
ideas of societal development raised by theorists such as Nisbet, Rostow,

Organski, Ingelhart, and Pye. Graph algebra need not be limited to those

realms in which one wants to resolve a parameter’s value. Indeed, graph

algebra can be used narrowly to specify a model for a specific question or

problem or broadly to theorize within intellectual realms of significant

expanse, or anywhere in between.

2. GRAPH ALGEBRA BASICS

The use of graph algebra can yield marked benefits to theory building in the

social sciences, and it is useful to view these benefits when considering

the linear regression model. Arguably, the most common model used in the

social sciences is the linear regression model. While many approaches to

parameter estimation exist for linear models, the ultimate result is typically

a table with a list of independent variables and their associated parameter

estimates and standard errors. From this perspective, the list of variables in

the table is the model. Specification concerns usually revolve around the

question of whether or not a researcher has omitted one or more important

variables from the analysis, although sometimes the issue of functional form

also is involved.

While graph algebra does not reduce a researcher’s need to be aware

of potential omitted variable specification problems, it does allow the

researcher much greater flexibility with respect to designing innovative and

intellectually appealing functional forms. As an absolute minimum, graph

algebra allows us to develop more sophisticated model specifications such

that the algebraic form of the model becomes as important as the variables

that exist within that form. Thus, systems theory as it is expressed through

graph algebra offers a means of developing algebraic formulations that cor-

respond with social and political theories that are more complex and sophis-

ticated than the ubiquitous linear form. Thus, as a movement away from

the linear model, the use of graph algebra encourages the development of

increasingly interesting scientific theories. Moreover, as will become clear

by the end of this book, such theories find their origin in the thinking of the

theorist, not in the graph algebra itself.

A researcher gains the benefits of graph algebra by mastering its func-

tionality as a language. Graph algebra is the language that we use to des-

cribe a system’s structure and functioning. With graph algebra we identify

the parts of the system’s structure, and then we connect those parts in a

process that identifies the structure’s functioning. Thus, the system’s
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structure leads to an understanding of its functioning. Once we have identi-

fied a system’s structure and functioning using graph algebra, we then turn

to an analysis of the response of the system with respect to variations in

inputs. Ultimately, we use graph algebra to describe a social process and to

identify causal inference with a system’s perspective. Most graph algebra

models can be fully estimated with respect to a body of data, and research-

ers will in general want to do this. However, one can also use graph algebra

to develop models that are used only analytically. Subsequent analysis of

the model (estimated or otherwise) can take many forms, including predic-

tion or forecasting, various analytics, and simulation.

In terms of mechanics, graph algebra uses elements to transform inputs

into outputs. The elements are the parts of the system’s structure that go

between the inputs and the outputs. The elements contain operators that

describe how those elements work to transform one state of the system into

another state of the system. One can think of a ‘‘state of the system’’ as

a measuring point during the process of transforming inputs into outputs.

As inputs are changed into outputs, they experience various intermediate

conditions. These intermediate conditions are the states of the system. An

element works on a state of the system to transform it into another state of

the system. All of this happens before the entire system eventually gives

birth to a final output.

In graph algebra, elements are normally represented by boxes. Operators

go inside the boxes. The collection of connected elements constitutes the

system’s structure. Typically, inputs go to the left of this structure, and out-

puts are placed to the right of this structure.

Inputs, Outputs, and the Forward Path

All systems require inputs and outputs. In many situations often associated

with single-equation models, the inputs are typically considered the inde-

pendent variables of the model, whereas the output is the dependent vari-

able of the model. I write ‘‘in many situations’’ because it is possible for

independent variables not to be explicit inputs, such as with the variable

time in many of the continuous-time dynamic models presented later in this

book. Also, sometimes inputs are not really ‘‘independent,’’ as in the multi-

ple regression sense of the word. Indeed, the idea that one variable is ‘‘inde-

pendent’’ and another variable is ‘‘dependent’’ normally implies that the

independent variable causes change in the dependent variable and nothing

of significant importance is causing change to the independent variable.

That is, the causality is one-way only, from independent to dependent. But

in many interesting systems, the idea that a variable is truly independent
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can be a misnomer. Indeed, the essence of systems analysis in the first place

is that everything affects everything else, or a least some other things. So it

is possible for systems to exist that do not really have any authentically

independent variables. For this reason, we normally use the word input

rather than independent variable when talking about systems. But this

choice of terminology will vary depending on a particular theoretical con-

text and a researcher’s preferences.

There is a similar issue with the use of the words dependent variable to

describe a system’s output. We can use these words so long as we recognize

that their use may not be entirely parallel to the way they are used in statisti-

cal analyses, such as with multiple regression, since dependency can reside

in many places within a system. The more common usage when talking

about systems is to call the dependent variable the output. Again, this choice

of terminology will depend on the theoretical context and a researcher’s

preferences. Also, multiple-equation models may have more than one output

or dependent variable. More intuitively, the inputs are what go into the sys-

tem to make it work, and the outputs are the result of the system’s processing

of the inputs. In mechanical terms, one can think of gasoline as an input, the

engine as the system, and forward movement of the car as the output.

It is best to describe graph algebra with a simple heuristic example. Using

an example drawn from human behavior, let us say that workers in a politi-

cal campaign are doing door-to-door canvassing for potential voters to

support their candidate. Let us also say that a certain proportion of these

interactions result in a successful mobilization of voters. This is a simple

system, and for the purpose of keeping this example system simple, so that

we can initially focus only on the graph algebra that describes its structure,

I am purposely avoiding ideas that might make this system more realistic

and thus more complicated. (For example, one might ask if some of those

contacted by the campaign workers might have voted regardless of whether

or not the workers knocked on their door.) The input to this system is the

canvassing activity done by the campaign workers, and the output to this

system is the mobilization of voters. This is represented using graph algebra

in Figure 2.1.

In Figure 2.1, Ct is the input to the system, and it represents the number

of people who are contacted by the campaign workers during the canvas-

sing activity at time t. The box in the figure is an element of the system, and

it contains the parameter p. Parameters are one form of operator, and they

are called ‘‘parameters of proportional transformation’’ in the language of

graph algebra. What this means in terms of the model in Figure 2.1 is that a

certain proportion (p) of the people canvassed by the campaign workers

[Ct] will become mobilized to vote. The output of the system is Vt, and this
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represents the number of people who are mobilized to vote. The path from

Ct to Vt is called the ‘‘forward path,’’ since the activity of the system moves

‘‘forward’’ from input to output along this path. The convention is that

forward paths typically flow from left to right.

Graph algebra always translates into an algebraic statement. In the case

of Figure 2.1, the algebraic statement for this graph algebra model is

Vt= pCt. This results from the most basic rule of graph algebra:

Graph Algebra Rule #1: Things that flow along the same path are

multiplied.

Thus, we begin with the input and multiply it by anything that is located

along the forward path. We then set that equal to the output of the system.

This simple model says that some proportion (p) of the campaign contacts

[Ct] is transformed into voters [Vt], which means that we multiply p by Ct to

obtain Vt.

It is now easy to use graph algebra to represent a simple linear regression

equation of the sort commonly used in many statistical analyses. This will

also allow us to introduce the second most basic rule of graph algebra. This

linear regression model is presented in Figure 2.2 with a model having four

independent variables, an intercept, and one dependent variable. The error

term is omitted here for simplicity.

In Figure 2.2, the graph algebra model describes a person’s probability of

voting as a function of the person’s income, level of education, self-described

partisan identification, and a contextual measure of the partisan composition

of the neighborhood within which he or she lives. Note that there are five

forward paths in this figure. Four of the forward paths are a result of the inputs

from the four independent variables described above, and I describe the fifth

forward path below. The algebraic equation that results from the graph in

Figure 2.2 is shown as Equation 2.1:

Vote=β0 +β1(Income)+β2(Education)+β3(PID)þ β4(Context); ½2:1�

p
Campaign
contacts

(Ct 
)

Vote
(Vt 

)

Figure 2.1 A Simple System of Voter Mobilization Using

Graph Algebra
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where PID stands for partisan identification and context stands for neigh-

borhood context. Note that all the forward paths in Figure 2.2 get added

together in Equation 2.1. This introduces the second most basic rule of

graph algebra:

Graph Algebra Rule #2: Add paths that merge together at an

intersection.

Note also that in Figure 2.2 there is an additional forward path that contains

an input of 1 and the parameter β0. This reflects how many computer pro-

grams calculate an intercept for an estimated regression line, in the sense

that a column of 1s is typically added to a data matrix as a new variable.

Thus, in computational terms, an intercept is actually nothing more than a

slope times the ‘‘variable’’ 1, which in practice simply leaves us with an

additive constant. Finally, note that the model in Figure 2.2 is static, in the

sense that time plays no role in structuring the relationship between these

variables. This is simply a model that specifies how the values of the four

independent variables, which reflect qualities of selected individuals, affect

the value of the dependent variable. In this instance, there is no ambiguity

in using the terms independent variables and dependent variable instead of

inputs and output, respectively, since graph algebra is being used to de-

scribe a multiple regression setting in which the former terms are totally

appropriate and the issue of causality is clear. Also, readers should note that

the model is purposely simple, and to keep it useful as a heuristic vehicle to

Income β1

Education β2

Partisan
identification

Voteβ3

Neighborhood
context

β4

1 β0

+

Figure 2.2 A Simple Regression Model With Four Independent

Variables, an Intercept, and One Dependent Variable
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demonstrate the mechanics of graph algebra, other factors that might make

it more realistic (and thus more complicated) are avoided.

In general, the application of the first two rules of graph algebra is sum-

marized in Figure 2.3. Note the use of the term operator in the element

boxes in Figure 2.3. A parameter of proportional transformation is one type

of operator that can be used in an element. Other operators are discussed

later in this book. Note also that in the example given in the lower part of

Figure 2.3 two separate inputs are added together before both of them are

‘‘sent’’ through the same operator on the forward path. These are just heu-

ristic examples of a limitless arrangement of inputs, operators, and outputs.

Also, in situations in which there are two inputs, both the inputs do not have

to enter the model on the far left. It is possible to enter an input or to place

an operator nearly anywhere in graph algebra as long as it all makes sense

from a social theory perspective.

Feedback Loops and Mason’s Rule

Regulation and control are primary strengths of modeling using graph

algebra. Feedback loops are typically used to accomplish regulation and

control. A feedback loop is like an input, but its origin is from within the

system itself, not from outside of the system. In many systems, the output

reenters the system as another input. As mentioned previously, this is exactly

what happens with a microphone and speakers when the sound from the

speakers feeds back into the microphone, often causing a loud squeal.

Yields, (Input) (Operator) = Output

Input OutputOperator

Yields, (Input 1 + Input 2) (Operator) = Output

Input 1

Input 2

OutputOperator+

Figure 2.3 The General Application of Rules #1 and #2 of

Graph Algebra
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Let us return to the earlier example in which campaign workers were

canvassing for potential voters. After campaign workers talk to potential

voters, some of these people will be mobilized to support the candidate or

issue that is discussed. Some of these mobilized people may subsequently

begin to talk to their neighbors, friends, and coworkers trying to convince

them also to support the cause. Thus, the newly mobilized people are reen-

tering the vote-mobilization system as a new input. They are not the origi-

nal campaign workers, so they cannot be included as part of that original

input. Rather, they are separate. But they too will interact with people just

as do the original campaign workers, which means that a proportion of these

new interactions will result in additional support for the campaign. This is

the same as it was with the original campaign workers.

The general depiction of a feedback loop using graph algebra is shown in

Figure 2.4. This figure demonstrates a positive feedback loop, in the sense

that the output of the system feeds back into the system as a positive input.

The two examples described above, one involving feedback with a micro-

phone and speakers and the other involving campaign interactions, are both

instances of positive feedback. But the microphone example is dynamic, in

the sense that the squeal from the speakers (and thus the degree of feedback)

changes over time. However, note that in Figure 2.4 there is no indication

of how time would be involved in the process, since neither the input nor

the output is subscripted with t. This kind of system is called a ‘‘static

system.’’

Static systems are conceptually different from a ‘‘simultaneous system,’’

which is described below, since a static system is independent of time

entirely. Linear regression models that relate one dependent variable to a

list of independent variables are common examples of static systems as

long as none of the variables are subscripted by time. For example, relating

income to education via a correlation analysis is a static comparison, as

opposed to relating income to education at a particular point in time, which

assumes that the relation could be different at a different point in time. This

distinction will become more important to us later when we begin using

time-based operators with graph algebra.

One might naturally ask how a campaign feedback process can be static

(or simultaneous) since it must take place over time. This depends on how

we conceptualize the feedback process. Later in this book, time operators

are introduced that allow one to specify exactly when the feedback process

occurs relative to the other parts of the system. But such time operators do

not appear in Figure 2.4. With feedback loops, a fraction of the output reen-

ters the system to eventually show up again as an output, and a fraction of

that output reenters the system yet again through the feedback loop . . . and
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on and on it goes. With static systems, the feedback parameter (in this case

m) represents the summation of these ongoing feedback cycles, as if the

process is in equilibrium, or perhaps at the conclusion of a conceptually

bounded time span such as an election campaign.

It is also important to note that when an output reenters the system

through a feedback loop, the reentry does not operate as a subtraction from

the output (thus diminishing the output). Thus, a feedback process does not

remove the output to reuse it. For example, the microphone does not take

sound away from the speakers when it reenters some of the output back into

the system’s amplification process. The output is still the output; it is simply

fed back into the system.

Note the variables X1, X2, and X3 in Figure 2.4. These are states of the

system, which are values of the system at various points within the system.

With graph algebra, one never leaves the states of the system in the final

algebra of the model. The states of the system are used only as algebraic

conveniences to help us determine the model’s final form. For example, in

this system we have

X1 = Input +X3;

X2 = pX1;

X3 =mX2:

Note that X2 also equals the output of the system. We can substitute and

eliminate the states of the system, thereby restating the model:

X2 = pðInput +X3Þ
X2 = pðInput +mX2Þ

And since X2=Output, we have

Output = pðInput +mOutputÞ;

p
X2X1

X3
m

Output Input +

Figure 2.4 A Positive Feedback Loop
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or, after rearranging,

Output = Input½p=ð1− pmÞ�: ½2:2�

This derives Mason’s Rule, named after its author (see Cortés et al., 1974,

p. 104). Mason’s Rule is a shortcut for finding the function of a single feed-

back loop. In words, Mason’s Rule can be stated as the forward path divided

by the quantity 1 minus the product of the forward path and the feedback

path. Restated, Mason’s Rule for determining the function of a single feed-

back loop is as follows:

Mason’s Rule: Forward path/[1− (Forward path)(Feedback path)].

This formula gets multiplied by the system’s input to equal the output. The

states of the system can always be used to determine the algebraic equation

for any graph algebra representation. But sometimes Mason’s Rule is quite

handy and is introduced here as a convenience for graph algebra that a

modeler may or may not wish to use.

An Example From Economics: The Keynesian Multiplier

The Keynesian multiplier is a good example from economics of the use of a

positive feedback loop. Consider a system in which a nation’s total income

is a function of investment and consumption. Consumption acts as an addi-

tional input into the system since consumers spend their money on products,

thereby reinserting their income into the functioning of the economy. Using

graph algebra, we can depict such a simple economy, as in Figure 2.5.

Note that the forward path of Figure 2.5 has an element that contains the

number 1. This is an ‘‘invariant transformation,’’ which is simply an iden-

tity operation. In this model, all investments are transformed into economic

output, in the sense that nothing is lost. Note also that investment and eco-

nomic output are subscripted with respect to time and that the time subscript

is the same for both. This means that the system is a time-dependent simul-

taneous system, in the sense that all investments are immediately counted

as (or transformed into) economic output. The equation that is produced

with this graph algebra representation is shown as Equation 2.3, and this

can easily be obtained by applying Mason’s Rule to Figure 2.5:

Economic outputt = Investmentt½1=ð1− cÞ�; ½2:3�

where 1/(1− c) is the familiar Keynesian multiplier.
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Equation 2.3 would normally be estimated using the statistical form of

Equation 2.4, where the parameter β0 is an intercept for the statistical model

and parameter β1 is the slope:

Economic outputt =β0 + β1ðInvestmenttÞ ½2:4�

Note that an intercept could have been added to the graph algebra diagram

in Figure 2.5 just as it is included in Figure 2.2. In this book, intercepts are

often omitted from the graph algebra diagrams to obtain a more tidy presen-

tation, and it is left to the reader to reinsert those intercepts in cases where

desired. From Equation 2.4 we can see that β1= 1/(1− c). Thus, if we esti-

mate Equation 2.4 and obtain the parameter β1, then we also need to calcu-

late the value of the parameter c, which is embedded inside β1.

This simple example helps to emphasize a useful feature of graph alge-

bra. Our real interest is not in finding the value of β1, but rather the value of

c. It is the graph algebra that helps us see this. If we began with the statisti-

cal model shown as Equation 2.4 (i.e., in the absence of the graph algebra

representation of the role of consumption), then we might not realize that

the relationship between investment and economic output is complicated

by the feedback component of consumption. Thus, graph algebra assists in

clarifying the specification of many such models in which the parameters of

interest are embedded inside the estimated statistical parameters. In this

case, the Keynesian multiplier is so well understood that one might say that

the graph algebraic representation of the model is not needed. While this

may be the case in this instance, there will be many other models in which

the specifications are more complex and not well-known, and it is in those

situations that the use of graph algebra is particularly valuable.

This example is useful in again pointing out an aspect of graph algebra

that can sometimes be misunderstood. In Figure 2.5, note that an arrow

1

C

Economic
outputt 

Investmentt 

c = Rate of consumption

+

Figure 2.5 The Keynesian Multiplier: Economic Output as a Function

of Investment and Consumption
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leaves Economic outputt and flows through the parameter c before reentering

the system at the front end of the feedback loop where the circle with the plus

sign is located. This does not mean that something is being subtracted from

the value of Economic outputt for it to be reentered at the plus sign. Thus, the

arrow leaving Economic outputt and pointing to the parameter c is not redu-

cing the value of Economic outputt. Rather, a measure of Economic outputt is

being taken where the feedback loop begins, and some proportion (c) of this

is being reinvested in the economy. Again, restated differently, the beginning

of a feedback loop does not ‘‘pull’’ something out of the forward path. It

merely takes a measure of the value of the forward path at that point in the

system so that part of that measure can be reentered elsewhere in the system.

Also note that the parameter c instantaneously summarizes a set of dimin-

ishing feedback cycles, as is the case with all static and simultaneous sys-

tems. This is the same as was described previously with respect to Figure 2.4

and parameter m. In Chapter 3, we learn how to structure the feedback pro-

cess using time operators, thereby keeping track of when an output actually

feeds back into the system relative to other parts of the system.

3. GRAPH ALGEBRA AND DISCRETE-TIME
LINEAR OPERATORS

So far time has not played a significant role in our discussions. Structuring

the relationships between the variables with respect to time within the con-

text of a system is one of the great strengths of graph algebra. All the mod-

els that are discussed throughout the remainder of this book use graph

algebra to do this. This discussion begins with explaining how graph alge-

bra is integrated with discrete-time applications. Discrete time implies the

use of difference equations, and difference equations are often appropriate

for the social sciences since a great deal of social scientific data are col-

lected in discrete intervals. Examples of this are census data, economic

data, election data, and polling data (which often correspond with an elec-

toral calendar). Differential equations are used to model continuous-time

processes and are discussed later. Models can also be built using graph

algebra that have both continuous and discrete parts. These are called

‘‘metered’’ differential equations, and they are also discussed later in this

book in the context of differential equations with embedded time lags.

All the operators used in this book are linear operators (see especially

Allen 1963, p. 725; see also Goldberg, 1958). This is true of the discrete-time

operators as well as the continuous-time operators. What do we mean by
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