
6. INFLUENTIAL CASES IN GENERALIZED
LINEAR MODELS

The generalized linear model (GLM) extends from the general linear model

to accommodate dependent variables that are not normally distributed,

including those that are not continuous. This chapter starts with a brief

description of the GLM. It then provides a brief discussion of diagnostic

methods for detecting unusual cases in the GLM. It ends with an introduc-

tion to robust generalized linear models, providing empirical examples for

logistic and Poisson regression models.

The Generalized Linear Model

I provide only a basic description of the GLM, emphasizing information

that is necessary to understand robust generalized linear models. For a more

extensive and detailed description of GLMs, see McCullagh and Nelder’s

(1989) classic book on the topic (see also Dobson 1990; Fahrmeir and Tutz

2001; and Lindsey 1997 for good general treatments of the GLM). For other

discussions of the GLM geared toward social scientists, there are three

books in the present series (Gill 2001; Dunteman and Ho 2005; Liao 1994).

Recall that the linear model is written as

yi =
Xk

j=1

xijβj + εi, ½6:1�

where y is assumed to be linearly related to the xs, and the errors are

assumed to be uncorrelated, have constant variance, and be normally dis-

tributed. In other words, the linear model represents the conditional mean

of y given the xs as

µi =
Xk

j=1

xijβj: ½6:2�

The generalized linear model loosens these assumptions to predict the con-

ditional mean of a dependent variable with any exponential distribution,

taking the following general form

f ðyi; θi;’Þ= exp
yθ− b θð Þ

a ’ð Þ + c y,’ð Þ
� �

, ½6:3�

where θ is the canonical parameter that represents the estimate of location,

and ’ is the dispersion parameter that represents the scale. In other words,
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the GLM allows the distribution of y to take the shape of many different

exponential families:

yi xs∼

Gaussian

Binomial

Poisson

gamma

etc:
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The exponential family is defined by the a, b, and c functions in Equa-

tion 6.3.

The assumption of linearity remains for the GLM but it is with respect to

a linear predictor η rather than to y itself

ηi =
Xk

j=1

xijβj: ½6:4�

In other words, the canonical parameter θ in Equation 6.3 depends on the

linear predictor. More specifically, the conditional mean µi of the depen-

dent variable is linked to this linear predictor through a transformation,

called the link function g :ð Þ:
g µið Þ= ηi ½6:5�

The link function must be monotonic and differentiable, and take any value

(positive or negative) that ensures the linear dependence of η on the expla-

natory variables. An OLS regression is fitted when the identity link and the

Gaussian family are specified. Any other link function results in a nonlinear

relationship between the expectation of the dependent variable yi and the inde-

pendent variables xij. Table 6.1 displays some important families included in

the GLM framework and some associated link functions.

Maximum likelihood estimates for GLMs are found by regarding Equa-

tion 6.3 as a function of the parameters β. Typically, this means maximizing

the log-likelihood function with respect to β:

l βð Þ= log L βð Þ= log
Yn

i=1

f yi;µið Þ

= log
Yn

i=1

f yi; xi, βð Þ=
Xn

i=1

log f yi; xi, βð Þ ½6:6�

Maximum likelihood estimates can be obtained using the Newton-Raphson

method or iteratively reweighted least squares (see Nelder and Wedderburn

1972; McCullagh and Nelder 1989). For IRLS estimation of GLMs, the

80



dependent variable is not y itself, but the adjusted dependent variable z, which

is a linearized form of the link function applied to y. We start by defining the

linear predictor for the first iteration

η̂ð0Þ
n×1ð Þ

= XT

n×pð Þ
βð0Þ
p×1ð Þ

½6:7�

with initial fitted values of µ̂ð0Þ resulting from g−1ðη̂ð0ÞÞ. We then define z as

zð0Þ= η̂ð0Þ+ ∂η

∂µ









µ̂ð0Þ

 !

y− µ̂ð0Þ
� �

: ½6:8�

The quadratic weight matrix to be used in the IRLS is defined by

W −1
ð0Þ =

∂η

∂µ









µ̂ð0Þ

 !2

VðµÞjµ̂ð0Þ , ½6:9�

where V µð Þ is the variance function defined at µ̂ð0Þ. Both z and Wð0Þ
depend on the current fitted value, and thus an iterative process is needed to

find a solution. We first regress zð0Þ on the xs with weight Wð0Þ to find new

estimates of the regression coefficients β̂ð1Þ, and from these a new estimate

of the linear predictor. Using the new estimates of z and W, the estimation

process is continually repeated until convergence, resulting in normal equa-

tions of the general form

β̂= XT WX
� �−1

XT Wz, ½6:10�

where z represents the adjusted dependent variable transformed by the link

function and W is the final weight matrix. GLMs are further extended by

quasi-likelihood estimation, which, along with the usual specification of the

link function, allows specification of the dispersion parameter ’ instead of

the entire distribution of y (see Wedderburn 1974 for more details).

TABLE 6.1

Important Exponential Families and Their Link Functions

Distribution Range of µ Link Function, (g)

Normal �∞;þ∞ð Þ Identity link g µð Þ ¼ µ

Binomial 0; 1ð Þ Logit link g µð Þ ¼ log µ= 1� µð Þ½ �
0; 1ð Þ Probit link g µð Þ ¼ �−1 µð Þ

Poisson 0;∞ð Þ Log link g µð Þ ¼ log µð Þ
Gamma 0;∞ð Þ Reciprocal link g µð Þ ¼ µ−1

0;∞ð Þ Log link g µð Þ ¼ log µð Þ
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The deviance of the model parallels the residual sum of squares for least

squares regression in that it compares the model under investigation with

the saturated model βS for the data. A saturated model with n coefficients

for the n observations matches the data exactly, meaning that it achieves the

highest possible likelihood. The likelihood of this saturated model provides

a baseline to which the likelihood of a less than saturated model can be

compared. The deviance measures the discrepancy in fit between the two

models. More specifically, it is twice the difference between the log likeli-

hood of the saturated model and the log likelihood achieved by the model

under investigation

D β; yð Þ= 2 log L βSð Þ½ �− 2 log L βð Þ½ �
=−2 log L βð Þ½ �: ½6:11�

The deviance plays an important role in assessing the fit of the model and

in statistical tests for parameters in the model, and also provides one method

for calculating residuals that can be used for detecting outliers.

Detecting Unusual Cases in Generalized Linear Models

As for OLS regression, unusual cases can distort estimates for GLMs. For

some models, such as the binary logit and probit models, the impact of unu-

sual cases is usually less severe because the dependent variable has only

two possible values, but it is still possible for such observations to affect the

regression estimates. For other models, like Poisson regression, highly unu-

sual values of the dependent variable are more likely. It is important, then,

to explore for outliers in GLMs. Many diagnostic tools for OLS regression

have been adapted for the GLM, and those for assessing unusual observa-

tions are quite effective.

Residuals From the GLM

Residuals from GLMs can be defined in several ways. Some of these

include the response residuals, which are simply the difference between the

observed value of y and its fitted value, yi − µ̂i; the deviance residuals,

which are derived from the case-wise components of the deviance of the

model; and the working residuals, which are the residuals from the final

iteration of weighted least squares. There are also approximations of the

studentized residuals. This book is most concerned with Pearson residuals

because they play a central role in many robust GLM models. Pearson resi-

duals are simply the response residuals scaled by the standard deviation of

the expected value:
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ePearsoni
= yi − µ̂iffiffiffiffiffiffiffiffiffiffiffi

V µ̂ð Þ
p : ½6:12�

For more details of the relative merits of the various types of residuals,

see Gill (2001). Each has its uses, and none of them is best for all purposes.

Hat Values and Leverage

As with OLS regression, leverage in the GLM is assessed by the hat

values hi, which are taken from the final IWLS fit. Unlike in linear regres-

sion, however, the hat values for GLMs depend on the values of y and the

values of x. Following from Pregibon (1981), the hat matrix is defined by

H=W1=2X XT WX
� �−1

XT W1=2, ½6:13�

where W is the weight matrix from the final iteration of the IWLS fit.

This differs from the general form of H (Equation 3.7) by replacing X

with W1=2X. Doing so allows for a change in the variance of y, and thus the

hat values depend on both y and X (see McCullagh and Nelder 1989:405).

Assessing Influence

Following the linear model, DFBETAs and Cook’s distances are helpful

for detecting influence in GLMs. DFBETAs are calculated by finding the

difference in an estimate before and after a particular observation is

removed, Dij = β̂j − β̂j −ið Þ, for i=1, . . . , n and j=0, 1, . . . , k. An approxi-

mation of Cook’s D measure of influence is also available:

Di =
e2

Pearsoni

’̂ k+1ð Þ ×
hi

1−hi
, ½6:14�

where ’̂ is the estimated dispersion of the model and k is the number of

parameters being estimated excluding the constant (see Fox 2002).

Robust Generalized Linear Models

Methods for robust estimation of GLMs have developed much more slowly

than robust methods for linear regression. Although there were several early

attempts to make logistic regression more robust (e.g., Pregibon 1981;

Copas 1988; Carroll and Pederson 1993; Bianco and Yohai 1996), the

extension to other GLMs was seldom considered. Still today there are very
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few statistical programs that have routines for robust GLMs, and those that

do are usually limited to the logit and Poisson model.

M-Estimation for GLMs

As with the linear model, the most widely used robust methods for the

GLM are based in some way on M-estimation. Like early M-estimators for

linear regression, many early attempts at M-estimation for GLMs suffered

from an unbounded influence function (see Stefanski, Carroll, and Ruppert

1986; Kunsch, Stefanski, and Carroll 1989). Often, the resulting estimators

were also undesirable because they were Fisher inconsistent.1 In recent

years, however, consistent bounded influence methods based on quasi-

likelihood estimation have developed. One of these methods is due to

Cantoni and Ronchetti (2001).2

Cantoni and Ronchetti’s estimator evolved from the quasi-likelihood

generalized estimating equations of Preisser and Qaqish (1999):

Xn

i=1

∂

∂β
Q yi;µið Þ=

Xn

i=1

yi −µið Þ
V µið Þ

µ0i = 0, ½6:15�

where µ0i = ∂
∂β
µi and Q yi;µið Þ is the quasi-likelihood function. The solu-

tion is an M-estimator defined by the score function

� yi;µið Þ= yi −µið Þ
v µið Þ

µ0i: ½6:16�

Unfortunately, this estimator is limited for robust regression because its

influence is proportional to �, and thus unbounded.

Cantoni and Ronchetti follow the logic of Mallow’s GM-estimates for

regression (see Chapter 4) to improve Equation 6.16. Recall that the general

M-estimator is the solution to

Xn

i=1

� y; θð Þ= 0, ½6:17�

or, in the specific case of the generalized linear model,

Xn

i=1

� y;µð Þ= 0, ½6:18�

where � gives weight to the observations. As for MM-estimation for linear

regression, if is odd and bounded, meaning ρð · Þ is symmetric around 0, the

breakdown point of the estimator is BDP= 0.5. Cantoni and Ronchetti

accomplish this by solving
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� y;µð Þ= v y;µð Þw xð Þµ0− a βð Þ, ½6:19�

where

a βð Þ= 1

2

Xn

i=1

E v yi;µið Þ½ �w xið Þµ0i ½6:20�

and the vi and wi are weight functions that consider the residuals and the hat

values of the observations respectively. An adaptation of the Huber func-

tion ensures that the weights are robust to unusual y values

vi yi;µið Þ=� eið Þ
1

V1=2 µið Þ
: ½6:21�

Following the original Mallows GM-estimator for linear models, a possible

choice for wi xið Þ is wi xið Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1− hi
p

. As we have already seen, however,

this produces a low breakdown point, so the inverse of the robust distances

is employed instead (recall the discussions in Chapter 4 on robust dis-

tances). The end result is an estimator that is efficient, has bounded influ-

ence, and is asymptotically normal. More important, it has been shown that

inference from this model is much more reliable than from ordinary GLMs

when the data are contaminated (see Cantoni and Ronchetti 2001).

EXAMPLE 6.1: Logistic Regression Predicting
Vote for the Labour Party in Britain, 2001

This example uses data from the 1997–2001 British Election Panel Study

(Heath, Jowell, and Curtice 2002). We concentrate only on respondents who

participated in the final wave in 2001. After missing data are removed, the

analytical sample size is 1,421. The goal is to assess the impact of the leader

of the Labour Party, Tony Blair, on vote for his party during the 2001 British

election. The dependent variable is vote for the Labour Party (coded 1) versus

otherwise (coded 0). Evaluations of Blair were tapped with a five-point Likert

item asking respondents how well they thought Blair was doing as prime min-

ister (high values indicated a good job). The analysis also controls for age;

gender; education (degree, some postsecondary, a-level, o-level, and none);

social class (managers/professionals, routine nonmanual, self-employed,

manual working class); retrospective sociotropic economic perceptions (a

five-point scale, with high values indicating that the respondent felt the econ-

omy improved in the past year); and retrospective egocentric economic per-

ceptions (a five-point scale, with high values indicating that the respondent

felt his or her own personal economic position improved in the past year).3

Both a regular logistic regression and a robust regression are fitted to the data.
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We start by assessing influence in the regular logit model. As we see

from the index plot of Cook’s Ds in Figure 6.1, a handful of observations

have relatively high influence on the regression surface. Further diagnos-

tics, including close examination of the DFBETAi for each coefficient in

the model, failed to uncover any obvious problems, however. In other

words, although some cases have unusually high influence overall, they do

not appear to substantially influence any of the coefficients, at least not indi-

vidually. Still, given the high overall influence of these cases, we explore

whether or not a robust logistic regression tells a different story than the

regular logistic regression.

Table 6.2 shows the results of the two regressions. Despite the presence of

some observations with relatively high influence, the regular logistic regres-

sion has performed quite well. In fact, substantive conclusions are similar

regardless for the two models—we would conclude that appraisals of Blair

had a profound effect on whether or not someone voted for the Labour Party.

Although the coefficient for the impact of appraisals of Tony Blair is slightly

larger for the robust logistic regression (1.205 versus 1.127), the difference

between the two coefficients is not statistically significant. The regular
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Figure 6.1 Index Plot of Cook’s Ds for Logistic Regression Predicting Labour

Vote in Britain, 2001
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logistic regression should be preferred for these data, then, because of its

simplicity relative to the robust regression. This example is typical in that it

is difficult for unusual observations to exert strong influence on the regres-

sion surface in logistic regression because the dependent variable can take

on only two values. As we shall see below, however, unusual cases are more

likely to exert high influence in Poisson regression.

EXAMPLE 6.2: Robust Poisson Regression Predicting
Voluntary Association Membership in Quebec

This example uses data from the Canadian Equality, Security, and Com-

munity Survey of 2000. Although the data set contains information on

respondents from across Canada, only Quebec respondents are included in

the analysis (n= 949). The dependent variable is the number of voluntary

associations to which respondents belonged. The independent variables are

gender (with women as the reference category), Canadian born (the

TABLE 6.2

Logistic Regression Models Predicting Labour Vote in Britain, 2001

Maximum Likelihood Logit Model Robust Logit Model

β̂ SE β̂ β̂ SE β̂

Intercept –5.15 0.468 –5.42 0.525

Age –0.003 0.004 –0.003 0.004

Male 0.117 0.141 0.129 0.144

Education

Degree –0.372 0.269 –0.350 0.276

A-level –0.391 0.255 –0.321 0.261

O-level –0.190 0.181 0.163 0.187

Some post-sec –0.462 0.235 –0.374 0.241

None 0 — 0 —

Social Class

Professionals/managers –0.055 0.184 –0.040 0.189

Routine nonmanual –0.271 0.193 –0.213 0.197

Self-employed –0.548 0.259 –0.551 0.266

Manual working class 0 — 0 —

Economic Perceptions

Retrospective sociotropic 0.496 0.087 0.476 0.090

Retrospective egocentric 0.268 0.077 0.266 0.079

Opinions of Tony Blair 1.127 0.101 1.205 0.122

n 1,421 1,421
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reference category is ‘‘not born in Canada’’), and language spoken in the

home (divided into English, French, and other, with French coded as the

reference category). Given that the dependent variable is a count variable

(and follows a Poisson distribution), Poisson regression models are

employed. Both a regular generalized linear model using maximum likeli-

hood and a robust GLM using quasi-likelihood are fitted. Before discussing

the results, we turn to diagnostic plots for the OLS regression.

Although extensive diagnostics were carried out, only those that uncov-

ered potentially problematic observations are reported. In this respect,

Figure 6.2 displays index plots for Cook’s distances and the DFBETAi for

the ‘‘Canadian born’’ coefficient. The Cook’s distances indicate that there

are perhaps 10 observations with fairly large influence on the regression,

two of which may be particularly problematic (observations 770 and 3773).

Analysis of the DFBETAi indicates that the influence of these two cases is

largely with respect to the effect of Canadian born, although as the plot indi-

cates, their influences are in opposite directions.

Table 6.3 displays the results from the regular Poisson regression and the

robust Poisson regression. We see clearly that the coefficient for Canadian

born for the regular GLM was affected by unusual observations that did not

fit with the bulk of the data. The coefficient for the robust regression model

is nearly 10 times as large as the regular GLM coefficient. The difference in

effect makes for very different substantive interpretations. We would con-

clude from the regular GLM that, holding the other predictors constant,

there is no difference between those born in Canada and those born else-

where in terms of participation in voluntary associations (e0:027 = 1:03;

0 200 400 600 800

770

3773

0 200 400 600 800

770

3773

Index Plot of Cook’s D
DFBETAs for “Canadian Born”

Coefficient

C
o

o
k’

s 
D

Index Index

0.14 0.2

0.1

0.0

−0.1

−0.2

0.12

0.10

0.08

0.06

0.04

0.02

0.00

D
F

B
E

T
A

s

Figure 6.2 Diagnostic Plots for a Poisson Regression Model Predicting

Voluntary Association Involvement in Quebec
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p= .71). On the other hand, the robust regression suggests that, on average,

those born in Canada belong to 30 percent more associations at fixed values

of the other predictors (e0:258 = 1:29; p= .0035).

The examples in this chapter are informative for two reasons. First, the

Poisson regression example clearly showed that estimates from GLMs can

be drastically altered by unusual observations. Conclusions based on the

regular GLM were quite different from those based on the robust GLM. In

this case, it makes the most sense to report the robust GLM. Second, the

logistic regression example showed that even with a handful of observa-

tions with relatively high influence, the substantive conclusions from a

robust GLM will not necessarily differ from those based on the regular

GLM. Because the dependent variable can take on only two values—and

hence it is usually impossible for the residuals to get extremely large—this

is often the case for logistic regression. In these situations, the regular GLM

is preferred because of its simplicity relative to the robust GLM. Neverthe-

less, it is worth exploring the robust GLM if only as a diagnostic tool.

Notes

1. An M-estimator is considered conditionally Fisher-consistent if

Eβ � y, x,βð Þjx½ �=
ZZ

� y, x,βð ÞPβ dyjxð Þ= 0 for all β and x:

Maximum likelihood estimators for linear and generalized linear models are condi-

tionally Fisher-consistent if the distribution of x does not depend on β.

TABLE 6.3

Poisson Regression Models Predicting Voluntary

Association Membership

Maximum Likelihood GLM Robust GLM

β̂ SE β̂ eβ̂ β̂ SE ðβ̂Þ ehatβ

Intercept 0.586 0.077 1.79 0.120 0.095 1.13

Men 0.079 0.045 1.08 0.084 0.053 1.09

Canadian born 0.027 0.072 1.03 0.258 0.088 1.29

Language

English 0.357 0.061 1.43 0.537 0.068 1.71

Other –0.014 0.094 0.98 0.079 0.112 1.08

French 0 0 1.00 0 0 1.00

n 949 949
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2. This is the method employed by the glmrob function in the robustbase library

for the statistical package R.

3. For more detailed information on the coding of the variables see Andersen and

Evans (2003).

7. CONCLUSIONS

This book emphasizes the importance of detecting and properly handling

unusual observations in regression analysis. The empirical examples demon-

strate that if such cases go undetected, they could seriously distort the regres-

sion estimates. Evidence was also provided to indicate that vertical outliers,

and more generally, heavy-tailed distributions can decrease the precision of

regression estimates. These problems pertain to models fitted using both

OLS and the more general GLM, and thus highlight the importance of diag-

nostics. Several traditional methods for detecting vertical outliers, leverage

points, and influence were explored. Combined, these methods were effec-

tive in identifying problematic observations in the empirical examples.

Having identified problematic observations, the researcher can consider

several options to accommodate them. The simple ‘‘fix’’ is to remove the

offending observations from the analysis. This is a sensible strategy if there

are good reasons for doing so, for example, if an observation is miscoded or

known to be unique for some particular reason. Sometimes, however, the

unusual observations reflect something systematic for which the model was

unable to account. This is an important issue that implies that unusual

observations are not always synonymous with ‘‘bad’’ data. In fact, the out-

liers could be the most intriguing part of the data. If there are many unusual

observations, we should try to accommodate them by adding terms to the

model—either new variables or interactions between existing variables—

that account for the discrepancy. If no sound justification for the removal of

the unusual observations or changes to the model specification can be deter-

mined, robust regression techniques are a suitable option.

On one hand, the strategy of robust regression is not much different from

removing the observations. Both strategies have the goal of finding the best

fitting model for the bulk of the data. In this respect, some might argue that

both strategies result in a form of data truncation bias. In other words, by

removing or down-weighting observations when we don’t know if they are

truly ‘‘contaminated’’ data, we are biasing the regression estimates. I dis-

agree with this argument. We use statistical models to describe patterns in

the data. The goal should be to tell the best possible ‘‘story’’ from the data.

It doesn’t make sense, then, to talk about a relationship between y and x,
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