
OVERVIEW
You may not be aware of it, but database technology dra-
matically affects your life. Modern organizations cannot
operate efficiently without databases and associated data-
base technology. You encounter databases daily through
activities such as shopping at a supermarket, withdrawing
cash using an automated teller machine, making an airline
reservation, ordering a book online, and registering for
classes. The proliferation of databases and supporting da-
tabase technology provides convenience in your daily life.

Database technology is not only improving the daily
operations of organizations but also the quality of deci-
sions that affect our lives. Databases contain a flood of
data about many aspects of our lives such as consumer
preferences, telecommunications usage, credit history,
television viewing habits, transportation usage, and spend-

ing patterns. Database technology helps summarize this
mass of data into useful information for decision-making.
Management uses information gleaned from databases
to make long-range decisions such as investing in plants
and equipment, locating stores, adding new items to in-
ventory, and entering new businesses. The government
uses information mined from databases to target taxation
enforcement, refine pollution control efforts, target inter-
est groups for election appeals, and develop new laws.

In Part 1, Chapter 1 provides a starting point for your
exploration of database technology surveyingdatabase
characteristics, database management system features,
system architectures, and human roles in managing and
using databases. Chapter 1 also provides a broad pic-
ture of database technology and shares the excitement
about the journey ahead. Chapter 2 provides a concep-
tual overview of the database development process.

Learning Objectives
This chapter introduces database technology and the impact of this
technology on organizations. After this chapter, the student should have
acquired the following knowledge and skills.

• Describe the characteristics of business databases and the features
of database management systems

• Understand the importance of nonprocedural access for software
productivity

• Appreciate the advances in database technology and the contribu-
tions of database technology to modern society

• Explain conceptual architectures for databases used in distributed
processing and software maintenance

• Perceive career opportunities related to database development
and database administration

Introduction
to Database
Management

1
chapter

3  

Mannino_Ch01.indd 3 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

4  Part 1 Introduction to Database Environments

Every day, businesses collect mountains of facts about persons, things, and events
such as credit card numbers, bank balances, and purchase amounts. Databases con-
tain these types of simple facts and nonconventional facts such as medical images,
customer reviews, fingerprints, product photos, and maps. With the proliferation of
the Internet and the means to capture data in digital format, a vast amount of data is
available at the click of a mouse button. Organizing these data for ease of retrieval and
maintenance is paramount. Thus, managing databases has become a vital task in most
organizations.

Before learning about managing databases, you must first understand some
important properties of databases, as discussed in these points.

• Persistent means that data reside on stable storage such as a magnetic disk and
solid-state devices. For example, organizations retain data about customers,
suppliers, and inventory on stable storage because of the need to reference these
details repetitively. A variable in a web page is not persistent because it resides
in the main memory and disappears after terminating the visit to the web page.
Persistency does not mean that data lasts forever. When data are no longer
relevant (such as a supplier going out of business), they are removed or archived.

Persistency depends on the relevance of intended usage. For example, the
mileage you drive for work is important to maintain if you are self-employed.
Likewise, the amount of your medical expenses is important if you can itemize
your deductions or you have a health savings account. Because collecting, stor-
ing, and maintaining data is costly, only data likely to be relevant for actions and
decisions should be stored.

• Shared means that a database can have multiple uses and users. A database
provides a common memory for multiple functions in an organization. For
example, a personnel database can support payroll calculations, performance
evaluations, government reporting requirements, and so on. Many users
can access a database at the same time. For example, many customers can
simultaneously make airline reservations. Unless two users are simultaneously
trying to change the same data, they can proceed without waiting on
each other.

• Interrelated means that data stored as separate units can be connected to provide
a whole picture. For example, a customer database relates customer data (name,
address, etc.) to order data (order number, order date, etc.) to facilitate order
processing. Databases contain both entities and relationships among entities.
An entity is a cluster of data, usually about a single subject, that can be accessed
together. An entity can denote a person, place, thing, or event. For example, a
personnel database contains entities such as employees, departments, and skills,
as well as relationships showing employee assignments to departments, skills
possessed by employees, and the salary history of employees. A typical business
database may have hundreds of types of entities and relationships.

To depict these characteristics, let us consider several databases. We begin with a
simple university database (Figure 1.1) since you have some familiarity with the work-
ings of a university. A simplified university database contains data about students,
faculty, courses, course offerings, and enrollments. The database supports university
processes for registering for classes, assigning faculty to course offerings, recording
grades, and scheduling courses. Relationships in the university database support
answers to questions such as

• What offerings are available for a course in a specified academic period?
• Who is the instructor for an offering of a course?
• What students are enrolled in an offering of a course?

Database
a collection of persistent
data that can be shared and
interrelated.

1.1 DATABASE CHARACTERISTICS

Mannino_Ch01.indd 4 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  5

Next, let us consider a water utility database as depicted in Figure 1.2. The water
utility database supports billing customers for water usage. Periodically, the water
utility measures a customer’s water consumption from a meter and generates a bill.
Many aspects can influence the preparation of a bill, such as a customer’s payment
history, meter characteristics, type of customer (low income, renter, homeowner, small
business, large business, etc.), and billing cycle. Relationships in the water utility data-
base support answers to questions such as

• What is the date of the last bill sent to a customer?
• How much water usage was recorded when a customer’s meter was last read?
• When did a customer make their last payment?

Finally, let us consider a hospital database as depicted in Figure 1.3. The hospital
database supports the treatment of patients by health care providers. Many different
health care providers read and contribute to a patient’s medical record. Physicians
make diagnoses and prescribe treatments based on symptoms. Nurses monitor symp-
toms and provide medication. Dietary professionals design meal plans according to
dietary restrictions. Relationships in the database support answers to questions such as

• What are the most recent symptoms of a patient?
• Who prescribed a given treatment of a patient?
• What diagnosis did a physician make for a patient?

FIGURE 1.1
Depiction of a Simplified
University Database

Note: Words surrounding the
database denote processes
that use the database.

Registration

Grade
recording

Faculty
assignment

Course
scheduling

Entities:

students, faculty, courses,
o�erings, enrollments

Relationships:

University Database

faculty teach o�erings,
students enroll in o�erings,
o�erings made of courses, ...

Water Utility Database

Billing

Meter
reading

Payment
processing

Service start/
stop

Entities:
customers, meters, bills,
payments, meter readings

Relationships:

bills sent to customers,
customers make payments,
customers use meters, ...

FIGURE 1.2
Depiction of a Simplified
Water Utility Database

Treatment

Diagnosis

Symptom
monitoring

Patient
care

Entities:
patients, providers,
treatments, diagnoses,
symptoms

Relationships:

Hospital Database

patients have symptoms,
providers prescribe
treatments, providers make
diagnoses, ...

FIGURE 1.3
Depiction of a Simplified
Hospital Database

Mannino_Ch01.indd 5 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

6  Part 1 Introduction to Database Environments

These simplified databases lack many kinds of data found in real databases. For
example, the simplified university database does not contain data about course pre-
requisites, classroom capacities, and locations. Real versions of these databases would
have many more entities, relationships, and additional uses. Nevertheless, these sim-
ple databases have the essential characteristics of business databases: persistent data,
multiple users and uses, and multiple types of entities connected by relationships.

TABLE 1-1
Summary of Common
Features of DBMSs

Feature Description

Database definition Language and graphical tools to define entity types, relationships, integrity
constraints, and authorization rights

Nonprocedural access Language and graphical tools to access data without complicated coding

Procedural language
interface

Language that combines nonprocedural access with full capabilities of a pro-
gramming language such as Java or Javascript

Transaction processing Control mechanisms to prevent interference from simultaneous users and
recover lost data after a failure

Database tuning Tools to monitor and improve database performance

FIGURE 1.4
Display of Rows in the
Student Table

StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA

HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00

BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70

CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80

JOE ESTRADA SEATTLE WA 98121-2333 FIN SR 3.20

MARIAH DODGE SEATTLE WA 98114-0021 IS JR 3.60

TESS DODGE REDMOND WA 98116-2344 ACCT SO 3.30

1.2 FEATURES OF DATABASE MANAGEMENT SYSTEMS
A database management system (DBMS) is a collection of components that supports
the creation, use, and maintenance of databases. Initially, DBMSs provided efficient
storage and retrieval of data. Due to marketplace demands and product innovation,
DBMSs have evolved to provide a broad range of features for data acquisition, storage,
dissemination, maintenance, retrieval, and formatting. The evolution of these features
has made DBMSs rather complex. It can take years of study and use to master a DBMS.
Because DBMSs continue to evolve, you must continually update your knowledge.

To provide insight about features that you will encounter in commercial DBMSs,
Table 1-1 summarizes a common set of features. The remainder of this section presents
examples of these features. Most examples are from Oracle, a prominent commercial
DBMS, and PostgreSQL, a prominent open-source DBMS. Later chapters expand upon
the introduction provided here.

1.2.1 Database Definition
To define a database, a database designer specifies entities and relationships. In most
commercial DBMSs, tables store collections of entities. A table (Figure 1.4) has a head-
ing row (first row) showing the column names and a body (other rows) showing the
contents of the table. Relationships indicate connections among tables. For example,
the relationship connecting the student table to the enrollment table shows the course
offerings taken by each student.

Database Management
System (DBMS)
a collection of components
that support data acquisition,
dissemination, maintenance,
retrieval, and formatting.

Table
a named, two-dimensional
arrangement of data. A table
consists of a heading part
and a body part.

Mannino_Ch01.indd 6 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  7

FIGURE 1.5
Table Properties Window
in the pgAdmin Client for
PostgreSQL

Most DBMSs provide several tools to define databases. The Structured Query Lan-
guage (SQL) is an industry-standard language supported by most DBMSs. SQL can be
used to define tables, relationships among tables, integrity constraints (rules that define
allowable data), and authorization rights (rules that restrict access to data). Chapter 3
describes the SQL CREATE TABLE statement to define tables and relationships.

In addition to SQL, many DBMSs provide client tools for graphically defining and
displaying database designs. Client tools interact with a database server to process
SQL CREATE TABLE statements. Figures 1.5 and 1.6 depict graphical tools for defin-
ing tables and displaying database diagrams with tables and relationships. The table
properties window in the pgAdmin client for PostgreSQL provides convenient edit-
ing of table definitions. Using the properties window in Figure 1.5, a user can define
properties of columns such as the data type, length, and scale. The Data Modeling tool
for Oracle provides graphical display of database diagrams with tables and relation-
ships. After defining the structure, a database can be populated. The data in Figure 1.4
should be added after defining details of tables and relationships.

1.2.2 Nonprocedural Access
The most important feature of a DBMS is the ability to answer queries. A query is
a request for data to answer a question. For example, the user may want to know
customers with large balances or strong sales in a particular region. Nonprocedural
access allows users with limited computing skills to submit queries. The user speci-
fies the parts of a database to retrieve, not implementation details of how retrieval
occurs. Implementation details involve coding complex procedures with loops. Non-
procedural languages do not have looping statements (for, while, and so on) because
only the parts of a database to retrieve are specified.

Nonprocedural access can reduce the number of lines of code by a factor of 100
compared to procedural access. Because a large part of business software involves
data access, nonprocedural access can dramatically improve software productivity.

To appreciate the significance of nonprocedural access, consider an analogy to
planning a vacation. You specify the destination, travel budget, length of stay, and
departure date. These facts indicate the “what” of your trip. To specify the “how”
of your trip, you need a plan with details about the best route to your destination,
the most desirable hotel, ground transportation, and so on. A planning professional
can facilitate your planning process by completing these details. Like a planning

SQL
an industry-standard
database language that
includes statements
for database definition,
database manipulation, and
database control.

Nonprocedural Database
Language
a language such as SQL
that allows you to specify
the parts of a database
to access rather than to
code a complex procedure.
Nonprocedural languages
do not include looping
statements.

Mannino_Ch01.indd 7 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

8  Part 1 Introduction to Database Environments

FIGURE 1.6
Database Diagram in the
Oracle Data Modeler

professional, a DBMS performs detailed planning to answer queries expressed in a
nonprocedural language.

The standard tool for nonprocedural access is the SQL SELECT statement. Most
DBMSs provide an SQL client to enter and execute SQL statements, including the
SELECT statement. Figure 1.7 depicts the execution of an SQL SELECT statement using
the Query Tool of the pgAdmin client for PostgreSQL. The Query Editor tab supports
statement entry with some editing assistance for keywords shown in magenta. The
results appear below the Query Editor window in the Data Output tab after selecting
the execute button ▶.

Most DBMSs, as well as third-party vendors, also provide graphical tools to
access databases. Figure 1.8 depicts the Query Builder tool available in the Oracle
SQL Developer. To specify a query, a user indicates the tables, relationships, and
columns. Figure 1.9 shows the result of executing the graphical specification in
Figure 1.8.

Nonprocedural access can also be used in graphical tools for building applications
with forms and reports. Data entry forms support convenient data entry and display,
while reports enhance the appearance of data displays. Nonprocedural access makes
form and report creation possible without extensive coding. As part of creating a form
or report, the user indicates the data requirements using a nonprocedural language or

Mannino_Ch01.indd 8 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  9

graphical tool. To complete a form or report definition, the user indicates the format-
ting of data, user interaction, and other details.

1.2.3 Procedural Language Interface
Nonprocedural access, although convenient and powerful, does not support the devel-
opment of data-intensive applications such as shopping cart web pages for order entry

FIGURE 1.7
pgAdmin SQL Client with
SELECT Statement Execution

FIGURE 1.9
Result of Executing Query in
Figure 1.8

FIGURE 1.8
Query Builder Window in the
Oracle SQL Developer

Mannino_Ch01.indd 9 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

10  Part 1 Introduction to Database Environments

and data mining algorithms searching large databases for hidden patterns. To develop
complex applications with database access, DBMSs provide the full capabilities of a
programming language along with embedded nonprocedural access. A procedural
language interface combines the full capabilities of a computer programming lan-
guage with nonprocedural access using SQL.

DBMSs support two language styles for integrating a procedural language with
SQL. A statement-level interface involves a new language combining procedural
statements and SQL statements. For example, Oracle provides the database program-
ming language PL/SQL, PostgreSQL features PL/pgSQL, and Microsoft SQL Server
supports Transact-SQL. Chapter 11 describes procedural language interfaces and the
Oracle PL/SQL language. The statement-level interface has statements to establish
database connections, execute SQL statements, use the results of an SQL statement,
associate programming variables with database columns, and handle exceptions in
SQL statements.

The call-level interface, the second language style, contains procedures and data
definitions to combine the results of SQL statements with programming language
statements. In a call-level interface, the statements of the host programming language
are not extended. DBMSs provide call-level interfaces for many programming lan-
guages such Java, Java-script, Visual Basic, and C++. The two most popular call-level
interfaces are the Open Database Connectivity supported by Microsoft and the Java
Database Connectivity supported by Oracle. These call-level interfaces provide proce-
dures to establish database connections, execute SQL statements, use the results of an
SQL statement, associate programming variables with database columns and handle
exceptions in SQL statements.

1.2.4 Features to Support Database Operations
Transaction processing enables a DBMS to process large volumes of repetitive work.
A transaction is a unit of work that should be processed reliably without interference
from other users and without loss of data due to failures. Examples of transactions
are withdrawing cash at an ATM, making an airline reservation, and registering for
a course. A DBMS ensures that transactions are free of interference from other users,
parts of a transaction are not lost due to a failure, and transactions do not make the
database inconsistent. Transaction processing is largely an unseen, back-office affair.
The user does not know the details about transaction processing other than the assur-
ances about reliability.

Database tuning involves components to monitor and improve performance. Some
DBMSs can monitor database performance and generate events indicating conditions
that may warrant investigation. DBMSs provide components to improve performance,
such as reorganization of a database, selection of physical structures, and repair of
damaged parts of a database.

Transaction processing and database tuning are most prominent on DBMSs that
support large databases with many simultaneous users. These DBMSs, known as
enterprise DBMSs, support databases critical to the functioning of an organization.
Enterprise DBMSs usually run on powerful servers and have a high cost. In contrast,
desktop DBMSs running on personal computers and small servers support limited
transaction processing features but have a much lower cost. Desktop DBMSs support
databases used by work teams and small businesses. Embedded DBMSs are an emerg-
ing category of database software. As its name implies, an embedded DBMS resides in
a larger system, either an application or a device such as a personal digital assistant or
a smartphone. Embedded DBMSs provide limited transaction processing features but
have low memory, processing, and storage requirements.

1.2.5 Third-Party Tools
Third-party tools extend features directly provided by DBMSs, especially important
for organizations using multiple DBMSs. Third-party SQL clients provide flexibility if
an organization needs to execute SQL statements using different DBMSs. Third-party

Procedural Language
Interface
a method to combine a
nonprocedural language
such as SQL with a
programming language such
as Java or Visual Basic.

Transaction Processing
reliable and efficient
processing of large volumes
of repetitive work. DBMSs
ensure that simultaneous
users do not interfere with
each other, and failures do
not cause lost work.

Mannino_Ch01.indd 10 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  11

FIGURE 1.10
Entity Relationship Diagram
for the University Database
using Visual Paradigm

design tools extend database definition and tuning capabilities provided by DBMSs.
Figure 1.10 shows a database diagram (an entity-relationship diagram) created with
Visual Paradigm, a tool for database design and software development. Visual Para-
digm provides features to convert a database design into tables compliant with the
SQL standard supported by most commercial DBMSs.

The previous section provided a quick tour of the features found in typical DBMSs.
The features in today’s products are a significant improvement over just a few years
ago. Database management, like many other areas of computing, has undergone tre-
mendous technological growth. To provide a context to appreciate today’s DBMSs,
this section reviews past changes in technology and suggests future trends. After this
review, the current market for database software is presented.

1.3.1 Evolution of Database Technology
Table 1-2 depicts a brief history of database technology through four generations1
of systems. The first generation supported sequential and random searching, but
 computer programs with procedural code were necessary for data retrieval. For

1 The generations of DBMSs should not be confused with the generations of programming languages. In
particular, fourth-generation language refers to programming language features, not DBMS features.

1.3 DEVELOPMENT OF DATABASE TECHNOLOGY AND
MARKET STRUCTURE

Mannino_Ch01.indd 11 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

12  Part 1 Introduction to Database Environments

example, a program could be written to retrieve all customer records or just to find the
customer record with a specified customer number. Because first-generation systems
did not offer much support for relating data, they are usually regarded as file process-
ing systems rather than DBMSs. File processing systems can manage only one entity
type rather than many entity types and relationships managed by a DBMS.

The second-generation products were the first true DBMSs because they could
manage multiple entity types and relationships. However, to access data, a computer
program still had to be written. Second-generation systems are called “navigational”
because the programmer had to write code to search among a network of linked
records. Some second-generation products adhered to a standard database definition
and manipulation language developed by the Committee on Data Systems Languages
(CODASYL), a standards organization. The CODASYL standard had only limited
market acceptance partly because IBM, the dominant computer company during this
time, ignored the standard. IBM supported a different approach known as the hierar-
chical data model.

Rather than focusing on the second-generation standard, research labs at IBM
and universities developed the foundations for a new generation of DBMSs. The most
important development involved nonprocedural languages for database access. Third-
generation systems are known as relational DBMSs because of the foundation based
on mathematical relations and associated operators. Optimization technology was
developed so that access using nonprocedural languages would be efficient. Because
nonprocedural access provided a large improvement over navigational access, third-
generation systems supplanted the second generation. Since the technology was so
different, most new systems were founded by start-up companies rather than by ven-
dors of previous generation products. IBM was the major exception. IBM’s weight led
to the adoption of SQL as a widely accepted standard.

Fourth-generation DBMSs have extended the boundaries of database technol-
ogy to unconventional data, new kinds of distributed processing, data warehouse
processing, and big data demands, especially with semi-structured data. As an
early emphasis, fourth-generation DBMSs supported unconventional data types
such as images, videos, maps, sounds, animations, and web pages. Most DBMSs
now feature convenient ways to publish static and dynamic web pages using the
eXtensible Markup Language (XML) as a publishing standard. Because these DBMSs
view any kind of data as an object to manage, fourth-generation systems were called
object-relational.

In the last 20 years, DBMS vendors have extended their fourth-generation prod-
ucts for data warehouse processing. A data warehouse is a database that supports
mid-range and long-range decision-making in organizations. The retrieval of sum-
marized data dominates data warehouse processing, whereas a mixture of updating
and retrieving data occur for databases that support the daily operations of an orga-
nization. Part 6 covers data warehouse concepts and DBMS features to support data
 warehouse processing.

TABLE 1-2
Brief Evolution of Database
Technology

Era Generation Orientation Major Features

1960s 1st generation File File structures and proprietary program interfaces

1970s 2nd generation Network navigation Networks and hierarchies of related records, stan-
dard program interfaces

1980s 3rd generation Relational Nonprocedural languages, optimization,
transaction processing

1990s to 2010s 4th generation Object Multimedia, active, distributed processing, more
powerful operators, data warehouse process-
ing, XML enabled, cloud computing, big data
demands, semi-structured data

Mannino_Ch01.indd 12 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  13

Cloud computing is a recent area of product development for both established
DBMS vendors and new vendors. Cloud computing supports on-demand and pay-
per-per-use access for both data and software. Cloud computing usage is web-based
without fixed costs of software ownership. Major DBMS vendors have developed
cloud computing models as an alternative to their traditional approach of product
licensing and ownership. In addition, new vendors have created DBMS products tai-
lored to the cloud computing model.

Part of the promise of cloud computing is support for applications with exploding
data growth known as big data. The growth in data comes from a variety of sources
such as sensors in smartphones, energy meters, and automobiles, the interaction of
individuals in social media websites, radio frequency identification tags in retail, and
digitized media content in medicine, entertainment, and security. Big data exceeds the
limits of commercial database software to support applications with exploding data
growth.

NoSQL (Not only SQL) database technology has been developed to deal with
some of the challenges of big data. As the name implies, NoSQL database technol-
ogy does not use the traditional relational database model and SQL standard. Instead,
NoSQL database products use simplified database models, less stringent transaction
processing models, and distributed processing to reduce bottlenecks for dealing with
big data. NoSQL products cover a wide range of data models to support the manage-
ment of semi-structured data with key-record pairs, documents, and graphs.

The market for fourth-generation systems is a battle between vendors of third-
generation systems who are upgrading their products against a new group of systems
often developed as open-source software with subscriptions for premium services. The
existing companies seem to have the upper hand, but the open-source DBMS products
have gained important commercial usage. This textbook provides balanced coverage
between the industry-leading enterprise DBMS, Oracle, and the most prominent open-
source DBMS, PostgreSQL.

1.3.2 Popularity of DBMSs
DB-Engines.com ranks DBMS products by popularity using the number of mentions
on websites, frequency of search in Google Trends, job offers in leading job websites,
and profiles in professional websites. The DB-Engines ranking (top 10) in June 2021
of DBMSs supporting the SQL standard was Oracle, MySQL, Microsoft SQL Server,
PostgreSQL, IBM DB2, SQLite, Microsoft Access, MariaDB, Hive, and Microsoft Azure
SQL Database. The ranking combining SQL-compliant and non-SQL compliant DBMSs
was Oracle, MySQL, Microsoft SQL Server, PostgreSQL, MongoDB (NoSQL product),
IBM DB2, Redis (NoSQL), Elasticsearch, SQLite, and Microsoft Access.

Open-source DBMS products have begun to challenge the commercial DBMS
products in the enterprise DBMS market. Although source code for open-source DBMS
products is available without charge, most organizations purchase support contracts,
so the open-source products are not free. In addition, some organizations offer a com-
munity edition without charge and an enterprise edition with traditional license fees.
Still, many organizations have reported a lower cost of ownership using open-source
DBMS products. MySQL, first introduced in 1995, is the leader in the open-source
DBMS market. Open-source DBMS products feature prominently in the DB-Engines.
com ranking with six open-source products (MySQL, PostgreSQL, MongoDB,
MariaDB, Redis, and SQLite).

In the market for desktop database software, Microsoft Access dominates at least
in part because of the dominance of Microsoft Office. Desktop database software is
primarily sold as part of office productivity software. With Microsoft Office holding
about 90% of the office productivity market, Access holds a comparable share of the
desktop database software market. Other significant products in the desktop database
market are open-source products LibreOffice Base and OpenOffice Base, along with
commercial product FileMaker Pro.

Mannino_Ch01.indd 13 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

14  Part 1 Introduction to Database Environments

Because of the potential growth of personal computing devices, most major DBMS
vendors have now entered the embedded DBMS market. An embedded DBMS pro-
vides tight integration with application software. Thus, embedded DBMSs remain
hidden from users with little or no maintenance. Embedded DBMS software is sold pri-
marily by value-added software resellers as part of an application, such as an account-
ing package. Some of the leading embedded DBMS products are Oracle Berkeley DB,
Firebird Embedded, MySQL Embedded, SQLite, Microsoft SQL Server Compact, IBM
Informix Embedded, and SAP SQL Anywhere Embedded Database.

The market for cloud-based DBMSs is rapidly evolving so market shares and size
are difficult to determine. Most major DBMS vendors offer cloud-based solutions
with some vendors providing both traditional SQL and emerging NoSQL products.
For example, Amazon offers Relational Data Service (SQL) and Amazon DynamoDB
(NoSQL), Oracle Cloud provides many versions of Oracle Database, and Microsoft
offers Azure (SQL) and DocumentDB (NoSQL). The impact of cloud computing on the
DBMS market has begun to mature in 2021.

1.4 ARCHITECTURES OF DATABASE MANAGEMENT SYSTEMS
This section provides insight into the internal organization of DBMSs, by describing
two architectures or organizing frameworks. The first architecture describes an orga-
nization of database definitions to reduce the cost of software maintenance. The sec-
ond architecture describes an organization of data and software to support remote
access. These architectures promote a conceptual understanding rather than indicate
actual DBMS implementation.

1.4.1 Data Independence and the Three Schema Architecture
In early DBMSs, there was a close connection between a database and computer pro-
grams that accessed the database. Essentially, the DBMS was considered part of a pro-
gramming language. As a result, the database definition was part of the computer
programs that accessed the database. In addition, the conceptual meaning of a data-
base was not separate from its physical implementation on magnetic disk. The defini-
tions about the structure of a database and its physical implementation were mixed
inside computer programs.

The close association between a database and related programs led to problems
in software maintenance. Software maintenance encompassing requirement changes,
corrections, and enhancements can consume a large fraction of software development
budgets. In early DBMSs, most changes to the database definition caused changes to
computer programs. In many cases, changes to computer programs involved detailed
inspection of the code, a labor-intensive process. This code inspection work is like year
2000 compliance in which date formats were changed to four digits. Performance tuning
a database was difficult because sometimes hundreds of computer programs had to be
recompiled for every change. Because database definition changes are common, a large
fraction of software maintenance resources were devoted to database changes. Some
studies have estimated the percentage as high as 50% of software maintenance resources.

The concept of data independence emerged to alleviate problems with program
maintenance. Data independence means that a database should have an identity
separate from the applications (computer programs, forms, and reports) that use it.
The separate identity allows the database definition to be changed without affecting
related applications. For example, if a new column is added to a table, applications
not using the new column should not be affected. Likewise, if a new table is added,
only applications that need the new table should be affected. This separation should
be even more pronounced if a change only affects the physical implementation of a
database. Database specialists should be free to experiment with performance tuning
without concern about computer program changes.

Data Independence
a database should have
an identity separate from
the applications (computer
programs, forms, and
reports) that use it. The
separate identity allows the
database definition to be
changed without affecting
related applications.

Mannino_Ch01.indd 14 08/06/22 2:58 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  15

In the mid-1970s, the concept of data independence led to the proposal of the
Three Schema Architecture depicted in Figure 1.11. The word schema as applied to
databases means database description. The Three Schema Architecture includes three
levels of database description. The external level is the user level. Each group of users
can have a separate external view (or view for short) of a database tailored to the
group’s specific needs.

In contrast, the conceptual and internal schemas represent the entire database.
The conceptual schema defines the entity types and relationships. For a business data-
base, the conceptual schema can be quite large, perhaps hundreds of entity types and
relationships. Like the conceptual schema, the internal schema represents the entire
database. However, the internal schema represents the storage view of the database,
whereas the conceptual schema represents the logical meaning of the database. The
internal schema defines files which are collections of data on a storage device such as a
hard disk. A file can store one or more entity types described in the conceptual schema.

To make the three schema levels clearer, Table 1-3 shows differences among data-
base definitions at the three schema levels. Even in a simplified university database,
the differences among the schema levels are clear. With a more complex database, the
differences would be even more pronounced with many more views, a much larger
conceptual schema, and a more complex internal schema.

The schema mappings describe how a schema at a higher level is derived from a
schema at a lower level. For example, the external views in Table 1-3 are derived from
the tables in the conceptual schema. The mapping provides the knowledge to convert
a request using an external view (for example, HighGPAView) into a request using the
tables in the conceptual schema. The mapping between conceptual and internal levels
shows how entities are stored in files.

DBMSs, using schemas and mappings, ensure data independence. Typically,
applications access a database using a view. The DBMS converts an application’s
request into a request using the conceptual schema rather than the view. The DBMS
then transforms the conceptual schema request into a request using the internal
schema. Most changes to the conceptual or internal schema do not affect applications
because applications do not use the lower schema levels. The DBMS, not the user,
is responsible for using the mappings to make the transformations. For more details
about mappings and transformations, Chapter 10 describes views and transformations

Three Schema Architecture
an architecture for
compartmentalizing
database descriptions. The
Three Schema Architecture
was proposed to support
data independence.

View 1 View 2 View n

Conceptual
schema

Internal
schema

External
level

Conceptual
level

Internal
level

External to
conceptual
mappings

Conceptual
to internal
mappings

FIGURE 1.11
Three Schema Architecture

TABLE 1-3
University Database Example
Depicting Differences among
Schema Levels

Schema Level Description

External HighGPAView: data required for the query in Figure 1.7
FacultyAssignmentFormView: data required for a Faculty Assignment form
FacultyWorkLoadReportView: data required for a Faculty Workload report

Conceptual Student, Enrollment, Course, Faculty, and Enrollment tables and relationships (Figure 1.6)

Internal Data files needed to store the tables; index files to improve performance

Mannino_Ch01.indd 15 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

16  Part 1 Introduction to Database Environments

Database

Database
server

a) Client-server processing with database server

Database

Database
server

Middleware
server

b) Client-server processing with middleware and database servers

FIGURE 1.12
Typical Client-Server
Architectures

between the external and conceptual levels. Chapter 8 describes query optimization,
the process of converting a conceptual level query into an internal level representation.

The Three Schema Architecture is an official standard of the American National
Standards Institute (ANSI). However, the specific details of the standard were never
widely adopted. Rather, the standard serves as a guideline about data independence.
The spirit of the Three Schema Architecture is widely implemented in third- and
fourth-generation DBMSs.

1.4.2 Parallel and Distributed Database Processing
With the growing importance of computer networks and electronic commerce, dis-
tributed processing is becoming a crucial function of DBMSs. Distributed process-
ing allows geographically dispersed computers to cooperate when providing data
access. A large part of electronic commerce involves accessing and updating remote
databases. Many databases in retail, banking, and security trading are now available
through electronic commerce websites. DBMSs use available network capacity and
local processing capabilities to provide efficient remote database access.

Distributed processing can be applied to databases to distribute tasks among serv-
ers, divide a task among processing resources, and distribute data among network
sites. To distribute tasks among servers, many DBMSs use the client-server archi-
tecture. A client is a program that submits requests to a server. A server processes
requests on behalf of a client. For example, a client may request a server to retrieve
product data. The server locates the data and sends them back to the client. The client
may perform additional processing on the data before displaying the results to the
user. DBMSs may employ one or more levels of servers to distribute different kinds
of database processing. In Figure 1.12(a), the database server and database are located
on a remote computer. In Figure 1.12(b), an additional middleware server is added to
efficiently process messages from many clients.

Client-Server Architecture
an arrangement of
components (clients and
servers) among computers
connected by a network. The
client-server architecture
supports efficient processing
of messages (requests for
service) between clients and
servers.

Mannino_Ch01.indd 16 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  17

For usage of this textbook in a classroom environment, Figure 1.13 depicts a cli-
ent-server architecture with a database server and an SQL client. In Figure 1.13a, the
database server (Oracle or PostgreSQL) and SQL client (Oracle SQL Developer or Post-
greSQL pgAdmin) reside on different computers supporting a classroom environment
with students sharing the same database server. The database server receives SQL
statements from the SQL client and returns statement results (usually rows) to the SQL
client. Alternatively, a local database server and SQL client may reside on the same
computer (Figure 1.13b) if an external server is unavailable. When residing in the same
local computer, the database server and SQL client execute as separate processes. Both
Oracle and PostgreSQL support remote and local database servers.

In the last decade, parallel database technology has gained commercial acceptance
for large organizations. Most enterprise DBMS vendors and some open-source DBMSs
support parallel database technology to meet market demand. Organizations are uti-
lizing these products to realize the benefits of improved performance and availability.
Parallel database processing can improve performance through speedup (performing
a task faster) and scaleup (performing more work simultaneously). Parallel database
processing can increase availability because a DBMS can dynamically adjust to the
level of available resources. Figure 1.14 depicts two common parallel database archi-
tectures that can provide improved performance and availability. In Figure 1.14(a)
known as the shared disk (SD) architecture, each processor has its own memory, but
the processors share the disks. In Figure 1.14(b) known as shared nothing (SN) archi-
tecture, each processor has its own memory and disks.

Distributed data provides local control and reduced communication costs. Dis-
tributing a database allows the location of data to match an organization’s structure.
Decisions about sharing and maintaining data can be set locally to provide control
closer to the data usage. Data should be located so that 80 percent of the requests are
local. Local requests incur little communication costs and delays compared to remote
requests. Figure 1.15 depicts a distributed database with three sites in Denver, Lon-
don, and Tokyo. Each site can control access to its local data and cooperate to provide
data sharing for tasks needing data from more than one site.

Client-server architectures, parallel database processing, and distributed data-
bases provide flexible ways for DBMSs to interact with computer networks. The dis-
tribution of data and processing among clients and servers and the possible choices to
locate data and software are much more complex than described here. You will learn
more details about these architectures in Chapter 18.

Parallel DBMS
a DBMS capable of utilizing
tightly-coupled computing
resources (processors, disks,
and memory). Tight coupling
is achieved by networks
with data exchange time
comparable to the time of
the data exchange with
a disk. Parallel database
technology promises
performance improvements
and high availability.

Distributed Database
a database in which parts
are located at different
network sites. Distributed
database technology
supports local control
of data, data sharing for
requests involving data from
more than one site, and
reduced communication
overhead.

Database

Database
server

(Oracle/postgreSQL)

a) Client-server processing with database server

Database

b) Local database server with SQL client

SQL client

FIGURE 1.13
Client-Server Architecture for
Course Usage

Mannino_Ch01.indd 17 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

18  Part 1 Introduction to Database Environments

Client Server Server

DatabaseDatabase

Client

Client

Client

Denver London

Server

Database

Tokyo

Client

Client

FIGURE 1.15
Distributed Database with
Three Sites

M

N

...

P P P...

M M M

N

...

P P P...

M M

(a) SD (b) SN

Legend
P: processor
M: memory
N: high-speed network
SD: shared disk
SN: shared nothing

FIGURE 1.14
Basic Parallel Database
Architectures

The architectures presented in this section assume a traditional product licens-
ing and hosting approach. Cloud computing provides a new approach without ini-
tial product licensing costs and no hosting requirements. Using web-based interfaces,
organizations can design and deploy databases with dynamic resource allocation pro-
vided by the cloud as depicted in Figure 1.16. The cloud service may restrict the design
flexibility for database design and operations available for database usage. Internally,
the cloud can use any distributed processing approach although the internal details of
the cloud are invisible to organizations using the cloud service.

1.5 ORGANIZATIONAL IMPACTS OF DATABASE TECHNOLOGY
This section completes your introduction to database technology by discussing the
effects of database technology on organizations. The first subsection describes pos-
sible interactions that you may have with a database in an organization. The second
subsection describes approaches to plan and control data produced and used by an
organization. Special attention is given to management roles that you can play as part
of an effort to control data resources. Chapter 16 provides more detail about the tools
and processes used in these management roles.

Mannino_Ch01.indd 18 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  19

1.5.1 Interacting with Databases
Because databases are pervasive, there are a variety of ways in which you may interact
with databases. The classification in Figure 1.17 distinguishes between functional users
who interact with databases as part of their work and information systems profession-
als who participate in designing and implementing databases. Each box in the hierar-
chy represents a role that you may play. You may simultaneously play more than one
role. For example, a functional user in a job such as a financial analyst may play all
three roles in different databases. In some organizations, the distinction between func-
tional users and information systems professionals is blurred. In these organizations,
functional users may participate in designing and implementing databases.

Functional users can play a passive or an active role when interacting with data-
bases. Indirect usage of a database is a passive role. An indirect user is given a report
or some data extracted from a database. A parametric user is more active than an
indirect user. A parametric user requests existing forms or reports using parameters,
input values that change from usage to usage. For example, a parameter may indicate
a date range, sales territory, or department name. The power user is the most active.
Because decision-making needs can be difficult to predict, ad hoc or unplanned data-
base usage is important. A power user is skilled enough to build a form or report when
needed. Power users should have a good understanding of nonprocedural access, a
skill described in Parts 2 and 5 of this book.

Information systems professionals interact with databases as part of develop-
ing an information system. Analysts/programmers are responsible for collecting

FIGURE 1.16
Cloud-Based Database
Architecture

Indirect Parametric Power

Functional User

Technical Non Technical

DBA Analyst/Programmer Management

Information Systems

Specialization
FIGURE 1.17
Classification of Roles

Mannino_Ch01.indd 19 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

20  Part 1 Introduction to Database Environments

requirements, designing applications, and implementing information systems. They
create and use external views to develop forms, reports, and other parts of an informa-
tion system. Management has an oversight role in the development of databases and
information systems. Information systems professionals in analyst/programmer roles
should know database development and application development in Parts 3 to 5 of
this book.

Database administrators assist both information systems professionals and func-
tional users. Database administrators have a variety of both technical and non-techni-
cal responsibilities (Table 1-4). Technical skills are more detail-oriented; non-technical
responsibilities are more people-oriented. The primary technical responsibility is
database design. On the non-technical side, the database administrator’s time is split
among a number of activities. Database administrators can also have responsibilities
in planning databases and evaluating DBMSs. Chapter 16 provides more details about
the responsibilities and tools of database administrators.

1.5.2 Managing Data Resources in Organizations
Organizations have used two approaches to manage data resources. The more estab-
lished approach, information resource management, focuses on information technol-
ogy as a tool for processing, distributing, and integrating information throughout an
organization. Management of information resources has many similarities with man-
aging physical resources such as inventory. Inventory management involves safe-
guarding inventory from theft and deterioration, storing it for efficient usage, choosing
suppliers, handling waste, coordinating movement, and reducing holding costs. Infor-
mation resource management involves similar activities: planning databases, acquir-
ing data, protecting data from unauthorized access, ensuring reliability, coordinating
flow among information systems, and eliminating duplication.

Due to the rapid growth of electronic commerce and financial scandals in the
2000s, data governance has emerged as a complementary approach for managing data
resources. According to the Data Governance Institute (www.dgi.com), “data gover-
nance is the exercise of decision-making and authority for data-related matters.” Data
governance provides a system of checks and balances to develop data rules and poli-
cies, support the application of data rules and policies, and evaluate compliance with
data rules and policies. Organizations use the artifacts of data governance to mitigate
risks associated with the complex regulatory environment, information security, and
information privacy, especially for personal identifiable data and related business
transactions.

As part of controlling data resources, new management responsibilities have
been created in many organizations. The data administrator is a management role
with responsibilities to plan the development of new databases and control usage
of data throughout an organization. The data administrator maintains an enterprise
data architecture that describes existing databases and new databases, evaluates new
information technologies and determines standards for managing databases. The data
administrator supports data governance through participation in the data governance
organization and consultation on activities managed by the data governance office.

Database Administrator
a support position
specializing in managing
individual databases and
DBMSs.

Data Administrator
a management position that
performs planning and policy
setting for ‘an organization’s
data resources.

TABLE 1-4
Responsibilities of the
Database Administrator

Technical Non-technical

Designing conceptual schemas Setting database standards

Designing internal schemas Devising training materials

Monitoring database performance Promoting benefits of databases

Selecting and evaluating database software Consulting with users

Managing security for database usage Planning new databases

Troubleshooting database problems

Mannino_Ch01.indd 20 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 1 Introduction to Database Management  21

The data administrator role typically has broader responsibilities than the database
administrator role. A data administrator primarily has planning and policy setting
roles, while a database administrator has a more technical role focused on individual
databases and DBMSs. A data administrator also views data resources in a broader
context and considers all kinds of data, both traditional business data and non-tradi-
tional unstructured data such as images, videos, and social media. A major effort in
many organizations is to develop a data governance program to manage risks associ-
ated with the usage of corporate data assets. Data administrators typically assume a
leadership role in the data governance program, while database administrators serve
in support roles by implementing controls for data governance policies.

Because of broader responsibilities, the data administrator typically is higher in an
organization chart. Figure 1.18 depicts two possible placements of data administrators
and database administrators. In a small organization, both roles may be combined in
systems administration.

FIGURE 1.18
Organizational Placement
of Data and Database
Administration

a) Data administrator under MIS director

Database Administration

Technical Support Application Development Operations Data Administration

MIS Director

b) Data administrator parallel to MIS director

Data Administration

Technical Support Application Development Operations Database Administration

MIS Director

CLOSING THOUGHTS

Chapter 1 has provided a broad introduction to DBMSs. You should use this back-
ground as a context for the skills and knowledge you will acquire in subsequent chap-
ters. You learned that databases contain interrelated data that can be shared across
multiple parts of an organization. DBMSs support the transformation of data for
decision-making. To support this transformation, database technology has evolved
from simple file access to powerful systems that support database definition, nonproc-
edural access, programming language interface, transaction processing, and perfor-
mance tuning. Nonprocedural access is the most vital element because it allows access
without detailed coding. You learned about two architectures that provide organizing
principles for DBMSs. The Three Schema Architecture supports data independence, an
important concept for reducing the cost of software maintenance. Client-server archi-
tectures, parallel database processing, and distributed databases allow databases to be
accessed over computer networks, a feature vital in today’s networked world.

Mannino_Ch01.indd 21 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

22  Part 1 Introduction to Database Environments

The skills emphasized in later chapters should enable you to work as an active
functional user or analyst. Both kinds of users need to understand the skills taught
in the second part of this book. The fifth part of the book provides advanced query
formulation skills for database developers. This book also provides the foundation of
skills to obtain a specialist position as a database or data administrator. The skills in
the third, fourth, sixth, and seventh parts of this book are most useful for a position as
a database administrator. However, you will probably need to take additional courses,
learn details of popular DBMSs, and acquire management experience before obtaining
a specialist role. A position as a database specialist can be an exciting and lucrative
career opportunity that you should consider.

• Database characteristics: persistent, interrelated, and shared
• Features of database management systems (DBMSs)
• Nonprocedural access: a key to software productivity
• Structured Query Language (SQL), an industry-standard language for database

definition, manipulation, and control
• Transaction: a unit of work that should be processed reliably
• Procedural language interface for combining nonprocedural access with a

programming language such as Java or Visual Basic
• Evolution of database software over four generations of technological

improvement
• Current emphasis on database software for multimedia support, distributed

processing, more powerful operators, data warehouses, and big data
• Types of DBMSs: enterprise, desktop, embedded
• Impact of big data demands and NoSQL database technology to deal with big

data challenges
• Data independence to alleviate problems with maintenance of computer

programs
• Three Schema Architecture for reducing the impact of database definition

changes
• Client-server processing, parallel database processing, and distributed database

processing for using databases over computer networks
• Cloud-based database architecture for scalable, on-demand database services

without ownership costs and risks
• Database specialist roles: database administrator and data administrator
• Information resource management for utilizing information technology
• Data governance for mitigating risks associated with the complex regulatory

environment, information security, and information privacy

REVIEW CONCEPTS

PROBLEMS

Because of the introductory nature of this chapter, there are no problems in this chap-
ter. Problems appear at the end of most other chapters.

Mannino_Ch01.indd 22 08/06/22 2:59 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

