
This example illustrates three important points. First, it shows the value

of using diagnostic tools to uncover potentially problematic observations.

Second, it shows how outliers can influence regression estimates even in

large data sets. Third, the debate reflects the fact that there is no universally

accepted method for handling unusual observations. The decision on what

action should be taken when influential observations are detected should be

based on substantive knowledge. In other words, the researcher must make

a judgment call. With respect to this particular example, I leave it to those

with better substantive knowledge of the topic to decide the best way to

handle the outliers. It is sufficient for the purpose of this book to show that,

despite a sample of more than 2,000 observations, as few as eight outliers

drastically altered the results. If one decides that the observations should

not be ignored, they can be handled by removing them, as did Kahn and

Udry, or by robust regression.

2. IMPORTANT BACKGROUND

We now turn to various concepts important to assessing the robustness of

an estimator. In this regard, bias, consistency, efficiency, breakdown point,

and the influence function will be defined. All of these will be used through-

out the book.

TABLE 1.1

Determinants of Marital Coital Frequency

Model 1 Model 2 Model 3 Model 4

Period –.72∗∗∗ –.67∗∗∗ –3.06∗∗ –0.08

Log Wife’s Age 27.61∗∗ 13.56 29.49 –1.62

Log Husband’s Age –6.43 7.87 57.89 –5.23

Log Marital Duration –1.50∗∗∗ –1.56∗∗∗ –1.51∗ 1.29

Wife Pregnant –3.71 –3.74∗∗∗ –2.88∗∗∗ –3.95∗
Child Under 6 –0.56∗∗ –0.68∗∗∗ –2.91∗∗∗ –0.55∗∗
Wife Employed 0.37 0.23 0.86 0.02

Husband Employed –1.28∗∗ –1.10∗∗ –4.11∗∗∗ –0.38

R2 0.0475 0.0612 0.2172 0.0411

n 2062 2055 243 1812

SOURCE: Adapted from Kahn and Udry (1986: table 1).

NOTES: Model 1: Jasso’s original analysis; Model 2: four ‘‘miscodes’’ and four other outliers

dropped; Model 3: Marital duration ≤ 2 years (excluding miscodes and outliers); Model 4:

Marital duration > 2 years (excluding miscodes and outliers).
∗p < .05; ∗∗p< .01; ∗∗∗p< .001.
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Bias and Consistency

Assume a sample, Z, with n observations. Let Tn Z1; . . . ; Znð Þwith probabil-

ity distribution P represent an estimator for the parameter θ. In other words,

applying T to Z gives the estimate of the population parameter:

TðZÞ= θ̂ ½2:1�

The estimator is unbiased if

E½TðZÞ�=Eðθ̂Þ= θ: ½2:2�

In other words, the average of an unbiased statistic equals the population

parameter. It follows, then, that the bias of an estimator TðZÞ= θ̂ is

given by

bias E½TðZÞ− θ�: ½2:3�

Unbiasedness is certainly important, but consistency is also of concern

when determining the ‘‘best’’ estimator to use. An estimator θ̂ is consistent

if it converges to θ as the sample size grows to infinity. We can also consider

consistency in terms of the mean squared error (MSE) of an estimate. In this

respect, θ̂ is consistent if

lim
n→∞ MSE θ̂

� �= 0: ½2:4�

Breakdown Point

The breakdown point (BDP)1 is a global measure of the resistance of an

estimator. More specifically, it is the smallest fraction or percentage of dis-

crepant data (i.e., outliers or data grouped at the extreme end of the tail of

the distribution) that the estimator can tolerate without producing an arbi-

trary result (Hampel 1974; Huber 2004). Assume all possible ‘‘corrupted’’

samples Z0 that replace m observations in the data set with arbitrary values

(i.e., observations that do not fit the general trend in the data). The maxi-

mum effect2 that could arise from these substitutions is

effect ðm; T , ZÞ= sup

Z0
TðZ0Þ− TðZÞ
�
�

�
�, ½2:5�

where the supremum is over all possible Z0. If the effect (m; T, Z) is infinite,

the m outliers have an arbitrarily large impact on T. In other words, the esti-

mator ‘‘breaks down’’ and fails to adequately represent the pattern in the
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bulk of the data. More generally, the breakdown point for an estimator T for

a finite sample Z is defined as

BDPðT , ZÞ=min
m

n

n
: effect ðm; T , ZÞ is infinite

o
: ½2:6�

The highest possible breakdown point for an estimator is 50%, which indi-

cates that as many as half the observations could be discounted. A break-

down point higher than 0.5 is undesirable because it would mean that the

estimate could pertain to less than half of the data.

The goal of a robust estimator is to sufficiently capture the pattern in the

bulk of the data. In other words, a breakdown point greater than zero is a

desirable attribute. In fact, Hampel et al. (1986) argue that data sets typi-

cally contain as much as 10% of observations that deviate from the general

pattern characterized by the bulk of the data, suggesting that a robust esti-

mator should have a breakdown point of at least 10%. As we shall see later,

however, some of the first proposed robust regression estimators have a

breakdown point of 0 or very close to it.

Influence Function

Originally proposed by Hampel (1974; see also Hoaglin, Mosteller, and

Tukey 1983:350–358; Jure�cková and Picek 2006:27–32), the influence

function of an estimator measures the impact of a single observation yi that

contaminates the theoretically assumed distribution F of an estimator T. In

other words, whereas the breakdown point measures global robustness, the

influence function (IF) measures local resistance or, more specifically, infi-

nitesimal perturbations on the estimator. Also referred to as the influence

curve (or sensitivity curve when viewed with respect to a single sample),

the influence function for an estimator T is defined by

IF Y , F, Tð Þ= lim
λ→0

T 1− λð ÞF + λδy

� �− T Fð Þ
λ

, ½2:7�

where δY is the point of contamination at y (i.e., at y and 0 otherwise) with

probability mass λ. In other words, λ gives the proportion of contamination

at y. Simply put, the IF indicates the change in an estimate caused by

adding arbitrary outliers at the point y, standardized by the proportion of

contamination.

A bounded influence function is a desirable attribute of a robust estimator

because it means that the influence of a particular observation can get only

so high. An unbounded influence function allows the influence of ‘‘con-

taminated’’ observations to continue to grow, regardless of how unusual
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they are. In other words, there is no limit on the effect of discrepancy. As

we shall see later, the influence function for OLS regression is unbounded

and proportional to the size of the residual, meaning that a highly discrepant

residual can completely destroy the OLS estimator. Many early robust

regression methods also have unbounded influence functions, resulting in a

resistance that is sometimes no better than that of OLS. Most robust estima-

tors commonly employed today, however, have both a high breakdown

point and bounded influence function.

Relative Efficiency

Another important concept for understanding robust estimation is effi-

ciency. If the goal is to make inferences about a larger population from sam-

ple data, we desire an unbiased estimator that is as efficient as possible. In

the strictest sense, the efficiency of an estimator is determined by the ratio

of its minimum possible variance to its actual variance. Only when the ratio

is equal to one—that is, when it has the lowest possible variance—is an esti-

mate considered efficient.3 An estimator is asymptotically efficient if it

reaches efficiency with large samples. More generally, an estimator is con-

sidered to be efficient if its sampling variance is relatively small, resulting

in small standard errors. It follows that some estimators are more efficient

than others, and thus the concept of relative efficiency is useful for assessing

competing estimators.

For most kinds of estimation, there is one estimator that has maximum

efficiency under some particular assumptions. We can use this estimator as a

benchmark to which we compare the efficiency of other estimators. Assume

that we have two estimators T1, and T2, for the population parameter θ. If T1

has maximum efficiency and T2 is less efficient, T1 will also have a smaller

mean squared error. The relative efficiency of T2 is determined by the ratio

of its mean squared error to the mean squared error for T1:

Efficiency T1, T2ð Þ=
E T2 − θð Þ2
h i

E T1 − θð Þ2
h i ½2:8�

If the assumptions of linearity, constant error variance, and uncorrelated

errors are met, OLS estimates are the most efficient of unbiased linear esti-

mators. As a result, relative efficiency of robust estimators is assessed in

comparison to the OLS estimators under these conditions. Although no

robust regression estimator is more efficient than OLS under these condi-

tions, several estimators are nearly as efficient, and at the same time have
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the desirable property of high resistance to outliers. The relative efficiency

of robust regression estimators should be considered cautiously, however,

because it is asymptotic efficiency that is typically assessed (Ryan

1997:354). In other words, relative efficiency is meaningful only with suffi-

ciently large sample sizes. Little is known about the small sample properties

of most robust regression estimators, resulting in the common practice of

using bootstrapping to find standard errors in these situations.

Measures of Location

Although there are various types of regression, all predict conditional values

of a dependent variable from some predictor(s) by taking into account some

measure of location and scale of the response variable. OLS, for example,

estimates the conditional mean of a dependent variable y from one or more

independent variable xs. Because OLS is based on the mean, which is not

resistant to outliers, its estimates can also be affected by outliers. Similarly,

estimates from generalized linear models (GLMs) are not completely resis-

tant to outliers because they estimate the conditional mean of a linear predic-

tor. Robust regression methods rely on more robust measures of location

and/or scale. It is helpful, then, to discuss various measures of location and

scale before exploring the regression techniques that use them.

A measure of location is a quantity that characterizes a position in a

distribution. Typically, measures of center are of most concern, although

other measures of location (quantiles, for example) can also be considered.

Assume a random variable Y with distribution F. An estimate θðYÞ is a mea-

sure of location of F if, for any constants a and b, four conditions4 are met

(Wilcox 2005:20–21):

a. θ(Y+ a)= θ(Y)+ a

b. θ(−Y)= −θ(Y)

c. Y ≥ θ implies θ(Y) ≥ 0

d. θ(bY)= bθ(Y)

Condition (a), which requires that when a constant is added to all values

of Y, the measure of location will increase by the same amount, is referred

to as location equivariance. Taken together, Conditions (a), (b), and

(c) require that the value of the measure is within the range of Y. Condition

(d) means that the measure has scale equivariance. In other words, if all

values of Y are multiplied by a particular value (i.e., if the scale is altered),

the measure of location will be altered by the same factor.
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The Mean

The most common measure of location is the mean. Consider inde-

pendent observations yi and a simple model estimating the center µ of a

population distribution

yi =µ+ ei, ½2:9�
where the ei represent the residuals. If the underlying distribution is normal,

the sample mean is the maximally efficient estimator of µ, producing the

fitted model

yi =�y+ ei: ½2:10�
Despite its widespread use, including in OLS regression, the mean is not a

robust measure of location. If the distribution has heavy tails or outliers, the

mean is less efficient than many other measures of center and, more impor-

tant, can often be misleading. Even the addition of a single badly miscoded

observation can alter its estimate.

Consider the following five observations for the variable y:

y1 = 3 y2 = 3 y3 = 4

y4 = 5 y5 = 5

Applying the well-known formula for the sample mean, �y= 1
n

Pn

i=1

yi, pro-

duces �y= 4. We now replace just one of the observations, y3, with a ‘‘bad’’

observation (assume that it is a miscode), giving the following values of y:

y1 = 3 y2 = 3 y3 = 44

y4 = 5 y5 = 5

For these new data, �y= 3+ 3+ 44+ 5+ 5ð Þ=5= 12: The mean has been

dramatically pulled toward the outlier, taking a value three times larger than

when the outlier is excluded. In fact, the ‘‘contaminated’’ mean is much larger

than any of the observed values except the ‘‘bad’’ observation.

Because even a single observation can cause the mean to break down, its

breakdown point is BDP= 1
n, and thus effectively 0 when n is large. Just as

problematic, the influence of each observation on the mean is proportional to

the size of y. The mean is found by minimizing the least squares objective

function:

Xn

i=1

yi − µ̂ð Þ2 = 0 ½2:11�

Taking the derivative with respect to y produces the influence function

IF�yðyÞ= 2y: ½2:12�
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This, of course, is not an attractive attribute for data that are not ‘‘well

behaved’’ (i.e., that have outliers or a heavy tail).

One strategy to combat the influence of outliers on the mean is to use a

two-step procedure, where the outliers are first identified and removed

before calculating the mean. Rather than calculating the mean for the distri-

bution excluding the outliers, Hampel (1974) shows that using a robust

measure of location is usually a better way to proceed. Many measures of

location are less vulnerable than the mean to outliers. In other words, many

estimators are more robust.

α-Trimmed Mean

A relatively robust measure of center is the trimmed mean, which reduces

the impact of outliers or heavy tails by removing the observations at the tails

of the distribution. Let y1, . . . yn represent observations on a variable from a

random sample. We start by ordering the values of y from lowest to highest,

yð1Þ≤ yð2Þ≤ � � � ≤ yðnÞ, and determining the desired amount of trimming,

0=α< 0:5. the mean is then calculated for all observations except the g

smallest and largest observations g= ½αn�, where ½αn� is rounded to the

nearest integer. The formula for the trimmed mean can be written as5

yt =
y g+1ð Þ+ � � � + y n−gð Þ

n− 2g
: ½2:13�

The breakdown point of the trimmed mean is determined by the amount of

trimming, and thus is BDP=α. A simple rule of thumb is to remove 10% of

the observations from each tail of the distribution (i.e., set α= 0.2). Leger

and Romano (1990) further suggest calculating the mean for α= 0, 0.1, and

0.2 and choosing the value that gives the lowest standard error for the final

calculation. The amount of trimming also determines the influence func-

tion. Unlike for the mean, the influence for the trimmed mean is bounded,

although there are marked increases at yα and y1−α.6 Its influence function

can be written as

IF�ytðyÞ=

yα − µ̂t
1− 2α for y< yα

y− µ̂t
1− 2α for yα≤ y≤ y1−α

y1−α − µ̂t
1− 2α for y> y1−α

8
>>><

>>>:

½2:14�

where µ̂t is the trimmed mean (see Wilcox 2005:29). The relative efficiency

of the trimmed mean depends on the distribution. If the distribution is normal

and too much trimming is done, precision will be reduced because it results

in greater spread relative to the smaller n, thus increasing the estimate of the
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spread of its sampling distribution. On the other hand, if the distribution has

heavy tails and extreme outliers, trimming can result in improved efficiency

because the variance of y—and hence the estimated variance of the sampling

distribution of its mean—is decreased. Judgments on the amount of trim-

ming should be made only after careful examination of the distribution.

The Median

The median M is simply the value of y that occupies the middle position

when the data are ordered from smallest to largest. To find the median,

we start by ordering the observations from lowest to highest value,

yð1Þ≤ yð2Þ≤ � � � ≤ yðnÞ. The median is given by

M = y n+2ð Þ=2ð Þ if n is an odd number

and

M = :5y n=2ð Þ+ :5y n=2+1ð Þ if n is an even number:

Equivalently, the median minimizes the absolute values objective function

Xn

i=1

yi − µ̂j j= 0: ½2:15�

Taking the derivative of Equation 2.15 gives the shape of the influence

function

IFMðyÞ=
1 for y> 0

0 for y= 0

−1 for y< 0:

8
<

:
½2:16�

As the bounded influence function indicates, the median is highly resistant

to outliers. Its robustness is also reflected in its breakdown point of

BDP= 0.5. The disadvantage of the median is that it has relatively low

efficiency compared to the mean when the distribution is normal. In

these situations, the sampling variance for the mean is s2/n, whereas the

sampling variance for the median is π=2= 1:57 times larger at πs2/2n

(Kenney and Keeping 1962:211).

Measures of Scale

Let Y represent a random variable. A measure of scale is any nonnegative

functional τðYÞ that satisfies the following conditions (Wilcox 2005:34)7:
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a. The measure is scale equivariant, meaning that τ aYð Þ= aτ Yð Þ, where

a is a constant that is greater than 0.

b. The measure is location invariant, meaning that τ Y + bð Þ= τ Yð Þ,
where b is a constant.

c. The measure is sign invariant, τ Yð Þ= τ −Yð Þ:

There are too many measures of scale to include them all, so we concentrate

on those that are most relevant to robust regression. We explore mostly how

outliers affect the magnitude of the scale estimate, paying little attention to

efficiency. For more discussion on the latter, see Wilcox (2005).

Standard Deviation

The most commonly employed measure of scale is the standard deviation

s, which is defined by

sy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i=1

yi −�yð Þ2

n− 1

v
u
u
u
t

: ½2:17�

If the distribution of y is normal, this is the most appropriate measure of

scale because of its superior efficiency. On the other hand, the standard

deviation is not robust to heavy-tailed distributions or distributions with

outliers. Because it is based on the mean—which has an unbounded influ-

ence function and breakdown point of 0—the standard deviation inherits

these qualities. As a result, robust regression techniques typically use other

measures of scale.

Mean Deviation From the Mean

The mean deviation from the mean (MD), sometimes known more

simply as the mean deviation, is given by

MD=
Pn

i=1

yi −�yj j

n
: ½2:18�

The MD is relatively efficient compared to the standard deviation when the

distribution of y has heavy tails, but it also has the undesirable property of

a breakdown point of 0 and an unbounded influence function. Although

important for some early robust regression techniques, the MD should gen-

erally be seen as obsolete given that there are now much more robust mea-

sures of scale.
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Mean Deviation From the Median

The mean deviation from the median, MDM, is a slight improvement

over the MD in terms of robustness. Rather than find the absolute difference

of y from the mean, the MDM finds the absolute differences from the

median M, resulting in

MDM =
Pn

i=1

yi −Mj j

n
: ½2:19�

Although it also uses the median, MDM still relies on mean deviations,

and thus has a breakdown point of BDP= 0 and an unbounded influence

function (see Wilcox 2005:35 for more details). In other words, the mean

deviation from the median is not immune to extreme outliers and heavy

tails, and thus it is not ideal for use in robust regression.

Interquartile Range

The q-quantile range QRq is a set of bounded influence measures of scale

that can have a very high breakdown point. Any particular q-quantile range

is given by

QRq = y1−q − yq; where 0< q< :5:

Setting q= .25 (i.e., the difference between the .25 and .75 quantiles)

produces the interquartile range (IQR), which, with a breakdown point of

BDP= 0.25, is the most robust and thus most commonly used of the quan-

tile ranges (Wilcox 2005:35–36). The influence function for the IQR is

given by the influence function at the third quartile minus the influence

function at the first quartile (i.e., IF.75− IF.25):

IFIQR yð Þ=
1

f y:25ð Þ −C if y< y:25 or y> y:75

−C if y:25 ≤ y≤ y:75

8
<

:
½2:20�

where

C = q
1

f y:25ð Þ +
1

f y:75ð Þ

� �

½2:21�

The high breakdown point and bounded influence function of the IQR are

desirable properties, leading to its use in some early robust regression tech-

niques. It still plays a role in quantile regression, which will be introduced

later. There are more robust measures of scale, however, so despite its
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simplicity, the IQR is seldom incorporated in more recent developments in

robust regression.

Median Absolute Deviation

The median absolute deviation (MAD) is defined by

MAD=median|yi −M|:
Based entirely on variation around the median, the MAD is far more resis-

tant to outliers than the standard deviation and measures of absolute devi-

ation associated with the mean.8 The MAD achieves the highest possible

breakdown point of BDP= 0.5 and has a bounded influence defined by

IFMAD yð Þ=

sign y−Mj j−MADð Þ
− f M +MADð Þ− f ðM −MADÞ

f ðMÞ sign y−Mð Þ
2 f M +MADð Þ+ f M −MADð Þ½ � ½2:22�

where f ðyÞ is the probability density function for y (see Wilcox, 2005:35 for

more details). An attractive attribute of the MAD is that it can be adjusted

to ensure consistency for large sample sizes under the assumptions that

y∼N(µ, s2) by multiplying by 1.4826 (approximately 1=�−1ð3=4Þ, where

� is the normal probability density function). All of these attributes make

the MAD an attractive measure of scale for robust regression, at least as an

initial estimate.

M-Estimation

M-estimation includes a large class of estimators that generalize the idea

of maximum likelihood to robust measures of scale and location (Huber

2004). M-estimation is also the foundation for many robust regression esti-

mates, including those classified as M-estimates, GM-estimates, S-esti-

mates, and MM-estimates. All of these will be discussed in Chapter 4.

When formulated properly, M-estimates are very robust, especially with

respect to estimating location. They are also relatively efficient compared

to other robust measures for large samples (n ≥ 40), becoming more effi-

cient as n gets larger (Hogg 1974; see also Wu 1985).

Assume that y1, . . . , yn is independently and identically distributed

according to Fðy; θÞ. Let Tn y1, . . . , ynð Þ be an estimate of an unknown para-

meter θ that characterizes the distribution Fðy; θÞ. The likelihood of the esti-

mator is given by

Lðθ; yi, . . . , ynÞ=
Yn

i=1

f ðy; θÞ, ½2:23�
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where f ðy; θÞ is the probability density function corresponding to Fðy; θÞ.
The maximum likelihood estimator is the value of θ that maximizes the like-

lihood function or, equivalently, minimizes the objective function ρðy; θÞ:

−log l=
Xn

i=1

ρ y; θð Þ ½2:24�

Restricting the objective function ρ y; θð Þ to any function that is differenti-

able with an absolutely continuous derivative �ð:Þ results in the maximum

likelihood estimator Tn,

Xn

i=1

� y; θð Þ= 0; ½2:25�

where

� y; θð Þ= − ∂=∂θð Þρ y; θð Þ
= ∂=∂θð Þ log f y; θð Þ: ½2:26�

In order for the maximum likelihood estimator—or M-estimator—to be

uniquely determined, ρ y; θð Þmust be strictly convex, and thus the score func-

tion �ðy; θÞ must be strictly increasing. Using ρ y; θð Þ= −log f y; θð Þ gives

the ordinary maximum likelihood estimate (see Huber 2004: chap. 3).

M-estimates take on many different forms, the properties of which

are determined by the choice of ρð:Þ or, equivalently, �ð:Þ. If �ð:Þ is

unbounded, the breakdown point of the estimator is BDP= lim
n→∞ BDP= 0.

Conversely, if �ð:Þ is odd and bounded, and thus ρð:Þ is symmetric around

0, the breakdown point of the estimator is BDP= 0.5. The score function

�ð:Þ has the same shape as the influence function proposed by Hampel

(1974). More specifically, IFðy; F, TÞ=� yð Þ=γ Fð Þ, where γ Fð Þ= R
f yð Þ

d� yð Þ. The proportionality constant γ Fð Þ½ �−1depends on both � and the

probability density function f yð Þ. In other words, the IF is the negative of

the score function (see Jure�cková and Sen 1996; Hoaglin et al. 1983:356).

M-Estimation of Location

Consider the population mean µ as the expectation of the random vari-

able Y. Let ρ y− µ̂ð Þ be an objective function that measures distance from

an estimate of location µ̂. The M-estimate is found by minimizing the

objective function

Xn

i=1

ρðy; θÞ=
Xn

i=1

ρ
yi − µ̂

cS

	 


, ½2:27�

17



where S is a measure of scale of the distribution and c is a tuning constant

that adjusts the degree of resistance of the estimator by defining the center

and tails of the distribution. Although M-estimates are location equivariant,

they are not scale equivariant and thus the tuning constant is required. The

smaller the value of c, the greater the resistance the estimate has to outliers.

Taking the derivative of Equation 2.27 gives the shape of the influence

function. The M-estimator is then the value of µ̂ that solves

Xn

i=1

�
y− µ̂

cS

	 


= 0: ½2:28�

The measure of scale and the measure of location are estimated simulta-

neously, and thus an iterative estimation procedure is required (see Huber

2004 for extensive details). More details of estimation will be given with

respect to M-estimates for regression in Chapter 5. For now, we continue

with a general explanation extending from the mean.

M-estimation of the mean relies on the least squares objective function

ρðy; θÞ= 1

2
y− µ̂ð Þ2: ½2:29�

The derivative of Equation 2.28 shows that influence is proportional to the

value of y

�ðy; θÞ= y− µ̂ð Þ: ½2:30�

To compute a more robust M-estimate than the mean, we simply replace the

least squares objective function with another function that gives less weight

to extreme values. The Huber weight function and biweight functions are

two common choices.

Huber Estimates

At the center of the distribution, the Huber weight function behaves like

the mean and the least squares objective function associated with it (i.e.,

observations are given equal weight), but at the extremes it behaves like

the median, and the least absolute values objective function associated

with it, giving decreasing weight to observations as they get farther out on

the tails:

ρHðy; θÞ=
1
2 y2 if y≤ c

c yj j− 1
2 c2 if y> c

�

½2:31�

Because the goal is to produce an estimate that is resistant to outliers, the MAD

is typically used to calculate the measure of scale, S. Defining S=MAD=
0:6745 results in S estimating σ when the population is normally distributed.
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Following Huber (1964), it is convention (and standard in statistical software)

to set c= 1.345, which gives substantial resistance to outliers (1:345=
0:6745 ffi 2MADs) and produces a relative efficiency of approximately 95%.

Taking the derivative of Equation 2.31 gives the shape of the influence

function

�Hðy; θÞ=
c if y> c

y if y≤ cj j
−c if y< −c:

8
<

:
½2:32�

Finally, the derivative of �ð:Þ gives the weights that are given to individual

observations:

wHi
ðyÞ= 1 if y≤ c

c= yj j if y> c

�

½2:33�

Biweight Estimates

The major difference between the bisquare weight, also referred to as

Tukey’s bisquare, and the Huber weight occurs at the extreme ends of the

tails of the distribution, where the biweight objective function is somewhat

more resistant to outliers

ρBWðy; θÞ=
c2

6 1− 1− y
c

� �2
h i3

� �

if yj j≤ c

c2

6 if yj j> c:

8
<

:
½2:34�

A tuning constant of c= 4.685 results in 4:685× S ffi 7MADs, which

produces 95% efficiency when sampling from a normal population (Huber

1964). Taking the derivative of Equation 2.34, we see that the influence

function tends rapidly toward zero

�BWðy; θÞ= y 1− y
c

� �2
h i2

if yj j≤ c

0 if yj j> c:

(

½2:35�

Taking the derivative of Equation 2.35 gives the weight function

wBWi
ðyÞ= 1− y

c

� �2
h i2

if yj j≤ c

0 if yj j> c:

(

½2:36�

Figure 2.1 displays the Huber and biweight functions with their default

tuning constants, applied to a uniform distribution ranging from −10 to
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10. We see that the two M-estimators behave much more similarly to

each other than they do to the mean, which gives all observations equal

weight. The Huber and biweight functions work in a similar manner for

most of the distribution, except in the very center and at the extreme

tails. For the biweight function, all observations with an absolute value

greater than five, yij j> 5, are given a weight of zero, and only observa-

tions directly in the middle receive a weight of one. On the other hand,

the Huber weight gives none of the observations a weight of zero, and a

significantly larger proportion of observations a weight of one.

Although the Huber weight function and the biweight function are the

most commonly used in M-estimation, there are many other options, some

of which are shown in Table 2.1. For more details about these estimators,

especially regarding recommendations for the tuning constants, see Andrews

et al. (1972) and Ramsay (1977).

M-Estimators of Scale

It is relatively straightforward to extend M-estimation to estimation of

scale (Wilcox 2005:92–98). Again, the general idea is to find a function that

gives less weight to extreme observations. The general class of M-estimators

of scale are defined by the asymptotic variance of the M-estimate of location

ζ2 = K2τ2E �2 Zið Þ
� �

E �0 Zið Þ½ �f g2

Zi = yi −µm

cS
,

½2:37�

where µm is the M-estimate of location, c is a positive tuning constant, S is

the initial measure of scale typically set to the MAD, and � is the score

function. As with M-estimation of location, the Huber weight function and

the biweight function are typical choices. Because it is used more often and

has been shown to be more efficient, we concentrate on the latter, which

results in the biweight midvariance (see Lax 1985).

The biweight midvariance is both efficient and highly resistant to

outliers, achieving a breakdown point of approximately 0.5 (Hoaglin et al.

1983). It is defined by

ζ̂2
bimid =

P

i:y2
i ≤1

yi −My

� �2
1− Z2

i

� �4

"
P

i:y2
i ≤1

1− Z2
i

� �
1− 5Z2

i

� �
#2

, ½2:38�
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where My is the median of y and

Zi = yi −µm

cS
: ½2:39�

It is important to note that the summation in the equation is restricted to

y2
i ≤ 1. The tuning constant, c, is typically set to 9 and the scale to MAD,

resulting in maximum efficiency.

Comparing Various Estimates

EXAMPLE 2.1: Simulated Data

Table 2.2 compares the resistance of some of the estimators discussed

thus far, applying them to simulated data. The first column applies the

estimators to 20 random observations that were generated from the stan-

dard normal distribution yi ∼Nð0, 1Þ, having a range from −2.2 to 1.7.

In other words, these data are well-behaved, containing no outliers. The

second column applies the estimators to the same data but with the addi-

tion of an extreme outlier taking a value of 60, assumed to be a miscoded

observation. The breakdown point of the estimators is shown in the third

column.

The first panel of the table shows the results for various measures of loca-

tion. Consistent with its BDP= 0, the mean is badly distorted by the outlier

as it is pulled toward it (changing from 0 to 2.85). On the other hand, the

trimmed mean—which, following convention, has trimmed 20% of the data

from the tails and thus removed the outlier—has performed very well, tak-

ing on almost identical values for the good data and the contaminated data

(−0.09 versus −0.04). The median and M-estimate (using bisquare

weights), which both have BDP= 0.5, are also virtually unaffected by the

outlier.

Turning now to the measures of scale, we see that those involving a

mean in their calculation—that is, the standard deviation, the mean devia-

tion from the mean, and the mean deviation from the median—are all

badly distorted by the outlier. Of course, this is not surprising given that

they all have BDP= 0. The standard deviation is most affected, taking on a

value more than 13 times as large as it does in the absence of the outlier. On

the other hand, the outlier has very little influence on the interquartile range

(BDP= 0.25) and the median absolute deviation (BDP= 0.5), the two mea-

sures based on the median. Similar to the M-estimate of location, the outlier

does not hinder the performance of the biweight midvariance, which has

BDP= 0.5.
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EXAMPLE 2.2: Public Opinion Toward Pay
Inequality in Cross-National Perspective

We now turn to an example using real social science data. The data in

Table 2.3 are from Weakliem, Andersen, and Heath’s (2005) cross-national

study of the relationship between income inequality and public opinion

on pay inequality. The data set contains information measured during the

1990s on 48 countries. The variables are as follows:

• Secpay. The average score on an item from the World Values Survey

(Inglehart et al. 2000) that asked respondents their opinions about

pay inequality (secpay). The wording of the question is as follows:

‘‘Imagine two secretaries, of the same age, doing practically the

same job. One finds out that the other earns considerably more than

she does. The better paid secretary, however, is quicker, more effi-

cient and more reliable at her job. In your opinion, is it fair or not fair

that one secretary is paid more than the other?’’ Respondents were

given two response choices: ‘‘Fair’’ (coded 0), or ‘‘Not Fair’’ (coded

1). As a result, high average scores reflect public opinion that favors

equality (i.e., a majority of respondents in the country answered that

it was not fair for the two secretaries to have different salaries). The

averaged score across countries ranges from 0.054 to 0.622 and has a

mean of 0.2.

TABLE 2.2

Measures of Location and for Simulated Data

With and Without an Extreme Outlier

Estimator

Breakdown

Point

All Observations,

θ̂1

Outlier Removed,

θ̂2

Measures of Location

Mean 0 0 2.85

α-trimmed mean α (proportion

of trimming)

−0.09 −0.04

Median .5 −0.02 0.005

M-estimation .5 −0.12 −0.03

Measures of Scale

Standard deviation 0 1 13.13

Mean deviation from mean 0 0.71 5.44

Mean deviation from median 0 0.61 2.89

Interquartile range .25 1.07 1.21

Median absolute deviation .5 0.61 0.66

Biweight midvariance .5 0.89 1.06
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TABLE 2.3

Public Opinion and Economic and Political Variables for 48 Countries

Country

Public Opinion

(Secpay)

Gini

Coefficient

Per Capita

GDP Democracy

Armenia .061 44.4 2072 0

Australia .179 31.7 22451 1

Austria .112 23.1 23166 1

Azerbaijan .070 36.0 2175 0

Bangladesh .057 28.3 1361 0

Belarus .075 28.8 6319 0

Belgium .302 27.2 23223 1

Brazil .232 60.1 6625 0

Britain .211 34.6 20336 1

Bulgaria .164 30.8 4809 0

Canada .176 28.6 23582 1

Chile .361 56.5 8787 0

China .131 41.5 3105 0

Croatia .092 29.0 6749 0

Czech Republic .557 26.6 12362 0

Denmark .248 21.7 24217 1

Dominican Republic .089 50.5 4598 1

Estonia .054 35.4 7682 0

Finland .354 22.6 20847 1

France .231 32.7 21175 1

Georgia .086 37.1 3353 0

Hungary .115 28.9 10232 0

India .226 29.7 2077 1

Ireland .289 35.9 21482 1

Italy .226 34.6 20585 1

Japan .284 24.9 23257 1

Latvia .070 28.5 5728 0

Lithuania .096 33.6 6436 0

Mexico .211 53.7 7704 0

Moldova .127 34.4 1947 0

Netherlands .328 31.5 22176 1

Norway .441 24.2 26342 1

Peru .175 46.2 4282 1

Portugal .265 35.6 14701 1

Romania .133 28.2 5648 0

Russia .076 48.0 6460 0

Slovakia .622 19.5 9699 0

Slovenia .108 29.2 14293 0

Spain .286 32.5 16212 1

Sweden .401 25.0 20659 1

Switzerland .149 36.1 25512 1

Taiwan .075 27.7 12090 0

(Continued)
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• Gini. The Gini coefficient, which theoretically ranges from 0 (perfect

income equality where income is divided equally among all citizens)

and 1 (perfect inequality, where one individual has all of the income).

In other words, high values indicate high levels of income inequality.

• Per Capita GDP/1000. The per capita gross domestic product of the

country in U.S. dollars.

• Democracy. A dummy variable coded 1 for ‘‘Old Democracies’’ (i.e.,

the country had experienced democratic rule for at least 10 years at

the time of the data collection), and 0 for ‘‘New Democracies.’’

For more detailed information on the sources used to construct the mea-

sures, see Weakliem et al. (2005).

Of interest is the distribution of public opinion toward pay inequality

(often referred to simply as ‘‘public opinion’’ from here onward) for those

countries that were democratic for less than 10 years at the time of the

study (n= 26). Given that the public opinion variable will be used as a

dependent variable in regression analyses later, it is important to explore

its distribution in a preliminary attempt to identify any features—such as a

skew or outliers—that might be problematic. We start by examining Fig-

ure 2.2, which displays a kernel density estimate (i.e., a smoothed histo-

gram) of the distribution of the public opinion variable. With the

exception of a small bump at the extreme positive end of the distribution,

the rest of the distribution is fairly symmetric. Further exploratory analysis

indicates that two countries—the Czech Republic and Slovakia—have

unusually high values. As can be seen in Table 2.4, these countries have

values of 0.557 and 0.622, whereas no other country has a value reaching

0.4. Given that the two countries were joined until very recently, it seems

likely that the uniqueness of these countries is due to a common cultural

and historical heritage.

TABLE 2.3 (Continued)

Country

Public Opinion

(Secpay)

Gini

Coefficient

Per Capita

GDP Democracy

Turkey .207 41.5 6422 0

Ukraine .085 47.3 3194 0

Uruguay .273 42.3 8623 0

USA .148 36.9 29605 1

Venezuela .208 46.8 5808 1

West Germanya .149 30.0 22169 1

a. The survey was administered to respondents in West Germany only, and the data set uses the

term ‘‘West Germany.’’

26



We now turn to Table 2.4, which explores how various estimators

of location and scale behave when the Czech Republic and Slovakia are

included and excluded. Starting with the mean, we see that it decreases sub-

stantially (from 0.167 to 0.131) when the outliers are excluded. Similarly,

the measures of scale based on the mean decrease substantially when the

outliers are removed (e.g., the standard deviation is 1.86 times as large

when the outliers are included than when they are excluded). On the other

hand, the high resistance of the median and the M-estimate is evident in that

they are virtually unchanged when the outliers are removed. Similarly, the

differences in estimates between the two data sets are much smaller for the

median absolute deviation and the M-estimate (biweight midvariance), two

measures of location with high breakdown points.

In concluding this chapter, a cautionary note about examining the uni-

variate distributions of the variables used in a regression analysis is appro-

priate. OLS regression estimates the conditional mean of y given the xs. As

a result, an outlier for y is not necessarily a regression outlier. Conversely, it

is not necessary that an influential observation in terms of the regression

estimates is an outlier in terms of y. Still, this does not mean that we should
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ignore the univariate distributions. Failing to explore the univariate distri-

butions could prevent the researcher from detecting important features of

the data. But it is best to refrain from any remedies for the unusual observa-

tions until the relationships between the variables have been explored. With

this in mind, we now turn to the OLS estimation of linear regression,

exploring in detail how unusual observations can affect its estimates and

how they can be detected. We return to measures of scale and location later

in the context of robust regression methods.

Notes

1. Typically, ε∗n is used instead of BDP to denote the breakdown point. I inten-

tionally avoid the use of ε∗n in order to prevent confusion with the errors for a regres-

sion model, which is unrelated to the breakdown point.

2. Although discussions of the breakdown point often use the term bias, the term

effect is used here to avoid confusion with the usual statistical meaning of bias dis-

cussed earlier. If influential outliers do not reflect miscoding, an estimator can still

be unbiased—that is, the average of the estimator from repeated random sampling

will equal the population parameter—regardless of the effect the outliers have on

the estimate. Still, this does not mean that the estimate will be a useful summary of

the data.

3. If the estimator satisfies this condition, it is considered to have reached the

Cramer-Rao lower bound (see Cramer 1946 for more details).

TABLE 2.4

Measures of Location and Scale for Public

Opinion Variable, New Democracies

Estimator All Observations, θ̂1

Czech Republic and

Slovakia Removed, θ̂2

Measures of Location

Mean 0.167 0.131

α-trimmed mean 0.123 0.114

Median 0.112 0.102

M-estimation 0.127 0.112

Measures of Scale

Standard deviation 0.145 0.078

Mean deviation from mean 0.102 0.060

Mean deviation from median 0.081 0.056

Interquartile range 0.129 0.097

Median absolute deviation 0.042 0.032

Biweight midvariance 0.005 0.004
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