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CHAPTER 2.  SOFTWARE AND  
SCRIPT FILE CONSIDERATIONS

Software Considerations

Avoid Spreadsheet Software and the General User Interface

Over one-third of genomics research includes errors introduced 
by spreadsheet software (Abeysooriya, Soria, Kasu, & Ziemann, 
2021; Lewis, 2021; Ziemann, Eren, & El-Osta, 2016). Specifi-
cally, many genomics researchers use spreadsheet-based soft-
ware (e.g., Microsoft Excel, Google Sheets, LibreOffice) to 
enter or store data. Unfortunately, however, spreadsheet soft-
ware’s auto-correct feature may misread gene names. For 
instance, a gene like SEPT2 (Septin-2) may automatically be 
changed to a date format, such as 2-Sep or 2006-09-02 
(Ziemann et al., 2016). As a result, persistent errors plague 
genomics research, leading to a discipline-wide effort to rename 
genes in a way that avoids naming conventions that may be 
misinterpreted and auto-corrected by spreadsheet software.

This example is far from the only error that has occurred due to the use 
of spreadsheet software for data preparation or analysis (for another promi-
nent example, see Chapter 5). Spreadsheet-based software is prone to 
errors that are easy to make but difficult to detect or trace (Panko, 1998). 
Said otherwise, the use of spreadsheet-based software hinders transpar-
ency. As a result, spreadsheet software is inappropriate for serious data 
management/analysis, and researchers should avoid using it for any data-
related task—even simple ones—like renaming variables. In what follows, 
I describe the advantages of statistical software over spreadsheet 
software.

Statistical Software Versus Spreadsheet Software

In spreadsheet software, to make changes to data or calculate analyses, 
researchers typically click on icons or write functions in “cells.” These cells 
are liable to shift and change, making it easy to accidentally select or edit 
the wrong cell. In contrast, when using statistical software, researchers 
write instructions (code) in one file (known as a script file) to tell the soft-
ware what to do with data that exist in a separate file (a data file). Com-
pared to spreadsheet software, this method is less error-prone and makes it 
easier to identify issues when they do occur.
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So, for example, if I were using a spreadsheet software to calculate the 
mean of 10 observations in column A (as in Figure 2.1), I might type into 
cell A11 in the same spreadsheet =  AVERAGE(A1:A10), and it would 
give me the mean in cell A11.

Conversely, in a statistical software, I would type code into a separate 
document, known as a script file. For example, in R, I would type

dc_intro_excel %>%
    summarise(mean(A))

into the script file, which is in the upper left-hand corner of the R studio 
interface (see Figure 2.2). This code means, use the dc_intro_excel data-
base and calculate the mean of column A. Notice that I wrote this code in 
a file that is distinct from where the data are stored (which is in the “envi-
ronment,” top right quadrant) or where the output is produced (which is in 
the “console,” bottom left).

Stata, a different statistical software, operates similarly (see Figure 2.3). 
In a Stata script file, known as a .do file (on the left), I would first load the 
data and then write the code sum A to get the mean of column A in the 
“results” window (on the right).

Although the software programs are different, unlike a spreadsheet soft-
ware, neither one involves writing code directly into the data file. All edits 
are made by writing and executing code in a separate script file. 

Figure 2.1  Example of Calculating a Mean in Spreadsheet Software
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Additionally, unlike spreadsheet software, the output is produced in a sepa-
rate window (console for R and review window for Stata) instead of the 
data file. These features help avoid errors and facilitate accurate, transpar-
ent, and efficient data preparation.

Figure 2.2  �Example of Calculating a Mean in R, a Script File–Based 
Software

Figure 2.3  �Example of Calculating a Mean in Stata, a Script File–Based 
Software

Copyright ©2026 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



13

Avoid Point-and-Click Methods

While some spreadsheet programs offer features to automate or record 
actions, they remain heavily dependent on “point-and-click” methods. In 
general, researchers should avoid using the general user interface (GUI) or 
point-and-click methods, favoring instead the use of script files (described 
in the previous section) to execute code. This approach allows for more 
precise tracking of data management decisions and makes research work-
flows easier to reproduce and verify.

A simple example of the shortcomings associated with the point-and-
click method is to think of detailing the exact steps necessary to make a 
peanut butter and jelly sandwich. To provide exact details, the researcher 
would need to list the following:

	 1.	 Go to the first cabinet on your left

	 2.	 Open the cabinet doors

	 3.	 Remove a medium-sized plate

	 4.	 Place plate on counter

	 5.	 Close cabinet doors

	 6.	 Go to second drawer on right

	 7.	 Open drawer

	 8.	 Remove butter knife

	 9.	 Place knife on counter

	 10.	 Close drawer

	 11.	 Go to cabinet

	 12.	 Open cabinet door

	 13.	 Remove the bread from the top shelf

	 14.	 Close cabinet door

	 15.	 Go to the counter where knife and plate reside . . .

I have already listed 15 steps and we haven’t even spread the peanut but-
ter yet! The list of steps quickly becomes tedious and error-prone. In con-
trast, by using code-based software and script files, researchers can 
automatically record and reproduce steps. Thus, it is helpful to think of 
code as the only “real” thing about a project. With code, data preparation 
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and analysis decisions are automatically recorded.1 Since these decisions 
are recorded, they can be easily shared with others, thereby also making 
them more transparent.

Understand Your Statistical Software

Outside of spreadsheet software, each statistical software package (e.g., 
R, Stata, SAS, etc.) has its idiosyncrasies that can affect data cleaning pro-
cesses. These idiosyncrasies include things such as how missing data are 
handled, how datasets are merged, and how levels of measurement (e.g., 
continuous or categorical variables) are indicated, among others.

Here are two examples:

	 1.	 In Stata, missing data are treated as positive infinity. Therefore, 
researchers must take care when using arguments that involve 
greater than symbols/values.

	 2.	 In R, when merging two datasets together, researchers must specify 
that they want to keep observations with missing data. Otherwise, 
observations with incomplete data may not be included in the 
merged data.

These examples illustrate how different software programs can affect 
how researchers approach data cleaning. To ensure efficiency and accuracy 
of data preparation, researchers must familiarize themselves with the pecu-
liarities of their chosen software and consider how certain decisions may 
impact their findings. While this book does not delve into the details of 
software, there are excellent resources for researchers to learn about the 
way different software “thinks.”2 Additionally, since it is difficult to foresee 
all possible software idiosyncrasies, always verify that the software is 
doing what you want or expect using code review (discussed in greater 
detail in Chapter 10).

1 For scholars who do not have a background with coding, it may be difficult to learn 
new software and how to write code. If necessary, researchers can use point-and-
click methods that generate code, which can then be copied and pasted into a script 
file for rerunning and easier interpretation. This way, the code still exists and facili-
tates reproducibility. If the point-and-click methods do not generate code, researchers 
can search for example code, save the code into a script file, and edit it accordingly.
2 To accelerate the learning process, I highly recommend workshops. There are also 
several helpful books and online resources, and I only name a few. For Stata: Acock’s 
(2010) “A Gentle Introduction to Stata” and Baum’s (2009) “An Introduction to Stata 
Programming.” For R: https://cran.r-project.org/doc/manuals/r-release/R‑intro.pdf.
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Script File Robustness and Legibility

As noted above, to ensure transparency of research decisions, it is essential 
to write code into script files. The following sections provide general rec-
ommendations for writing script files that can be run and understood by 
other researchers (or even yourself at a later date—trust me, it can be easy 
to forget). Examples of script files can be found in the online appendix.

Robustness

Robustness means a script file produces consistent results, regardless of 
the machine on which it is executed. To achieve robustness, a file must 
consider all dependencies. As described above, dependencies are packages 
that need to be downloaded, files that need to be uploaded, and/or specific 
sections of code that need to be executed before other lines of code can be 
successfully run. The following section describes ways to reduce file 
dependencies, thereby ensuring robustness. For templates in Stata and R, 
see the online supplement.

Start and End with a Clean Slate

Each time researchers open a software program, they should begin and 
finish with a clean slate (Wickham, Çetinkaya-Rundel, and Grolemund 
2023). By clean slate, I am suggesting that at the end of each working ses-
sion, researchers completely close the program and save all files. Then, at 
the beginning of a new working session, when researchers open the pro-
gram, no files automatically open (e.g., data files, script files, project files). 
By adhering to this practice, researchers develop a habit of saving the 
necessary code before closing each working session. Additionally, to 
ensure that any project-specific settings do not accidentally affect all pro-
jects, researchers should adopt practices to clear or reset settings at the 
beginning of each working session.

Exclude File Paths

Since every computer has a different directory (aka file) structure, 
researchers should exclude file paths (and other hard-coded paths) from 
script files (Wickham, Çetinkaya-Rundel, and Grolemund 2023; Long, 
2009; Taschuk & Wilson, 2017). Even if a project folder has a consistent 
structure, the path to get to that folder will differ on different computers. 
Therefore, any code that references a complete file path will not run on 
another computer. Furthermore, if a project folder is moved or renamed, a 
researcher would have to change every file path in each and every script 
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file. To avoid these issues, researchers should set the directory path only 
once—either manually or in a separate file—distinct from the files used to 
reproduce analyses.

Load the Data in the Script File

Loading data in the script file prevents researchers from accidentally 
analyzing the wrong dataset. When a researcher opens a file through the 
software’s GUI, it is difficult for colleagues or other researchers to know 
which dataset was selected. This lack of transparency can create issues if 
the wrong dataset was used by mistake or if discrepancies arise in future 
analyses. By including the code to load the dataset in the script file, 
researchers can clearly see which data are being used and where they are 
being used. In other words, loading data in the script automates the impor-
tation process, facilitates reproducibility, and minimizes the risk of errors 
(Wilson et al. 2014).

Include Seeds for Random Numbers

A seed number is the starting point used in the generation of a sequence 
of random numbers. There are many reasons why a statistical software may 
use a random-number generator. At times, a researcher may not even real-
ize that a random-number generator is being used for a portion of code.

For example, in multiple imputation, software programs introduce “ran-
dom error,” meaning that each imputed value varies across observations and 
datasets. Although the imputed numbers vary, the algorithm used to create 
the random sequence of numbers is constant. With a seed, the algorithm 
begins at the same value or random number, creating variation in the same 
way each time. Without a seed, the random number that it begins at will 
vary, and the way that the variation is added to the dataset will also vary.

If researchers do not set a seed, then the random number is different each 
time the file is run. Consequently, the imputation results may vary, and the 
research findings may also vary. In contrast, if researchers set a seed, they 
obtain the same sequence of pseudo-random numbers and consistent 
results. Thus, using seeds promotes reproducibility in random-number gen-
eration processes (Long, 2009).

Use Version Control

Over time, the software used for data management and analysis under-
goes changes and updates, which can impact reproducibility (Long, 2009; 
Taschuk & Wilson, 2017). To maintain reproducibility and ensure consist-
ent results, researchers can use version control. In general, version control 
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is implemented when a researcher can run the same version of software and 
packages even after a long period of time and after software updates. Ver-
sion control facilitates collaboration because all collaborators are working 
with the same software version, regardless of their individual machines.

Depending on the statistical software of interest, version control is 
implemented differently. In the online supplement, I provide some code 
that assists with version control. While version control can be accom-
plished with one or two lines of code for closed-source software programs 
(e.g., Stata), it requires more effort in open-source software programs 
(e.g., R). To achieve comprehensive version control in open-source soft-
ware (such as R), researchers essentially need to create an archive of their 
entire computer system.

Use Automation

Data cleaning and analysis involve repeating the same processes time and 
time again. Automation is the process of reducing the number of clicks or 
lines of code needed to reproduce data cleaning/analysis processes. Reduc-
ing lines of code is important since each line of code introduces a potential 
for error, with estimates ranging between 10 to 25 errors per 1,000 lines of 
code (McConnell, 2004).3 Therefore, by reducing manual intervention and 
the number of lines of code, automation reduces the chance of error.

In contrast to automation, hard-coding or the use of “magic numbers” 
involves directly typing specific values into code that may change over 
time. Hard-coding is problematic because if those values change based on 
earlier steps, a researcher would need to manually update every instance 
where those values are used.

To illustrate, let’s consider an example in which researchers are creating 
an indicator variable for observations in which the occupational prestige 
score is an outlier.4

Although there are many ways to calculate outliers, one definition is any 
value greater than or less than the mean, plus or minus 2.24 standard devia-
tions (μ ± (2.24 × δ).5 For instance, the mean occupational prestige score 
in the General Social Survey as of 2018 is 44.68 and the standard deviation 

3 GUI and point-and-click methods are not any less error-prone. In contrast, they 
may introduce even more errors and reduce reproducibility.
4 An outlier is a value that is markedly different from others. I discuss outliers in 
detail in Chapter 7. For now, just think of it as trying to identify strange values.
5 This is the equation for a confidence interval, where μ refers to the mean (pro-
nounced like “myoo”), and δ refers to the standard deviation. For more information 
on means and standard deviations, see Chapter 7.
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is 13.65. This would mean that the upper limit is 75.26,6 and any value 
greater than 75.26 would be an outlier.

In the manual, “magic number,” or hard-coding approach, researchers 
could generate a new variable equal to 1 or an “Outlier” if the observation’s 
value of the variable is greater than the upper limit and otherwise equal to 
0 or “Not Outlier.” The code for this would look like

	• Calculate the mean (44.68)

	• Calculate the standard deviation (13.65)

	• Calculate the mean plus 2.24 standard deviations (75.26)

	• Create a new variable called upper_outlier

	• Set upper_outlier = 1 if prestige is greater than 75.26

	• Set upper_outlier = 0 if prestige is not greater than 75.26

Unfortunately, with this approach, if the mean or standard deviation ever 
changes—for example, if researchers drop or add observations—they 
would need to go back and find these hard-coded values and edit them.

Alternatively, in the automated approach, researchers avoid typing the 
mean and standard deviation in the code. Rather, the researchers would 
create a local, named constant, or temporary object to store these values. 
For example, rather than type the mean and standard deviation manually, 
they could use code that says

	• Calculate the mean

	• Save this value to “mean”, so that when I say “mean”, the calcu-
lated mean appears in its place

	• Calculate the standard deviation

	• Save this value to “sd” so that when I say “sd”, the calculated 
standard deviation appears in its place

	• Create a new variable called upper_outlier

	• Set upper_outlier = 1 if prestige is greater than “mean” + 
(“sd” * 2.24)

	• Set upper_outlier = 0 if prestige is not greater than “mean” 
+ (“sd” * 2.24)

6 44.68 + (2.24 * 13.65)
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By using automation, researchers ensure that changes in the data clean-
ing process, such as removing observations with missing data, will auto-
matically update the relevant values.

One can see how, throughout the process of data cleaning and mode-
ling, there is a great potential for “hard-coding.” Unfortunately, a hard-
coded value requires a researcher to identify and modify it each time the 
data change. Instead, by using automation, researchers can reduce the 
number of things they are required to remember such as the location of 
these values. Furthermore, automation eliminates concerns about accu-
rately typing each number, as the numbers are automatically incorporated 
into the code.

Automation also aids in error detection. When using automation, a single 
error results in consistent, systematic errors, which may be easier to detect 
than a single, non-systematic error (Long, 2009; Wilson et al., 2014). Addi-
tionally, automation makes it faster to respond to errors or changes. Rather 
than make numerous small edits, a researcher can make one edit that will 
carry throughout the project. In summary, by using automation, researchers 
reduce the potential points of origin for mistakes and are better able to catch 
mistakes when they do occur (Yarkoni et al., 2019).

Legibility

Legibility refers to how easy or difficult it is to comprehend the code 
from a project. Achieving legibility requires the use and implementation of 
the following principles.

Internal Documentation

To make it easier to navigate code, it is helpful to include explanatory 
notes to oneself, coauthors, and interested readers. Although good labels 
and names reduce the need for extensive notes (as discussed in more detail 
in Chapter 3), internal documentation within files remains important.

A key element of internal documentation is provenance, which should 
exist in all figures and tables (Buneman, Chapman, & Cheney, 2006; Long, 
2009). Provenance is a small piece of text located in an inconspicuous place 
that usually includes the name of the script file used to generate the table 
or figure. Additionally, all script files should have their own provenance, 
usually listed at the top of a file (Long, 2009). This section of the script file 
should include the following information:

	• Author name

	• Name of person who most recently edited the file

Copyright ©2026 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



20

	• Date created

	• Date of last update

	• File name

For an example of how to implement internal documentation in code 
files, see the template script files in Stata and R provided in the online 
appendix.

Alignment, Indentation, and Attention

Consistent alignment and indentation make code more visually organ-
ized. When code is thoughtfully spaced, it becomes easier to read and edit. 
That is because alignment and indentation can be used to emphasize com-
mands and highlight variables.

For instance, consider the following code:

reg yvar xvar1 xvar2 xvar3 xvar4 
           xvar5 xvar6

In this example, the alignment and indentation highlight the command 
“regression” and the dependent variable “yvar.” On the other hand, the fol-
lowing code appears more cluttered, making it harder to distinguish the 
command and dependent variable:

reg yvar xvar1 xvar2 xvar3 xvar4 
xvar5 xvar6

In addition to spacing and alignment, largely aesthetic choices also impact 
code legibility and should be consistent within projects. Although specific 
decisions may vary within teams or by software, there are some commonly 
agreed-upon best practices (Wickham, 2019). The following bullet points 
provide some guidance:

	• Spaces and Tabs
∘	 For indentation, use spaces instead of tabs, as tabs can have vary-

ing formatting on different machines.
∘	 Avoid mixing spaces and tabs.

	• Attention
∘	 To divide files into easily readable chunks, use symbols that are 

not processed by the software, but allow for comments or draw 
attention to specific areas (e.g., in Stata: // or *; in R: # or -).
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	• Line Length
∘	 Keep lines of code short, preferably under 80 characters.7
∘	 To keep lines of code short, consider using locals or vectors of vari-

able names instead of repeatedly rewriting long lists of variables.
∘	 When possible, consider using abbreviated commands or functions.

Summary

In summary, for transparency and accuracy, researchers should conduct 
their data preparation and analyses in a code-based statistical software (as 
opposed to a spreadsheet software), using code (as opposed to a general 
user interface or GUI) that is saved to script files. Transparency is further 
facilitated by the public sharing of data and script files (Leek & Peng, 2015). 
To optimize the transparency of script files, they should be robust (can run 
on any machine and produce identical results) and legible (easy to read) 
(Wilson et al., 2014). To ensure robust script files, researchers should 
exclude file paths, load data within the script files, use seeds for random 
numbers, adopt version control, and implement automation to reduce errors 
and the need for manual intervention. To ensure legible script files, 
researchers should include provenance in all files and adopt thoughtful and 
consistent practices for aesthetic choices like spacing and drawing attention 
to sections of code.

7 This advice originated from the practice of occasionally printing code on paper, 
which is now uncommon. Despite the low likelihood of printing code, shorter lines 
are still easier to read and debug on computer screens, and 80 characters is a helpful 
guideline.
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