
2
The Least-Squares 

Estimation Method

Fitting Lines to Data

In the various examples discussed in the previous chapter, lines were drawn
in such a way as to best fit the data at hand. The question arises as to how

we find the equation to such a line. This is the point of linear regression analy-
sis: fitting lines to data. We can consider a number of approaches. For exam-
ple, we could consider simply using a ruler and drawing a line that seems to fit
the data best. This method, however, is not advisable because it is not a precise
approach, and in some cases, the scatter of points does not suggest to the naked
eye an obvious location for the line. A more systematic approach is needed.

One possibility would be to find a line that would minimize the sum of the
error terms. This approach, however, is flawed. To see this, suppose we have
a very small sample of just four data points, which are plotted in Figure 2.1.

The line shown seems to fit the data well using the criterion that the sum of
the errors is minimized. In fact, if we calculate e1 + e2 + e3 + e4, it would come
to approximately zero as the small positive errors (e2 and e4) would cancel with
the small negative errors (e1 and e3), indicating a good fit. Unfortunately, under
this criterion, the line shown in Figure 2.2 would serve just as well.

As in the previous case, the sum of the errors here is also approximately zero
as the small positive error cancels with the small negative error (e3 with e2) and
the large positive error cancels with the large negative error (e4 with e1). Thus, we
have two very different lines that meet our criterion of minimizing the sum of the

17
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errors equally as well. In fact, there are any number of such lines that, when
drawn, would give us a zero sum of errors. Obviously, this criterion will not do.

The problem with the last method considered is the cancellation of pos-
itive errors with negative errors. A way of avoiding this problem would be
to find a line such that the sum of the squared errors is minimized.1 That is,

1 We could consider minimizing the sum of the absolute value of the errors, but such
a method is computationally difficult.
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our task is to find a line determined by a and b such that the sum of the
squared errors, e1

2 + e2
2 + e3

2 + e4
2, is as small as possible. This, in fact, is

called the method of least-squares, sometimes called ordinary least-squares
(OLS) so as to distinguish it from other specialized least-squares methods.2

We can represent this task of minimizing the sum of squared errors mathe-
matically by first noting that the error term ei can be rewritten using
Equation 1.5 in the following way:

ei = Yi – (a + bXi). (2.1a)

Thus, the error is decomposed into the difference between the observed value
Yi and the predicted value (a + bXi). Or, getting rid of the parentheses, we have

ei = Yi – a – bXi. (2.1b)

The OLS method finds a value for a and b that minimizes the sum of the
squared errors; thus, we take the errors shown in Equation 2.1b, square them,
and then take the sum over all observations in our sample (the sample size
indicated by n). Doing this, we have

∑
n

i=1
ei

2 = ∑
n

i=1
(Yi – a – bXi)

2. (2.2)

At this point, our task now becomes a calculus problem. We have an
equation (Equation 2.2) that we want to minimize with respect to two para-
meters we can choose, a and b. To carry out this task, we use differential cal-
culus and take the partial derivative of Equation 2.2 with respect to a and
set it equal to zero, then do the same with respect to b. We then end up with
two equations (the two partial derivatives) with two unknowns (a and b).
The last step is to solve this system of equations simultaneously for a and b.
Leaving out the details, what we end up with is the following formulas for
b and a3:

(2.3a)b =

n∑

i=1
(Xi − X

---
)(Yi − Y

---
)

n∑

i=1
(Xi − X

---
)2

The Least-Squares Estimation Method——19

2 There are other, advanced methods, such as “two-stage least-squares” or
“weighted least-squares,” that are used in certain circumstances. These methods are
beyond the scope of this book. See, for example, Gujarati (2003) or Wooldridge
(2006) for a discussion of these techniques and others.
3 For the full details of solving of the OLS estimators, see Gujarati (2003).
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and

a = Y
–

– b X
–

, (2.3b)

where, in both Equations 2.3a and 2.3b, the bar above the variable stands for
the mean of that variable (e.g., the sum of all Xi divided by the sample size, n).
Thus, given values for Xi and Yi, we can use these data to calculate a and b.

As an illustration, we can go back to our baseball example. Using the data
on salary (Yi) and years of MLB experience (Xi) provided in Table A1 in
Appendix A, we can construct Table 2.1, which has the components needed
for computing b and a.4

Viewing Table 2.1, we see that the sum at the bottom of the sixth column
is the value needed for the numerator in Equation 2.3a. And the sum at the
bottom of the fifth column is the value needed for the denominator. Plugging
these values into our equation for b (and rounding to three decimal places),
we have the following:

(2.4a)

As for the intercept term, a, dividing the sums at the bottom of the first
and second column by our sample size, n = 32, we find

and

Using these values for the mean of X and Y, along with the value for b
found in Equation 2.4a, we have for our intercept (again, rounding to three
decimal places):

a = 6.587 – (0.656 × 8.875) = 0.765. (2.4b)

Y
--- =

n∑

i=1
Yi

n
= 210.795

32
= 6.587.

X
--- =

n∑

i=1
Xi

n
= 284

32
= 8.875

b = 500.851
763.500

= 0.656.

20——Regression Basics

4 Our analysis will consider only nonpitchers because pitchers are evaluated with
very different statistical measures.
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Table 2.1

Xi Yi Xi−X
—

Yi−Y
—

(Xi−X
—

)2 (Xi−X
—

)(Yi−Y
—

)

10 13.600 1.125 7.013 1.266 7.890

12 10.600 3.125 4.013 9.766 12.541

18 4.000 9.125 –2.587 83.266 –23.606

9 3.750 0.125 –2.837 0.016 –0.355

4 0.800 –4.875 –5.787 23.766 28.212

8 9.500 –0.875 2.913 0.766 –2.549

3 0.354 –5.875 –6.233 34.516 36.617

5 3.333 –3.875 –3.254 15.016 12.608

3 0.425 –5.875 –6.162 34.516 36.202

10 6.000 1.125 –0.587 1.266 –0.660

5 4.200 –3.875 –2.387 15.016 9.250

17 10.465 8.125 3.878 66.016 31.506

10 13.500 1.125 6.913 1.266 7.777

7 4.000 –1.875 –2.587 3.516 4.851

11 20.600 2.125 14.013 4.516 29.778

13 12.333 4.125 5.746 17.016 23.704

9 12.000 0.125 5.413 0.016 0.677

2 0.340 –6.875 –6.247 47.266 42.948

6 0.850 –2.875 –5.737 8.266 16.494

14 9.000 5.125 2.413 26.266 12.367

4 1.000 –4.875 –5.587 23.766 27.237

6 0.700 –2.875 –5.887 8.266 16.925

5 0.690 –3.875 –5.897 15.016 22.851

15 10.616 6.125 4.029 37.516 24.680

6 5.000 –2.875 –1.587 8.266 4.563

18 10.756 9.125 4.169 83.266 38.044

5 12.500 –3.875 5.913 15.016 –22.913

11 11.000 2.125 4.413 4.516 9.378

2 0.400 –6.875 –6.187 47.266 42.536

15 14.167 6.125 7.580 37.516 46.425

17 3.640 8.125 –2.947 66.016 –23.944

4 0.675 –4.875 –5.912 23.766 28.821

Sums: 284 210.795 763.500 500.851
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Thus, putting it all together, we have for the OLS regression line

Ŷi = 0.765 + 0.656 Xi, (2.5a)

where the “hat” above Yi denotes the predicted salary for player i. As an alterna-
tive way of reporting results, we can replace Y and X with their variable names:

SALARYi = 0.765 + 0.656 (YEARSi). (2.5b)

Interpreting these results, the intercept term, 0.765, is the predicted salary
(in millions of dollars) for a player who has no MLB experience (i.e., a
rookie). The value of b, 0.656, represents the added salary that a player
earns, on average, for each additional year he plays in the MLB. Or, an addi-
tional year of experience adds on average about $656,000 to salary, all else
equal. Thus, a player who has 5 years of MLB experience is expected to earn

SALARYi = 0.765 + 0.656 (5) = 4.045. (2.5c)

Comparing this predicted salary to MLB player David Eckstein, who has
5 years of experience (see Table A1), we see that his actual salary for the 2006
season was $3.333 million, which is $712,000 less than what his predicted
salary would be according to Equation 2.5c. On the other hand, if we con-
sider the salary for 5-year player Jay Gibbons, his actual salary was $4.2 mil-
lion, or $155,000 more than predicted. The difference between these actual
figures and the predicted ones is captured by the error term, ei. Essentially,
what we learn from this result is that years of experience may be important,
but there are other factors in addition to experience that determine a player’s
salary.5 Figure 2.3 shows the regression line (Equation 2.5a) plotted with the
actual data for player salaries and years of experience. The fact that the plot-
ted points do not fall precisely on the regression line illustrates this last point.

Applying the same least-squares method to our example for U.S. presi-
dential elections, we can estimate the relationship between economic growth
and presidential voting patterns. Using the data shown in Table A3 in
Appendix A, we could plug the values for the dependent variable (the column
of data labeled with VOTES) for Yt and the values for the independent vari-
able (the column of data labeled with GROWTH) for Xt into Equations 2.3a
and 2.3b to determine the value for the slope, b, and the intercept, a, for the
sample regression function shown in Equation 1.6. Although it was instructive

22——Regression Basics

5 Explaining part of the discrepancy between Eckstein’s and Gibbons’s salaries is the
fact that Gibbons has a better career slugging average of 46.6 (through the 2005
season) compared to Eckstein’s career slugging average of 36.2.
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to do this calculation by hand in the previous example on baseball, these cal-
culations can be performed more easily by using computer programs designed
to carry out these tasks. There are many such programs that are capable of cal-
culating sample regression lines.6 Perhaps two of the most prevalent and com-
monly used programs are Microsoft Excel and SPSS. In order to give the reader
experience in reading and interpreting regression analysis output from these
programs, the examples presented from this point forward will use these two
programs (on an alternating basis) to carry our calculations.7

Using Excel, we can input the data presented in Table A3 for the column
labeled VOTES and the column labeled GROWTH into a spreadsheet. As shown
at the bottom of Table A3, the variable VOTES is defined to be the percentage
of the two-party vote received by the incumbent party candidate. This is our
dependent variable Yt in Equation 1.6. The data for GROWTH are the growth

The Least-Squares Estimation Method——23
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6 For example, some popular programs include SAS, TSP, EVIEWS, MINITAB,
SHAZAM, and STATA.
7 Microsoft Excel is a relatively easy program to use and performs the basic cal-
culations we will need for this book. SPSS is specifically designed to do statistical
calculations and is capable of carrying out more sophisticated analyses. Appendix B
provides some basic instruction on how to perform regression analysis using Excel
and SPSS. The reader is referred to the instruction manual and tutorial that accom-
pany these programs for greater details on how to use these programs. Additionally,
Einspruch (2005) gives detailed instruction on how to use SPSS.
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rates of real gross domestic product (GDP) over the three quarters prior to the
election.8 This is our independent variable Xt shown in Equation 1.6.

Once the data have been input, we can then follow the steps for calculat-
ing the least-squares regression values for a and b. Doing so yields the results
shown in Table 2.2.9

The first entry, “Observations,” simply reports that we have 23 observa-
tions in our sample. Next, we see a column headed “Coefficients” and two
rows labeled “Intercept” and “GROWTH.” The entries are shown as 51.065
and 0.880 (rounding to three decimal places). These are the least-squares val-
ues for the intercept term, a, and the slope term, b (respectively), for Equation
1.6. Using these results, we can now write the predicted equation as

Ŷt = 51.065 + 0.880 Xt. (2.6a)

Once again, we may reexpress our results using variable names in place
of Y and X:

VOTESt = 51.065 + 0.880 (GROWTHt). (2.6b)

This equation tells us that if the growth rate were zero over the three
quarters prior to the election, then the incumbent party candidate is expected
to receive approximately 51.065% of the two-party vote. In addition, for
every 1 percentage point increase of real GDP over the three quarters prior
to the election, the incumbent party candidate is expected to gain approxi-
mately 0.880 percentage points of the two-party vote. This, of course, works
in the other direction as well. That is, for every 1 percentage point decline in
the economy’s real GDP, the incumbent party’s candidate is expected to suf-
fer a 0.880 percentage point loss of the two-party vote.

The last part of Table 2.2 shows predicted values and the associated resid-
uals for 23 elections covered in our sample of data. The column headed
“Predicted VOTE” shows the percentage of the two-party vote the incum-
bent party candidate was predicted to receive according to Equation 2.6b,

24——Regression Basics

8 The U.S. GDP is a measure used by economists to track the growth of the U.S.
economy. It is defined as the total market value of all final goods and services pro-
duced inside the United States over a specified period of time.
9 The results presented in Table 2.2 are an edited version of the actual output Excel
produces. Much of the actual output the program produces was excluded in this
example to make things easier for the reader. The full output will be presented in
later examples as we progress.
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SUMMARY OUTPUT

Observations 23

Coefficients

Intercept 51.065

GROWTH 0.880

RESIDUAL OUTPUT

Observation Predicted VOTE Residuals

1 53.000 −1.300

2 40.947 −4.847

3 47.634 10.566

4 55.112 3.688

5 38.220 2.580

6 61.358 1.142

7 54.232 0.768

8 54.936 −1.136

9 53.616 −1.216

10 51.769 −7.169

11 49.833 7.967

12 51.417 −1.517

13 55.552 5.748

14 55.552 −5.952

15 56.432 5.368

16 54.584 −5.684

17 47.898 −3.198

18 55.992 3.208

19 53.088 0.812

20 53.000 −6.500

21 53.440 1.260

22 52.472 −2.172

23 53.616 −2.416

Table 2.2
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plugging in the actual value of GROWTH. That is, for Observation 1 (the
1916 presidential election), the growth rate reported for that year is 2.2
(from Table A3). If we plug this value into Equation 2.6b, we would have
the following predicted value for that election:

VOTES1 = 51.065 + 0.880 (2.2) = 53.000. (2.6c)

However, the actual value for that year was 51.7. The fact that our
predicted value is not equal to the actual value again represents the fact that
our very simple model is not capable of explaining the entire behavior of
VOTES. The difference between actual values and the predicted values is
what is shown in Table 2.2 as the “Residuals”—the “e” in our Equation 1.6.
Thus, for the first observation, we have (rounding to one decimal place):

e1 = VOTES1 – VOTES1 = 51.7 − 53.0 = −1.3. (2.7)

This result shows that our model overpredicted the actual percentage of
the two-party vote received by the incumbent party candidate (Woodrow
Wilson, in this case) by 1.3 percentage points. The residuals are calculated for
each election in our sample and are reported in Table 2.2.

By plotting the regression line shown in Equation 2.6a, along with the
actual values for Yt and Xt, we have Figure 2.4.10 As can be seen, the actual
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10 This graph was created using the Excel program.
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values do not fall precisely on the regression line, but are speckled above
and below it. Again, this illustrates the imperfect relationship between Yt

and Xt, with the vertical distance from any dot to the regression line equal-
ing the error in prediction.

Turning now to our example of state abortion rates, we can use the same
tool of least-squares to estimate the sample regression function shown in
Equation 1.7. Recall that for this model, the dependent variable, Yi, is the
abortion rate for state i, and the independent variable, Xi, is the measure for
the variable called RELIGION. In this case, we will use the program SPSS
to calculate the least-squares values for a and b in Equation 1.7. In doing so,
we obtain the output shown in Table 2.3.11

The Least-Squares Estimation Method——27

Coefficientsa

23.825 3.979 5.988 .000
−.099 .114 −.125 −.874 .386

(Constant)
RELIGION

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

a. Dependent Variable: ABORTION

Table 2.3

We see in Table 2.3, under the “Unstandardized Coefficients” heading,
that the intercept, or “constant” term, is 23.825. This is our value for a in
Equation 1.7. The value for b is the coefficient for RELIGION and is shown
to be –0.099. Using these values for a and b, we have the following sample
regression function (rounded to three decimal places):

Ŷi = 23.825 − 0.099 Xi, (2.8a)

or, using variable labels,

ABORTIONi = 23.825 − 0.099 (RELIGIONi). (2.8b)

This equation for the sample regression function is plotted in Figure 2.512

along with the actual data.

11 As in the previous example using Excel, the actual output produced by SPSS was
edited so as to include only the results relevant for our discussion at hand. The full
SPSS output will be presented in later chapters.
12 Figure 2.5 was produced by the SPSS program.
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The squares representing actual observations are not closely speckled
around the regression line, indicating that although Xi (religion) may
explain some of the behavior of Yi (the abortion rate), a great deal has been
left unexplained. As we have discussed, this unexplained portion is cap-
tured by the error term ei and is equal to the vertical distance from the dots
shown to the regression line.

This example illustrates the point made in Chapter 1 that in many
cases, our simple bivariate model will not be sufficient for explaining the
behavior of a dependent variable, and a multivariate regression model
will be needed. The subject of multivariate models will be taken up later
in Chapter 4.

We now move to our crime example. Using data for 42 British police
force areas for 2004, we can estimate the model presented in Equation 1.8
using our OLS method. The results, produced by SPSS, are shown in
Table 2.4.

Using the output from Table 2.4, we can write the estimated sample
regression function as

Ŷi = 51.772 + 10.218Xi, (2.9a)
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or, alternatively,

CRIMEi = 51.772 + 10.218 (UNEMi). (2.9b)

Recalling that CRIME is measured as the number of recorded crimes per
1,000 people, and UNEM is the male employment rate in percentages (both for
the year 2004)13, then interpretation of Equation 2.9b is straightforward. If
UNEM were zero, then the estimated constant term tells us we would expect
about 51.772 crimes per 1,000 people, all else being equal. The estimated coef-
ficient to UNEM tells us that, all else being equal, a 1 percentage point
increase in the male unemployment rate tends to increase crime by approxi-
mately 10.218 crimes per 1,000 people. In order to predict crime rates using
Equation 2.9b, we can simply plug in a value for UNEM and compute the pre-
dicted value for CRIME. For example, we can consider the police force area
“Avon & Somerset” (Avon for short) for 2004. The reported unemployment
rate was 1.888%. Using this value in Equation 2.9b, we find

CRIMEAvon = 51.772 + 10.218 (1.888) = 71.064. (2.9b)

The actual reported crime rate for Avon in 2004, however, was 85.941 crimes
per 1,000 people. Computing our error in prediction for 2004, we have

eAvon = CRIMEAvon − CRIMEAvon = 85.941 − 71.064 = 14.877. (2.10)

In this case, we observe a rather large, positive residual. This result illus-
trates the fact that our model for crime shown in Equation 1.8 is much too
simplistic and that many other factors (not included in the model) are impor-
tant in determining crime rates. Figure 2.6a graphs the sample regression

The Least-Squares Estimation Method——29

Coefficientsa

51.772 5.698 9.085 .000
10.218 1.829 .662 5.588 .000

(Constant)
UNEM

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

a. Dependent Variable: CRIME

Table 2.4

13 The male unemployment rate is used here because the vast majority of all crimes
are committed by males in their late teens to early twenties.
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function for Equation 2.9b and the actual values for 2004 crimes per 1,000
people and unemployment rates.

As one can see, the dots are widely spread around the sample regression
function, further illustrating the limited ability of unemployment rates alone
to explain the crime rates per 1,000 people across the 42 police force areas.
Another visual method of showing the poor fit of the sample regression func-
tion is to plot the residuals against the unemployment rates, as shown in Figure
2.6b. A horizontal line corresponding with zero on the vertical axis is plot-
ted along with the residuals. We can see that the residuals are fairly evenly
spread above and below zero, but at the same time, the spread is quite wide.
Again, this tells us that, although the unemployment rate may be able to partly
explain crime rates, much is left unexplained.14

Regression Model Assumptions 
and the Properties of OLS

The OLS method of estimating regression lines is clearly a powerful research
tool. The validity of the OLS results we obtain, however, depends on a series
of assumptions, called the Classical Linear Regression Model (CLRM)
assumptions, which we have yet to discuss. These assumptions are sketched
briefly below.15 The end result is that if these assumptions are satisfied, then
the OLS estimated regression line gives us the best possible representation of
the population’s regression line.16

CLRM Assumptions

1. The average of the population errors (uis) is zero. As seen in Figure 1.2b,
some points will lie above the population regression function and will have
positive errors, and some will lie below and have negative errors. On aver-
age, the errors should cancel each other, and thus the average of the errors
should be zero.

2. The spread of the errors above and below the regression line (i.e., the
variance) is uniform for all values of X. Graphically, this means that the

The Least-Squares Estimation Method——31

14 A more formal discussion of how well an estimated sample regression function
explains the behavior of the dependent variable (such as crime rates) will be pre-
sented in the following chapter.
15 For a more detailed discussion of the regression model assumptions, see Berry
(1993) or Wooldridge (2006).
16 A formal proof that the OLS method is the best one is given by the famous Gauss-
Markov theorem. For more details, see Greene (2003).
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actual observations for Yi, for given values of Xi, fall within a uniform
band around the population regression function, as seen in Figure 2.7. As
shown, the population regression function (PRF) has observations that are
above and below it, but they are uniformly spread around the line, as the
two darker, parallel lines above and below the PRF demonstrate. (The
technical term is that the errors are said to be homoscedastic, meaning
“equal variance.” An example of when the assumption is violated is given
later in Chapter 7.)

3. The error associated with one observation is not associated with errors
from any other observations. Or, in technical terms, we assume no autocor-
relation among the error terms. The basis for this assumption is straightfor-
ward. The errors are supposed to represent purely random effects for which
our model is unable to control. If, however, one observation’s error is some-
how related to another observation’s error, then this implies that there is
some systematic relationship among the errors, and thus they are not purely
random. The implication is that this systematic relationship contains infor-
mation which we should use to improve the estimation of our model. If it is
ignored, then we are not fitting the best line to our data. (An example of this
kind of problem is considered in Chapter 7.)

4. The independent variable Xi is uncorrelated with the error term ui. The
reasoning behind this assumption can be understood if we recall our goal: to
isolate the separate effects of changes in Xi on Yi. Suppose, for example, that
Xi and ui are positively correlated, meaning that an increase in ui would gen-
erally be associated with an increase in Xi. If this is the case, then it would be

32——Regression Basics
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difficult to isolate the separate effects of an increase in Xi on Yi because any
increase in Xi could be due, in part, to an increase in ui. An example of when
this assumption is violated is when we have an “omitted variable bias,” a
topic we touch upon in Chapter 7.

5. The variables Xi and Yi contain no measurement errors. Again, the
necessity of this assumption is easy to understand. If Xi and Yi are measured
inaccurately, then the OLS values for a and b (which, as Equations 2.3a and
2.3b show, are derived from the values of Xi and Yi,) are not likely to be
accurate estimates of the population’s α and β.

6. The model we put forth, such as the one in Equation 1.2b, is theoret-
ically sound. This assumption can be violated in a number of ways, includ-
ing omitting relevant independent variables. For example, if we consider our
baseball salary model, we hypothesized that years of playing determine a
player’s salary. We know, however, that years alone do not determine base-
ball salaries. A player’s offensive ability (e.g., hitting) or defensive ability
(e.g., fielding) is also obviously important. If we do not take into account
these important factors in our model, then our model will not be correctly
specified (i.e., we commit a model specification error), and the values for a
and b may not be reliable.

Another way we can misspecify our model is to use a functional form
that is inappropriate. For example, we may fit a straight line to data when,
in fact, a curve is appropriate. (We will have more to say about functional
forms later in Chapter 5.)

7. Our last assumption has to do with how the population’s error term,
ui, is distributed. We assume that the ui follows a normal distribution (often
referred to as the normality assumption). That is, the random errors follow
the familiar bell-shaped curve that is well known from statistics. The impor-
tance of this assumption will be seen later in Chapter 3.17

If CLRM assumptions 1 through 6 are satisfied, then, as noted above, the
OLS regression line provides the best possible estimate of the population
regression line. Or, using the more common terminology, OLS is BLUE,
which is an acronym for Best Linear Unbiased Estimator.18 In order to
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17 The justification of this assumption comes from a theory from statistics called the
Central Limit Theorem. Those interested in learning more about this theorem are
referred to Greene (2003).
18 Assumption 7, the “normality assumption,” is not required for the BLUE prop-
erty of the OLS estimation method. It is made for purposes of hypothesis testing, a
topic we take up in the next chapter.
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understand this property, we can begin by discussing what is meant by lin-
ear and unbiased. Linear simply means that we are estimating a value for the
intercept (a) and the slope term (b) that are raised only to the power 1. Thus,
our Equation 1.5 is an example of a linear regression model. However, con-
sider the following equation:

Yi = a + b2Xi + ei. (2.11)

In this case, b is raised to the power 2 and thus is not “linear” in the sense
described here. On the other hand, we do allow for the independent variables
to enter into our equation nonlinearly, as shown in the following equation:

Yi = a + bXi
2 + ei. (2.12)

This is considered a linear estimation because a and b are raised to the
power 1 and thus Equation 2.12 is a candidate for the BLUE property of
OLS.19

Unbiasedness has to do with the fact that our sample estimate of b, the
slope term, is a random variable. That is, given that we use a sample to cal-
culate b, if we repeat the estimation with new samples, we will likely find
different values for b. If we do so, we can then calculate the average of all of
these bs. If it is true that the average of the bs is equal to the population’s
true β, then the estimator is said to be unbiased; similarly for a, the intercept
term.20

Now that we know what is meant by linear and unbiased, we can explain
what is meant by “best.” If we consider all possible estimation methods that
are linear and produce unbiased estimates of a and b, the OLS method is the
best one in the sense that it gives us the most precise estimates of a and b. In
order to understand the meaning of this statement, recall that the estimated
parameters a and b “bounce” around from sample to sample (i.e., they are
random variables). If they are unbiased, this means that as they bounce
around, they have a mean value that is equal to the population’s α and β. To
be best, they will bounce around the least; any other linear unbiased estima-
tion method will produce values of a and b that bounce around more than
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19 Our linearity requirement is only for the parameters to be estimated (i.e., a and
b). The use of nonlinear independent variables, as shown in Equation 2.12, is dis-
cussed later in Chapter 5.
20 Formally, if it is true that E(a) = α and E(b) = β, where “E” stands for expected value,
then we say that a and b are unbiased estimators of α and β. It then follows that if 
E(b) ≠ β, then b would be a biased estimator of β; similarly for the intercept term, a.
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those calculated using the OLS method. In other words, of all linear unbi-
ased estimation methods, the OLS method gives us the most precise esti-
mates of α and β, or OLS is BLUE.21

Thus, we have powerful support for the use of OLS.

Summing Up

In this chapter, we have seen how we may use samples of data and employ
the method of least-squares to estimate the linear relationship between a
dependent variable and an independent variable. We have seen, however,
that our estimated sample regression function does not completely explain
the relationship between the dependent variable and the independent vari-
able, and what is left unexplained shows up in the error term. The question
we now turn to is that of model performance and reliability. That is, once
we have estimated a relationship between a dependent variable and an inde-
pendent variable, what can we say about how well we have estimated this
relationship? This is the topic of the next chapter.

PROBLEMS

2.1 Consider the following data set:
Yi Xi

10.5 13
9.75 12

10.00 12
12.25 14

8.00 10

where:  Yi is individual i’s hourly wage (in dollars per hour)
Xi is individual i’s number of years of education

Use Equations 2.3a and 2.3b to calculate the OLS values for a and b and interpret your results.

2.2 Use Equation 2.5b and the data in Table A1 of Appendix A to predict the salary of Javy
Lopez. What is the error in prediction (i.e., ei)? What may account for this error?
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21 In technical terms, OLS estimates of the random variables a and b will have the
smallest variance as compared to any other estimation method. For a more detailed
discussion, see Gujarati (2003) or Wooldridge (2006).
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2.3 Suppose we have the following model:

Yi = α + βXi + ui,

where, in this case, Yi is the manufacturer’s suggested retail price (MSRP) for a sports utility
vehicle (SUV) and Xi is the horsepower of the SUV.

a. What sign do you expect for α and β?
b. Using SPSS or Excel (or an equivalent program), and the data provided in Table A5 in

Appendix A, perform an OLS regression for the above model and interpret the estimated
coefficients.

2.4 Recall the model discussed in Problem 1.3, which shows students’ performance in col-
lege as a function of their SAT scores:

Yi = α + βXi + ui,

where:  Yi is individual i’s freshman college grade point average (GPA)
Xi is individual i’s SAT score

a. Using Excel or SPSS (or an equivalent program) and the “GPA” data set, create a plot
of the data with the variable GPA on the Y-axis and SAT on the X-axis. Does there
appear to be any relationship between the two?

b. Using SPSS or Excel (or an equivalent program), perform an OLS regression with GPA
as the dependent variable and SAT as the independent variable. Interpret the esti-
mated constant term and coefficient to SAT.
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