0l-Kahane-45364.gxd 11/9/2007 4:39 PM Pa%l

1

An Introduction to the
Linear Regression Model

he basic goal of regression analysis is to use data to analyze relationships.

Thus, the starting point for any regression analysis is to have something
to analyze. That is, we begin with some idea or hypothesis we want to test and
we then gather data and analyze these data to see if our idea is verified. The
purpose of this chapter is to provide the reader with several examples of the
kind of research that can be done with regression analysis techniques. These
examples, which are woven throughout this book, were chosen in such a way
as to illustrate to the reader how regression analysis methods can be used
to understand relationships across a broad range of subjects. Once we under-
stand the basic notion of regression analysis, we then proceed to Chapter 2, where
the more technical aspects of regression analysis are discussed.

Baseball Salaries

Suppose we are interested in exploring the factors that determine one’s
salary. There are many such factors, one of which would be the experience
an individual has in his or her profession. That is, for most professions, the
longer a person has been on the job, the greater is his or her salary. The logic
behind this relationship is that workers learn with experience and become
more productive over time. As such, employers reward workers for their
increased productivity that comes with experience. But how large is the reward
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in relation to increased experience? That is, as a person gains another year of work
experience, by how much can he or she expect his or her salary to increase
from one year to the next? One method of trying to understand this relation-
ship between salary and experience is to collect data on individuals within a
profession and use a graph to visualize the relationship between the two. As an
example, let’s consider the occupation of professional baseball players.
Salaries earned by Major League Baseball (MLB) players have been the
subject of great discussion in the media largely because in recent years, play-
ers have earned enormous amounts of money for playing the game. We may
consider, then, how a player’s salary is related to his experience in MLB.!
Data on players’ salaries have become public information these days, as a
number of media sources publish the earnings of players as well as other
information about them, such as years of MLB experience.” Suppose we col-
lected a sample of data on player salary and experience and plotted these

Salary

Years of Experience

Figure 1.1

! There has been, in fact, a great deal of empirical research done on this topic; see,
for example, Scully (1974) and Zimbalist (1992).

2 For example, data on player salaries are published annually by a number of newspapers
(e.g., USA Today) and are also available online at various Internet sites, including Sean
Lahman’s “Baseball Archive,” which is located at www.baseballl.com. Information on
player experience and performance can also be found at this Web site and is published
annually in various other sources, including Thorn and Palmer’s Total Baseball (1997).
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pairs of numbers on a graph with a player’s salary on the vertical, or Y, axis
and the corresponding years of experience on the horizontal, or X, axis.
Figure 1.1 shows an example of how this graph may look.

Viewing Figure 1.1, we can observe that the collection of dots, each of
which represents an individual player’s salary and his associated experience,
tend to rise as we move out along the X axis. As a means of trying to repre-
sent the general behavior of these dots, a line has been run through them that
shows their general tendency to rise. As the line suggests, as a player’s expe-
rience (X) increases, his pay (Y) tends to increase as well. This would seem
to support our hypothesis that workers (players) are rewarded with greater
salaries as their experience (years of playing in MLB) increases.

By adding a line to our Figure 1.1, we were able to capture the general
relationship between salary and experience. But in doing so, it also implies
a more specific assumption about the behavior of Y with respect to X. This
assumption, known as the linear regression model assumption, forms the basis
for regression analysis and is explained below.

Linear Regression Model Assumption

The easiest way to understand the linear regression model assumption is
to illustrate it with an example. Returning to our case of baseball, suppose
instead of just a sample of data, we collect data for all MLB players. Having
such a large collection of data, we could then order our data such that players
are grouped according to the number of years of MLB experience, which was
our X variable for this example. Thus, all players with, say, 1 year of experi-
ence would be grouped together. All players with 2 years of experience would
be in another group, and so on. We could record the salary of each player in
each group, and then use this information to calculate the average salary for
each group as well. This procedure is illustrated graphically in Figure 1.2a.
Viewing Figure 1.2a, we can consider players with 1 year of MLB experi-
ence who have their salary plotted on the graph above the value shown as 1
on the X axis. Notice that some players in this group have higher salaries than
others, perhaps because of differences in other skills (this point is expanded on
later). If we calculated the average salary of players in this group, its value
would lie somewhere in the middle of these plotted points, such as the point
shown with a heavier dot. Thus, this heavy dot represents the mean or average
salary of players with 1 year of experience. We can carry out this same exer-
cise for players with 2 years of MLB experience. These individuals have their
salary plotted above the value of 2 on the X axis. As in the previous case, some
players in this group will have higher salaries than others, and the average

e



0l-Kahane-45364.gxd 11/9/2007 4:39 PM Pa$4

4 Regression Basics

Y
o
o
o o
o o
% ° o @)
= [} ° [}
S ° o @) o
o o o o
o ° °
° % °
o
o ° o
° o
° o
o
o
0 1 2 3 X
Years of Experience
Figure 1.2a

salary for all players with 2 years of MLB experience is shown by the heavy dot
above 2 on the X axis. This same kind of analysis can be done for players with
3 years of MLB experience, and the heavy dot above the value of 3 on the
X axis represents the mean salary for all players in this group.

This procedure can, in fact, be done for all values of X, MLB experience,
in each case calculating the mean value for salary (Y) for given values of
experience (X). Given this graph, we have the following assumption: The lin-
ear regression model assumes that the mean values of Y, for given values of
X, are a linear function of X. Or, in terms of our graph, the heavy dots
(which are the mean values of Y for given values of X) lie on a line. (It should
be noted that in some cases, the relationship between the mean values of Y
and X may be nonlinear. Examples of nonlinear relationships are discussed
in Chapter 5.) This assumption is shown graphically in Figure 1.2b, which
takes Figure 1.2a and adds a line connecting the heavy dots.

This assumption can also be expressed somewhat more formally by using
the following mathematical expression:

E(Y|X) = o+ BX. (1.1)

The E in Equation 1.1 stands for “expected value” or mean, and the ver-
tical line, |, can be read as “for given values” of X,. (The subscript 7 is used
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to keep track of different values that X can take on.) The expression on the
right of the equal sign, o + BX, is simply the equation to a line. Or, putting
it all together, Equation 1.1 can be read as: “the expected value of Y for
given values of X, is equal to a linear function of X,.” As for terminology,
the variable Y is called the dependent variable because its value is said to
depend on the value that X, which is called the independent variable, takes
on.’ The symbols o and B in Equation 1.1 are constants and are referred
to as the intercept and slope terms, respectively (it is common in regression
analysis to use Greek letters such as these). The intercept term o tells us what
the expected value of Y (in our case, salary) would be for individuals who
have no experience (i.e., new, or rookie, MLB players). That is, if a player
has no experience, then his value for X; is zero. Plugging in zero for X, in
Equation 1.1, we have

E(Y|X,=0)=0o+B(0) =0 (1.1a)

This is shown in Figure 1.2(b), where a line representing Equation 1.1 inter-
sects the vertical axis.

> The independent variables are also sometimes referred to as “predictors” or
“explanatory variables.”
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The slope term B in Equation 1.1 tells us how Y is expected to change for
each one-unit increase in X,. Or, in the case of MLB salaries, how salaries
are expected to change for each additional year of experience. To see this,
consider a player with 1 year of MLB experience. His value of X; then is 1,
and plugging this into Equation 1.1 yields

E(YIX,=1)=0+B(1) = o + . (1.1b)

Comparing Equations 1.1a and 1.1b, we see that the difference between
the two is that players with 1 year of experience are expected to have  more
in salary than players with no experience. In the case of players with 2 years
of experience, they are expected to have 23 more in salary as compared to
those with no experience. Thus each additional year’s worth of experience
increases a player’s expected salary by .

The implication of writing the equation with E(Y| X;) is that it implies the
understanding that individual values for Y, for given values of X,, will not
likely be exactly equal to o + BX. To see this, we can return to Figure 1.2(b)
and consider player i, who has 3 years of experience in MLB and earns
a salary of Y,. Notice that for this individual player, his actual salary Y, is
greater than the mean salary for his group, shown as E(Y| X, = 3). The dif-
ference between the actual and expected value for Y is shown as #,. In terms
of an equation, we can write a player’s actual salary as

Y, = E(Y|X) +u. (1.2a)

Or, using Equation 1.1, we can rewrite the last equation by replacing
E(Y| X)), giving us

Y. = o +BX, + . (1.2b)

Every dot shown in Figure 1.2b, which represents a particular player’s
experience and his actual salary, can be expressed in a similar way. That is,
every individual player’s salary can be expressed as the sum of his group’s
expected salary, plus the specific player’s value for u,. What does u, repre-
sent? The term u, which is called the error term, represents all the other fac-
tors that may affect player #’s salary that are not taken into account by the
simple model shown in Equation 1.1. There are, in fact, numerous other fac-
tors that enter into the determination of salaries. In baseball, for example,
players are rewarded for their offensive (e.g., hitting) and defensive (e.g.,
fielding) abilities. The fact that these other important explanatory variables
are not accounted for in our model means that player salaries would not
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likely fall exactly on the line shown in Figure 1.2b. To further illustrate why
this is the case, consider two players who are identical in all measures,
including years of experience, except that one player is a better hitter. This
being the case, the better hitter would likely earn a greater salary because he
is worth more to a team. What this means, then, is that although a player’s
experience may be an important factor in explaining his salary, experience
alone cannot perfectly explain a player’s salary. The error term included in
Equation 1.2b is said to be stochastic, meaning that it is a random compo-
nent of a player’s salary, which varies from one player to another. Thus, if
we again consider our specific player i, who has X; = 3 years of playing expe-
rience, we see in Figure 1.2b that the vertical distance from the heavy dot on
the line to the point representing this player’s salary is the positive error u,.
This means that our player i is paid more than expected, perhaps because he
is a better hitter, a factor not taken into account in our simple model. In a
similar way, points below the line represent players whose salaries are less
than expected (i.e., they have negative errors), perhaps because they are below-
average hitters.

At this point, the reader may be wondering if it is possible to build a more
elaborate model that takes into account these other factors that are missing
from our model and that end up in the error term #,. To a certain extent, this
can and will be done in later chapters when we build on this simple model
to include other explanatory measures such as hitting and fielding. In any
case, it is not likely that all factors can be accounted for so that the error
term is driven to zero.* This is true for a number of reasons. First of all, there
may not be data available for many important variables (e.g., a player’s
speed in running the bases). Second, some factors that affect a player’s salary
may not be measurable (e.g., leadership ability or fan appeal). All of these
factors that are not accounted for in our model end up in the error term,
which will vary from player to player.

For now, we will continue to work with simple models like that shown
in Equation 1.2b, which are referred to as two-variable linear regression
models (also known as bivariate linear regression models) because they

* There is a case when the error term will, in fact, be zero. This is when an identity
has been estimated. For example, suppose we collect data for distance measure-
ments in meters and then collect data for the same distance measurements in inches.
If we tried to estimate the relationship between meters and inches, we would find a
perfect linear relationship and the errors would all be zero. This is the result because
1 meter is defined to be exactly 39.37 inches, and if measurements are made care-
fully enough, there should be no errors. There is no reason, however, to estimate an
identity because these relationships are already known.
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include only an intercept () and one slope term (B). These simple models
will serve as a starting point from which we can discuss many of the issues
regarding regression analysis. Bear in mind, though, that in most cases, a
two-variable model will be too simplistic for our purposes and a more complex
model will be needed.

Population Data Versus Sample Data

Before moving on, we need to clarify some aspects of our data sets, namely,
their size. Typically, when we consider a theory, such as MLB salaries as a
function of years of experience, there is a relevant population of data. In the
baseball example, it may be all MLB players, past and present. For this pop-
ulation of data, when we formulate a mathematical model for the behavior
of a dependent variable as a function of an independent variable, we are
constructing what is called the population regression function (PRF)
because it presents a hypothesis about the behavior of the population of
data. Thus, for MLB, the model shown in Equation 1.1 is a population
regression function for salary determination in MLB. In most cases, how-
ever, it is not possible to collect data for the entire population, perhaps
because the data do not exist or because it would be practically impossible
to collect the data.’ As such, samples of data are collected from the popu-
lation and analyzed with the hope that the information contained in the
sample is a good representation of how the population behaves. In order to
keep the distinction between sample analysis and population analysis clear,
we will use the following sample regression function (SRF):

Y =a+bX, (1.3)

where YAi is the sample version of the expression E(Y | X)), and a and b are
the sample versions of the population’s o and . Figure 1.3 shows a graph
of the sample regression function. As in the case for the population, given
our sample, we can represent a specific player #’s salary as the sum of what
our model predicts his salary to be based on his experience, plus the error in
prediction, e;

N
Y=Y +e, (1.4)

5 Suppose, for example, we were studying the eating habits of the U.S. population.
It would be nearly impossible to collect information from every individual given that
the U.S. population is approximately 300 million.
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. Using Equation 1.3, we can rewrite this expression by substituting for
Y, giving us

Y,=a+bX, +e, (1.5)

Thus, Equation 1.5 shows the linear relationship between Y, and X,, with
the term e, representing all other factors not accounted for in our model. This
equation will be used in place of Equation 1.2b, which was for the popula-
tion data, and the intercept term a is a sample estimate of the population’s
o and the slope term b is a sample estimate of the population’s B. The term
e, is the error term (also called the residual) for our sample regression func-
tion and is analogous to the population’s error term #.° As can be seen in
Figure 1.3, the residual is simply the difference between player #’s actual
salary, Y, al/}d the salary we would predict for a player with X, years of
experience, Y, (i.e., the point on the line above X)).

Hopefully, the sample’s intercept and slope terms closely resemble the
population’s parameters o and B. If this is the case, then we can be confident

¢ Some authors reserve the term “residual” only for the sample regression function’s
error term (¢;) and use “error” or “disturbance” for the population regression func-
tion’s error term (u,). We will use both residual and error terms for e, remembering that
these refer to sample results.
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that by analyzing the sample’s values for these parameters, we can understand
the behavior of the population.

Presidential Elections

As a second example of a regression analysis model, we can consider the
topic of presidential elections. Some academics, such as Yale economist Ray C.
Fair, argue that the state of the economy is an important factor in describ-
ing the voting pattern in presidential elections (Fair, 1996; see also Kramer,
1971; Stigler, 1973). As Fair (1996) puts it, “Voters hold the party in the
White House responsible for the state of the economy™ (p. 90).” For exam-
ple, if the current president is a Democrat, and the economy has grown sub-
stantially over his term, then the party in power is given partial credit for
that economic success and voters would then reward the Democratic presi-
dential candidate with votes. On the other hand, if the economy has suffered
from recession in the years prior to the election, the reverse is true and the
incumbent party candidate suffers. This theory can be evaluated using regres-
sion analysis. We can model voting for incumbent party candidates with the
following sample regression function:

Y,=a+bX, +e,. (1.6)

In Equation 1.6, we now have the dependent variable, Y, representing the
percentage of the two-party votes received by the candidate running for pres-
ident who belongs to the same party as the incumbent (note that this could
be the incumbent himself if he is running for a second term, such as Ronald
Reagan, who ran for reelection in 1984, and Bill Clinton, who ran for reelec-
tion in 1996). The variable X, now represents the economy’s real percent
growth rate over some specified period prior to the election at hand.® In this
case, the error term, e,, represents other factors not taken into account, such
as the inflation rate prior to the election and perhaps other, immeasurable fac-
tors such as charisma of the candidate. Finally, note that in this case, we use
the subscript ¢ (as opposed to 7 used for the baseball example) to distinguish
individual cases because now we are considering results of elections at differ-
ent points in time. Graphically, this model would look similar to the one

7 Indeed, Bill Clinton’s 1992 presidential campaign used the phrase, “It’s the econ-
omy, stupid!”

8 The “real” growth rate is a term economists use to refer to the economy’s growth
rate adjusted for inflation.
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shown in Figure 1.3, except that the values for X, the real growth rate of the
economy, can be negative. This is shown in Figure 1.4, which has a positive and
negative range for X

The value of a in this case would be the expected share of the two-party
presidential vote received by the incumbent party candidate when the economy
experienced no real growth (i.e., when X, = 0). As for b, this would represent
the increase (decrease) in the share of votes the incumbent party candidate
would receive for a 1 percentage point increase (decrease) in the real growth
rate. As in the case of baseball salaries, the actual data for Y, would not likely
fall exactly on the line, but would be “speckled” above and below the line as
is shown in Figure 1.4. The vertical distance from these observations to the line
shown would be the error term e, which, again, represents other factors affect-
ing the share of the two-party votes the incumbent candidate received that are
not taken into account in our simple model. As seen in Figure 1.4, for the given
value X, the actual value of Y, lies below the value predicted by the regression line,
Y,. Thus, the associated error term e, which is equal to the actual value of Y,
minus its predicted value, would be negative.

Abortion Rates

Our third example of a regression analysis model deals with the socially
sensitive issue of abortion. Abortion rates (the number of abortions performed
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per 1,000 women of childbearing age) differ, sometimes greatly, across the
United States. Researchers have been interested in discovering what factors
play a role in explaining why, in some states, the abortion rate may be
relatively high, whereas in others it is relatively low. There are, of course,
many factors that affect the abortion rate across states, but one of them
would likely be the moral views of the state’s residents. Other things being
equal, the greater the moral aversion to abortion, the fewer would be expected
to be performed.” The moral position that residents of a state hold with
regard to abortion is difficult to measure. One way to measure it is to con-
sider what percentage of the state’s population belongs to the Catholic,
Southern Baptist, Evangelical, or Mormon faiths. These are the four main
religions that have a stated opposition to abortion. Using this measure,
which we will call “religion,” we would expect that if we compare states,
those with a greater percentage of state population that belongs to one of
these faiths would tend to have fewer abortions, other things being equal.
This relationship can be expressed, again, using an equation like we have
seen in our previous examples. In this case, Y, would be the abortion rate
in state i, and X; would be the measure for “religion,” equal to the percent-
age of a state’s population that belongs to one of the four faiths mentioned
above. In this case, the slope term, B, would be negative, indicating that
states with a relatively large value for “religion” would tend to have a lower
abortion rate, all else being equal. That is, we would have the following sam-
ple regression equation:

Y=a+bX +e,. (1.7)

In this case, the error term e, would capture other factors omitted, such
as income and legal differences across the 50 U.S. states. It should be noted
that in this example, the subscript i is used to keep track of values for Y and
X for states (not individuals, as was the case in the baseball example). Graphi-
cally, we would have something like Figure 1.5. As in the other examples,
the vertical distance from a given point on the graph (e.g., Y,, X)) to the line
would represent the error term e, In the example shown in Figure 1.5, the
actual observation for the dependent variable, Y, lies below the predicted
one, Y, for the given value of the independent variable, X, and so the error
term would be negative.

9 Previous research on the determinants of abortion rates can be found in Medoff
(1988) and Kahane (2000).
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As for the intercept, a, it requires some additional discussion in this example.
Technically speaking, the intercept represents the abortion rate that we would
expect in the case where the variable religion is zero (i.e., X, = 0). However, intu-
ition would tell us that it is clearly not the case that the variable religion would
take on the value of zero in any state, as this would require that zone of a state’s
residents belonged to the Catholic, Southern Baptist, Evangelical, or Mormon
faiths. As we can see in Appendix A, which presents the data for the variable
religion, our intuition is correct in that the value of religion is not, in fact, zero
in any state. What this means for our model shown in Equation 1.7 is that for
this example, the intercept has no sensible interpretation. That is, the intercept
term is technically necessary to “anchor” the line in the graph, but beyond that
it is meaningless. (This fact that the intercept may have no meaningful interpre-
tation is often the case in regression model analyses.)

As for the value for the slope term, b, in this case it represents the pre-
dicted change in the abortion rate as the measure for religion increases by
1 percentage point.

Crime Rates

Our next example deals with the issue of crime. Much of the modern theory
on the determinants of crime can be traced back to the seminal 1968 work
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by economist and Nobel Laureate Gary Becker.!” Becker viewed crime as a
rational choice that individuals make after considering the costs and benefits of
legal work versus criminal activities. As part of the computation of the benefits of
legal work, individuals must consider the chances that legal work can indeed be
obtained. A measure that can be used to gauge the ability that legal work may
be available is the unemployment rate. Other things being the same, the higher the
unemployment rate, the lower the chances are that legal work is available to the
individual and hence, the greater the likelihood that the individual would pursue
criminal activities. In terms of a sample regression equation, we would have

Y=a+bX +e, (1.8)

where Y, would be a measure of the crime rate (e.g., total crimes per 1,000
people) in location i and X, would be the unemployment rate (in percent) in
location i. In this case, the intercept term, a, would be the expected crime rate
in the case where the unemployment rate, X,, is zero. The slope term, b, would
then represent the predicted change in the crime rate (e.g., change in the
number of crimes per 1,000 people) for a 1 percentage point increase in the
unemployment rate (see Figure 1.6).

Y
Y, o (©)
61. b
A o
[}
g Y; o
Py o o o
E
3] o
a
o
X, X
Unemployment Rate
Figure 1.6

19 See Freeman (1999) for a survey of research on the economics of crime.
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In this case, the error term, e, represents other factors that may affect crime
rates (e.g., police presence) that are not taken into account by the model.

Thus, we have four interesting examples that we can use to develop the
basics of linear regression analysis. The graphs presented above for our four
models show a line drawn through a scatter of points. At this point, two
questions arise. First, what is the ultimate use of knowing such a line? The
answer to this question is that, if we know this line, it can be used to predict
values of the dependent variable, for given values of independent variables.
For example, considering our model of MLB baseball salaries, if we know
the values (i.e., the numbers) of the intercept, a, and the slope term, b, we
could then use the line defined by them to predict a player’s salary given his
experience. This could be useful, for example, if a player is interested in
knowing what his salary is expected to be as his experience increases. We
will see in the following chapter how this kind of prediction can be accom-
plished. Of course, we must keep in mind that the predictions we make may
not be entirely accurate because other factors that may be important in
explaining a player’s salary are not being considered. As we have already dis-
cussed, these excluded factors end up in the error term, e,.

The second question that arises is, how can we find values for g and b so
that the defined line “best fits” the scatter of points, which are our actual
data? Recall that in our three examples of sample regression functions, we
simply added a line to our graphs in such a way that the line seemed to fit
the data well. This visual method, however, is imprecise, and there are better
methods for accomplishing this task. This question of how we find the best
fitting line to the data is, in fact, the subject of the next chapter.

Types of Data Sets

Finally, before moving on to the next chapter, we must say a few things
about the various types of data sets. There are essentially three general vari-
eties: cross-sectional, time series, and pooled. A cross-sectional data set fixes
a point in time and looks across space. Our baseball example is a cross sec-
tion because we collect data on salary and experience for a particular year
and consider how salaries differ across players. In addition, our abortion
example is a cross section because we consider a single point in time and
look across the 50 states. A time series follows variables across time, while
holding space constant. Thus, our presidential election example is a time series
because we follow the breakdown of votes from one election to another. A
pooled data set is a combination of both. For example, if we followed base-
ball salaries paid to all players and from year to year, we would have a
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pooled data set. In this case, if we follow the same set of players from year
to year, then this represents what is called a panel data set.!! Panel data sets
are very rich data sets, but they often require special treatment. We consider
some simple methods of how to work with panel sets in Chapter 6.2

PROBLEMS

1.1 Consider the following model:

Y=o+ BX +u,
where: Y;is individual /'s wage
X is individual /'s years of education
a. What is the interpretation of a? Do you expect it to be positive or negative?
b. What is the interpretation of 3?7 Do you expect it to be positive or negative?
c. What does the error term, u, capture in this case?

1.2 Consider the model for presidential elections shown in Equation 1.6, which shows the
percentage of two-party votes received by the incumbent party candidate. What other fac-
tors might be important in determining Y, besides the real growth rate?

1.3 There has been considerable research into the relevance of SAT scores as predictors of
students' performance in college (e.g., see the research by Bridgeman, McCamley, & Ervin,
2000; Camara & Echternacht, 2000; and Rothstein, 2004). We can consider this issue with
the following model:
Y=o+ BX +u,
where: Y; is individual /'s freshman college grade point average (GPA)
X.is individual i's SAT score

a. What is the interpretation of 3? Do you expect it to be positive or negative?
b. What does the error term, u, capture in this case?

' If we took a different sample of players each year for a number of years, this
would be termed a “pooled cross-sectional” data set.

12 Greene (2003) and Wooldridge (2002) provide advanced discussions on the han-
dling of pooled data sets.
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