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3

Model Performance
and Evaluation

In the previous chapter, we learned how to use the method of least-squares
to find a line that best fits a scatter of points. It can be shown that, given
the right circumstances, there is no other method that is better at estimating
such a line than least-squares. That is, if the CLRM assumptions are met, then
OLS is BLUE. At this point, two other issues arise. First, suppose we have
used least-squares to find a line that best fits the data. We can then ask how
well the line fits the data. Finding the best fit is one thing, but how well our
line fits the data is quite another. This is the issue of “goodness of fit,” which
we explore in the next section.

Another question we can ask is not how well the regression model as a whole
performs, but how do the separate pieces of the model perform? That is, in the
previous chapter, we learned how to calculate the least-squares values of a and
b to determine the sample regression line. But because these values were derived
from a sample, they may not be representative of the population’s o and B.
Thus, we can ask the question, how confident are we that our sample results
are a good reflection of the population’s behavior? We discuss this issue later in
the chapter.

Goodness of Fit: The R?

In Chapter 2, we estimated four sample regression lines, one for each of our
examples. We then plotted these lines along with the actual data for the
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dependent variable, Y, and the independent variable, X. We have already
accepted the fact that in each case, the dots representing the sample data will
not fall exactly on the sample regression line, reflecting the fact that our
model does not take into account all factors that affect our dependent vari-
able. In general, however, we hope that the vertical distances from the dots
to the regression line are small because if this is true, then our estimated line
would be a good predictor of the behavior of Y.

Reviewing Figures 2.3, 2.4, 2.5, and 2.6a from the previous chapter, we
can see some qualitative differences. In Figure 2.3, which is for our baseball
salary example, we see that the plotted data points are somewhat broadly
scattered around the sample regression line. This indicates that the model
explains some of the behavior of Y, but much is left unexplained. Comparing
this to Figure 2.4, which is for the presidential voting model, we see that the
plotted points in this case are more closely cropped around the regression line.
Thus, for this example, the regression line seems to tell us a lot about the
behavior of the dependent variable, Y. Finally, in Figures 2.5 and 2.6a, we see
that the plotted data for state abortion rates and crime in California are
spread very broadly around their respective regression lines. In the case of
abortion, we can conclude that although religion may be an important factor
in determining abortion rates, there are many other important factors we
need to consider. The same can be said for the case of British crime rates:
Unemployment rates may be one of the determining factors, but there are
obviously other causal factors not present in the model.

Even though the least-squares regression method produces the best pos-
sible line to fit our data,' this means only that we have done the best we
can, and the overall performance of the model is not guaranteed to be good.
In order to judge how well the model fits the data, we can employ a measure
called the R? (read as the R squared).? The technical derivation of this mea-
sure can be a little hard to follow, but the intuition of it is not too difficult
to understand.

Our basic approach, as set out in Chapter 1, is to understand the behavior
of Y, the dependent variable, by observing the behavior of X, the independent
variable. As the value of X differs from one observation to another, we expect
that this difference in X will explain, at least in part, the differences in Y from
one observation to another. This approach is summarized by Equation 1.5.

! Again, this will be true only if the CLRM assumptions are met. As we see in later
chapters, our simple models may not satisfy all of the necessary conditions that are
needed before we can say that we have found the best possible line to fit our data. In
order to continue with our discussion, however, we will assume that all conditions
have been satisfied and our least-squares estimates are the best possible.

2 The R? is also referred to as the “coefficient of determination.”

e



03-Kahane-45364.gxd 11/9/2007 4:40 PM Pa%39

Model Performance and Evaluation 39

We hope that by observing the behavior of X, we learn a great deal about the
behavior of Y. The behavior of Y that is not explained by X will be captured
by the error term in Equation 1.5. The R? simply is a measure that tells us what
proportion of the behavior of Y is explained by X.

We can easily consider the bounds for the R2. If, by observing the behav-
ior of X, we know exactly how Y behaves, then the R* would be equal to 1
(100%). This outcome is very unlikely.> On the other hand, observing X
may tell us nothing about Y, in which case the R* would be equal to 0 (0%).
Thus, the R? is bounded between 0 and 1. Values close to 1 mean that by
observing the behavior of X, we can explain nearly all of the behavior of Y.
This would indicate that our estimated sample regression function is per-
forming well overall. Values close to 0 would have the opposite implication.

The above discussion gives us an intuitive understanding of the R% In
order to understand the technical derivation of this measure, we need to
define what is meant by the “behavior” of Y. The dependent variable Y will
have a mean (average), and of course, some values of Y will fall above this
mean and some below. As a graphic example, we can consider Figure 3.1.

As we can see in Figure 3.1, a particular point is plotted for observation
Y, for a given value of X,. Of course, there would normally be many other
observations plotted on the graph, but they are not shown in this case so that
we may focus on this single observation. The mean value for the dependent
variable, Y, is a horizontal line. The sample regression function (SRF) is also
plotted. Notice that the plotted point Y, lies above Y (i.e., it is above the
horizontal line). Thus, the value of Y for this particular observation is above
the sample’s average value for Y. The amount by which Y, exceeds Y is
shown as the distance from the horizontal line to the point Y, and is denoted
as (Y, — Y). This deviation of Y, from its mean can be broken up into two
pieces: the amount of the deviation that is predicted by our model, and the
amount that our model does not predict. That part of the deviation that our
model predicts is shown as the vertical dls/'Eance from the mean of Y (Y) to
the value the model would predict for Y (Y)) for the given X,. This distance
is denoted (Y Y). The second piece is the part of the total deviation that
was not predicted by our model, shown as the vertical distance from the
point on the sample regression function, Yl, to the observation Y,, and this
distance is denoted as (Y, — Y,), which is simply our error term, e, Thus, sup-
pose this observation is from our baseball example. Then the salary for
player i, Y, is above the average salary for all players in our sample. Part of
the amount by which player #’s salary exceeds the average is explained by
our model. That is, it can be explained by the number of years player i has

3 If the R? turns out to be equal to 1, the most likely reason is that the model that was
estimated was, in fact, an identity. (See footnote 4 in Chapter 1.)
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Figure 3.1

played in MLB. The rest is not explained by our model and is captured by
the residual, e, It should be obvious that the greater the proportion of the
deviation of the observation from its mean value that is explained by our
model, the better our model is performing because this would mean that the
proportion accounted for by the error term is smaller. On the other hand, if
our model does a poor job of explaining the deviation of Y, from its mean,
then our error term will be larger. This kind of breakdown of the total devi-
ation of Y, from its mean into the explained portion and the unexplained
portion can be done for all observations in our sample.

Now, as noted above, the R* is a measure that tells us what proportion of
the behavior of Y is explained by X. We can now use the method described
above to give a more precise meaning to the “behavior of Y.” We can define
this behavior of Y as the variation in Y, and it is calculated according to the
following equation:

TSS = 3(Y, - V). (3.1)

i=1

That is, the variation in Y is the sum of the squared deviations of Y around
its mean. We will call this sum the “Total Sum of Squares,” or TSS for short.
Essentially, it is a measure that tells us by how much the values of Y
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“bounce” around its mean. The deviations are squared so as to prevent
cancellation of positive values with negative ones (recall that this was also
done when we derived the OLS method in Chapter 2).

Part of this behavior of Y (i.e., the TSS) is explained or “predicted” by our
model, and the rest is left unexplained. The part of this variation that is
explained is

ESS =3(Y, - Y (3.2)
i=1
We call this value the “Explained Sum of Squares,” or ESS for short. It rep-
resents the explained behavior of Y about its mean.
Finally, as we have noted, the error term represents what is not explained
by our model:

RSS = Y e2. (3.3)
i=1
We call this sum the “Residual Sum of Squares,” or RSS. Using these mea-
sures, we can represent the behavior of Y in the following way:

TSS = ESS + RSS. (3.4)

That is, the behavior of Y (TSS) can be broken up into two pieces: that which
is explained by the model (ESS) and that which is unexplained (RSS). The R?
is thus defined as the proportion of TSS explained by the model, or

, ESS

As an illustration of how to use the R%, we can return to our second exam-
ple, which looks at presidential voting. Looking at Table 2.2, we see the
reported predicted values (i.e., the Y values). In Table A3 in Appendix A, we
have the actual values for the percentage of two-party votes (i.e., the Y, values)
as well as the mean (i.e., the value for Y). Thus, we have all the ingredients
needed for calculating the R%. Plugging these values into Equations 3.1 and 3.2,
we find that TSS is 1023.61 and ESS is 539.52. Using Equation 3.5a, we have

,  539.52
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The result in Equation 3.5b means that approximately 53% of the vari-
ation in Y is explained by our model. This, in turn, tells us that about
47% of the behavior of Y is not explained by our model. These results
suggest that our model is moderately successful, overall, in explaining the
variation in the percentage of two-party votes received by incumbent
party candidates.*

Virtually all computer packages that are capable of performing OLS
regression will calculate the R?. For example, Table 3.1 shows the OLS out-
put generated by Excel for our baseball model.

As we can see, Table 3.1 provides a great deal of information.” We can
see under the heading “Coefficients” the values for our intercept term, a
(0.765), and the slope term, b (0.656), shown in Equation 2.5a. At the top
of the table, we see the heading “Regression Statistics,” below which we
find “R Square,” which is reported as 0.345. This is our measure of the
“goodness of fit” discussed above. The interpretation of this number is that
about 34.5% of the behavior (i.e., variation) of baseball salaries is
explained by our model. This means that about two thirds of the variation
in baseball salaries is left unexplained. This somewhat poor result should
not be too surprising because, as was pointed out in Chapter 1, the two-
variable model is too simplistic in most cases, and a more complex model
is warranted.

Also shown in Table 3.1 is a section labeled “ANOVA,” which stands for
“ANalysis Of VAriance.” Focusing on this section for a moment, we see a col-
umn headed “SS.” This is short for “sum of squares” and is a breakdown of
the variation of Y (baseball salaries) into its separate pieces as described
in Equation 3.4.° The first entry for “Regression,” 328.555, is our ESS in
Equation 3.4. The second entry, labeled “Residual” (623.445), is our RSS in

4 It should be pointed out that there is no benchmark R? value that needs to be
achieved before we declare a model to be successful. There are some areas of research
where an R? of 0.527 would be considered quite good (e.g., models of wage determi-
nation in industries other than MLB), whereas in other areas of research, it would be
considered a weak result (e.g., models that forecast national income). These differences
arise for a variety of reasons. It may be due to differences in the availability and qual-
ity of data, or it may simply be the case that some relationships naturally have a larger
random component (i.e., %,) than others.

5 The output shown, as in earlier examples, has been edited to include only the relevant
information needed for the present discussion. In addition, values were rounded to
three decimal places.

¢ The column headed “MS” is simply the calculated mean of the sum of squares val-
ues. The MS values are not of particular use for us in this book.
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Table 3.1
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.587
R Square 0.345
Adjusted R Square 0.323
Standard Error 4.559
Observations 32
ANOVA
df SS MS
Regression 1 328.555 328.555
Residual 30 623.445 20.782
Total 31 952.000
Coefficients Standard Error t Stat P value
Intercept 0.765 1.671 0.458 0.650
YEARS 0.656 0.165 3.976 0.000

Equation 3.4. And finally, “Total,” given as 952.000, is our TSS (= ESS + RSS)
discussed earlier. Thus, using our definition of the R? in Equation 3.5a, we have

»  328.555

=__""" _0. (3.5¢)
952.000 0.345,

which is indeed our reported “R square” in Table 3.1.”

Several other measures are shown in Table 3.1 under the heading of
“Regression Statistics,” and we can discuss them briefly. The standard error,
shown as approximately 4.559, is the positive square root of the variance of
the errors. It is essentially a measure of the typical size of the error (our ¢
in prediction. “Observations” simply tells us the sample size (32 in this case)
used in the regression.

7 “Multiple R,” reported as 0.587, is simply the square root of the R*> and is the
absolute value of the correlation between Y and X. This statistic is not often used in
our assessment of the model’s overall performance.
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Sample Results and
Population Parameters

In addition to judging the overall performance of our model, we can consider
the separate performance of estimated parameters a and b. It was pointed out
in Chapter 2 that we typically are working with samples of data, not the pop-
ulation. Thus, we collect a sample and use it to calculate OLS values for a and
b; these values then define a sample regression line. The hope is that our sam-
ple values of a and b are a good representation of the true, but unknown, val-
ues of the population parameters o and B shown in Equation 1.2b.

Suppose we replaced our original sample and collected a new one. This new
sample could then be used to calculate OLS values for a and b. Obviously,
because this second sample would not likely be identical to the previous one,
these values for @ and b would likely be different from those of the first sam-
ple. Different samples have different information contained in them; thus, as
samples change, so will the OLS-calculated values for @ and b. In other words,
these sample values for a and b are random variables that “bounce around”
from sample to sample and we can thus study their behavior. To illustrate the
fact that a and b typically change from sample to sample, we can return to our
baseball example. Suppose we draw two subsamples of size 16 from our 32
observations. We can then calculate OLS values for a and b for each subsam-
ple. For observations 1 through 16 (rounding to three decimal places), we have

a=1.177, b =0.680,
and for observations 17 through 32, we have
a=0.352, b=0.631.

As we can see, we have substantially different values for these estimated
parameters from one sample to the next.®

Understanding that the OLS-calculated values for a and b are, in fact,
random variables is important because we use them as estimates of the pop-
ulation’s o and B. If the calculated values of a and b change a lot from sam-
ple to sample, then we would not have much confidence in any single
sample’s results being representative of o and B. On the other hand, if the
OLS estimates of @ and b differ only slightly from one sample to another,
then we can be fairly confident that a single sample’s results are a good rep-
resentation of the population’s parameters. The measures used to judge the

8 The reader is invited to verify these results.
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reliability of @ and b as estimates of their population counterparts are the
standard error of the coefficient estimates.” Essentially, they are measures
of how a and b bounce around from sample to sample. The smaller the
standard error, the more reliable are the sample values of a and b as esti-
mates for oo and B. In our baseball example, we can see in Table 3.1 that the
column headed “Standard Error” for the “Intercept” (i.e., a) is shown as
1.671 and for “YEARS” (i.e., b) we have 0.165, after rounding to three
decimal places. We need to keep in mind two things with these standard
errors. First, they are in the same units as the dependent variable (millions
of dollars in our case). Second, it is their size relative to the value of the esti-
mated coefficient that is important for us. That is, consider the value for b,
which is shown in Table 3.1 to be 0.656. Comparing this number to its
standard error of 0.165, we see that the coefficient is nearly four times as
large as the standard error. In other words, the sample value for b appears
to be a fairly reliable estimate of the population’s B.1°

Given the values of the standard errors of our a and b, we can use them
to test various ideas or “hypotheses.” One of the most common tests is the
“zero hypothesis” test. This test, in some sense, looks into the “soundness”
of our model. Recall in Chapter 1 where we introduced the four examples.
In each case, we specified a dependent (Y) variable and an independent (X)
variable that we believed (or “hypothesized”) should explain at least part of
the behavior of the dependent variable. Take, for example, our model of vot-
ing patterns in presidential elections. In building this model, we hypothesized
for the population data that the percentage of two-party votes received
by the incumbent party candidate is determined, in part, by the economy’s
health as measured by the growth rate. This relationship between votes and
growth is not an established fact; rather, it is a theory or hypothesis that we
put forth. It could be wrong; there may be no relationship between votes and
growth. Part of our task in regression analysis is to test this hypothesis. We
do this by collecting a sample, estimating the sample regression function, and
then analyzing our results to see whether the hypothesis is supported. More
specifically, consider our model shown in Equation 1.6, except now for the
population of data: Y, = o + BX, + u,.

If economic growth (i.e., variable X,) is an important factor in explaining
voting patterns (i.e., Y,), then the population’s value for 3 should be positive.

? See Gujarati (2003) for details on how the standard errors for the OLS parameter
estimates are calculated.

19 Generally speaking, if the absolute value of the estimated parameter (e.g., a or b) is
twice (or more) the size of the associated standard error, then the estimated parameter is
considered to be a fairly reliable estimate of the population parameter (e.g., o or B).
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On the other hand, suppose that the economic growth rate has nothing to
do with the way people vote; in that case, f would be zero. If B is truly zero,
then BX, would be zero, meaning that X, has no impact on Y,

Whether or not B is zero is a hypothesis made for our population of data.
Stating the hypothesis a bit more formally, we can write

H:B=0
H:B=0,

where H,, is called the null hypothesis and H, is the alternative hypothesis. If
we find that H, is true, then our hypothesis that economic growth is an
important factor in explaining voting patterns would be false. On the other
hand, if we find that H, is true, then our hypothesis is correct. Unfortunately,
we typically cannot prove that either H, or H, is true. This is because we typ-
ically do not have the population data and are working only with a sample.
Because our sample result for b is not a perfect predictor for B, our sample
results can only support or fail to support our hypotheses over B."

In order to see how we can use our sample regression results to test the
above hypothesis, we can use the information in Table 3.2, which contains
the OLS output (produced by Excel) for our voting model.'?

We see in Table 3.2 that the estimated values for @ and b are, as we saw
earlier, 51.065 and 0.880, respectively. We can also see that the standard
errors for these values of a and b are approximately 1.035 and 0.182,
respectively. If we next consider the column headed “t stat” (short for
t statistic), we see the rounded value of 49.339 for the intercept, a, and
4.838 for the coefficient to GROWTH, or b. The basis of the ¢ statistic
actually stems from the normality assumption that was introduced in
Chapter 2 in CLRM Assumption 7. Although the discussion of the use
of the ¢ statistic is somewhat advanced, it boils down to this: If the pop-
ulation errors, #,, are normally distributed, then it can be shown that
the sample estimates for a and b follow a ¢ distribution.’® Given this
result, then we can use the ¢ distribution to test hypotheses over the pop-
ulation parameters o0 and B with our sample estimates. In other words, the

Tt should be understood that B is a fixed parameter, not a random variable. The
value for b from our sample regression, on the other hand, is not a fixed parameter
but is a random variable that we use to estimate f3.

12 Table 3.2 is similar to Table 2.2, except that the prediction errors and predicted val-
ues are omitted and other relevant statistics are now included.

13 See Gujarati (2003) for the proof of this result.
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Table 3.2
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.726
R Square 0.527
Adjusted R Square 0.505
Standard Error 4.801
Observations 23
ANOVA
df SS MS
Regression 1 539.524 539.524
Residual 21 484.088 23.052
Total 22 1023.612
Coefficients Standard Error t stat P value
Intercept 51.065 1.035 49.339 0.000
GROWTH 0.880 0.182 4.838 0.000

normality assumption introduced in Chapter 2 now justifies our use of the
¢ stat here.

As for the value for each ¢ stat shown, it is calculated by dividing a coef-
ficient by its associated standard error. That is, for the intercept, if we
divide 51.065 by 1.035, we get 49.339, which is the ¢ stat value shown
(allowing for rounding differences). Similarly, for the coefficient to
GROWTH (i.e., our b), we have 0.880, which, if divided by its standard
error of 0.182, gives us 4.838, the reported ¢ stat for GROWTH. As noted
earlier, the size of the standard error relative to the estimated coefficient is
what is important for us. This is exactly what the reported ¢ stat shows: the
coefficient divided by its own standard error. In the case of the intercept,
our ¢ stat of 49.339 tells us that our calculated value of a is about 49 times
larger than its standard error. In other words, the OLS value for a is a reli-
able estimate of the population’s o because it bounces around very little
from sample to sample. As for b, this coefficient is approximately 4.8 times
larger than its own standard error, indicating that this sample value for b is
a very reliable estimate for the population’s parameter . Exactly how reli-
able are these estimates? The answer to this question is our next task.
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The column next to the # stat column in Table 3.2 is headed “P value.”
The numbers shown here for @ and b are calculated using the ¢ stat.!* These
numbers represent probabilities, based on the associated ¢ stat, that we can
use to test the zero hypotheses discussed earlier. The interpretation of these
numbers is a little tricky. They represent what the probability would be of
finding the values of @ and b shown if, in fact, for the population, the null
hypothesis was true. In other words, it sets up a straw man that we hope we
can knock down, and this straw man says that, for the population, X has no
relationship to Y.

In order to make this clear, let’s focus on the value for b shown in Table 3.2.
This coefficient to GROWTH is estimated to be 0.880, based on our sam-
ple OLS results. This number, as we have discussed, is only an estimate of
the true value of the population’s B. Furthermore, we have learned that this
result for b will likely differ from sample to sample (i.e., it is a random vari-
able). This being the case, the value of 0.880 could be quite different from
B. We can therefore consider the following question: Could it be the case
that the true value for B is, in fact, zero, and that our value of 0.880 was
merely a result of our sampling? This is the question that the P value
addresses: What is the likelihood of getting a sample value of 0.880 when,
in fact, it is true that B is zero? In our case, the P value for b is shown as
0.000 after rounding to three decimal places. If we allow for a greater number
of decimal places, say six, we would find this P value to be 0.000088.'* That
is, the probability of getting the value of 0.880 for b when it is true that B is
zero is about 0.000088 (or about a 0.0088% chance).'® This is quite small,

4 The probabilities shown under the P value column are calculated by plugging the
given ¢ stat into the ¢ probability distribution function. This, again, is a complicated
matter that goes beyond the scope of this book. Those interested in learning more
about the specifics of probability distribution functions are referred to Gujarati (2003)
or Greene (2003).

Y In fact, the Excel output produces the following P value for the coefficient to
GROWTH: 8.79747E-05. This number is expressed in scientific notation and could
be rewritten as 8.79747 x 107 or, in nonscientific notation, as 0.0000879747.

16 This interpretation is not strictly correct. The hypothesis test we are conducting
is whether or not B is statistically different from zero. To reject this null hypothesis,
we need to get a sample result for B that is sufficiently different from zero, that is,
sufficiently larger or sufficiently smaller than zero. In our case, our sample result
was 0.880, but if our sample gave us a value of —0.880, this too would be suffi-
ciently different from zero (in this case, smaller than zero) to reject our null hypoth-
esis. Thus a more accurate interpretation of the P value in this example would be:
The probability of obtaining a sample value of 0.880 or greater in absolute value
terms, when the true population’s value is zero, is approximately 0.000088.
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indicating that the hypothesis that B is zero is probably not true. In other
words, we would likely reject Hy: B = 0 in favor of H: B # 0.

We can also perform a similar test for the intercept term, o. That is, we
can consider the hypothesis that the population’s intercept is really equal to
zero. Putting it formally, we would have

Hyo=0
H:oa=#0.

In order to test this hypothesis, we need only consider the P value for a,
which is given as approximately 0.000. Or, again, allowing for a greater
number of decimal places, the Excel program reports 3.3542E-23. This is in
scientific notation, which means we move the decimal 23 places to the left.
Obviously, this is an extremely small number. In terms of our hypothesis
test, this means that the probability of obtaining a value for a of 51.065 from
our sample when the value for a.is truly zero is 3.3542E-23 (or a 3.3542E-21%
chance). In other words, it means we can be quite confident that the true
population’s intercept o is not zero.

In the above example, we found very small P values, which indicated that
we can reject H for both the intercept and slope terms with great confi-
dence. Suppose, however, that we were not able to be so confident. That is,
suppose the P value for b turned out to be 0.20. This would mean that the
chance of getting the value of b we found (or greater, in absolute terms),
when in fact the population’s B is zero, is about 20%. Would we be suffi-
ciently confident that B is not zero with this result? In other words, how
large of a P value are we willing to accept before concluding that we cannot
reject H,? If the P value is 0.20 and we declare that we reject H, then this
means we have a 20% chance that our declaration is wrong.'”” How prudent
we are in rejecting the null hypothesis (i.e., accepting the estimated relation-
ship) may vary with circumstances. For example, in a model exploring the
usage of a particular drug and the possibility of its use causing birth defects,
we would want to be quite sure that a real relationship exists. It is standard
practice to reject the zero hypothesis when the associated P values are 0.05
or smaller (in some cases, P values of 0.10 or smaller are used).

In order to solidify the concept of hypothesis testing, we can apply
these tools to our third example. Recall that this model, which is shown in
Equation 1.7, hypothesizes that abortion rates across the 50 states differ, in

17 If we reject a hypothesis when it is actually true, we are committing what is called a
“Type I error.” (Accepting a hypothesis when it is actually false is called a “Type 1I
error.”) The P value thus represents the probability of committing a Type I error.
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part, because the moral views on abortion differ across the states. We use the
variable RELIGION, which shows the percentage of the population that is
Catholic, Southern Baptist, Evangelical, or Mormon, to capture the moral dif-
ferences. As RELIGION (X)) increases from one state to another, we expect
that the abortion rate (Y,) would be smaller, other things being equal. As in
the previous example, this is a hypothesis that we put forth. It could be
wrong, meaning that RELIGION tells us nothing about abortion rates. That
is, it may be the case that B is zero for the population. We can test this hypoth-
esis by evaluating the P value from the OLS regression. Table 3.3 shows the
output from our earlier regression, but with more details in this case.

The three panels of output shown in Table 3.3 were produced by the pro-
gram SPSS. The output provided is similar to that produced by the Excel
program. We can see in the first panel, titled “Model Summary,” that the
R squared is reported as 0.016. This result tells us that approximately 1.6%

of the behavior of abortion rates (Y,) is explained by our model. This is

Table 3.3
Model Summary
Std. Error
Adjusted R of the
Model R R Square Square Estimate
1 1252 .016 —.005 10.0829
a. Predictors: (Constant), RELIGION
ANOVA®
Sum of Mean
Model Squares df Square
1 Regression 77.691 1 77.691
Residual 4879.935 48 101.665
Total 4957.626 49

b. Dependent Variable: ABORTION RATE

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 23.825 3.979 5.988 .000
RELIGION —-.099 114 -.125 —-.874 .386

a. Dependent Variable: ABORTION RATE
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clearly a very poor result, because it means that approximately 98.4% of the
behavior (i.e., variation) of our dependent variable is not explained. This
result is mirrored in the second panel, titled “ANOVA,” which shows that
the residual sum of squares, RSS (reported as 4879.935), makes up nearly all
of the total sum of squares, TSS (reported as 4957.626). In sum, the model,
as it stands, fits the data very poorly.

Turning to the separate components of the model, we find similarly weak
results. In the panel titled “Coefficients,” we find the estimate of a to be 23.825
with a standard error of 3.979, and the estimate of b to be —0.099 with a stan-
dard error of 0.114. In the case of the constant term a, dividing the coefficient
by its standard error (i.e., 23.825/3.979) gives us a reported “¢” (which is the
same as Excel’s “¢ stat”) of 5.988. This ¢ then translates into a “Sig.” (short
for significance level, which is the equivalent of Excel’s P value) of 0.000. This
result tells us that we can reject the hypothesis that the constant term for the
population, a, is truly zero with a very high degree of confidence.'

As for the coefficient to RELIGION (i.e., b), the results are quite different.
The coefficient has the negative sign that was hypothesized, supporting the idea
that as RELIGION increases from state to state, abortion rates tend to be
smaller, other things being equal. However, the value for b appears not to be
very different from zero. Again, we can ask the question: Is it true that the pop-
ulation value for B is really zero and that our result for b of —0.099 is from a
sample that does not perfectly reflect the population? In other words, is ~0.099
statistically different from zero? The fact that the magnitude of our b is small is
not enough to make any conclusions about whether it is not statistically differ-
ent from zero. We must compare the value for b to its standard error. The
reported standard error of b is larger than (the absolute value of) b. In other
words, for this model, the random variable b tends to bounce around a great
deal, and as such the computed value is not a very reliable predictor of . We
can see this clearly by observing the Sig. value for b, shown as 0.386. What this
number means is that there is a 38.6 % chance of finding a sample value of 0.099
or larger (in absolute terms) for & when, in fact, the population’s B is truly zero."”

18 The Sig. value of 0.000 represents a rounded figure; it is not perfectly equal to zero,
just very close. The fact that the intercept term is significantly different from zero,
however, is not of great importance to us because the interpretation of the intercept
in this case is not very meaningful.

Y A word on terminology: In determining whether we reject or do not reject the null
hypothesis, the P value (or Sig.) tells us at what probability the coefficient is “signifi-
cantly” different from zero. For example, a P value of 0.10 means that we can reject
the hypothesis that the associated coefficient is zero at the 10% “significance level.”
Equivalently, we can say that the null hypothesis is rejected at the 90% “confidence
level.” The terms significance level and confidence level are used interchangeably, and
the confidence level is simply 100 minus the significance level.
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In other words, we cannot confidently rule out the possibility that RELI-
GION, on its own, has nothing to say about state abortion rates.

On some occasions, we must work directly with the ¢ statistic in order to
test hypotheses. This may occur, for example, if the software program with
which we are working does not produce a P value (or significance level)
for estimated coefficients.”® Alternatively, we may wish to test a hypothesis
other than the “zero hypothesis” test we have been performing. In both
cases, we need to do some work by hand to perform a hypothesis test for our
estimated coefficients. In order to see how we can work directly with the
¢ statistic, we can return to our crime example. Table 3.4 reports the same
results as Table 2.4 except we now include more detailed output.

Using the data in Table 3.4, we can write down the estimated equation,
which is the same as we saw in Equation 2.9b but now including the stan-
dard error (“se” for short) for the intercept and coefficient to UNEM, shown
in parentheses below the estimated coefficients®':

CRIME, = 51.772 +10.218 (UNEM,)
se=(5.698) (1.829)

Suppose we wanted to perform a zero hypothesis test for the estimated
coefficient to UNEM, b, but we did not have a P value to use. In order to do
so, we can use the standard errors provided to compute the ¢ statistic, and
then we can compare it to a table of ¢ values that is provided in Appendix C
of this book. Before describing how to use the table of # values, however, we
can explore the intuition behind this procedure.

Recall that the value of b is a sample’s estimate of the population’s coef-
ficient to UNEM, B. The standard error of b is a measure of how precise our
estimate is: the larger the standard error, the less precise our estimate. We
noted that the “¢ stat” reported by Excel (or the “¢” reported by SPSS) is cal-
culated by dividing the estimated coefficient by its standard error. That is, for
the coefficient to UNEM, we have

b
t statistic = ——. (3.6a)

se(b)

20 Some older software programs simply provided the standard error for each coeffi-
cient estimated, and the researcher then had to perform calculations and hypothesis
tests by hand. Most software programs now routinely generate ¢ statistics and P values
(or significance levels).

21 Putting the standard errors in parentheses below their respective estimated coeffi-
cients is a common way to report regression results.
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Table 3.4
Model Summary
Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .6622 .438 424 13.610087

a. Predictors: (Constant), UNEM

ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 5783.392 1 5783.392 31.222 .0002
Residual 7409.379 40 185.234
Total 13192.77 41

a. Predictors: (Constant), UNEM
b. Dependent Variable: CRIME

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 51.772 5.698 9.085 .000
UNEM 10.218 1.829 .662 5.588 .000

a. Dependent Variable: CRIME

Focusing on Equation 3.6a for the moment, we see that for any given
value for b, the larger the se(b), the smaller the ¢ statistic. Therefore, the
smaller the ¢ statistic, the less reliable our value of b is as an estimate of the
population’s coefficient, B. In other words, a “small” absolute value of
the ¢ statistic means that our value of b bounces around a lot from sample
to sample. This, in turn, means that the population’s value for f may truly
be zero and that our sample estimate of the coefficient was simply off the
mark. Putting this formally, we can state the following two hypotheses:

H:B=0
H:B=0.
In this case, the “smaller” the absolute value of the # statistic, the more

likely it is that we would not reject H, (i.e., that the population’s regression
line has a zero coefficient to UNEM). On the other hand, the “larger” the
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absolute value of the ¢ statistic, the more likely it is that we would reject H,
in favor of H, (i.e., that the population’s regression line has a nonzero coef-
ficient for UNEM). The question that arises is, how “large” does the ¢ sta-
tistic have to be to reject H,? The answer to this question depends on how
confident we want to be in our test’s result. It is standard practice that
researchers settle on 90% or 95% confidence levels, or equivalently, 10%
or 5% significance levels (see footnote 19). Thus, if we choose a significance
level of 10% as our cutoff, we can then determine if our # statistic is large
enough to reject H for this level. To carry out this test, we can refer to
Table C1 in Appendix C. In the first column of this table, we see the head-
ing “df.” This is short for degrees of freedom, which are calculated by tak-
ing our sample size and subtracting from it the number of parameters we
have estimated.?” Thus, for our 2004 crime example, we have a sample
size of 42 police force areas and we are estimating two parameters (2 and
b), leaving us with 40 degrees of freedom.*? Referring to Table C1, we see
that the first column is headed “df” for degrees of freedom. For this test,
we go down to the row for 40 degrees of freedom.?* Across the top of
Table C1, we see the heading “Confidence Level.” Below this. we see
“Probability,” which, if multiplied by 100, is our significance level.
Staying with our chosen 10% significance level, this means we go over to
the column headed by 0.1 (i.e., 10%). We see, then, that for 40 degrees
of freedom and a significance level of 0.10, we have the number 1.684 in
Table C1. This number is a ¢ value, and it represents the minimum value

22 The meaning of the degrees of freedom is somewhat difficult to explain. The eas-
iest way to think about the degrees of freedom is that they measure how much use-
able information we have left over from our sample after already performing
certain tasks. That is, when we have a sample of data, this data set contains a finite
amount of information. If we use part of this information to perform certain cal-
culations, such as estimating a and b in a sample regression function, then we have
less information left over to carry out other tasks, such as hypothesis tests. Thus,
the degrees of freedom keep track of how much information we have left for such
tasks.

2 Note that both Excel and SPSS routinely report the degrees of freedom. Both programs
provide several values for the degrees of freedom, shown as “df,” in the ANOVA por-
tion of their output. The relevant value for the purpose of performing ¢ tests are the
ones reported for the “Residual.” Thus, we see in Table 3.4 a value of 40. In the case
of our abortion model, with a sample size of 50, we have degrees of freedom equal to
48 (see Table 3.3).

24 Other, more extensive ¢ tables have a greater number of values for degrees of freedom.
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that the absolute value of our # statistic must achieve before we can reject
H,.” That is, if

|t statistic| = ¢ value,

then we can reject H,, meaning that the coefficient to UNEM is statistically
different from zero at the 10% significance level.
Returning to our crime example, we have

10.218

1820 — 3%

t statistic =

which is the same value reported for the # statistic in Table 3.4 (allowing
for some minor difference due to rounding) for the coefficient to UNEM.
Because this # statistic is greater than 1.684, the ¢ value, we can reject H,, at
the 10% significance (90% confidence) level. In fact, we can see that we can
achieve even a smaller significance (or higher degree of confidence) with our
given ¢ statistic. Our # statistic is larger than the ¢ value of 0.05 (shown as
2.021 in Table C1) and is also larger than the # value for 0.01 (shown as
2.704). Thus, we can reject H, at a significance level that is smaller than 1%.
What is the exact significance level we can achieve? This is, in fact, what the
Sig. value tells us. Referring back to Table 3.4, the Sig. value is shown as
0.000, which is rounded to three decimal places. Carrying the Sig. value out
to 6 decimal places, we have 0.000002 as our significance level. This Sig.
value tells us that we can reject H, at less than the 0.0002% level of signifi-
cance. This example illustrates the linkage between the ¢ statistic reported by
the program and the associated Sig. value. Furthermore, it provides us with
strong evidence that unemployment is truly an important determining factor
of British police force area crime rates in 2004.

We can also use ¢ statistics to perform hypothesis tests other than the zero
hypothesis. For example, we saw in our voting regression (see Table 3.2)

2 If the value for a or b happens to be negative, then the ¢ statistic will be negative
(e.g., the value for b in our abortion regression shown in Table 3.3). The ¢ tables, how-
ever, show only positive values. This is because the ¢ distribution is symmetric and cen-
tered around zero, so if we compute a ¢ statistic and find it is negative, we can take
the absolute value of this number and compare it to the positive # values shown in
Table C1. For a more detailed discussion of the ¢ distribution, see Gujarati (2003).
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that the OLS estimation of the slope term, b, yielded a value of approxi-
mately 0.880 with a standard error of about 0.182 (rounding to three
decimal places). The “¢ stat” and the associated “P value” show that the
population’s B is different from zero at a very small significance level (or high
confidence level). We can, however, ask the following question: Is the pop-
ulation’s B different from 1? The value of 0.880 is not too far off from 1,
and given the fact that our value for b is from a sample, it seems possible
that if we had the population data and calculated the population regression
function, we could perhaps end up with B equal to 1. Recall, however, that
we cannot simply consider the size of b; we must also consider its size rela-
tive to its standard error. Thus, a more formal test is needed. We can state our
hypothesis more formally as

H;:B=1
H:B=1.

We can perform this test using the ¢ statistic in a similar way as we did
above. In this case, however, we need to recalculate the # statistic to make it
conform to our new hypothesized value of B. We calculate this new ¢ statis-
tic using the following equation:

. b—h
t statistic = M’ (3.6b)

where b is the OLS sample result for the slope term and / is our hypothe-
sized value for B.¢ Using the values from our voting regression, we have

. 0.880 —1
t statistic = RT —0.659, (3.6¢)

and taking the absolute value for this ¢ statistic, we have 0.659. Turning to
Table C1 and locating the row for 21 degrees of freedom (23 observations

26 This equation is very similar to that shown in Equation 3.6a, except that we are sub-
tracting » in the numerator. However, this is only an apparent difference. Recall in
Equation 3.6a that we were calculating a ¢ statistic for use in testing a hypothesized
value of zero for our population parameter B. In that case, then, b was zero, and so b
minus » would simply be equal to b.
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minus two estimated parameters), we see that for a significance of level of 10%
(or confidence level of 90%), the ¢ value is 1.721. Comparing the absolute
value of our ¢ statistic to this ¢ value, we see that it is less than the ¢ value, and
so we cannot reject H, that B is truly 1 for the population at the 10% level of
significance. In fact, we see that the absolute value of our calculated # statistic
is smaller than all the values reported for 21 degrees of freedom. The bottom
line is that we cannot confidently reject the hypothesis that B is equal to 1.

Summing Up

In building regression models, the researcher is responsible for specifying
what factors are important in explaining the behavior of a dependent vari-
able. Whether or not the researcher has built a sound model depends on a
number of things. Ultimately, though, the model must have some logic to it.
In our four examples, we put forth hypotheses about how Y can be explained
by the related X variable. Using samples of data, we then calculated the OLS
regression for each model and asked the following questions: How well does
the model fit the data as a whole? And how do the separate components of
the model (i.e., @ and b) perform? We have seen that the first question can
be answered by using the R? value. If the R* is “large” (i.e., close to 1), then
our model works well, and if it is “small” (i.e., close to 0), then our model
performs poorly. What value of the R? is large enough so that we can claim
a good fit is subjective.?”

With regard to the second question, we have seen that an estimated coef-
ficient’s standard error can be used to determine if the coefficient is reliably
different from zero. Using the P value (or Sig. in the case of SPSS), we have
determined that the smaller its value, the more confident we are that the
variable included in the model is truly important in explaining the behavior
of the dependent variable. We have also seen that we can test other hypoth-
esized values for our parameters by calculating ¢ statistics and comparing
them to # values provided in Table C1 in Appendix C.

7 It should be noted that it is possible for a model to produce a relatively large R* even
though each separate estimated coefficient fails to achieve a sufficient level of signifi-
cance. It is also possible to achieve a low R* when each estimated coefficient is highly
significant.
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PROBLEMS

3.1 Use Excel (or another program) and the data shown in Table A6 in Appendix A to
calculate the OLS estimation of the following model:

Y=o+ BX +y
where: Y, is hourly wage
X is years of education.

Interpret the estimated values for o and B. What is the R? for this regression? What is its
interpretation?

3.2 Use the regression output from Problem 3.1 to perform the following hypothesis tests:

a. Hyo=0,H;:a=#0, at the 5% significance (or 95% confidence) level.
b. Hy B=0, H,;: B #0, at the 1% significance (or 99% confidence) level.
3.3 Use the output shown in Table 3.4 and the ¢ table presented in Appendix C to test the
following hypothesis:

Hy:B=9, H;: B9, at the 5% significance (or 95% confidence) level. [Hint: You should
use Equation 3.6b to conduct this test.]

3.4 Using SPSS or Excel (or an equivalent program), perform an OLS regression with GPA as
the dependent variable and SAT as the independent variable and conduct the following
hypothesis test:

Hy o= 0.8, H,: o # 0.8, at the 5% significance (or 95% confidence) level. [Hint: You
should use Equation 3.6b to conduct this test.]




