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Special Topics and Next Steps

As we reflect on our description of the several standard-setting methods
detailed in preceding chapters, we recognize that many topics we would
have wanted to include did not seem to fit nicely into an existing chapter. A
number of loose ends remain to be tied up; a variety of important issues war-
rant special treatment; there are many aspects of standard-setting practice
that merit additional attention by researchers, and new methods are likely to
be introduced to address emerging and more complex assessment contexts.
For example, in Chapter 14, we described vertically-moderated standard set-
ting (VMSS), a process or set of processes by which sets of performance stan-
dards are adjusted in order to provide a meaningful set of standards across
several grades. We noted that this procedure is relatively new in the field of
standard setting, in that VMSS is not a method itself for setting individual
performance standards, but is in reality a method for adjusting a system of
individual performance standards using one of the several methods appropri-
ate for doing so.

The concept of VMSS is a perfect exemplar of what we mean by a loose
end, a problem in need of additional research. It highlights what we hope
will be at least one of the next steps in research on standard setting—the
development and investigation of methods for adjusting cut scores. Of
course, policymakers and others have made adjustments to individual cut
scores for some time; however, none of the adjustment methods (save those
for confronting the relative seriousness of false positive and false negative
classifications) has any particularly scientific—or even procedural—
grounding to provide strong support for its use.
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Naturally, we hope that readers have benefited from the practical orien-
tation of this book so far. In the remainder of this concluding chapter, we
will try to maintain a focus on the pragmatic aspects of standard setting,
while introducing a few topics for which clear answers are not yet available
and for which synthesis of field-based experience may prove to be as useful
as sustained academic investigation. We include in this list of applied issues
methods of adjusting cut scores and the issue of how to incorporate uncer-
tainty inherent in the measurement and judgmental processes into the final
result, the problem of how/when to round values that result from a stan-
dard setting procedure, the use of multiple methods of setting performance
standards, and concern about improving the quality of participant training
to perform the standard-setting task.

The reader who is engaged in the art and practice of standard setting
likely would be able to suggest other issues that could be addressed here.
Although this chapter concludes this book, we hope that it does not close
the conversation; we look forward to the reactions, insights, and sugges-
tions of readers with whom we join to advance the state of the art in the
challenging and high-profile endeavor of standard setting.

Rounding

To begin our attention to some special topics in standard setting, we start
with what might appear to be one of the simplest issues: the problem of
rounding. Few standard-setting methods yield an exact cut score. Most com-
monly used procedures produce an average percentage correct, a mean theta
estimate, or some other measure that is then converted into a raw score or
scale score cutoff. Both the object of the conversion (e.g., the percent correct
or theta value) and the result of the conversion (e.g., the raw- or scale-score
cutoff) are almost always fractional values.

For example, it is plausible that an Angoff procedure would yield a cut
score of 27.4 on a 40-item test. A Bookmark procedure might yield an aver-
age theta of 1.19 (itself a rounded value), which corresponds to a raw cut
score somewhere between 27 and 28 (of course the actual interpolated
value of 27.36 would likely be used, but again that value has been
rounded). In these two cases, what are the values that should be recom-
mended as cut scores? If half-point scores are possible on the test, the deci-
sion might depend on the particular rule adopted, and cut scores of 27,
27.5, or 28 may be “correct” for either situation. If half-point scores are not
possible, both of these examples would still yield cut scores of either 27 or
28. If, by rule or custom, we round to the nearest score, both yield cut
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scores of 27. If we take a more conservative approach that holds that 27
does not meet the cut score of 27.4, then the first obtainable score that does
meet the cut is 28.

In typical mathematical applications, rounding rules are clear and well-
known. However, in standard setting, because the grist of the standard-
setting data analytic mill is more a matter of combining judgments than
quantities, it makes some sense to ask the question “How much difference
does the choice of a rounding approach make?”

In our experience, the answer is “Quite possibly, a very substantial dif-
ference.” On a typical statewide student achievement test involving 75,000
students, there are likely to be 1,000 or more students at each raw score
point in the vicinity of the cut score. If only to the 1,000 students who just
missed the cut (and their parents!) because it was rounded upward or to the
1,000 students who just made it because it was rounded down, the differ-
ence is highly consequential. To the six new thoracic surgeons who just
made the cut (pun intended)—and to their prospective patients—it can
literally make the difference between life and death.

Although the “life and death” phrasing may be somewhat over the top,
we hope the point that rounding is not a trivial matter is clear. The issue of
when and how rounding should occur should not be relegated to a post hoc
matter of last-minute cleanup. Directions for rounding and accompanying
rationales should be specified in advance of standard setting. As with
consideration of how and when to incorporate information related to uncer-
tainty, rounding rules should be seen as an integral part of the standard-
setting process and should be spelled out, debated, and finalized in advance.
Of course, as with other critical aspects of standard setting, these rules
should be open to discussion later in the process. In addition, such discus-
sion should be clearly focused and documented so that the final results can
be properly interpreted.

Methods of Adjusting Cut Scores

It is sometimes the case that an entity responsible for setting performance
standards is dissatisfied with the cut scores recommended to it by a standard-
setting panel. The entity may wish to modify the performance standards for
a variety of reasons. For one, the agency may have additional information to
bring to bear, perhaps information that was available but not provided to the
standard-setting participants because of concerns about participants’ ability
to make use of the data in an already complex standard-setting context. Or
the information may have become available subsequent to the standard-setting
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meeting. A testing context may have changed between a standard-setting
meeting and the time the operational test is given, such as a change in time
limits, the mode of administration (e.g., paper-based vs. computer-based), or
any number of other factors that may have played a part in participants’
original cut score recommendations. Some deviation from intended standard-
setting processes may have arisen during the standard-setting meeting, cast-
ing doubt on the appropriateness of the results (e.g., a facilitator may have
become ill and had to leave, an opinionated participant may have inap-
propriately dominated group discussions, an entire panel might have devi-
ated from the standards-referenced intention of a chosen standard-setting
method and applied norm-referenced perspectives in making their judg-
ments, and so on). Finally, the responsible entity may choose to adjust a
panel’s recommended standards on purely policy, political, or economic
grounds.

Of course, measurement specialists have long understood that the need
to adjust performance standards would likely arise, and every standard-
setting method mentioned in this book has an accompanying adjustment
method. For example, calculation of a standard deviation of estimates of
cut scores made by individual judges is sometimes used to adjust recom-
mendations stemming from the Angoff (1971), Ebel (1972), and Nedelsky
(1954) methods. Similarly, the standard deviation of the distribution of
scores of the Borderline Group is sometimes used to adjust final recom-
mendations emanating from use of that method.

More recently introduced standard-setting methods also sometimes
include the calculation of an error estimate. The Bookmark procedure
derives cut scores by averaging individual theta estimates of examinees at
the cut score; those averages have associated standard deviations, also
expressed in theta units, which can be used for cut score adjustment.
Although not unique to the Body of Work method, it has become somewhat
common for adjustments to those results to consider two sources of adjust-
ment information, one based on the variability of participants’ judgments
and one based on the standard errors of estimate of the logistic regression
coefficients. The analytic judgment method and similar procedures likewise
include a mechanism for calculating standard error.

A notion underlying most standard-setting procedures is that the cut
score is an estimate, not in the sense of a population parameter, but a sta-
tistic that is subject to random fluctuation and that would differ to some
extent in replications of the procedure under similar conditions, with a dif-
ferent (though equivalent) group of participants, and so on. The cut score
is a statistic, derived by taking an average (usually a mean or a median) over
participants. Like any statistic, cut scores can thus be thought of as having
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associated standard errors of the mean (SE), derived typically by the
well-known equation

SE=S An (Equation 16-1)

where S_is the standard deviation of the observations of variable x, and n is
the number of observations (e.g., examinees for methods such as Borderline
Group; participants for others).

To illustrate the use of this standard error, let us suppose that 16 partic-
ipants using a modified Angoff method recommended a cut score of 32 out
of 50 points. The individual estimates of the 16 participants ranged from
29.0 to 35.0, with a standard deviation of 4.0 points. Applying Equation
16-1, we would obtain an SE of 1.0. A board or agency responsible for
actually setting the performance standard on the test might consider the
final recommended cut score of 32 points and the associated standard error
of 1.0 to reach the conclusion that if the standard-setting activity were
replicated, the same procedure would result in a recommended cut score
between 31 and 33 about two-thirds of the time.

A somewhat related psychometric concept, the standard error of measure-
ment (SEM), is also sometimes used as a basis for adjusting cut scores. Whereas
the SE focuses attention on variability in the participants’ judgments, an
agency may also want to take into consideration the reliability of test scores
when making a final decision about a cut score. As is also widely known, no
test yields perfectly reliable data, and the degree of unreliability can be quan-
tified in classical test theory terms as the SEM as shown in Equation 16-2:

SEM =S V1 -r_, (Equation 16-2)

where S_is the standard deviation of examinees’ observed scores on the test,
and r_, is an estimate of the reliability of the test scores. This is, of course, the
simplest expression of the SEM and can be thought of as an average degree
of uncertainty across the range of observed scores. For tests constructed and
scored based on an item response theory (IRT) approach, an estimate of mea-
surement error at each scale point (literally, the standard error of the estimate
of theta) is easily calculated using the inverse of the square root of the infor-
mation at that point, as shown in Equation 16-3:

SE(8) = 11 () (Equation 16-3)

where I (0) is the amount of information provided by the test at a given value
of ability (i.e., ©) and is obtained by taking the sum of the information yielded
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by each item in a test at the given value of theta. Item information can be
calculated using equations provided in introductory IRT textbooks (see, e.g.,
Hambleton & Swaminathan, 1985) or obtained from output of modern IRT
software programs (e.g., Bilog, WINSTEPS). These IRT-based errors of esti-
mation can be thought of more generally as conditional standard errors of
measurement (CSEMs). Although somewhat less easily obtained, CSEMs can
also be obtained using classical test theory methods. The reader interested in
a more detailed exploration of this topic is directed to an in-depth treatment
of score reliability and decision consistency produced by researchers at ACT
(see Colton et al., 1997).

Regardless of the method chosen for considering this type of informa-
tion, it is clear from the Standards for Educational and Psychological
Testing that such information is important data that should be reported
when cut scores are used (see AERA/APA/NCME, 1999, Standard 2.14).
The reason for this requirement is easily illustrated. An examinee’s
observed score on a test is an estimate of the examinee’s true score or latent
ability; that estimate has an associated interval that is defined by the stan-
dard error of measurement and that is directly related to the reliability of
the test. For tests with equal variances, the test that yields more reliable
scores will have a smaller interval for a given score point.

For example, consider two 50-item mathematics tests—Form A and Form
B—intended to be equivalent and measuring the same construct. On both
tests, a cut score of 32 is established, and both tests have a raw score stan-
dard deviation of 6.0 points. Form A has a reliability coefficient of .91, while
Form B has a reliability coefficient of .84. Now consider two individuals who
obtain scores of 31, one on Form A and one on Form B. According to
Equation 16-2, the SEM for Test A is 1.8 points, while the SEM for Form B
is 2.4 points. For any selected confidence level, the interval for Form B will
be wider than for Form A. Consequently, the probability that a student earn-
ing 31 points on Test B might have a true score of 32 or higher is consider-
ably greater than that for a student earning 31 points on Test A. Thus it seems
important to at least consider whether these two outcomes should be treated
the same, or whether test reliability should be taken into account when an
agency makes a final decision about a cut score.

Deciding How to Incorporate Uncertainty
Given that there are many ways in which uncertainty is inherent in the

standard-setting process and that methods exist for quantifying those levels
of uncertainty, the question now is “What do we do with this information?”
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One option would be to simply report the information along with the cut
score to those responsible for setting the performance standards—though per-
haps also to those who are consumers of score information. Or should some
use be made of the information in terms of making an adjustment to the cut
score? Given the requirements of the Standards and perhaps the requirements
of ethical science, the first alternative would seem to be mandatory, although
it would not preclude the second. Knowledge of the variability of the esti-
mates of the cut score (or viewed from another perspective, the level of agree-
ment or disagreement among the participants) would seem to be crucial to
the adopting, or policy-making, body. Similarly, measurement specialists are
obligated to report not only reliability coefficients but also various standard
errors of measurement. Informed state boards of education, certifying agen-
cies, licensing boards, and other authorities would likely view cut scores with
small standard errors (of mean and of measurement) differently from those
with larger standard errors.

Let us for a moment explore further the second alternative and use
uncertainty information to make adjustments. What sorts of adjustments
should be considered? State superintendents and boards of education have
been known to lower all cut scores by a fraction of an SEM or even a whole
SEM for high-stakes tests, reasoning that in such cases, the student should
be given the “benefit of the doubt”—a phrase that seems benevolent, but to
some extent masks an implicit policy that favors false positive classification
errors over false negative ones.

Of course, by and large the decision to adopt or adjust a cut score is itself
essentially a policy decision. An interesting—though perhaps not unique—
example from a real statewide student testing program highlights this point.
In that state, performance standards were adopted on two different com-
ponents of the same program (e.g., reading and mathematics), with the pri-
mary difference between the two adoptions being that the meetings for
setting the cut scores occurred a year apart, with a change in state super-
intendent also occurring in the intervening year. The first superintendent
adjusted the recommendation of the standard-setting panel by lowering the
cut score by one-half of an SEM; the adjusted standard was presented to the
state board of education, which adopted it. The following year, the new
superintendent, fully aware of the practice of the former superintendent,
made no adjustment to the panel’s recommendation; the unadjusted cut
score was presented to the same board of education, which adopted it. For
many years afterward, the percentages of students passing the two tests
remained remarkably different.

Which superintendent was right? Were they both right? Both acted
legally and responsibly, within the bounds of their oaths of office. But the
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effects of the decisions were quite different. Moreover, it is relevant to
consider whether the decisions would have been equally appropriate if the
context had been a medical licensure program, or one pertaining to the cer-
tification of nuclear power facility operators, rather than a statewide edu-
cational achievement testing issue. Perhaps in these situations it would have
been more appropriate to use information about cut score variability or test
reliability to adjust the cut score upward, rather than downward. Or to
adopt a standard-setting panel’s recommendations without any adjustment.
How will we know?

One procedurally sound method for considering a response to that
question has roots in Nedelsky’s (1954) standard-setting method, which
included an adjustment factor in the formulation for the cut score, or to use
Nedelsky’s terminology, the minimum passing level (MPL) used to distin-
guish between two groups (the F and D groups in Nedelsky’s formulation,
hence the “FD” subscripts in the following equation):

MPL = M, + kS, (Equation 16-4)

where M, is the mean of participants’ summed cut scores (i.e., such that each
participant’s cut score is the sum of his or her item probabilities), S;;, is the
standard deviation of that distribution, and k is a variable, undefined in
Nedelsky’s formulation, but clearly intended by Nedelsky as a value that
could take on a range of values depending on how large an adjustment in the
cut score, upward or downward, was considered.

Although such a conceptualization would not be well-received in the
context of today’s standards-referenced measurement methods, Nedelsky
suggested that k could be a number that would fix the number or percent-
age of passing examinees at some desirable level.

Along the same lines, Emrick (1971) introduced the notion of ratio of regret
(RR) into the calculation of a cut score C_, as shown in Equation 16-5:

_ log[p/(1 — )] +[1/n" (log RR)] (Equation 16-5)
loglaB/(1 — a)(1 —B)]

X

where B is the probability of a false negative (Type 2) error, o is the proba-
bility of a false positive (Type 1) error, n is the number of items, and RR is
the ratio of regret calculated in such a way that the log of RR would be neg-
ative if the cut score needed to be lowered or positive if it needed to be raised.

The raising or lowering of a cut would depend on which type of error
was considered to be of greater consequence, more serious, or more to be
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avoided. RR would be negative if erroneously failing an examinee were
worse, or positive if erroneously passing an examinee were worse. It should
be noted that Emrick’s formulation was applied at the item level and
summed over very short diagnostic tests. Further, it is perhaps most accu-
rate to note that Equation 16-5 is not really an adjustment, but yields a
value of the cut score itself.

Given the fact that Emrick’s original formulation focused on very short
tests and the fact that most modern tests are not only much longer but
much more complex in their composition, application of Equation 16-5, in
its entirety, may be impractical. Furthermore, we now have a much more
effective arsenal of procedures for calculating cut scores than were available
in 1971. We include this historical information on Nedelsky’s and Emrick’s
procedures largely as a starting point for cut score adjustments based in
decision theory. As we move forward, we will leave most of the mathemat-
ical notation behind, but we will rely on the concept of RR in the discus-
sion that follows.

Let us return to the practice alluded to earlier in which the state super-
intendent adjusted a panel’s recommended cut score downward by one-half
of an SEM. What was the rationale for the choice of one-half an SEM? It
was simply the custom of that superintendent, who had routinely made the
same adjustment when presented with panel recommendations on several
previous occasions. Again, this was within the purview of his authority as
the state’s chief state school officer. But the decision was an opaque one. It
could have been made much clearer, and it could have involved more stake-
holders in its derivation.

Broader dissemination of a cut score adjustment alone—that is, without
a compelling rationale—can be troublesome. In Pennsylvania, for example,
the selection of an adjustment factor for a set of cut scores for statewide
assessments (increasing them by one-fourth of a standard error of the mean)
generated controversy and negative publicity that might have been avoided
had the rationale for the decision been made more explicit and the choice
of the specific adjustment been more open and made before, rather than
after, the standard-setting procedure was conducted (Helfman, 2002). And,
although one-fourth of an SEM might appear on the surface to be a trivial
adjustment, as with all statistics there is the companion issue of practical
significance. In the Pennsylvania example, the relatively minor technical
adjustment resulted in the classification of 8,000 students as failing who
would have passed if no adjustment had been made.

These and other similar scenarios that have been seen in diverse
standard-setting contexts highlight the fact that while substantial progress has
been made in the methods used to derive cut scores during standard-setting
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meetings, considerably less progress has been made in methods and proce-
dures for applying cut score adjustments. We offer a modest proposal to
open a dialogue related to the concept of ratio of regret in order to quan-
tify the positions of one or more decision makers or stakeholders in every
standard-setting activity.

The concept of ratio of regret is necessarily situation specific. Our first
suggested step would be to consider relevant research on the benefits
presumed to accrue from making particular classification decisions. For
example, if the body of early elementary grades retention research suggests
that little is to be gained by holding back marginally proficient (or even
clearly skill-deficient) third graders, that information would at least need to
be considered if one potential outcome of adopting a performance standard
on a third-grade achievement test was retention in grade. If, alternatively,
the same test were to be used to identify struggling third graders for addi-
tional help during the first half of the fourth grade, and if the proposed pro-
gram of remediation had proven effective, then the ratio might be reversed.

Beyond initial research to establish a baseline for adjusting cut scores, we
propose that individuals who are likely to be involved at the final stage of
standard setting (i.e., those who act in official capacities to accept, reject, or
modify cut scores recommended by a standard-setting panel) be formally
identified early in the process and polled regarding their personal ratios of
regret. The process might actually be carried out in much the same way that
standard setting is conducted, that is, consisting of steps in which a panel
of “experts” is identified, presented with information, polled for their rec-
ommendations (in one or more rounds, with or without feedback) and in
which summary value is calculated. At minimum, our recommendation for
a next step in this area will be to begin formal research and development
into much more rigorous and systematic methods and procedures for
adjusting cut scores.

Generalizability of Standards

Several approaches to examining the generalizability of recommended per-
formance standards have been suggested. Unfortunately, many applications
of standard-setting methods cannot be studied for dependability because they
involve only one measurement occasion. That is, the result of the procedure
is a single value (usually a mean) based on a single unit of observation (i.e., a
single panel of participants).

However, in some standard-setting applications, it is feasible and desir-
able to conduct the procedure by splitting a larger group of participants into
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two randomly equivalent panels. For example, a group of 20 participants
would receive common orientation, training, and practice using a standard-
setting method. The group of 20 would then be divided into subgroups of 10
members each, which would produce ratings, engage in discussions, and so
on independently. Although the data from such a design would likely still be
used in the aggregate (i.e., based on all 20 participants), a study design in
which independent subgroups were formed would afford the opportunity to
estimate a standard error of the resulting performance standards.

One simple method for estimating this quantity has been documented by
Brennan (2002). Brennan’s approach involves calculation of the standard
error of a mean when there are only two observations. Using the means of
the two independent groups as the observations, the standard error is cal-
culated as

o’ =Ix, —x,l/2 (Equation 16-6)

where x, and x, are the cut scores recommended by each of two independent
panels and o’ is the estimate of the standard error of the performance
standard.

More sophisticated approaches to estimating the dependability of recom-
mended cut scores can be implemented. One particularly powerful
approach relies on a generalizability theory approach (see Brennan, 1983;
Shavelson & Webb, 1991). However, these methods are most appropriate
when there are more than two measurement (i.e., rating) occasions—a rare
configuration in applied standard-setting practice.

Decision Consistency and Decision Accuracy

Consider an examinee taking a test as part of the process required to earn a
high school diploma or obtain certification in a professional field. Obviously,
the score on which the graduation/certification decision will be made is less
than perfectly reliable. Moreover, the performance standard (i.e., cut score)
that the examinee must attain has been set by a committee who did not com-
pletely agree on where the cut score should be set but, more than likely,
agreed to set it (or them) at some average of all the individual cut scores rec-
ommended by the group of participants. Thus an examinee faces a test with
a very fixed cut score overlying a matrix of possible cut scores, given the vari-
ability of both test score (as measured by a standard error of measurement of
the test) and the cut score (as measured by the standard error of the mean of
participants’ recommendations).
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Table 16-1  Hypothetical Classification Frequencies (Proportions) and
Calculation of Decision Consistency Estimate

Classification on Second
Administration
Classification on First
Administration Fail Pass Total
Fail 28 (.14) 14 (.07) 42 (21)
Pass 16 (.08) 142 (.71) 158 (.79)
Total 44 (.22) 156 (.78) 200 (1.00)

NOTES: Agreement coefficient, p, = (28 + 142) / 200 = .85
Proportion of chance
agreement, p, = (p)(p.)

(21)(.22) + (.14)(.71) = .15

Decision consistency, K (p, — p)/(1 =p)
= (.85 -.15)/(1 - .15)
.70/.85

=.82

So far, we have examined some of the adjustments that might be made
on the basis of one or the other of the two sets of measures affecting our
examinee. In this section, we explore some recent advances in decision con-
sistency and then consider both sources of instability simultaneously.

Early work in decision consistency approached the problem of estimating
consistency using a strategy parallel to estimating reliability using the test-
retest method. Assuming that an examination was administered twice to a
sample of examinees (without differences in motivation, effort, knowledge,
etc.) and that examinees were classified into performance categories (e.g.,
pass and fail) on both occasions, the proportion of consistent decisions, sym-
bolized p,, can be directly calculated. Table 16-1 shows a 2 x 2 matrix of
hypothetical results when a test form was administered to 100 examinees and
the same cut score was applied creating passing and failing classifications.

Taking the total number of consistent classifications—that is, the num-
ber of examinees classified as passing on both administrations (z = 142)
plus the number of examinees classified as failing on both occasions
(n =28)—and dividing that sum by the total number of classifications (200)
yields an estimate of decision consistency. This estimate is sometimes
referred to as the agreement coefficient and symbolized as p,. Based on the
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hypothetical data shown in the table, the value of p, in this case is equal
to .85.

In practice, it is often desirable to adjust the value of p, based on the like-
lihood that some of the consistency in decision making can be attributed to
chance. The proportion of consistent classifications attributable to chance
is symbolized by p_, and the calculation of that value is also shown in the
table. Based on the data in the table, the value of p_ is approximately .15.
Finally, the value of p_is then used to adjust p; this yields the kappa
coefficient (k) proposed by Cohen (1960). The calculation of x is also
shown in Table 16-1 and, based on the hypothetical data in the table, yields
a decisions consistency coefficient, corrected for chance consistency of clas-
sifications, of approximately .82.

Of course, one practical limitation inherent in obtaining all of the coef-
ficients just mentioned is that they require the same group of examinees
to take the same examination on two occasions. Subsequent research by
Subkoviak (1976, 1988) and others has provided the tools for estimating
the likelihood that an examinee classified as passing (or failing) on one
administration of an examination will be classified similarly on a second
administration.

For example, Subkoviak (1988) has provided a straightforward and
computationally simple method of estimating an agreement coefficient (p,)
and a kappa (k) coefficient based on a single administration of a test using
a reliability estimate for the total test scores and the absolute value of Z,
computed from the following formula:

Z=(C,—M-0.35)(S,) (Equation 16-7)

where C_ is the cut score for the test, M is the observed test mean, and S_ is
the standard deviation of observed scores on the test. Absolute values of the
statistic, Z, are then used to obtain the estimates of the agreement coefficient
and kappa from look-up tables provided in Subkoviak’s (1988) publication
and reproduced in Tables 16-2 and 16-3, respectively. To illustrate use of the
tables, suppose a test of 100 items was administered to a sample of exami-
nees, that the sample mean and standard deviation were 85.5 and 8.0, respec-
tively, that a cut score of 74 was used to make pass/fail decisions, and that
the total score reliability was .70. In this case, the calculated value of Z would
be [(74 — 85.5 — 0.5)/8.0)] = —1.50. Using Table 16-2, the agreement coeffi-
cient, p,, is found by locating the intersection of the row containing the
absolute value of Z (1.50) and the column containing the reliability estimate
of .70. The single-administration estimate of p, in this case is .92, indicating
that a high proportion of consistent decisions would be expected if the
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Table 16-2  Approximate Values of the Agreement Coefficient (p,) for
Various Values of Reliability
Approximate Values of the Agreement Coefficient (p,)
Total Test Reliability Estimate (r.)
1Z | .10 .20 .30 40 .50 .60 .70 .80 .90
.00 53 .56 .60 .63 .67 .70 .75 .80 .86
.10 .53 .57 .61 .63 .67 71 .75 .80 .86
.20 54 .57 .61 .64 .67 71 .75 .80 .86
.30 .56 .59 .62 .65 .68 .72 .76 .80 .86
40 .58 .60 .63 .66 .69 .73 77 .81 .87
.50 .60 .62 .65 .68 71 .74 .78 .82 .87
.60 .62 .65 .67 .70 .73 .76 .79 .83 .88
.70 .65 .67 .70 .72 .75 .77 .80 .84 .89
.80 .68 .70 .72 .74 .77 .79 .82 .85 .90
.90 71 .73 .75 77 .79 .81 .84 .87 .90
1.00 .75 .76 77 .77 .81 .83 .85 .88 91
1.10 .78 .79 .80 .81 .83 .85 .87 .89 .92
1.20 .80 .81 .82 .84 .85 .86 .88 .90 .93
1.30 .83 .84 .85 .86 .87 .88 .90 9 .94
1.40 .86 .86 .87 .88 .89 .90 91 93 95
1.50 .88 .88 .89 .90 .90 91 92 .94 95
1.60 .90 .90 91 9 92 .93 .93 .95 .96
1.70 .92 92 .92 .93 .93 .94 .95 .95 .97
1.80 .93 93 .94 .94 .94 95 .95 .96 .97
1.90 95 95 95 95 .95 .96 .96 .97 .98
2.00 .96 .96 .96 .96 .96 .97 97 .97 .98

SOURCE: Subkoviak (1988).
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Table 16-3  Approximate Values of Kappa (é) for Various Values
of Reliability
Approximate Values of Kappa (x)
Total Test Reliability Estimate (r.)
1Z | .10 .20 .30 40 .50 .60 .70 .80 .90
.00 .06 13 .19 .26 33 41 49 .59 71
.10 .06 13 .19 .26 33 41 49 .59 .71
.20 .06 13 .19 .26 33 41 49 .59 .71
.30 .06 12 .19 .26 33 40 49 .59 .71
40 .06 12 .19 25 .32 40 48 .58 .71
.50 .06 12 .18 25 32 40 48 .58 .70
.60 .06 12 .18 .24 31 .39 47 57 .70
.70 .05 A1 17 .24 31 .38 47 57 .70
.80 .05 A1 17 23 .30 37 46 .56 .69
.90 .05 .10 .16 22 29 .36 45 55 .68
1.00 .05 .10 A5 21 .28 .35 44 .54 .68
1.10 .04 .09 .14 .20 27 .34 43 .53 .67
1.20 .04 .08 .14 .19 .26 .33 42 52 .66
1.30 .04 .08 13 .18 25 32 41 S1 .65
1.40 .03 .07 12 17 23 31 .39 .50 .64
1.50 .03 .07 11 .16 22 .29 .38 49 .63
1.60 .03 .06 .10 15 21 .28 37 47 .62
1.70 .02 .05 .09 .14 .20 27 .35 46 .61
1.80 .02 .05 .08 .16 .18 25 34 45 .60
1.90 .02 .04 .08 12 17 .24 32 43 .59
2.00 .02 .04 .07 A1 .16 22 31 42 .58

SOURCE: Subkoviak (1988).
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examination procedure were repeated. Using Table 16-3, the corrected
decision consistency coefficient agreement coefficient, x, is found by locating
the intersection of the same values of Z and r_,. The table reveals a single-
administration estimate of ¥ for this situation of .38, indicating the test pro-
cedure is adding only modestly to consistency in decision making. Two
reasons for such a result are (1) the cut score is located somewhat far away
from the area of greatest density of the observed score distribution, and
(2) the reliability estimate for the test scores is modest.

One of the recent advances in decision consistency permits estimation of
that quantity for tests that result in more than dichotomous pass/fail classi-
fications. For example, Livingston and Lewis (1995) have proposed a
four-step method for calculating the decision consistency of a single mea-
sure, using the minimum and maximum obtainable scores on the test, the
reliability of the test, the length of the test, and the cut scores. They suggest
four steps for estimating decision consistency:

1. Estimate the effective test length (n).
2. Estimate the distribution of the proportional true scores (Tp).

3. Estimate the conditional distribution of classifications on another form of the
test, for test takers at each true-score level.

4. Estimate the joint distribution of classifications based on true scores and scores
on another form of the test. Transform the category boundaries linearly.

Completing these four steps requires the construction of two parallel half-
length tests from the original test in such a way that the content, means,
standard deviations, and reliabilities of the two half-length tests are identi-
cal or nearly so. The remainder of the procedure involves essentially the
calculation not just of scores but of categorical classifications on each half-
length test.

To illustrate this procedure, suppose that the Proficient or passing cut
score on an 80-point test were set at 50. Two half-length tests of 40 points
each would be constructed to conform proportionally to the same blueprint
as the 80-point test (only with half as many items). Now, to set cut scores
for the two half-length tests, we would note the percentile ranks for the cut
scores on the full-length test. As noted earlier, the Proficient/Pass cut score
was 50 out of 80. Even with 40-point half-length tests, we would not nec-
essarily have cut scores of 25. Instead, we would note the percentile rank of
the score of 50 on the full-length test and match that rank to the corre-
sponding raw score on the half-length test. Thus, if a raw score of 50 (out
of 80) represented a percentile rank of 63, then the cut scores for the two
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half-length tests would be the raw scores closest to the 63rd percentile for
that half-length test.

The next step in the procedure involves the establishment of a 2 x 2 con-
tingency table (or, more generally, an n X n contingency table, with n rep-
resenting the number of categories into which examinees can be classified)
and the calculation of the agreement statistics. Livingston and Lewis (1995)
used straight agreement rate (i.e., the sum of the diagonal entries repre-
senting exact agreement between the two half-length tests with regard to
the category placement of each examinee). However, other agreement
indices, such as kappa (Cohen, 1960), could also be used.

A Demonstration of Computing Decision
Consistency and Decision Accuracy on Complex Tests

Software has been developed by Brennan (2004a) to simplify the gener-
ation of decision consistency and decision accuracy estimates for tests with
multiple cut scores (e.g., Basic, Proficient, Advanced) and tests that do not
consist exclusively of equally weighted, dichotomously scored items (i.e.,
tests that comprise a mix of select-response and constructed-response items,
or tests comprised exclusively of constructed-response, performance tasks,
or other polytomously scored formats). The software, titled BB-CLASS,
is available for download at http://www.education.uiowa.edu/CASMA/
DecisionConsistencyPrograms.htm. The zipped file package, bb-class.zip,
contains the executable program, a user’s manual, sample data sets, and
output. The software provides results for the Livingston and Lewis (1995)
procedure described previously and is based on either a two- or four-
parameter beta binomial model. In addition, BB-CLASS provides results for
a method proposed by Hanson and Brennan (1990) although that method
was designed for tests consisting exclusively of equally weighted, dichoto-
mously scored items.

Running BB-CLASS to obtain decision consistency and decision accu-
racy estimates based on the Livingston and Lewis procedure requires the
user to supply only a reliability estimate for the test under consideration,
the cut scores to be applied (expressed in terms of both raw and percentage
correct scores), and to select the number of parameters to be used (two for
a two-parameter beta true score distribution or four for a four-parameter
beta true score distribution). (Another program called IRT-CLASS, avail-
able at the same site indicated in the preceding paragraph, allows the user
to input scores in an IRT [i.e., theta or ability] metric.)

Input data for BB-CLASS can consist of a list of raw scores or a fre-
quency distribution of raw scores (although the program can also provide
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Table 16-4  Sample Input Control File for Estimating Decision Consistency and
Decision Accuracy

11111111112
Column No. 12345678901234567890
Line 1 LL 0.9 4
Line 2 “LL DATA” F 1 2
Line 3 3 140.0 160.0

SOURCE: Adapted from Brennan (2004b).

results using only the first four moments of the raw score distribution as
input). Although additional options can be added, Table 16-4 shows the
basic input control cards required for running BB-CLASS based on the
sample data set provided with the zipped software package.

The file shown in Table 16-4 consists of three lines of program control
information. A BB-CLASS control file must be a text-only file (i.e., saved
in DOS-TEXT or ASCII format as a .txt file). Note that the information
shown in the table regarding “Column No.” and the line labels “Line 1,”
“Line 2,” and “Line 3” are not included in the control file; these are
included in Table 16-4 for reference only.

The first line of the program control file consists of three pieces of infor-
mation. The characters LL appear in columns 1 and 2 of Line 1; these
characters indicate that the Livingston and Lewis (1995) method has been
selected. (The characters HB would be substituted if the Hanson and
Brennan method were desired.) A space (or tab) follows, then the reliabil-
ity estimate for the test is entered. In this case, the reliability estimate of 0.9
appears in columns 4-6, followed by another space. Finally, the number of
parameters of the desired beta distribution is entered in column 8 (a four-
parameter option is shown in Table 16-4).

The second line of the program control file supplies the source of the
data file that BB-CLASS will use. The data file must be located in the same
directory as the control and program files, and it must be enclosed in dou-
ble quotation marks. In Table 16-4, the date file name “LL. DATA” appears
in columns 1-9. (The data file used here consists of scores and associated
frequencies for 1,000 examinees and is the same data file supplied with the
zipped BB-CLASS package.) In column 11 of Line 2, the character F indi-
cates that input data are in the form of frequencies (this would be changed
to R if the input were raw data). The final two values appearing on Line 2
of the control file specify the location in the data file of the scores and their
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associated frequencies. In this case, column 1 of the tab-delimited data file
contains the scores; the frequencies associated with each score are found in
column 2 of the data file. All entries in a command line are separated by a
single space.

The final line of the program control file provides input regarding the
number of categories and values for the cut scores used. In this case, the
number of classification categories (in this case, 3) appears in column 1.
The next two values give the cut scores in raw score units. Columns 4-8
indicate the first cut score (in this case, 140.0); columns 10-14 indicate the
second cut score (i.e., 160.0).

Selected output from running BB-CLASS using the data set provided in
the zipped package and the controls described in the preceding paragraphs
are provided in Table 16-5. The table consists of two panels. Information
on decision accuracy is provided in the upper portion of the table (16-5a).
This table compares classification decisions actually made based on observed
scores and classifications that would be made based on estimated true
scores. Among the information of interest in this panel are the values shown
in bold type at the bottom of the table, including overall probability of cor-
rect classification (0.83988) and false positive and false negative classifica-
tion rates (0.07695 and 0.08318, respectively).

Information on decision consistency is provided in the lower portion
of the table (16-5.b). This table compares classification decisions actually
made based on expected and observed scores. Among the information of
greatest interest in this panel are the values shown in bold type at the bot-
tom of the table, including overall percentage of consistent classification
(0.77634), the value of the kappa statistic (consistent classifications cor-
rected for chance agreement; in this case, 0.64685), and the overall proba-
bility of inconsistent classification (0.22366).

Other Decision Consistency Procedures

Another straightforward method of calculating decision consistency has
been suggested by Brennan and Wan (2004). The method applies to single
test administrations of complex tests and utilizes a bootstrap technique.
Their approach begins with an examinee’s item responses to the full-length
test and then randomly from that examinee’s response vector a large num-
ber of times, calculating a percentage correct score that is compared to the
observed percentage correct score. If a sample-based classification agrees
with the original decision (e.g., Pass-Pass or Fail-Fail), then the two scores
agree; otherwise they do not. Over a large number of sample comparisons,
an agreement index is calculated for that examinee. This process is then
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Table 16-5 Sample Output from BB-CLASS

16-5.a Accuracy Relative to Actual Observed Scores

Observed Category Classification
True Category 1 (Lowest 2 (Middle 3 (Highest Marginal
Classification Category) Category) Category) Values
1 (Lowest 0.17639 0.02541 0.00002 0.20182
category)
2 (Middle 0.03759 0.24202 0.05152 0.33113
category)
3 (Highest 0.00002 0.04557 0.42146 0.46705
category)
Marginal 0.21400 0.31300 0.47300 1.00000
values

Overall probability of correct classification = 0.83988
False positive rate = 0.07695 False negative rate = 0.08318

16-5.b Consistency Using Expected (Row) vs. Actual (Column) Observed Scores

Actual Category Classification

Expected Category 1 (Lowest 2 (Middle | 3 (Highest Marginal
Classification Category) Category) Category) Values

1 (Lowest 0.16806 0.04193 0.00068 0.21068
category)

2 (Middle 0.04527 0.20712 0.07116 0.32355
category)

3 (Highest 0.00066 0.06395 0.40116 0.46577
category)

Marginal values 0.21400 0.31300 0.47300 1.00000

Opverall percentage of consistent classifications (p,) = 0.77634

Percentage of consistent classifications attributable to chance agreement

(Pehance) = 0.36667
Estimated kappa (&) = 0.64685
Probability of misclassification = 0.22366

SOURCE: Adapted from Brennan (2004b).
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repeated over all examinees so that an overall agreement index may be
calculated.

The Brennan and Wan (2004) procedure is made all the more attractive
by the availability of computer programs to carry out the bootstrapping
procedure. Although the original samples described by those authors were
much smaller than most large-scale assessments (129 cases vs. more than
100,000 examinees for many statewide assessments), the programs seem
well suited for much larger populations. Their methodology is also adapt-
able to multiple cut scores; although Brennan and Wan refer to Pass-Fail
decisions, it would be just as easy to consider each cut score as a dichoto-
mous decision point and repeat the procedure at each cut score. The pri-
mary advantage of the bootstrapping approach over previous approaches is
the fact that this approach does not require the construction of new tests.
The advantage is not so much the time saved (though that is considerable)
as the fact that the requirement to create parallel half-length tests intro-
duces an unknown estimation bias into the process, similar to the bias
introduced when estimating reliability using a split-halves approach. Such
tests will hardly ever be truly parallel, and the decision consistency estimate
will always be dependent on the particular way in which the half-tests were
created.

Lee (2005), also working with Brennan and his colleagues at the Center
for Advanced Studies in Measurement and Assessment (CASMA) at the
University of Iowa, has developed procedures for calculating decision con-
sistency for a compound, multinomial model, along with a computer pro-
gram (MULT-CLASS). This and other work being performed at CASMA
offers considerable promise for the future.

Summary and Future Directions

In conclusion, although sound procedures exist for calculating decision
consistency for tests from single administrations, it is clear that these pro-
cedures focus on only one aspect of the measurement problem, namely, the
reliability of the test, or more specifically, the reliability of the classification
of examinees with respect to a fixed cut score. They do not address the sta-
bility of the cut score itself or what to do with the information yielded by
decision consistency estimates. We can consider these issues with reference
to the hypothetical examinee we described previously in this section. That
examinee is still facing a fixed cut score that is based on a test and a standard-
setting process that leave some room for ambiguity. Livingston and Lewis
(1995), Brennan and Wan (2004), and Lee (2005) have suggested how
we might at least estimate the variability of one aspect of the classification
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decision. Nedelsky (1954), Emrick (1971), and others have suggested how
we might estimate the variability of the other dimension. Is there any way
to combine estimates of both types of variability and do something with the
information?

Let us consider a very simple though highly plausible example. Assume
that, in the region of the cut score (50), a certain test has a standard error
of measurement (SEM) of 2 raw score points. An examinee with an
observed raw score of 49 would obtain a score between 47 and 51 about
68% of the time, if tested repeatedly without fatigue or learning. This score
interval includes the cut score 50. Moreover, the cut score was set by a com-
mittee on the basis of a final round of standard setting that yielded a mean
of 50 and a standard deviation of 5. With a committee of 25 individuals,
the resulting standard error of the mean (SE) would be 1 point.

Now let us examine the situation in a slightly different light. Let us start
with a cut score of 50. Our same examinee earns the same 49 points, but
now we have to interpret the result slightly differently. We have the same
68% confidence interval for the examinee’s score, but we also have a 68%
confidence interval for the cut score itself. It might be reasonably argued
that the cut score should be lowered to 49 (or raised to 51) to reflect the
committee’s lack of unanimity (examinee passes) or that the examinee’s
true score could easily be 51 (examinee passes at 49, 50, or 51). A matrix
illustrating the scenarios just described is shown in Table 16-6.

Practically speaking, then, how do we use the information such as that
presented in Table 16-6? We know how to calculate the stability of one
aspect of our decisions. We have not focused on exactly what we should do
with those calculations once we have them. Clearly, this is one of the
pressing pragmatic issues that has lacked much attention in the applied

Table 16-6  Example of Decision Matrix

Cut Score
Examinee Score 49 (-1 SE) 50 (Observed) 51 (+1 SE)
47 (-1 SEM) Fail Fail Fail
49 (Observed) Pass Fail Fail
51 (+1 SEM) Pass Pass Pass

NOTES: Cut score = 50; Examinee score = 49 (SE for cut score = 1 point; SEM for raw score =
2 points)
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psychometric literature and that represents a “next step” for research and
development in standard setting.

Using Multiple Methods of Standard Setting

A somewhat intuitively appealing idea proposed every now and then is that
standard setting should include multiple methods. On the surface, the idea
might seem like the perfect solution to the potential problem of the cut score
resulting from implementing a single method being unsatisfactory. Training
participants in multiple methods and requiring them to apply each method
to the same data (i.e., test form or group of examinees) will likely result in
two, three, or more possible “answers” to the standard-setting question. This
smorgasbord of standards can then be forwarded to the appropriate entity
with authority to actually set the standards, and that body then has the lux-
ury of a diversity of choices for the final decision.

We believe that the surface appeal of such an idea stops, well, at the sur-
face. For one thing, the cost of conducting even a single standard-setting
procedure is substantial. Subject matter experts must be persuaded to con-
tribute a large amount of time to the endeavor, which can extent to four or
five days when the procedure includes several rounds of judgments of indi-
vidual test items. Logistical arrangements—for such things as transporta-
tion, lodging, meeting space, materials, and so on—are also costly. Given
the fact that an entity is likely to have finite and limited resources to expend
on the standard-setting effort (we think that high-quality test development
is important too!), it does not seem sensible to spread those limited
resources too thinly at the point of standard setting.

Beyond consideration of resources, however, is the fact that a standard-
setting procedure should be selected because it presents a strong match with
the format of the assessment, the purposes of testing, the skills of the par-
ticipants, and other factors. Thus, in a given context, it is likely that a sin-
gle standard-setting method is better aligned with those factors than would
be other methods, and the use of the best aligned approach would be
preferred.

Finally, we are aware of only a few contexts in which multiple standard-
setting methods were used. We are not aware of even a single documented
instance in which a systematic, replicable process has been documented for
synthesizing the results of the multiple procedures. For example, one high-
profile use of multiple standard-setting methods has been described in the
context of setting performance standards for a statewide student achieve-
ment testing program in Kentucky. A very costly design was followed in
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which three methods—Bookmark, Contrasting Groups, and Jaeger-Mills
(2001)—were all used to arrive at different possibilities for a system of
cut scores on the assessments (see CTB/McGraw-Hill, 2001). However,
although the description of each of the individual procedures and their
results was adequate, details concerning precisely how a synthesis panel
used the discrepant results to arrive at final recommendations are essen-
tially absent from the documentation. The available documentation fails to
describe the procedure beyond reporting that the three methods “offered
guidance to [synthesis participants] in their efforts to weight particular
results and to consider on which information to rely most heavily”
(CTB/McGraw-Hill, 2001, p. 23).

Since the time of the work in Kentucky, little if any progress has been
made in research and development of methods for combining the results
of multiple standard-setting procedures. No methodology currently exists
for satisfactorily addressing the challenge that arises when multiple
standard-setting procedures result in different answers to the standard-
setting question.

It is easy in this case to conclude that research may be needed to clarify
the issue. The careful reader will notice that the conclusion just stated was
that “research may be needed.” To be less coy about our position, we will
state directly that, for many of the previously cited reasons, we believe that
the use of multiple methods is ill-advised currently and in the near future.
Our optimism at the possibility that such research will be fruitful is slight,
however. The prospect of using multiple methods reminds us of an apho-
rism attributed to Lee Segal and often referred to as “Segal’s Law.” We
plead ignorance of any biographical detail related to Mr. Segal, but not
ignorance about how best to think about the result of implementing multi-
ple standard-setting methods. According to Segal, “A man with a watch
knows what time it is. A man with two watches is never sure.” Because
there is no equivalent of an atomic clock in the field of standard setting, our
recommendation is simply for practitioners to invest in a single watch of
greatest quality given available resources.

Improving Participant Training

In the 1990s, a standard-setting dustup occurred when a group was opposed
to what they perceived to be unrealistically high performance levels set by the
National Assessment Governing Board (NAGB) for the National Assessment
of Educational Progress (NAEP). The group attacked the method used to set
those standards in a widely cited report. The report claimed that the method
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used (the Angoff method) was “fundamentally flawed” (Shepard et al., 1993,
p. xxiv) and that it presented participants with a “nearly impossible cognitive
task” (p. xxiv). It urged that the NAEP performance standards be rejected.

The opinions offered by Shepard et al.—rooted perhaps more in politi-
cal than scientific grounds—were broadly and conclusively rejected, a rejec-
tion with which we also concur. An uncharacteristically frank rebuttal to
the Shepard et al. (1993) report was coauthored by an unprecedented
collection of psychometricians—11 in all (Hambleton et al., 2000). In the
rebuttal, the work of Shepard et al. was evaluated as being marked by a
“lack of logic” (p. 8), failing to incorporate research published in scientific
journals (p. 7), and “weak|[ness| with respect to other aspects of the scien-
tific approach” (p. 7). The report was dismissed as “one-sided, incomplete
and inaccurate” and “a disservice to NAGB, educational policy makers,
educators, and the public” (p. 13).

Although the initial report itself may have been roundly refuted, it may
have had the unintended (or intended) consequence of prompting greater
attention to the cognitive processes engaged in by participants in standard-
setting procedures. Whether or not it was the NAEP achievement-levels
conflagration that has resulted in greater research on the factors considered
by standard setters when they make the judgments required by particular
methods, we enthusiastically support this endeavor. Without question, we
need to know much more about how participants make their judgments,
what kinds of information they consider, and how they weight different
kinds of information. Much good work is just beginning to be done in this
area, and the preliminary results suggest that their cognitions are complex,
sometimes idiosyncratic, and clearly warrant further research.

For example, in one recent study, the researchers concluded that partic-
ipants differed in their understanding of the purpose of the standard setting
and the performance categories that had been adopted, they used feedback
inconsistently across modes of student assessment, and their understanding
of the rating task may be related to the time available for the standard-
setting task and their work rate (Skorupski & Hambleton, 2005). In
another recent article, participants using an Angoff-based approach and
generating low ratings were found to be using a more norm-referenced per-
spective to judge item performance than participants who generated high or
moderate ratings and who tended to apply a more criterion-referenced per-
spective (Ferdous & Plake, 2005).

One particularly vexing issue requiring practical answers is the question
of when to provide standard-setting participants with information about
the consequences of their judgments in terms of the percentages of exami-
nees that will likely be assigned to various performance categories based on
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the proposed cut scores. For example, in procedures involving three rounds
of ratings, impact information might be presented to participants after just
one round of judgments, as late as the end of Round 3, or at each stage. It
is our experience that there is a tendency to provide normative information
quite early in the process and more regularly, while impact information is
usually presented later (and sometimes not at all). It is also our experience
that impact information tends to have a greater influence on participants’
judgments the earlier it is provided. However, current research has not pro-
vided firm guidance regarding how participants process impact information
or regarding interaction effects when various kinds of information (e.g.,
impact and normative) are provided concurrently. In conclusion, and
broadening this line of inquiry, we suggest a next step would be to devote
as much research attention over the next decade to studying the larger
participant decision-making process as has been devoted to developing
standard-setting procedures themselves during the past decade. In our opin-
ion, we now know a great deal about how to set standards but relatively
little about what people are thinking while they are doing it.

And, extending this research agenda beyond those who participate in
a standard-setting meeting, we recognize that we know virtually nothing
about how those who actually set standards process the information they are
given, namely, superintendents, chief executives of licensing and certification
agencies, and other policymakers. While we believe that stating a priori a
position about how standards should be adjusted is a desirable goal and, as
we have indicated, that decision theory provides an effective set of tools for
doing so, we first need to find out more about the way this elite group makes
decisions. Finally, once the processes of both participants and decision mak-
ers are better understood, it is our hope that the technology of instructional
design can be brought to bear in order to provide more effective training to
both groups so that they are able to complete their important task with
fidelity to the method and to the purposes for setting standards in the first
place.





