximum 
extension l0(s), k(s) = l(w, s)/n(w, s) is constant and 
independent on the collection of weights, from 
which it follows that l0(s) and k(s) can be consid-
ered as device constants. Moreover, as the experi-
menter will perhaps use their hands to extend the 
spring, they will feel Carnap’s property directly 
perceived by the senses as it costs more and more 
effort the longer the extension is. Hence, the 
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experimenter will assume that there is a mono-
tonically increasing function between their effort 
and the extension, and it seems reasonably to 
define this function as a linear function—the HSL-
theoretical term force—and use it to make this 
effort quantitatively measurable as proportional 
to the length of the extension.

The difference between observable terms and 
theoretical terms is redefined in a straightforward 
manner as theoreticity, always in reference to a 
theory in question and not an absolute feature of 
a term. Counting weights, measuring lengths, and 
dividing numbers necessitate their own theories 
but not a theory of springs and weights. Hence, 
the force and the device constants l0(s) and k(s) are 
HSL-theoretical terms, all the others are not (and 
perhaps the value of l0(s) depends on the accuracy 
with which l(w, s) and consequently k(s) is mea-
sured; the precision of n(w, s) is a lesser problem 
in this idealized experiment).

Constraints, Links, and Theory Nets

Constraints of a theory collected in the set GC are 
about restrictions to its applicability; in the simple 
example above, this could be the constraint that 
all pieces are of the same volume, form, and of the 
same chemical composition (i.e., the theory would 
not apply to pieces some of which are balls 
whereas others might be extremely flat but with 
the same volume) and that these three features are 
constant over time (i.e., the theory would not 
apply to identical pieces of ice which might melt 
away over time).

Links of a theory element collected in the set 
GL connect it to other theory elements; in the 
simple example above, volume and chemical 
composition are used as if they were properties 
“that can be measured in a relatively simple 
way.” But to determine the chemical composition 
of a weight hanging from a spring, some chemis-
try is necessary; and even to determine the equal-
ity of the volume of several metal balls it is 
necessary to measure their diameters in cm and to 
assume that the same formula from geometry 
yielding the volume in cm3 applies to all of them. 
Hence, in a way the theoretical links replace the 
correspondence rules of earlier approaches, but 
with the important difference that the observa-
tional part of a correspondence rule is free from 

any theory. Links are defined as sets of tuples of 
terms which connect correspondent terms of the 
two theories in question. In the example above, 
there is the term l denoting the length of the 
extension of the spring in the theory of Hooke 
springs and the term l* in geometry, both of 
which map to integer numbers (multiples of a 
certain small unit length).

Not only can two theories be linked together, 
but theory nets can be built that potentially 
encompass wide areas within and across disci-
plines. Thus, the discussion about reducing an 
observational law—say the law pv = kT connect-
ing pressure p, temperature T, and volume v of a 
gas—can be restated in terms of a theoretical law 

assuming that == ==p
E
v

kT
2
3

, where the pressure is 

related to the mean kinetic energy E of the gas 
molecules. This also ends the discussion about 
reductionism as the assumption that social science 
could somehow be reduced to psychology, the lat-
ter to neurobiology, and further to chemistry, and 
still further to particle physics; instead theoretical 
terms of a theory in one of these disciplines could 
be linked to (instead of reduced to) theoretical 
terms of another discipline.

In the social sciences, most theories have many 
more terms than in the simple example from clas-
sical mechanics. Nevertheless, a structuralist 
reconstruction of middle-range theories is possi-
ble, too. A theory, call it AOF, about attitude or 
opinion formation, containing terms such as the 
propensity to vote for a certain candidate or party 
and the influence of communicating attitudes 
between citizens certainly has a number of AOF-
theoretical terms—for example, ×× →→α P T R:  
such that α (( ))p t,  is the position of person p at 
time t on a left–right scale and ×× →→δ P P R: —
such that (( ))δ p p,1 2  and (( ))δ p p,2 1  are the move-

ments of Person p1 and Person p2 on the left–right 
scale after they met each other and they have dis-
cussed their attitudes toward the candidates and 
parties running in an oncoming election. In an 
application of such a theory, the distributions of 
votes cast for candidates and parties would be 
observable as AOF-non-theoretical terms (as these 
could easily be counted) and the distribution of 
answers to questions like the one cited above 
(“How much confidence do you have in President 
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55Axiomatic Theory

Biden?”). A theory about measuring attitudes with 
algebraic algorithms such as principal component 
analysis (PCA) could be linked to AOF, and this 
intertheoretic link would help to reinterpret the 
PCA-theoretical terms α and δ as AOF-non-theo-
retic terms. The function that connects (( ))δ p p,1 2  

on one hand with (( ))α p t,1  and (( ))α p t,2
 on the 

other hand would then be the actual AOF-theoret-
ical term. The theory would have to provide axi-
oms that govern the development of the individual 
attitude changes and of the distribution of atti-
tudes over a large population in which persons 
meet each other under certain conditions. Some of 
these conditions of meeting might be observable, 
in other words AOF-non-theoretical, whereas 
other such conditions—for instance preferences to 
discuss with other persons depending on the 
known or guessed attitude difference between two 
persons who meet occasionally cannot be directly 
observed. A few attempts to reconstruct theories 
of opinion formation have already been made and 
show the difficulties of such attempts, which are 
mainly caused by at least two of the big differ-
ences between the systems physical theories are 
about and those which social scientists deal with: 
The heterogeneity of the particles social scientists 
have to take into account and the fact that human 
beings, unlike physical particles, can communicate 
individually and change the internal state of other 
individuals. Hence, theory nets in economics, and 
the social sciences generally, but also in the envi-
ronmental sciences with their extremely complex 
systems will be much more widespread than in 
physics. (Balzer, Moulines, and Sneed, the found-
ing fathers of the structuralist program, in their 
1987 book themselves reconstructed only pure 
exchange economics with an intended application 
that they described as “some specific village at 
some specific time” (Balzer et al., 1987, p. 161) 
and did not continue their approach to the formu-
lation of constraints or links.)

Applications in Various Sciences

Since the late 1970s, the method of formally recon-
structing theories according to the non-statement 
view has been applied to various (pre-formal) 
 theories in various disciplines. As the movement 
started within physics, the first candidates to be 

reconstructed were taken from classical physics, 
thermodynamics, quantum mechanics, chemistry, 
biology, medicine, neuroscience, psychology, eco-
nomics, management, and the social and political 
sciences. It is not surprising that the density of 
publications in these disciplines decreases along 
this list, and it is particularly striking that the 
acceptance of the non-statement view seems to 
have been greater in German- and Spanish-speak-
ing countries than in English-speaking countries 
(although English as a publication language still 
prevails). The disciplines at the end of the list above 
are much less formalized and quantified than those 
at the beginning of the list; hence the late and 
sparse introduction of theory reconstruction into 
studies of organizations and large social and politi-
cal systems is understandable, as the reconstruction 
of a theory that was formulated mathematically 
long ago is much easier than that of a verbally for-
mulated theory with all its ambiguities. With the 
emergence and continued development of compu-
tational social science, this situation will certainly 
change in the years to come.

Klaus G. Troitzsch

See also Data Models; Logical Theory, Structuralism
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