2 RASCH MODELS FOR RATING
SCALE ANALYSIS

This chapter introduces and illustrates two popular measurement
models that facilitate rating scale analysis: The Rating Scale model
(RSM; Andrich, 1978) and the Partial Credit model (PCM; Masters,
1982), along with the Many-Facet Rasch model (MFRM; Linacre,
1989), which can be specified as an extension of both of these. models.
These models belong to the family of Rasch measurement theory
models (Rasch, 1960; Wright & Mok, 2004), which is a useful frame-
work for rating scale analysis (discussed further below).

Chapter 2 begins with a brief overview of Rasch measurement theory
and Rasch models in general. Then, these models are introduced and
illustrated using the example CES-D data. Chapter 3 provides a detailed
illustration of rating scale analysis using the selected Rasch models.

What Is Rasch Measurement Theory?

Rasch measurement theory (Rasch, 1960) is a theoretical framework
based on the premise that principles of measurement from the physical
sciences should guide measurement procedures in the social and
behavioral sciences. Georg Rasch proposed a theory for social and
behavioral measurement that can be summarized in four requirements:

(1) The comparison between two stimuli should be independent of
which particular individuals were instrumental for the comparison;

(2) and it should also be independent of which stimuli within the
considered class were or might also have been compared.

(3) Symmetrically, a comparison between two individuals should be
independent of which particular stimuli with the class considered
were instrumental for the comparison;

(4) and it should also be independent of which other individuals were
also compared on the same or on some other occasion.

(Rasch, 1961, pp. 331-332)
Together, these four requirements constitute invariant measurement.

Rasch (1977) used the term specific objectivity to describe specific sit-
uations in which invariant measurement is approximated. Approximate
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adherence to invariant measurement is considered a prerequisite for
measurement in the context of Rasch measurement theory. In other
words, from the perspective of Rasch measurement theory, it is not
appropriate to interpret and use the results from measurement pro-
cedures unless there is evidence that the requirements for invariant
measurement are appropriately satisfied.

The requirements for invariant measurement are related to two other
requirements that characterize Rasch measurement theory. First, Rasch
measurement theory requires that item responses adhere to unidimen-
sionality. Unidimensionality occurs when one latent variable (i.e.,
construct) is sufficient to explain most of the variation in item
responses. In the context of the CES-D measure of depression mentioned
in Chapter 1, unidimensionality would imply that participants’ level of
depression is the primary variable that determines their responses. Sec-
ond, Rasch measurement theory requires that item responses reflect local
independence. Local independence occurs when participant responses to
individual items are not statistically related to their responses to other
items after controlling for the primary latent variable. In the CES-D
scale, local independence implies that participants’ responses to one item
(e.g., Item 1: I was bothered by things that usually don’t bother me) do not
influence their responses to another item (e.g., Item 2: I did not feel like
eating; my appetite was poor) beyond what could be predicted given their
level of depression. One common cause of violations of local indepen-
dence in survey research is item stems that contain the same or nearly the
same statements. For-example, researchers have observed violations of
local independence.in surveys that contain pairs of statements that are
nearly identical but oriented in opposite directions. Using participant
responses to the Interpersonal Reactivity Index measure of empathy,
Yaghoubi Jami and Wind (2022) observed a violation of local inde-
pendence between Item 16: After seeing a play or movie, I have felt as
though I were one of the characters and Item 12, which is a reversed
version of nearly the same statement: Becoming extremely involved in a
good book or movie is somewhat rare for me. We will discuss methods that
researchers can use to evaluate unidimensionality and local independence
later in this chapter.

What Are Rasch Models?

Rasch models are measurement models that are theoretically and
mathematically aligned with Rasch measurement theory (Rasch, 1960,
see Chapter 1). Rasch models are mathematically similar to several
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other item response theory (IRT) models, such as the one-parameter
logistic model (Birnbaum, 1968), but the theoretical perspective
underlying the development and use of the model is different. Specif-
ically, Rasch models serve as a guide for evaluating the characteristics
of item response data; in other IRT approaches, models are selected
whose parameters offer a good representation of the characteristics of
the data. The major difference between the Rasch approach and other
IRT models is that Rasch models use theory to evaluate the charac-
teristics of item responses, whereas other IRT models use the charac-
teristics of item responses to identify and select a model.

The simplest Rasch model is the dichotomous Rasch model for item
responses (x) scored in two ordered categories (x = 0, 1). These
responses are often observed in multiple-choice achievement tests or
surveys where participants are asked to agree or disagree with state-
ments. The dichotomous Rasch model states that the probability of
Participant n scoring x = 1 rather than x = 0 on Item 7 is determined
using the difference between the participant’s location on the construct
(e.g., the participant’s level of depression) and the item’s location on the
construct (e.g., the level of depression required to agree with an item).

The equation for the dichotomous Rasch model appears in the
literature in two formats that' are mathematically equivalent but
describe the model in slightly different terms: The exponent (exp)
format, and the log-odds (In) format. We will start with the log-odds
format, which is visually simpler and clearly illustrates key character-
istics of the theory underlying Rasch measurement:

Pritre
ln< ni(x ”) — 6,— &, @.1)

ni(x=0)

In Equation 2.1, 6, is the location of Participant n on the construct
(i.e., person ability) and §; is the location of Item i on the construct
(i.e., item difficulty).! In words, Equation 2.1 states that the log of the
odds that Participant n provides a correct or positive response (x = 1),
rather than an incorrect or negative response (x = 0) on Item i is
determined by the difference between the participant location and the
item location on the construct. When the difference between person

'In the original presentation of Rasch measurement theory, Rasch (1960) used
the Greek letter “B” to represent person locations. In this text, the Greek letter
“0” is used for alignment with other recent publications on Rasch models and
with the non-Rasch models that are presented in Chapter 4.
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locations and item locations favors the person, this means that the
person is more likely to score 1 than 0. In this case, item difficulty
(i.e., the level of the construct required for a correct or positive
response) is lower than the person’s location on the latent variable
(i.e., the person’s level of the construct).

For example, in Figure 1.1, Participant B would be expected to
provide a correct or positive response to Item 1 because the person
location exceeds the item location. When the difference favors the item,
this means that the person is more likely to score 0 than 1. In this case,
the item difficulty exceeds the person’s location. Participant A‘would be
expected to provide an incorrect or negative response to Item 1 because
the item location exceeds the person location.

Figure 2.1 illustrates this relationship using an item response function
(IRF) for Item 1 and Item 2, both of which were scored in two cate-
gories (x = 0, 1). In the figure, the x-axis shows the latent variable,
expressed as a logit (log-odds) scale. In many Rasch and IRT appli-
cations, logit scale estimates range from around -3 to 3 logits that
reflect increasing levels of the latent variable as the logit scale progresses

Figure 2.1 Example Item Response ‘Functions for the Dichotomous
Rasch Model
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from low to high. The y-axis shows the conditional probability for a
response in category 1 (x = 1). The lines show the expected pattern of
response probabilities according to the dichotomous Rasch model for
Item 1 (solid line) and Item 2 (dashed line). As participant locations on
the construct increase (e.g., higher levels of depression), the probability
for a positive rating (x = 1) also increases for both items.

The IRFs in Figure 2.1 reflect the requirements for invariant mea-
surement, unidimensionality, and local independence as defined in
Chapter 1 and earlier in this chapter because the difference between
participant and item locations on the latent variable is sufficient to
predict a response in category 1. In addition, for all locations on the x-
axis, Item 1 is easier than Item 2, such that item ordering is invariant
across participant locations on the latent variable.

It is also possible to state the dichotomous Rasch model equation
using an exponent form such that the term on the left side of the
equation is the probability for a response in category 1 rather than in
category 0. This version of the model equation is mathematically
equivalent to Equation 2.1, but it is presented differently. Specifically,
log odds are transformed to probabilities.

The exponent format of the dichotomous Rasch model highlights the
comparison between response categories. In the case of the dichoto-
mous Rasch model, these categories are x = 0 and x = 1. The exponent
format is useful for understanding Rasch models for rating scale data
(discussed later in this chapter). The exponent form of the dichotomous
Rasch model can be stated as:

Pni(x:l) _ exp(an - 81)
Pm’(x=0) 1+ exp(@n - 81) '

2.2)

In Equation 2.2, the parameters are defined the same way as they
were in Equation 2.1.

Polytomous Rasch Models for Rating Scale Analysis

Building on the dichotomous Rasch model, researchers have pro-
posed measurement models for data in three or more ordered categories
(i.e., polytomous data), such as data that are obtained from attitude
surveys or educational performance assessments. Polytomous Rasch
models share the same basic requirements as the dichotomous Rasch
model. However, unlike the dichotomous model, a score of x = 1 is not
expected to become increasingly likely with increasing participant
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locations on the construct because scores in higher categories (e.g., x = 2
and x = 3) become more probable as participant locations on the
construct increase. In the context of the CES-D scale, as participant
depression increases, they are more likely to respond in a higher category.

Figure 2.2 illustrates this relationship for a rating scale with five
ordered categories (x = 0, 1, 2, 3, 4). The x-axis shows the logit scale
that represents the construct, and the y-axis shows the conditional
probability for a rating in category k given participant and item loca-
tions. Separate lines show the conditional probabilities for each cate-
gory in the rating scale. Moving from left to right on the x-axis, the
probabilities for higher rating scale categories increase -while the
probabilities for lower rating scale categories decrease. In other words,
as participant locations on the construct increase, they are more likely
to respond in higher categories. This basic relationship.can also be seen
in Figure 2.3, which shows a polytomous IRF based on the rating scale
category probabilities in Figure 2.2. In Figure 2.3, the y-axis shows the
model-expected rating at each location on the logit scale, which is
shown along the x-axis. As logit-scale locations increase, expected
ratings increase.

Figure 2.2 Rating Scale Category Probability Curves
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Figure 2.3 Expected Ratings

Expected Rating
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Why Are Polytomous Rasch Models Useful for
Rating Scale Analysis?

Polytomous Rasch models are particularly suited to rating scale
analysis for two main reasons. First, they are characterized by the same
requirements as the-dichotomous Rasch model. As a result, researchers
can use polytomous Rasch models to evaluate item responses for evi-
dence that they adhere to fundamental measurement properties. Dis-
crepancies. between model requirements and item responses alert
researchers to components of a measurement procedure (e.g., items)
that warrant revision, aspects of theory about the construct that may
warrant reconsideration, and directions for future research.

Second, polytomous Rasch models model the probability for a rating
in a given rating scale category using an adjacent categories probability
Sformulation. This means that the model is based on comparisons
between pairs of categories, as we saw in the exponent form of the
dichotomous Rasch model (Equation 2.2), where the probability for
x = 1 was compared to the probability for x = 0. The polytomous
Rasch model equation can also be stated in exponent form, and it is
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nearly identical to the dichotomous version of the model (Equation 2.2)
with two major differences. First, the polytomous Rasch model com-
pares the probability for a response in category k (e.g., Strongly Agree)
to the probability for a response in category k — 1 (e.g., Agree). Second,
the equation includes a threshold parameter (r) that represents the
difficulty associated with a specific rating scale category. In Figure 2.2,
thresholds are the intersection points between adjacent categories. We
discuss thresholds in more detail later in this section.

The exponent form of the polytomous Rasch model is written as
follows:

Pritx=k) __exp[fy — (8i + 74)]
Pni(x:k— 1) + Pni(x:k) 1+ exp[en - (51 + Tk)] 7

(2.3)

where 6,, and §; are defined as before. In Equation 2.3, the item diffi-
culty parameter (8) is combined with a rating scale category threshold
parameter (7). This means that we no longer consider items on their
own, but we now consider items in combination with a set of ordered
rating scale categories. As it is defined in many Rasch measurement
theory applications (Andrich, 1978, 2013), the threshold parameter (1)
is the point on the logit scale at/which the probability for a rating in
category k is equal to the probability for a rating in category k — 1. For
example, in the CES-D scale, the first threshold represents the level of
depression at which participants are equally likely to respond in cate-
gory 2 (Some or a little of the time) as they are to respond in category 1
(Rarely or none of the time).

For a rating 'scale with k categories, there are k — 1 threshold
parameters. In Figure 2.2, there are four arrows that correspond to
the thresholds between each category in a five-category rating scale.
The comparison between adjacent categories (category k rather than
category-k — 1) is an important feature of polytomous Rasch
models that distinguishes them from several other IRT models and
facilitates analyses that are particularly useful for exploring the struc-
ture of rating scales. Specifically, this formulation allows analysts to
identify disordered rating scale categories when they occur (e.g., Item 3
in Figure 1.3). Briefly, disordered categories occur when the level of the
construct required to respond in each category does not match the
intended order. For example, in the context of the CES-D scale, cate-
gory disordering may occur if higher levels of depression are required to
respond in category 4 (Most or all of the time) than are required to
respond in category 3 (Occasionally or a moderate amount of time). We
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discuss category disordering further in the remaining chapters of this
book. Several other popular polytomous IRT models, such as the
Graded Response model (Samejima, 1969), use different probability
formulations that do not allow analysts to use threshold estimates to
identify category disordering when it occurs (discussed further in
Chapters 4 and 6).

Rasch Models for Rating Scale Analysis

In practice, researchers conduct rating scale analysis with three types of
Rasch models: The Rating Scale Model (RSM), the Partial Credit
Model (PCM), and RSM and PCM formulations of the Many-Facet
Rasch Model (MFRM). Table 1.2 provided an overview of these
models in terms of the types of data and rating scale analysis goals that
each of them accommodates.

Before we discuss the use of these models to examine specific indi-
cators of rating scale analysis, it is helpful to understand the basic
characteristics of each model and how they can be used to provide an
overview of the psychometric quality of survey responses. Accordingly,
the remainder of this chapter includes a description of each model
followed by a short example analysis with the CES-D scale data (see
Chapter 1). Relatively more detail is provided for the RSM because this
model shares many characteristics in common with the other models in
this chapter. Statistical software scripts for the analyses are provided
in the online supplement at https://study.sagepub.com/researchmethods/
qass/wind-exploring-rating-scale-functioning. Chapter 3 provides a detailed
demonstration of rating scale analyses using these models.

Rating Scale. Model (RSM)

The RSM (Andrich, 1978), also known as the polytomous Rasch
model, is a Rasch model for item responses in three or more ordered
categories (e.g., x = 0, 1,2, ..., m). As shown in Table 1.2, researchers use
the RSM to analyze survey data when all of the items include the same set
of response categories. The CES-D scale is an example of such an
instrument because participants are presented with the same four rating
scale categories for each item. In addition, researchers use the RSM to
evaluate survey responses for evidence that they adhere to the funda-
mental measurement properties discussed in Chapter 1 and earlier in this
chapter, including unidimensionality, local independence, and invariance.
In the context of rating scale analysis, the RSM offers a relatively simple
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procedure that researchers can use to evaluate rating scale functioning for
an overall set of items (discussed further in Chapter 3).

The RSM is an extension of the dichotomous Rasch model for pol-
ytomous data. In log-odds form, the RSM states that the log of the
odds for a response in category k, rather than in category k — 1 is
determined by the difference between the participant location (), item
location (6), and rating scale category threshold locations (7) on the
logit scale that represents the latent variable:

Pm' x=
In (7‘“ Y ) = 6, — (5 + ). (2.4)
Pni(x:k— 1)

As we saw with the dichotomous Rasch model, the' RSM can also be
expressed by converting the log-odds form to an exponent form, which
describes the probability for a rating in a given rating scale category
(category x) as:

X
exp Y. [0p— (8; + 7%)]
Pritx=k) = k=4 : (2.5)

m

Z Z [011 - (81 + Tk)]

j=0k=0

For Participant n on Item i where the maximum category is m, the
probability for a rating in category x is expressed as the sum of
the probabilities for.the steps up to category x divided by the sum of the
probabilities for all of the steps in the rating scale.

The RSM provides analysts with estimates of participant, item, and
rating scale category threshold locations on the latent variable. We will
consider the information that the RSM provides using an illustrative
analysis with the CES-D scale data.

Application of the RSM to the CES-D Scale Data

The RSM was used to analyze participant responses to the CES-D
scale, which includes 20 items with a four-category response scale
recoded to x = 0, 1, 2, 3 (see Chapter 1). Applying the RSM to the
CES-D scale goes beyond total-score-level analyses of the instrument to
provide information about individual participant, item, and rating scale
category locations on an interval-level scale that represents the
construct. In addition, the RSM provides information about the quality
of item responses from the perspective of invariant measurement
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(Rasch, 1960). Most relevant to this book, the initial application of the
RSM to the CES-D scale data provides information that can be used to
evaluate rating scale functioning.

For the current illustration, the RSM was applied using the Facets
software (Linacre, 2020), which uses Joint Maximum Likelihood Esti-
mation (JMLE). Briefly, JMLE is an iterative procedure that involves
calculating estimates for the model parameters (0, 8, ) using observed
item responses. The procedure converts the observed probabilities in the
data to measures on a log-odds scale, alternating between calculating
item estimates and person estimates to find estimates that reflect the
observed responses. For additional details on JMLE and other esti-
mation procedures for Rasch models and IRT models, please see
DeAyala (2009). Following typical Rasch estimation. procedures, the
mean of the item locations was set to zero logits to provide a frame of
reference for interpreting the parameter estimates on-the logit scale.

Preliminary Analysis: Model-Data Fit

Before interpreting the parameter estimates from the RSM in detail, it
is important to examine the results for evidence that the data approxi-
mately reflect the expectations of the model. The purpose of this
model-data fit analysis is to ensure that it is reasonable and appropriate to
interpret the results before proceeding with further analysis, including
rating scale analyses. This kind of analysis can be considered along the
lines of checking assumptions for statistical models, such as checking the
normality assumption in regression analysis. However, in the Rasch
framework, model-data fit analysis is related to a theoretical framework
that reflects requirements for measurement. Specifically, the Rasch
approach: begins-with the hypothesis that item responses fit the Rasch
model, and the data are fit to the model as an initial step. Then, residuals,
or discrepancies, between model estimates and the data, are examined for
evidence of substantial deviations from model requirements.

There are numerous techniques that researchers use in practice to
evaluate adherence to Rasch model requirements, and it is beyond the
scope of this book to explore Rasch model fit analysis in great detail. In
this chapter, we consider model-data fit for Rasch models using three
indices that are relatively straightforward to interpret. In practice,
researchers often use all three of these indices to provide a comprehensive
overview of model-data fit before they proceed with interpreting the
model results.
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Rasch model-data fit indicators are calculated using residuals, which
are numeric summaries of the degree to which the observed responses
for each person on each item (i.e., the actual survey responses) match
the responses that we would expect to see for each person-item com-
bination if the parameter estimates (person locations, item locations,
and threshold locations) were accurate. Residuals are calculated for
each person-item combination as follows:

Yni = ni Eni» (26)

where X,; is the observed response for person n on item i, and E,, is the
model-expected response for person n on item i. Model-expected
responses are calculated using person location estimates (), item dif-
ficulty estimates (8), and threshold locations (7). Residuals are positive
when the observed response was higher than the expected response (e.g.,
a person responded Strongly Agree when the expected response was
Agree). Residuals are negative when the observed response was lower
than the expected response (e.g., a person responded Agree when the
expected response was Strongly Agree). Larger values of Y, indicate
that there was a large difference between the observed response and the
response that the model expected for a given person-item combination,
and smaller values of Y,,; indicate a small difference.

Researchers can use residuals.to explore many aspects of model-data
fit. In this chapter, we use them to calculate three model-data fit indices
that are relatively straightforward to interpret: (1) proportion of vari-
ance explained by model estimates; (2) correlations among item-specific
residuals; and (3) numeric summaries of model residuals for items and
persons. Graphical analyses that are also relevant to evaluating
model-data fit for the RSM are included in Chapter 3.

Unidimensionality: Proportion of Variance Explained by
Model Estimates

To begin, researchers often examine model results for evidence of
adherence to the Rasch model requirement of unidimensionality (see
Chapter 1). One unidimensionality evaluation procedure that is aligned
with the Rasch framework is to evaluate how much of the variation in
participant responses can be attributed to a single latent variable, such
as depression in the context of the CES-D scale. To evaluate this
property in practice, researchers can calculate the proportion of vari-
ance in responses that can be explained using Rasch model estimates.
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This procedure is conducted automatically in the Facets software
program (Linacre, 2020). It can also be approximated using three
components; the supplemental materials demonstrate how to calculate
these components in the R software packages that support Rasch model
analyses. First, the variance of the original responses (V) is calculated
using observed responses (X,; in Equation 2.6). Then, the variance of
residuals (Vy) is calculated using the Y, values from Equation 2.6.
These values are combined to find the proportion of response variance
attributable to Rasch model estimates: (Vo — Vr)/Vo.

For the simulated CES-D data, the approximate proportion of variance
explained by Rasch model estimates was 24.55%. This value'is greater
than the minimum value of 20% that Reckase (1979) recommended for
Rasch model analyses of potentially multidimensional scales—providing
support for the use of the RSM to analyze the CES-D data.

Local Independence: Correlations Among Item-Specific Residuals

Next, one can evaluate the Rasch model requirement of local inde-
pendence by examining correlations ‘between the residuals that are
associated with each item. The idea behind this analysis is this: If items
are locally independent (thus satisfying the model requirement), there
should be no meaningful relationships among the responses to indi-
vidual items after controlling for the primary latent variable. Low
absolute values of inter-item residual correlations (e.g., |r] = 0.30)
provide evidence to support local independence (Yen, 1984). For the
example CES-D scale data, the absolute values of the inter-item
residual correlations were all less than or equal to |r| = 0.04—thus
providing support.for the use of the RSM to analyze these item
responses. Practically speaking, this means that participants’ responses
to each item did not affect their responses to the other items in the scale
after controlling for their level of depression.

Item- and Person-Specific Fit Analysis

Perhaps one of the most useful features of Rasch models, including
the RSM, is item- and person-specific fit analysis. [tem- and person-fit
indices help analysts identify individual items and individual persons
whose response patterns do not match what would be expected if the
item response data adhered to the model requirements. Such analyses
can be useful from a diagnostic perspective to improve data quality
(e.g., to identify items that may be candidates for removal prior to
further analysis), to identify individual participants whose responses
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warrant additional exploration and consideration, to improve the
quality of the instrument, to inform theory about the instrument or a
sample, among other uses (see Chapter 1). In practice, many researchers
use numeric summaries of item and person-specific residuals in the form
of mean square error (MSE) statistics.

Specifically, one can examine unweighted or weighted means of
standardized residuals for each item and person using outfit MSE sta-
tistics and infit MSE statistics, respectively (Smith, 2004). These sta-
tistics are calculated as follows. First, residuals are calculated for each
item-person combination (Y,;) using Equation 2.6. Then, standardized
versions of the residuals (Z,;) are calculated as:

Zui = Yoi [\ W 2.7)

where W,,; is the variance of X,;, calculated as:

M;

Wy =Y (k= Eu)puit, (2.8)
k=0

where p,,; is the probability for a response in Category k from Person n
on Item i, and M; is the maximum category for Item i.

Outfit MSE statistics are unweighted means of standardized residuals
specific to individual items or persons, calculated as:

N
Qutfit MSE = Y z,* / N. (2.9)

n=1

Just as‘averages are sensitive to outliers in general statistical analyses,
outfit MSE statistics are sensitive to extreme unexpected responses. In
survey analyses, extreme unexpected responses occur when the observed
response is much lower or higher than expected given model estimates.
For example, an unexpected response could occur in the CES-D scale if
a person with very mild or no depression responded Most or All of the
Time on an item that would be considered a relatively strong indicator
of depression. An unexpected response could also occur if a person with
very severe depression responded Rarely or None of the Time to an item
describing a common behavior among most of the participants,
regardless of depression level.

Infit MSE statistics were developed to provide an indicator of
model-data fit that is less sensitive to extreme residuals. These statistics
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are calculated in a similar manner as outfit MSE, but they are weighted
by response variance (W,;):

N
Infit MSE = Y WuZy’ /| Y W (2.10)

n=1 n=1

Because they are weighted, infit MSE statistics are less sensitive to
extreme unexpected responses.

It is beyond the scope of the current text to discuss the interpretation
of outfit and infit MSE in great detail; however, some basic guidance
will be provided here. In contrast to some other statistics such as ¢-
statistics, which have known distributions for specific-sample sizes,
there is no known sampling distribution for outfit and infit MSE sta-
tistics. As a result, they cannot be directly evaluated for statistical
significance. Instead, many researchers use critical values (i.e., cut
scores) based on practical guidance and empirical methods (e.g.,
bootstrap methods) to evaluate them in practical applications
(DeAyala, 2009; Seol, 2016; Walker et al., 2018; Wolfe, 2013). In
general, many researchers agree that values of outfit and infit MSE
around 1.00 indicate acceptable fit-to a Rasch model (Smith, 2004; Wu
& Adams, 2013). Values that exceed 1.00 indicate more variation than
expected in the responses associated with an item or person, and values
that are less than 1.00 indicate less variation than expected. In many
practical applications,-researchers consider values of outfit and infit
MSE that substantially exceed 1.00 as more cause for concern
compared to low values of outfit and infit MSE (Linacre & Wright,
1994). When items.or persons have notably high outfit and/or infit MSE
statistics, analysts can examine the responses associated with the indi-
vidual item or person in more detail for potential explanations. In some
cases, it may be prudent to remove extreme misfitting items or persons
from the data and reestimate model parameters in order to ensure
meaningful interpretation of model results.

For the CES-D scale data, the mean outfit and infit MSE fit statistics
were close to 1.00 for items (outfit MSE: M = 0.99, infit MSE: M =
1.01) and persons (outfit MSE = 0.99, infit MSE: M = 1.00). For items,
the outfit MSE statistics ranged from 0.75 for Item 5 (I had trouble
keeping my mind on what I was doing), which had responses that had the
least amount of variation compared to model expectations, to 1.24 for
Item 17 (I had crying spells), which had the most-frequent unexpected
responses compared to model expectations. Infit MSE statistics ranged
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from 0.73 for Item 5 to 1.34 for Item 17 (I had crying spells). Figure 2.4
illustrates the distribution of item fit statistics from the RSM.

Person-fit statistics are summarized visually in Figure 2.5. Person-
infit MSE ranged from 0.36 for the participant with the most deter-
ministic (i.e., predicable) response to 2.54 for the participant with the
most frequent and substantial unexpected responses. Likewise, outfit
MSE ranged from 0.37 to 1.98. Examination of the histograms of
person-fit statistics suggests that the MSE fit statistics were around 1.00
for the majority of the sample. Although it is possible to explore item fit
and person fit in more detail, these preliminary results are sufficient to
proceed with further psychometric analyses with the RSM; including
rating scale analysis.

Overall RSM Results

Figure 2.6 summarizes the results from the RSM analysis of the
CES-D scale data using a Wright Map (i.e., a “variable map” or
“item-person map”’; see Wilson, 2011), which.is a visual display that
depicts the estimated locations for persons and items on a single
linear scale that represents the construct. Wright maps are a key
feature of Rasch measurement theory-because they provide a concise
summary of model results that capitalizes on the key strengths of
Rasch models (Engelhard & Wang, 2020). Specifically, these displays
illustrate the locations of individual items, persons, and rating scale
categories on a single‘continuum that represents the construct (e.g.,
depression). As a result, they allow analysts to quickly visualize the
location of individual elements within each facet (e.g., individual
persons and items), the overall shape of the distributions of these
elements; and to make comparisons between facet locations on the
same scale. This visual summary of model estimates is invaluable for
understanding and communicating the results from Rasch model
analyses.

The first column in the Wright map (labeled “Logit”) for the RS
analysis of the CES-D scale shows the log-odds scale. This is the metric
on which person, item, and rating scale category threshold locations
were estimated. Low values indicate less-severe depression and high
values indicate more-severe depression. The second column shows the
distribution of person locations on the logit scale, where an asterisk
symbol (*) represents 9 people and a period symbol (.) represents
between 1 and 8 people. For persons, relatively low locations on the
logit scale indicate persons with relatively mild depressive symptoms,
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Figure 2.4 Histograms of Item Fit Statistics for the Rating Scale
Model
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Figure 2.5 Histograms of Person-Fit Statistics for the Rating Scale
Model
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Figure 2.6 Wright Map for the CES-D Scale Data Based on the RSM
Note: In the Logit column, numbers indicate values on the log-odds
scale. In the Person column, asterisks (*) indicate 9 people and periods
(.) indicate between 1 and 8 people. In the Item column, numbers
indicate item numbers from the CES-D scale. In the Scale column,
numbers indicate category numbers from the recoded CES-D scale,
which ranges from 0 to 3. Dashed horizontal lines indicate thresholds
between adjacent categories in the scale
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and relatively high locations on the logit scale indicate persons with
relatively severe depressive symptoms. These results indicate that the
average person location was equal to —0.54 logits, and that the dis-
tribution of person locations was approximately normal or bell-shaped.

The third column of Figure 2.6 shows the locations of the overall
item estimates (8) based on the RSM, with item numbers used to mark
estimated item locations. For items, low locations on the logit scale
indicate that an item requires participants to experience relatively mild
depressive symptoms to report that they frequently experience or
perform the stated behavior, and high locations on the logit scale
indicate that an item requires participants to experience relatively severe
depressive symptoms to report that they frequently experience or
perform the stated behavior. In the estimation procedure, the average
item location was set to zero logits to provide a frame of reference for
interpreting the logit scale. The results from this analysis indicate that
on average, the persons had lower locations on the logit scale relative to
items—indicating that the participants exhibited relatively low levels of
depression.

The final column of Figure 2.6 shows the estimated locations for the
rating scale category thresholds using dashed horizontal lines between
numeric labels for the category numbers (x = 0, 1, 2, 3). Because the
CES-D rating scale includes four categories, there are three rating
scale category threshold estimates (71, 75, 73). The estimated threshold
locations in logits were as follows: 7y = —0.30, 7, = —0.25, and 73 =
0.55. The distance between the first and second thresholds (7; and 75)
is very small (approximately 0.05 logits). To further illustrate these
results, Figure 2.7 shows rating scale category probability curves for
the CES-D rating scale, as estimated with the RSM. Both the numeric
and graphical results indicate that the second rating scale category
does not have a distinct range on the logit scale at which it is the most
probable: We consider these results in more detail in Chapter 3.

Partial Credit Model (PCM)

The PCM (Masters, 1982) is similar in many ways to the RSM: It is a
polytomous Rasch model for item responses in three or more ordered
categories (e.g., x = 0, 1, 2, ..., m) that provides researchers with
estimates of person locations (6), item locations (6), and rating scale
category threshold locations (7) on a linear scale that represents a latent
variable. The major difference from the RSM is that in the PCM,
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Figure 2.7 Rating Scale Category Probability Curves for the CES-D
Scale Data Based on the RSM
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threshold locations are calculated separately for each item. As shown in
Table 1.2, this feature allows researchers to use the PCM when items
have different response scales, and when they want to evaluate rating
scale functioning separately for each item. We discuss choosing between
the RSM and PCM in more detail in Chapters 3 and 6.

In log-odds form, the PCM states that the log of the odds that
Participant n gives a rating in Category k rather than in category k — 1 is
determined by the difference between the Participant’s location on the
construct (A) and the combination of the item location parameter (8;)
with the threshold parameter (1), specific to Item i:

j .
1n<”’(’”‘>> = 0, — i @.11)
Pni(,\':kf 1)

In exponent form, the PCM expresses the probability for a rating in a
given rating scale category (category x) is stated as:
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Z 0 - 5lk)
Prigemt) = "j— (2.12)
jZO AZO

In the PCM, the item location parameter (6;) is combined with the
threshold parameter (1) for each item such that 8, is the location on
the logit scale at which there is an equal probability for a rating in
category k and category k — 1, specific to item i This means that each
item has its own unique set of threshold estimates, as illustrated in
Figure 1.3.

When the PCM is applied to item response data, it provides estimates
of participant, item, and rating scale category threshold locations spe-
cific to each item. These results can be used to examine a variety of
psychometric properties, including rating scale-functioning. The PCM
is particularly useful for rating scale analysis because it facilitates an
examination of rating scale functioning specific to each item in a scale.
This information can be useful for identifying individual items for
which rating scales are not functioning as expected. Chapter 3 provides
a more in-depth exploration of the use of the PCM for this purpose.

Application of the PCM to the CES-D Data

The PCM was used_to analyze participant responses to the CES-D
scale using the Facets software with item locations centered at zero
logits. As noted in-the demonstration of the RSM, it is important to
evaluate the degree to which item responses approximate Rasch model
requirements before interpreting parameter estimates in detail. The
model-data. fit analysis results for the PCM were similar to those
reported earlier for the RSM. Specifically, the PCM estimates explained
25.2% of the variance in observed responses and all of the inter-item
residual correlations had absolute values equal to or less than or equal
to |r| = 0.03. For items, the largest values of outfit MSE and infit MSE
were observed for the recoded version of Item 12 (I was happy; outfit
MSE = 1.26; infit MSE = 1.22) and the recoded version of Item 16
(I enjoyed life; outfit MSE = 1.24; infit MSE = 1.19). The lowest values
of the MSE statistics were observed for Item 5 (I had trouble keeping my
mind on what I was doing; outfit MSE = 0.88; infit MSE = 0.89).

Overall, the results from the PCM analysis of the CES-D scale data
are similar to those from the RSM. Figure 2.8 summarizes the results
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using a Wright Map in the same format as presented in Figure 2.6 for
the RSM. The major difference is that the rating scale category
thresholds are estimated separately for each item; these item-specific
thresholds are shown in the 20 columns to the right of the overall item
locations. The thresholds that correspond to each item are presented in
a column labeled “S” for scale followed by the item number. Exami-
nation of the threshold estimates indicates that there are differences in
the structure of the rating scale across the CES-D items. We explore
these differences in detail using rating scale category probability curves
and other indicators in Chapter 3.

Extending the Rating Scale and Partial Credit Models:
The Many-Facet Rasch Model (MFRM)

In many assessment contexts, additional components of the assessment
system besides persons and items contribute to item responses in
important ways. Linacre (1989) proposed ‘the Many-Facet Rasch
Model (MFRM) as a flexible extension of Rasch models that allows
researchers to include explanatory variables (“facets”). The MFRM is
similar to a logistic regression model where researchers can examine the
relationship between an independent and dependent variable control-
ling for other variables.

The MFRM was originally proposed in the context of performance
assessments in which raters (i.e., judges) score participant performances.
In this context, raters can be included as a facet to estimate rater severity
levels in the same frame of reference as participants and items. This
model also allows researchers to examine the impact of differences in
rater severity on the estimates of student achievement, item difficulty,
and rating scale category thresholds. Beyond rater-mediated assessments,
the MFRM can be applied to a variety of contexts in which it is useful to
include additional explanatory facets besides item and person locations.
For example, many researchers use MFRMs to estimate logit-scale
locations related to item or person features, such as demographic sub-
groups of persons, item types, or administrations of an assessment pro-
cedure in longitudinal designs (e.g., Gordon et al., 2021; Ho, 2019; Primi
et al., 2019; Toffoli et al., 2016).

The MFRM is a flexible model that can be used to extend each of the
Rasch models that have been discussed so far in this book (dichoto-
mous, RSM, and PCM). The MFRM can also be used to extend Rasch
models that are not described in this book, including the binomial trials
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and the Poisson counts Rasch models (see Wright & Mok, 2004). Given
its flexible nature, there is no single formulation of the MFRM that
appears in the literature. Instead, researchers specify their own unique
set of facets and add them to an appropriate Rasch model to reflect
their measurement context. As shown in Table 1.2, this feature allows
researchers to use the MFRM to examine rating scale functioning
related to explanatory variables that are unique to each assessment
context. We discuss this use of the MFRM in Chapter 3.

In the context of rating scale analysis, the MFRM can be used to extend
the RSM and the PCM. A general form of a Rating Scale model formu-
lation of the MFRM (RS-MFRM) can be stated in log-odds form as:

Poici
1n<(’1”)> =0,— Y e— (2.13)

Pn(x=k -1) facets

where 6, and 7; are defined as in the RSM and. )’ ¢ is a linear com-
facets
bination of the researcher-specified facets that reflect aspects of the

assessment system. The estimate of the person’s location on the latent
variable (6,) is controlled (i.e., adjusted) for the facets included in )’ .

facets
For example, a researcher might specify a RS-MFRM that includes
facets for participants, items, and participant education-level sub-
groups. This allows the analyst to examine the probability for a
response controlling for differences related to participant education
level. Stated in log-odds form, this RS-MFRM is:

Py
1n(7p Wik=k) > = 0,—y,—8— T, (2.14)
nji(x=k —1)

where 6;;;:6;,.and 7, are defined as in the RSM, and 1v; is the logit-scale
location for participant subgroup (e.g., education level) j. Researchers
may use the RS-MFRM when they want to examine rating scale
functioning for an overall set of items while controlling for an
explanatory facet such as education level (see Table 1.2).

Similarly, a PCM formulation of the MFRM (PC-MFRM) with the
same facets could be specified as:

Ptk
I wic=k \ o 5 o )is
! <Pnji(x—k -1 n=%j i~ Tik, ( )

In the PC-MFRM, the threshold parameter includes subscripts for
items and rating scale categories (7;)—indicating that separate rating
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scale category thresholds are estimated for each item in the same
manner as was presented for the PCM. This would allow researchers to
examine rating scale functioning for individual items while controlling
for an explanatory facet such as education level.

The PC-MFRM can also be specified to allow researchers to examine
rating scale functioning specific to the levels of an explanatory facet.
For example, researchers may wish to evaluate the degree to which a
rating scale functions in a comparable way between participants with
different levels of education. This type of model could be specified by
changing the subscript on the threshold parameter so that thresholds
vary across the j education level subgroups:

Pi=
Pnji(x:k -1 {

In this specification, the threshold parameter includes subscripts for
participant subgroups and rating scale categories (7;)—indicating that
separate rating scale category thresholds are estimated for each sub-
group. In practice, the PC-MFRM is particularly useful for rating scale
analysis because it facilitates an examination of rating scale functioning
specific to each level of a facet of interest in an assessment system (see
Table 1.2). This information can be useful for identifying individual
levels of facets for which rating scales are not functioning as expected,
and to examine the consistency of rating scale functioning across levels
of facets (e.g., across participant subgroups). Chapter 3 provides a more
in-depth exploration of the use of the PC-MFRM for this purpose.

Application of the PC-MFRM to the CES-D Data

Next, we. will apply the PC-MFRM given in Equation 2.16 to
analyze participant responses to the CES-D scale. In the CES-D scale
data examined in this book, participants’ education level was reported
using six categories: (1) eighth grade or less, (2) some high school, (3)
high school or high-school graduate equivalent, (4) completed some
college or two-year degree, (5) completed four-year degree, and (6)
graduate or professional degree. As in the previous analyses presented
in this chapter, the mean of the item locations was set to zero logits.

In addition, the logit scale location for the eighth grade or less
education level subgroup was fixed to zero logits, and the remaining
education level subgroup locations were estimated freely. This provided
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a frame of reference for interpreting and comparing participant sub-
groups on the logit scale.

As noted earlier in the demonstration of the RSM and the PCM, it is
important to evaluate the degree to which item responses approximate
Rasch model requirements before interpreting parameter estimates in
detail. For the PC-MFRM, the fit analysis results generally agreed with
those from the RSM and PCM analyses. Specifically, PC-MFRM
estimates explained 24.55% of the variance in observed responses,
and the absolute value of each of the inter-item residual correlations
was less than or equal to |r| = 0.04.

Figure 2.9 summarizes the results using a Wright Map in' the same
format as presented earlier for the RSM and the PCM, with an addi-
tional column (the third column) that shows the logit scale locations for
each education-level subgroup. In addition, rating scale category
thresholds are estimated separately for each subgroup; these subgroup-
specific thresholds are shown in the six columns to the right of the
overall item locations. The thresholds that correspond to each item are
presented in a column labeled “S” for scale followed by the subgroup
number. Examination of the threshold estimates indicates that there are
differences in the structure of the rating scale across the CES-D items.
We explore these differences using rating scale category probability
curves and other indicators specific to each education subgroup in detail
in Chapter 3.

Chapter Summary

This chapter began with a brief overview of Rasch measurement theory
as a framework characterized by clear requirements that reflect mea-
surement. properties in the physical sciences. Then, two popular Rasch
models for rating scale analysis were introduced with example appli-
cations ‘using the CES-D data: The Rating Scale Model (RSM;
Andrich, 1978) and the Partial Credit Model (PCM; Masters, 1982).
Both of these models provide estimates of person locations, item
locations, and rating scale threshold locations on a linear scale that
represents a latent variable. The major difference between the models is
that the PCM specifies rating scale thresholds separately for each item.
Researchers may choose the RSM when they want an overall summary
of rating scale functioning without item-specific details. Researchers
may choose the PCM when they want item-specific details about rating
scale functioning (see Table 1.2, discussed in more detail in Chapters 3
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Figure 2.9 Wright Map for the CES-D Scale Data Based on the
PC-MFRM
Note: See the note for Figure 2.6 for descriptions of the Logit, Person,
and Item columns. In the Education Subgroup column, numbers
indicate subgroups of participants with different levels of education: (1)
eighth grade or less, (2) some high school, (3) high school or high school
graduate equivalent, (4) completed some college or two-year degree, (5)
completed four-year degree, and (6) graduate or professional degree.
Separate scale columns are presented for each Education Subgroup;,
labeled “S.” followed by the subgroup number as indicated in the
Education Subgroup column
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| | xxx, | 3 17 | | | | | | |
| | *x. 126 | 69 10 11 14 19 | | | | | | |
* 0 Kk Axkw *1345 *2 4 7 13 15 18 20 * --- * R T e
| | Hknk | |5 | I === | | | |
| | Hkkk | |1 8 16 | | | | | | |
| | xxxkxx | | 12 | | | | | | |
| | xxkkkkokx | | I 101 1 1 1 11 1|
| | xrxxx | | | | | | | | |
| | rxkkk, | | | | | | | | |
| | sk, | | | | | | | | |
| =1 4 *kxkkx + + + + + + + + |
| | xxx, | | === | | | | |
| | xxx, | | | === === === == -
| | xxx, | | | | | | | | |
| I >, | | | | | | | | |
| I *. | | | | | | | | |
| I * | | | | | | | | |
| [ | | | | | | | | |
| -2 + . + + + + + + + + |
| [ | | | | | | | | |
| I | | | | | | | | |
| I | | | | | | | | |
| (. | | | | | | | | |
| | | | | | | | | | |
| [ | | | | | | | | |
| | | | | | | | | | |
| -3 + + + + + + + + + I
| [ | | | | | | | | |
| [ | | | | | | | | |
| [ | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| -4+ . + + + 0 + 0 + 0 + 0 + 0 + 0 |
| |
|Logit| * = 9 | +Education Subgroup|-Item | s.1 |1 S.2 | S.3|S.4]|8.5] 5.6 |
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and 6). Next, the Many-Facet Rasch Model (MFRM; Linacre, 1989)
was presented and illustrated with the CES-D data as an extension of
Rasch models that can be customized to reflect a variety of contexts and
data analysis purposes that are relevant for rating scale analysis.
Building on this content, Chapter 3 presents and illustrates techniques
for exploring rating scale functioning using polytomous Rasch models.
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