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INTRODUCTION

Legal applications of probabilistic and statistical
reasoning have a long history, having exercised
pioneers such as Nicolas Bernoulli, Condorcet,
Laplace, Poisson, and Cournot (Zabell, 1988).
After a period of neglect, interest has resurfaced
in recent years, and the topic has given rise to
many challenging problems.

Evidence presented in a case at law can be re-
garded as data and the issue to be decided by the
court as a hypothesis under test. The relationship
between these may be immediate, or else indi-
rect, involving a long chain or tangled web of in-
termediate propositions. In any case, there will
almost always be some uncertainty about the ul-
timate issue, the evidence, and the way in which
these are related. Such uncertainty can, in prin-
ciple at least, be described probabilistically. In
a legal setting, where it is understood that dif-
ferent “reasonable men” (and women) can rea-
sonably hold a range of opinions, it is natural to
take a subjective interpretation of probability, re-
garding it as a measure of a specific individual’s
uncertainty about a specific (not necessarily re-
peatable) event in the light of specified informa-
tion. This interpretation should be borne in mind
in the sequel. In particular, under it there is no
obstacle to assigning a noncategorical probability

to the guilt of the suspect in the light of evidence
presented while at the same time believing that
it has a definite, though currently unknown, truth
value that might even be revealed if only enough
evidence were available.

We do not suggest that judges and juries are
likely to have (or should be expected to acquire)
a sophisticated understanding of probability or fa-
cility in manipulating probabilities or that explicit
probability arguments should become routine in
courts of law. There are, however, increasing num-
bers of cases—such as DNA identification or the
Sally Clark case (see the section The Prosecutor’s
Fallacy)—where evidence about probabilities is
clearly relevant, and the court would stand to ben-
efit from advice about how to handle them. This
does not, of course, imply that it will appreciate
this need or be ready to accept such advice: For
example, at the first appeal of Sally Clark, the ex-
pert statistical evidence of Philip Dawid and Ian
Evett was essentially dismissed by the court on the
grounds that statistics is “hardly rocket science.”

Sometimes—but all too rarely—there will be
extensive relevant frequency data in the light of
which all reasonable subjective probabilities for
some event should essentially agree with its ob-
served relative frequency. In other cases, all par-
ties may be willing to accept an expert witness’s
assessments of some probabilities. Yet other prob-
abilities, relevant for the juror or other judicial
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decision maker, will be subject to subjective
vagueness, although we will usually be able to
distinguish between “reasonable” and “unreason-
able” probability assessments. But even where
probability values can be agreed on, their cor-
rect handling is far from obvious or intuitive, and
fallacious intuitions, arguments, and inferences
abound.

PROBABILITY LOGIC

In a case at law, let £ denote one or more items
of evidence (perhaps its totality). We need to con-
sider how this evidence affects the comparison of
the hypotheses, Hy and H; say, offered by either
side. Thus, in a criminal case with a single charge
against a single defendant, the evidence might be
that the defendant’s DNA profile matches the one
found at the crime scene. Hypothesis Hy, offered
by the defence, is that the defendant is innocent
(6); the prosecution hypothesis, Hj, is that of
guilt (G).

The adjudicator needs to assess his or her con-
ditional probability for either hypothesis, given the
evidence: Pr(Ho|E) and Pr(H, |€). However, it will
not usually be possible to assess these directly, and
they will have to be constructed out of other, more
basic, ingredients. In particular, it will often be rea-
sonable to assess directly Pr(£|Hp) and Pr(E|H; ):
the probability that the evidence would have arisen
in each of the competing scenarios.

Bayes’s theorem—a trivial consequence of the
definition of conditional probability—tells us that

PI'(H1|S) - PI'(H])
Pr(Ho|E)  Pr(Hy)

Pr(E|H))
Pr(E|H,)

(24.1)

The left-hand side of (24.1) is the posterior
odds for comparing H; and Hj given the evidence
&: This is a simple transformation of Pr(H;|E),
the desired posterior probability of Hj.

The second term on the right-hand side of
(24.1) is constructed out of the directly assessed
terms Pr(E|Hy) and Pr(E|H,): It is the likelihood
ratio (for H,, as against Hy) engendered by the
evidence &£. It is noteworthy that only the ratio
of these terms enters, their absolute values being
otherwise irrelevant.

To complete (24.1), we need the term
Pr(H,)/Pr(Hy), the prior odds for comparing H;

and Hy (i.e., before evidence £ is incorporated).
This might reasonably vary from one individual
juror to another, so that it would not be appropri-
ate to treat it as a subject for direct evidence. For
this reason, forensic experts are often instructed
to give their evidence in the form of a likeli-
hood ratio, it being left to the adjudicator to com-
bine this appropriately with the prior assessment,
using (24.1).
We can express (24.1) in words as

POSTERIOR ODDS
= PRIOR ODDS x LIKELIHOOD RATIO.

When £ denotes all the evidence in the case,
all the probabilities in (24.1) are unconditional;
in particular, the prior odds should be assessed on
the basis that there is no evidence to distinguish
the suspect from any other potential suspect—
this can be regarded as one way of formalizing
the legal doctrine of “presumption of innocence”
(which, of course, is not the same as an assump-
tion of innocence). When £ denotes a piece of
evidence presented in midprocess, all the prob-
abilities in (24.1) must be conditioned on the
evidence previously presented: In particular, the
“prior” probabilities could themselves have been
calculated using (24.1), as posterior probabilities
based on earlier evidence.

Notwithstanding the unarguable correctness
of (24.1), it is often replaced by other, more “in-
tuitive” probabilistic arguments that can be very
misleading.

The Prosecutor’s Fallacy

Inacriminal trial, an item of evidence £ may be
offered in proof of the guilt, G, of a defendant S,
on the basis that the probability of £ would be very
low if S were not guilty (G). For example, in the
trial of Sally Clark for double infanticide (Dawid,
2005, 2007), an expert medical witness testified
that the probability that both her babies would
have died from natural causes was one in 73 mil-
lion.! If, as appears very natural, we describe this
figure as “the probability that the babies died by
innocent means,” it is all too easy to misinterpret

I'This figure has itself been widely and properly criticized, but
that is not the issue here.



this as the probability (on the basis of the evi-
dence of the deaths) that Sally is innocent—such
a tiny figure seeming to provide incontrovertible
proof of her guilt. Mathematically, this is equiva-
lent to misinterpreting Pr(€|G) as Pr(G|E). For
obvious reasons, this error is known as “trans-
posing the conditional” or, because it typically
produces seemingly convincing evidence of guilt,
“the prosecutor’s fallacy.”

The prosecutor’s fallacy is a seductive and
widespread mode of reasoning, affecting the gen-
eral public, the media, lawyers, jurors, and judges
alike. Although we do not have access to the de-
liberations of Sally Clark’s jury, it has generally
been considered that their “guilty” verdict was
strongly influenced by such mistaken reasoning.

Forensic Identification

A particularly fertile field where the prosecu-
tor’s fallacy flourishes is that of identification ev-
idence. Here, unlike the case of Sally Clark, it is
undisputed that a crime has been committed: The
issue before the court is whether or not the sus-
pect, S,isindeed the culprit C. Thus, the hypothesis
G of guilt is equivalent to that of identity, C = S.
Evidence £ is presented that bears on this. This
may be, for example, eyewitness evidence (as in
the celebrated “Collins case” [Fairley & Mosteller,
1977], which kick-started modern interest in the
interpretation of probabilities in the law) or foren-
sic evidence of a match between some character-
istic of the crime scene (the “crime trace”) and
a similar characteristic measured on the suspect.
Examples include handwriting, rifling marks on
bullets, glass fragments, fibers, footprints, finger-
prints, bite marks, and, of especial importance and
power, DNA profiles. It is common in such a case
for the jury to be told something like “The proba-
bility of this DNA match arising from an innocent
man is only one in one billion” and for all parties
to misinterpret this number, in line with the prose-
cutor’s fallacy, as the probability of S’s innocence
(Balding & Donnelly, 1995).

THE ISLAND PROBLEM

The “island problem” (Eggleston, 1983, Appen-
dix 3) is a toy example that well illustrates the
uses and misuses of statistical logic in forensic
identification.
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A murder has been committed on an island,
cut off from the outside world, on which N + 1 in-
habitants remain. Forensic evidence at the scene
consists of a measurement, Ic = x, on a “crime
trace” characteristic Ic, which can be assumed to
come from the criminal C. The initial probabil-
ity of any given islander having the characteris-
tic x is assessed as P, independently for different
islanders. Moreover, before observing any evi-
dence, all inhabitants of the island are considered
to have the same probability of being the culprit.
The mainland police arrive and arrest a random
islander, S. It is found that S matches the crime
trace: I = x. There is no further relevant evi-
dence. How should this match evidence be used
to assess the claim that S is the murderer?

We shall consider a number of arguments that
have been used to address this question. Those in
the sections Defence Counterargument, Bayesian
Argument, and Supreme Court Variation 3 below
yield the correct answer, the remainder being fal-
lacious: We leave it to the reader to identify the
reasons. For illustration, following Eggleston, we
take N = 100, P = 0.004.

Prosecutor’s Fallacy

Prosecuting counsel, arguing according to his
favorite fallacy, asserts that the probability that §
is guilty is 1 — P, or 0.996, and that this proves
guilt “beyond a reasonable doubt.”

Defence Counterargument

Counsel for the defence points out that while
the guilty party must have characteristic x, the
expected further number having this characteris-
tic among the remaining N innocent islanders is
NP. Hence, the set of islanders having this char-
acteristic can be taken to have size 1 + NP. The
match evidence places S in this set but does not
otherwise distinguish him from any of the other
members of it. Since just one of these is guilty,
the probability that this is S is thus 1/(1 + NP),
or 0.714—indicative, perhaps, but not “beyond a
reasonable doubt.”

Bayesian Argument

Conditioning all the time on the evidence Ic =
x from the crime scene (which, we assume, of
itself has no bearing on the issue of guilt) and
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taking £ to be the additional “match evidence”
Is = x, the probability of this evidence would
be Pr(€|G) =1 if § were guilty (S = C) and
Pr(€|G) = P if S were innocent. Hence, the like-
lihood ratio in favor of guilt, on the basis of the
match evidence, is

Pr(€|G)

LR := —
Pr(€|G)

3

x| -

or LR = 250.

While this seems strong evidence in favor
of guilt, a complete probabilistic argument must
also incorporate the prior odds on guilt before
taking account of the match evidence. We can ar-
gue that in the absence of any other evidence, S
is no more or less likely to be the culprit than any
other islander, so that the prior probability of guilt
is 1/(N+1), corresponding to prior odds on guilt
of 1/N.

We can now apply Bayes’s theorem (24.1) to
obtain the posterior odds on guilt

(1/N) % (1/P)=1/NP. (24.2)

The corresponding posterior probability of guilt is

1

PrGE) = T wp

(24.3)
or 0.714.

Note that this Bayesian argument could be
readily modified to incorporate additional evi-
dence if available—it is merely necessary to adjust
the prior odds appropriately (either informally or
formally by means of yet another application of
Bayes’s theorem) to take that into account.

We see that in the absence of additional evi-
dence, this result accords with that of the defence
argument above.

Supreme Court Argument

In its appeal judgment on the “Collins case,”
the Supreme Court of California argued on the
following lines. Denote by M the unknown num-
ber of islanders possessing characteristic x. Be-
fore obtaining any evidence, we can take M
to have the binomial distribution Bin(N + 1;P).
Now, we have observed that S has characteristic
x and so have learned that M > 1. If M = 1, there
is no other matching individual and S must be

guilty; however, if there is a nonnegligible proba-
bility that M > 1, so that § is not the only match-
ing individual, this would be a source of doubt as
to S’s guilt. Hence, the Supreme Court calculated

Pr(M > 1M >1)

1—(1=PN 11— (N+1)P(1—P)N
1—(1—P)N+! ’

which, for our illustrative figures, yields 0.19.
An approximately 20% chance of there being an-
other islander having the matching characteristic
could be considered enough to raise reasonable
doubt as to S’s guilt.

Supreme Court: Variation 1

The above line of argument can be devel-
oped further, as follows. With no other evidence,
we can take Pr(GIM = m) = m~!. As above,
we condition the initial Bin(N + 1;P) for M on
the known fact that M > 1, to obtain

Pr(G|E)=E(M '|M>1).

This is not simply expressible algebraically but
can be calculated numerically: For our illustrative
figures, it yields Pr(G|E) = 0.902.

Supreme Court: Variation 2

An alternative argument is that given the ev-
idence, we know that there is one guilty match,
and out of the remaining N innocent individuals,
each has, independently, a probability P of sup-
plying a match. So the conditional distribution of
M is 1 +Bin(N; P). Using this to take the expec-
tation of M~ yields

1—(1-P)V!

Pr(Gl&) = NT1P

(24.4)

which, for our values, gives 0.824.

Supreme Court: Variation 3

We can consider the total evidence (Ic = x,
Is = x) as the results, both successes, of two
draws, with replacement (since C and S could be
the same individual), from the population. The
probability of this, given M = m, is {m/(N +
1)}?, and using Bayes’s theorem, the resulting
conditional distribution of M is



Pr(M = m|lc = x,Is = x)
_ N m—1 _ N—m+1
—cm<m_1)P (1-P)
(m=1,...N+1),

where the normalizing constant is ¢ = 1/(1 4+
NP). Taking the expectation of M~! with respect
to this distribution then yields

Pr(G|E) =1/(1+NP),
or 0.714—in agreement with the Bayesian and

defence arguments.

THE EFFECT OF SEARCH

We have so far supposed that the suspect S was
selected at random from the island population
and, quite fortuitously, was found to match the
crime trace. More realistically, the police might
trawl through the population until they discover
an individual who provides a match. Because this
will yield further information beyond the mere
fact of a match, we can expect the resulting infer-
ence to differ from that appropriate to the “lucky
match” case previously considered.

If the search delivers a (first) match for the
(g + 1)th individual examined, then g necessar-
ily innocent parties have been eliminated, thereby
reducing the size of the remaining suspect popu-
lation from N to N — g. Intuitively, it would seem
that formulas (24.2) and (24.3) given above must
therefore be adjusted by making this substitution,
so yielding

Pr(Glg) = (24.5)

1+ (N—g)P
This is correct, although the full analysis is more
subtle since it must account for the probabilistic
nature of the outcome ¢ of the search (Dawid &
Mortera, 1995).

Formula (24.5) can only be applied when we
know ¢, the number of nonmatching individuals
examined before the matching suspect S is found.
But whatever the value of g, (24.5) will yield a
value at least as large as (24.3). It follows that
if we know that a search has been conducted to
identify a suspect but are not told g, the answer
given by Formula (24.3) must be too small. In
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fact, in this case of a known search of unknown
size, the appropriate answer is now given by
Formula (24.4).

Database Search

Search scenarios are common in cases where
a DNA trace is found at the crime scene and,
in the absence of any obvious suspect, a search
for a match is made through a police database
of DNA profiles. Such databases can be very
large—by December 2005, the U.K. database
comprised around 3 million profiles, with about
3,000 “matches” being made per month.

Computerized search typically allows us to
identify every individual in the database whose
DNA profile matches the crime trace. Suppose
that there is exactly one such individual, S. If the
initial suspect population is of size N+ 1 and the
database is of size n+ 1, then the search has elim-
inated n individuals from the suspect population,
and so, if there is no other evidence to distin-
guish among those remaining, the odds on S be-
ing guilty are increased from 1/NP, as in (24.2),
to 1 /(N —n)P. (If there is other evidence for or
against S, this could be expressed as a likelihood
ratio and combined with the above odds using
Bayes’s theorem. It is also possible to account for
evidence pointing the finger toward or away from
other individuals.)

When 7 is small in relation to N, the effect of
the database search is only a small increase in the
probability that S is guilty. This is fortunate, since
evidence that a search was conducted to iden-
tify the suspect is usually inadmissible in court.
Ignoring it will typically make little difference,
and to the extent that it does, it will be to the ad-
vantage of the defendant.

However, at the other extreme, where the
whole population is searched (n = N) and S is
the only individual found to match, we obtain in-
finite odds, corresponding to certainty, that S is
guilty—as is obviously appropriate in this case.

Alternative Arguments

Other arguments, with very different impli-
cations, have also been brought to bear on this
problem.

One frequentist view, recommended by the
U.S. National Research Council (1996), treats the
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problem as analogous to that of multiple statisti-
cal hypothesis testing, where the strength of the
evidence has to be adjusted to account for the
very fact that a search has been conducted. It is
argued that since any match found in the database
would have resulted in a prosecution, the rele-
vant “match probability” is no longer the prob-
ability, P, that S would match the crime trace
(if innocent) but the probability, approximately
(n+ 1)P, that some match would be found in
the database (if all its members were innocent).
The impact of the evidence, as measured by the
match probability, is thus attenuated by a factor
of n+ 1, the size of the database. Even if this is
only a very small fraction of the total population,
it can be very large in absolute size, which would
appear to render the match evidence essentially
worthless.

A closely related likelihood viewpoint is taken
by Stockmarr (1999). He claims that it is not ap-
propriate to assess a likelihood for the hypothe-
sis Hy that S is guilty, since that hypothesis could
not even have been formulated before the search
was conducted. Hence, he claims, we should in-
stead focus on the hypothesis Hp—which can
be formulated before the search—that the data-
base D contains the culprit. When the search then
turns up a single match, the corresponding like-
lihood ratio in favor of Hp (as against its nega-
tion) is about 1/(n+ 1)P (as compared with 1/P
in favor of the “data-dependent” hypothesis Hy).
Moreover, whoever the (unique) matching indi-
vidual turns out to be, the hypothesis Hp becomes
logically equivalent to the hypothesis that this
matcher is the culprit, which is the proposition
that will be put before the court. Consequently,
the strength of the evidence is more appropriately
measured by a likelihood ratio of 1/(rn+ 1)P than
one of 1/P.

We can reconcile this view with the analysis
given in the section Database Search if we re-
member that a likelihood ratio is only one of the
ingredients in Bayes’s theorem (Dawid, 2001). If
we replace Hg by Hp, not only will the likeli-
hood ratio change, but so too will the prior odds:
Because the database contains (n+ 1) individu-
als, a priori, the odds on the culprit being one of
these will be about (n+ 1) times greater than the
odds on his or her being the specific individual
S. It turns out that on performing this replace-

ment of the hypothesis, the change to the prior
odds exactly cancels with that to the likelihood
ratio. There is thus no net effect on the posterior
odds: Both approaches deliver the same ultimate
verdict.

‘Which Likelihood Ratio?

The above analysis does, however, lead to
problems for the forensic scientist, who is, quite
properly, trained to testify as to “the likelihood
ratio” generated by the evidence and not directly
as to the posterior probability. When, as above,
we have a choice as to how to frame the hypothe-
ses, there is no unique likelihood ratio (although
the posterior probability will be unaffected by
this indeterminacy). In that case, it would seem
more helpful to the court to present the likelihood
ratio for the hypotheses of direct interest: that S
is, or is not, the culprit.

A related issue arises when it can be assumed
that the crime was committed by two persons,
each of whom has left a DNA trace at the scene
(say one on a pillow and one on a sheet). S is ar-
rested and it is found that his DNA matches the
trace from the pillow, which has population fre-
quency P. Under reasonable assumptions, it can
be shown (Dawid, 2004) that the likelihood ra-
tio in favor of the hypothesis that § was one of
the culprits, as against his innocence, is 1/(2P).
But (given the evidence) S is guilty if and only
if he left the stain on the pillow and taking this
as the hypothesis at issue leads to a likelihood ra-
tio (as against S’s innocence) of 1/P. Other ways
of framing the hypotheses yield yet other results
(Meester & Sjerps, 2004).

Once again these different answers can be rec-
onciled by taking proper account of the differing
prior probabilities. But if one value is to be given
to the court as “the likelihood ratio,” what should
it be? The first value quoted above, 1/(2P), does
directly address the question at issue: Is S guilty
or not? On the other hand, the very existence of
two culprits makes it a priori about twice as prob-
able that S is guilty as would hold for the case of a
single-culprit crime. If the court is used to think-
ing about this latter case, and is not attuned to the
need to double the prior probability, one might
argue, as a pragmatic solution, that the “correct”
likelihood ratio, 1/(2P), should be doubled, so as



to build this correction in automatically—which
would bring us back to the value 1/P.

COMPLEX PATTERNS OF EVIDENCE

The difficulties of assessing a single item of
evidence are compounded when we want to
account for the complex interrelationships be-
tween the many items of evidence in a case.
To organize the evidence it is then helpful to
construct a diagrammatic representation of all
the evidence and hypotheses in the problem
and the relationships between them. This idea
was first suggested by Wigmore (1937) (see
Anderson, Schum, & Twining, 2005, for an
introduction to the “Wigmore chart” method).
More recently, the methods of graphical mod-
eling and Bayesian networks—also known as
probabilistic expert systems (Cowell, Dawid,
Lauritzen, & Spiegelhalter, 1999)—have been
applied. Such a network contains a node for each
variable in the problem, with arrows between
nodes to denote probabilistic dependence of a
“child” node on all its “parents.” To complete
the description, we need the numerical or alge-
braic specification of the associated conditional
probabilities.

Example

Dawid and Evett (1997) consider a fictitious
burglary case, described as follows:

An unknown number of offenders entered a com-
mercial premises late at night through a hole, which
they cut in a metal grille. Inside, they were con-
fronted by a security guard who was able to set off
an alarm before one of the intruders punched him
in the face, causing his nose to bleed.

The intruders left from the front of the building
just as a police patrol car was arriving and they dis-
persed on foot, their getaway car having made off at
the first sound of the alarm. The security guard said
that there were four men, but the light was too poor
for him to describe them, and he was confused be-
cause of the blow he had received. The police in the
patrol car saw the offenders only from a consider-
able distance away. They searched the surrounding
area and, about 10 min later, one of them found the
suspect trying to “hot wire” a car in an alley about
a quarter of a mile from the incident.
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At the scene, a tuft of red fibers was found on
the jagged end of one of the cut edges of the grille.
Blood samples were taken from the guard and the
suspect. The suspect denied having anything to do
with the offence. He was wearing a jumper and
jeans, which were taken for examination.

A spray pattern of blood was found on the front
and right sleeve of the suspect’s jumper. The blood
type was different from that of the suspect but the
same as that from the security guard. The tuft from
the scene was found to be red acrylic. The sus-
pect’s jumper was red acrylic. The tuft was indis-
tinguishable from the fibers of the jumper by eye,
microspectrofluorimetry and thin layer chromatog-
raphy (TLC). The jumper was well worn and had
several holes, though none could clearly be said to
be a possible origin for the tuft.

In this example, there are three general kinds
of evidence: eyewitness, blood, and fiber; and for
each kind a variety of individual evidential items.
We can summarize the salient features of the ev-
idence against the suspect as follows:

* Eyewitness

G: The evidence of the security guard

W: The evidence of the police officer who
arrested the suspect

* Blood
R: The bloodstain in the form of a spray
on the suspect’s jumper
Xj: Suspect’s blood type
X;: Guard’s blood type
Y>: Blood type of blood spray on jumper

* Fibers
X3: Properties of the suspect’s jumper

Y;: Properties of fiber tuft

The uncertain hypotheses and variables that
enter are

* Hypotheses

C: Whether the suspect was or was not
one of the offenders

A: The identity of the person who left the
fibers on the grille
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Figure 24.1

B: The identity of the person who
punched the guard

N: The number of offenders

Of these, the specific charge before the court
is C = TRUE; the others are included to provide a
complete account of the problem.

Figure 24.1 shows a graphical representation of
the problem as a Bayesian network. The evidence
items are shown as squares and the hypotheses as
circles. Variable Y>, the measurement of the blood
type of the spray on the jumper, is dependent on
X, the suspect’s blood type (because it might be a
self-stain) and the guard’s blood type X;. But in-
formation is also provided by R, the variable that
describes the shape of the stain, because that sheds
light on whether or not it might be a self-stain. In
turn, the shape of the stain is influenced by the way
in which the guard was punched, G, and B, the
identity of the person who did it; while B1s, in turn,
influenced by whether or not the suspect was one
of the offenders, variable C, and also the number
of offenders, V.

Dawid and Evett (1997) describe how the
graph can be used to read off implicit properties
of independence: For example, to show that con-

Bayesian network for burglary example.

ditionally on knowing A and N, the pair of vari-
ables (B,R) is independent of the pair (G;,1).
These properties can then be used to simplify
the algebraic and numerical identification of the
overall likelihood ratio for comparing the hy-
potheses C = TRUE or C = FALSE, based on the
evidence.

Taroni, Aitken, Garbolino, and Biedermann
(2006) give a detailed account of theory and ap-
plications of Bayesian networks in problems of
forensic inference. See Baio and Corradi (2006)
and Cavallini and Corradi (2005) for further in-
teresting examples.

FORENSIC GENETICS

Most of the logic so far presented applies in prin-
ciple to any kind of identification evidence. But
forensic DNA evidence has some additional spe-
cial features, principally owing to its pattern of
inheritance from parent to child. These make it
possible to use it to address queries such as the
following:



Disputed paternity:
Is individual A the father of individual B?

Disputed inheritance:
Is A the daughter of deceased B?

Immigration:
Is A the mother of B? How is A related to B?

Criminal case—mixed trace:
Did A and B both contribute to a stain found
at the scene of the crime? Who contributed
to the stain?

Disasters:
Was A among the individuals involved in a
disaster? Who were those involved?

In a simple disputed paternity case, the ev-
idence £ will comprise DNA profiles from
mother, child, and putative father. Hypothesis H;
is that the putative father is the true father, while
hypothesis Hy might be that the true father is
some other individual, whose DNA profile can
be regarded as randomly drawn from the popula-
tion. We can also entertain other hypotheses, such
as that one of one or more other identified indi-
viduals is the father or that the true father is the
putative father’s brother.

In a complex criminal case, we might find a
stain at the scene of the crime having the form of
a mixed trace, containing DNA from more than
one individual. DNA profiles are also taken from
the victim and a suspect. We can entertain vari-
ous hypotheses as to just who—yvictim, suspect,
person or persons unknown—contributed to the
mixed stain.

When we are only comparing two hypothe-
ses Hy and Hj, the impact of the totality of the
DNA evidence £ available, from all sources, is
once again crystallized in the likelihood ratio,
LR = P(E|Hy)/P(E|Hp). If we wish to compare
more than two hypotheses, we require the full
likelihood function, a function of the various hy-
potheses H being entertained (and, of course, the
evidence &):

LR(H) < Pr(E|H). (24.6)
The proportionality sign in (24.6) indicates that
we have omitted a factor that does not depend
on H, although it can depend on £. Such a
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factor is of no consequence and need not be
specified, since it disappears on forming ratios
of likelihoods for different hypotheses on the
same evidence. Only such relative likelihoods are
required, not absolute values.

We also now need to specify the prior prob-
abilities, Pr(H), for the full range of hypotheses
H. Then, posterior probabilities in the light of the
evidence are again obtained from Bayes’s theo-
rem, which can now be expressed as

Pr(H|E) < Pr(H) x LR(H). (24.7)
Again, the omitted proportionality factor in
(24.7) does not depend on H, although it might
depend on &. It can be recovered, if desired, as
the unique such factor for which the law of total
probability, >, Pr(H|E) = 1, is satisfied.

Genetic Background

To proceed further, we need some basic ge-
netic facts about DNA profiles, which we sum-
marize very briefly below: See, for example,
Buckleton, Triggs, and Walsh (2005) for more
details.

A gene is a particular sequence of the four
bases, represented by the letters A, C, G, and
T, that carry the genetic information in DNA. A
specific position on a chromosome is called a lo-
cus; since chromosomes come in pairs, there are
two genes at any locus. A DNA profile consists
of measurements on a number of forensic mark-
ers, which are specially selected loci, on different
chromosomes. Current technology uses around
12-20 short tandem repeat (STR) markers. Each
such marker has a finite number (up to around
20) of possible values, or alleles, generally pos-
itive integers. For example, an allele value of 5
indicates that a certain word (e.g., CAGGTG) in
the four-letter alphabet of the genetic code is re-
peated exactly five times in the DNA sequence at
that locus on a chromosome.

An individual’s DNA profile comprises a col-
lection of genotypes, one for each marker. Each
genotype consists of an unordered pair of alleles,
one inherited from the father and one from the
mother (though one cannot distinguish which is
which). When both alleles are identical, the indi-
vidual is homozygous at that marker, and only a
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single allele value is observed; else the individ-
ual is heterozygous. In most cases, a DNA profile
can be measured without error, even from a single
cell.

Assuming Mendelian segregation, at each
marker a parent passes a copy of just one of
his two alleles, randomly chosen, to his or her
child, independently of the other parent and
independently for each child. Distinct forensic
markers are located on different chromosomes,
so segregate independently. It is often reasonable
to assume random mating within an appropri-
ate population, which then implies independence
of alleles both within markers (Hardy-Weinberg
equilibrium) and across markers (linkage equilib-
rium). Databases have been gathered from which
allele frequency distributions, for various popula-
tions, can be estimated for each forensic marker.
On the basis of these values and the independence
assumptions, a profile probability can be assigned
to any DNA profile, measuring its rarity in the
population.?

Simple Disputed Paternity

A man is alleged to be the father of a child, but
disputes this. DNA profiles are obtained from the
mother m, the child c, and the putative father pf.
On the basis of these data, we wish to assess the
likelihood ratio for the hypothesis of paternity:
H,: tf=pf, the true father is the putative father;
as against that of nonpaternity: Hy: tf = af—
where af denotes an unspecified alternative fa-
ther, treated as unrelated to pf and randomly
drawn from the population.

The disputed pedigree can be represented as in
Figure 24.2.

Because of our independence assumptions, we
can analyze the markers one at a time, finally
multiplying their associated likelihood ratio val-
ues together to obtain the overall likelihood ratio
based on the full collection of markers.

Consider now the measured genotypes, from
all three parties, for some fixed marker. Under pa-
ternity, Hy, we just apply Mendel’s laws of segre-

2 Although we do not develop this here, one should really
allow for the fact that allele frequency estimates based on fi-
nite databases remain uncertain. This raises some subtle new
issues (Balding & Nichols, 1994; Dawid & Mortera, 1996).

T-
pave

Figure 24.2  Pedigree for simple disputed paternity.

gation; under nonpaternity, H;, we require (esti-
mates of) the frequencies of relevant marker alle-
les among the population. Using (24.1), this can
then be combined with the prior odds of pater-
nity, based on external background evidence B,
to obtain the posterior odds for paternity. As an
illustrative example, suppose that the data, for
marker D7, are child’s genotype cgt= {12,12},
mother’s genotype mgt= {10, 12}, putative fa-
ther’s genotype and pfgt= {10,12}. The esti-
mated population frequencies of alleles 10 and
12 are, respectively, 0.284 and 0.260. In this case,
by conditioning on the genotypes of mother and
putative father, we see that the child’s genotype
will be as observed if and only if both the mother
and the true father contributed allele 12 to the
child. This event has probability 0.5 x 0.5 if the
true father is the putative father, and probability
0.5 x 0.260 if the true father is, instead, some
unrelated individual from the population. Thus,
the likelihood ratio in favor of paternity, based
on marker D7 alone, is 1.93.

DNA Mixtures

A mixed DNA profile is typically obtained
from an unidentified biological stain or other
trace thought to be associated with a crime. This
commonly occurs in rape cases, in robberies
where an object might have been handled by
more than one individual, and also in a scuffle or
brawl. For a mixed DNA trace, there is no con-
straint on the number of distinct alleles observed
for each marker, since the trace might have been
formed as a mixture of biological material from
more than one person.



In simple cases of DNA mixtures when us-
ing only the qualitative allele information, alge-
braic formulae for calculating the likelihoods of
all hypotheses involving a specified set of known
and unknown contributors to the mixture can
be computed (assuming Hardy-Weinberg equilib-
rium and known allele frequencies).

To illustrate, suppose that for a single DNA
marker, we have a three-allele crime trace
{A,B,C}, and individual profiles from a victim,
v={B,C} and a suspect, s = {A}. These together
with the allele frequencies constitute the evidence
€ for the case. Suppose we wish to compute the
likelihood ratio in favor of the hypothesis that
the victim and suspect contributed to the mixture,
Hy: v&ss, as against the hypothesis that the victim
and an unknown individual u contributed to the
mixture, Hy: v&u. It is not difficult to show that
in this case

1

LR = :
P +2paps +2papc

(24.8)

where p; is the frequency of allele i in the
population.

BAYESIAN NETWORKS FOR
FORENSIC DNA IDENTIFICATION

In more complex scenarios than those described
above, it can become difficult or impossible to
obtain the required probabilistic formulas.

In cases of disputed paternity, it commonly oc-
curs that the DNA profiles of one or more of the
“principal actors” in the pedigree are not avail-
able; but there is indirect evidence, in the form
of DNA profiles of various known relatives. In
the section Complex Disputed Paternity below,
we consider such a case, where the putative fa-
ther is unavailable for testing, but we have DNA
from two of his brothers and an undisputed child
of his by another woman. The analysis of all the
data is clearly now much more complex. Like-
wise the appropriate extensions of (24.8) become
relatively complex when the number of potential
contributors to the mixture becomes large; if we
want to use quantitative data (peak areas), which
contain important additional information about
the composition of the mixture, and to allow for
uncertainty in allele frequencies and/or popula-
tion substructure.
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To handle such cases, sophisticated probabilis-
tic modeling tools are required. Again, Bayesian
networks, together with their associated com-
putational methodology and technology, have
been found valuable for this, particularly in their
“object-oriented” Bayesian networks (OOBN)
form, as implemented in commercial software
such as HUGIN 6. Bayesian networks for eval-
uating DNA evidence were introduced by Dawid,
Mortera, Pascali, and van Boxel (2002). Fur-
ther description and developments can be found
in Mortera (2003, chap. 1B); Mortera, Dawid,
and Lauritzen (2003); Vicard, Dawid, Mortera,
and Lauritzen (2008); Cowell, Lauritzen, and
Mortera (2007); Dawid, Mortera, and Vicard
(2006); Dawid, Mortera, and Vicard (2007); and
Taroni et al. (2006).

For some illustrative cases, we describe below
how we can construct a suitable OOBN represen-
tation of a complex DNA identification problem
incorporating all the individuals involved and the
relationships between them.

Simple Disputed Paternity

We use the example of simple disputed pa-
ternity given in the section Forensic Genetics
to introduce some basic ingredients of forensic
OOBNEs.

In fact, Figure 24.2 is just the relevant “top-
level” network, constructed using the graphical
interface to HUGIN 6. Each node (except the hy-
pothesis node tf=pf?) in Figure 24.2 is itself
an “instance” of another generic (“class”) net-
work, with further internal structure. In what fol-
lows, bold face will indicate a network class,
and teletype face will indicate a node or in-
stance. We describe only selected features here.
A fuller description of OOBN networks for pater-
nity casework can be found in Dawid et al. (2007)
and Dawid et al. (2006).

Each of m, pf, and af is an instance of a class
founder, while c is an instance of class child and
tf is an instance of class query.

Within founder (not shown) we have two in-
stances (maternal and paternal genes) of a class
gene, which embodies the relevant repertory of

3Obtainable from http://www.hugin.com.
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Figure 24.3  Networks child and meiosis.

alleles and their associated frequencies in the rel-
evant population.

The internal structure of child is displayed in
Figure 24.3.

On the paternal (left hand) side of child, the
input nodes fpg and fmg represent the child’s fa-
ther’s paternal and maternal genes. These are then
copied into nodes pg and mg of an instance fmeio-
sis of a class network meiosis, whose output
node cg is obtained by flipping a fair coin (node
cg=pg?) to choose between pg and mg;; this is then
copied to pg (child’s paternal gene) in network
child. A similar structure holds for the maternal
(right hand) side of child. Finally, pg and mg are
copied into aninstance gt of a network class geno-
type, which forgets the information on parental
origin (thisis also a feature of founder). Any DNA
evidence on the individual is entered here.

The hypothesis node tf=pf? embodies
Hy (tf = pf) when it takes the value true and
H, (tf = af) when false; it feeds into the instance
tf of class query to implement this selection. We
initially, and purely nominally, set both hypothe-
ses as equally probable, so that, after propagation
of evidence, the ratio of their posterior proba-
bilities yields the paternity ratio based on this
marker. By entering the data for each marker into
the appropriate Bayesian network, we can thus
easily calculate the associated likelihood ratio for
paternity.

We build a separate such network for each
STR marker, incorporating the appropriate reper-
toire of alleles and their frequencies. On enter-
ing the available DNA data, we can compute the
associated likelihood ratio. Finally, we multiply

these together across all markers to obtain the
overall likelihood ratio.

Once supplied with the basic building blocks
founder, child, and query, we can connect them
together in different ways, much like a child’s
construction set, to represent a wide range of sim-
ilar problems. An illustration is given in the next
section.

Complex Disputed Paternity

Figure 24.4 is a OOBN representation of a dis-
puted paternity case, where we have DNA pro-
files from a disputed child c1 and from its mother
ml but not from the putative father pf. We do,
however, have DNA from c2, an undisputed child
of pf by a different, observed, mother m2, as well
as from two undisputed full brothers b1 and b2
of pf. The sibling relationship is made explicit
by the incorporation of the unobserved grandfa-
ther gf and grandmother gm, parents of pf, bl
and b2. The “hypothesis node” tf=pf? again in-
dicates whether the true father tf is pf or is an
alternative father af, treated as randomly drawn
from the population.

Nodes gf, gm, m1, m2, and af are all instances
of class founder; pf, b1, b2, c1, and c2 are in-
stances of class child; tf is an instance of class
query.

The DNA evidence £ consisted of the 6 DNA
profiles, each comprising 10 STR markers, from
ml, m2, cl, c2, bl, and b2. By entering the
data for each marker into the Bayesian network
(incorporating the appropriate alleles for that
marker and their frequencies), we can thus easily
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7]

Figure 24.4  Pedigree for incomplete paternity case.

calculate the associated likelihood ratio for pater-
nity. The overall paternity ratio is then given by
their product.

For this particular case, this overall paternity
ratio evaluates to around 1,300, meaning that the
observed DNA evidence is 1,300 times more prob-
able on the hypothesis of paternity than it would
be were we to assume nonpaternity. According to
Evett and Weir (1998, chap. 9), such a value might
be considered as offering “very strong support” to
the hypothesis of paternity (although paternity ap-
plications such as this will never produce the kind
of likelihood ratio value, sometimes in the bil-
lions, that can occur when DNA profiling evidence
is used to match a suspect to a crime). However,
it is important to remember, in all cases, that the
likelihood ratio derived from the DNA evidence is
only one element of the whole story, which also
involves prior probabilities, and perhaps further
likelihood ratios based on other evidence in the
case. All these ingredients need to be combined
appropriately, using Bayes’s theorem, to produce
the final probability of paternity.

Mutation

It is easy to modify these networks to in-
corporate a variety of additional complications.
One such is the possibility of mutation of genes
in transmission from parent to child, which
could lead to a true father appearing to be ex-

Figure 24.5 Revised network meiosis,
incorporating mutation.

cluded (Dawid, Mortera, & Pascali, 2001; Dawid,
Mortera, Dobosz, & Pascali, 2003; Dawid, 2003;
Vicard & Dawid, 2004; Vicard et al., 2008). We
must now distinguish between a child’s original
gene cog, identical with one of the parent’s own
genes, and the actual gene cag available to the
child, which may differ from cog because of mu-
tation. We elaborate the class network meiosis of
Figure 24.3, as shown in Figure 24.5 by passing
its original output cog (“child’s original gene”)
through an instance cag (“child’s actual gene”)
of a new network mut, constructed to implement
whatever model is used to describe how the value
of cog is stochastically altered by mutation. The
output of cag is then copied to cg. Thus, meiosis
now represents the result of mutation acting on
top of Mendelian segregation.
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Table 24.1  Disputed paternity with brother too. mgt = {12, 15}, pfgt = {14, 14}, cgt = {12, 12}.

pr(silent) Lp Lp with bgt =

(16,20}  {12,17}) (12,14} {1417} {14,14} {16,16} (12,12}
0 0 1 1 0.546 0.546 1 6.13 3,334
0.000015 0.472 1 1 0.546 0.546 1.0000 6.12 1,595
0.0001 2.473 1 1 0.546 0.546 0.9999 6.07 403.7
0.001 7.485 1 1 0.551 0.551 0.9992 5.54 46.07
0.01 8.100 1 1 0.590 0.590 0.9932 3.19 5.45

NOTE: Likelihood ratio in favor of paternity allowing for silent alleles: Lp, without brother’s genotype. Lg, further

(multiplicative) effect of brother’s genotype.

Once an appropriate network mut has been
built, and meiosis modified as described above,
pedigree networks constructed as in the section
Silent Allelles will now automatically incorpo-
rate the additional possibility of mutation.

Silent Alleles

Yet another complication that is easily han-
dled by simple modifications to lower-level net-
works is the possibility that some alleles may
not be recorded by the equipment, so that a
truly heterozygous genotype appears homozy-
gous (Dawid et al., 2007, 2006). This may be due
to sporadic equipment failure, in which case it is
not inherited and we talk of a missed allele; or to
an inherited biological feature, in which case we
refer to the allele as silent.

In some cases, making proper allowance for
these possibilities can have a dramatic effect.
Table 24.1 shows results for a particular case
where, in addition to the genotypes mgt, pfgt,
and cgt of mother, putative father, and child,
we also have the genotype bgt of the putative
father’s brother. These refer to the single STR
marker vVWA.

If we had complete data on the genotypes
mgt, pfgt, and cgt, the additional data bgt
would have no effect whatsoever on the pater-
nity ratio, since the child’s genotype is condition-
ally independent of information on the putative
father’s brother given the mother and putative fa-
ther’s genotypes. In the case shown, in the ab-
sence of silence we would have an exclusion.
Allowing for silence at various rates, but using
only the data on the basic family triplet, gives the

paternity ratios in the column labeled Lp, from
which we already see that a small probability
of silence can, in fact, lead to a paternity ratio
greater than 1—now constituting evidence in fa-
vor of paternity. The remaining columns show
the additional (multiplicative) effect of using the
information on the brother’s genotype bgt for
various cases. The first row shows that even as
the probability of silence tends to 0, its disturb-
ing effect can be very substantial. In fact, when
bgt = {12,12}, the overall paternity ratio LR =
Lp x Lg achieves a maximum value of 1,027.3,
at pr(silent) =0.0000642, even though it van-
ishes for pr(silent) =0.

Bayesian Networks for
Analyzing Mixed DNA Profiles

Bayesian networks have also been constructed
to address the challenging problems that arise
in the interpretation of mixed trace evidence, as
described in the section DNA Mixtures. Typi-
cally, one would be interested in testing whether
the victim and suspect contributed to the mix-
ture, Hy: v & s, against the hypothesis that the vic-
tim and an unknown individual contributed to the
mixture, H;: v&u. One might alternatively con-
sider an additional unknown individual u, instead
of the victim, with hypotheses Hy: u, & s versus
H 1- U & up.

Figure 24.6 shows a top-level network that
can be used for analyzing a mixture with two
contributors, pl and p2. Nodes sgt, vgt, ulgt,
and u2gt are all instances of a network class
genotype and represent the suspect’s, the vic-
tim’s, and two unknown individuals’ genotypes.
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Target

Figure 24.6

Boolean node p1=s? represents the hypothesis
that contributor pl is the suspect s. Node plgt,
the genotype of pl, is an instance of a network
query that selects between the two genotypes sgt
or ulgt according to the true/false state of the
Boolean node p1=s7. A similar relationship holds
between nodes p2gt, vgt, ulgt, and p1=v?. Pos-
sible genotype information on the suspect and/or
the victim is entered and propagated from nodes
sgt and vgt. The target node is the logical
combination of the two Boolean nodes p1=s7?
and p2=v? and represents the four different hy-
potheses described above. Ainmix? determines
whether allele A is in the mixture: This will be
so if at least one A allele is present in either plgt
or p2gt. Similarly, for Binmix?, Cinmix?, Din-
mix?, and xinmix? (where x refers to all the al-
leles that are not observed). Information on the
alleles seen in the mixture is entered and propa-
gated from these nodes.

The modular structure of Bayesian networks
supports easy extension to mixtures with more
contributors, as in cases where a rape victim de-
clares that she has had one consensual partner in
addition to the unidentified rapist or that she has
been victim of multiple rape. Simple modification
of the network handles such scenarios, so long as
the total number of contributors can be assumed
known.

In general, however, although the evidence of
the trace itself will determine a lower bound to
this total, there is in principle no upper bound.
Thus, if in a trace we see that the maximum num-
ber of alleles in any marker is three, we know that
the minimum number of contributors that could

Bayesian network for DNA mixture from two contributors.

have produced this trace is two, but we cannot be
sure that there were only two. However, it is often
possible to set a relatively low-upper limit to the
number it is reasonable to consider. We allow, as
contributors to the mixture, persons with known
DNA profiles, such as the victim and suspect
and possibly also unknown individuals. Each of
the various hypotheses H we might consider will
involve a specification, x, for the number of un-
known contributors. Although not strictly neces-
sary, for extra clarity we write Pr,(E|H) for the
probability of the evidence under this hypothesis.
Thus, the likelihood ratio (LR) needed to evalu-
ate the DNA evidence £—comprising the DNA
profiles of the victim, the suspect, and the mixed
trace—in favor of a hypothesis Hy against an
alternative hypothesis H; is

_ Pry(ElHy)
Pr., (E[H))’

where x; denotes the number of unknown individ-
uals involved in the hypothesis H;.

When computing the weight of evidence, one
should give the defendant the benefit of any doubt
or uncertainty and so present the most favorable
reasonable scenario for the defence. This implies
that we should seek and use a lower bound for
the value of the LR as we vary our assumptions
within reasonable limits. And this, in turn, re-
quires that we use an upper limit for the number
of unknown contributors it is reasonable to con-
sider. If the evidence is incriminating even in this
most favorable case, it will be even more so for a
larger number of unknown contributors.
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To aid in setting such an upper limit, we can
use the fact that Pr,(€|H ) can be no larger than the
probability that all the alleles of the x unknown
contributors are in the mixed trace. This implies
(Lauritzen & Mortera, 2002)

M
Pr(E|H) < [T

m=1

where, for each marker m, x,, is the total proba-
bility that a randomly chosen allele will be one of
those seen in the mixed trace. From this, it follows
that if H; is any alternative hypothesis, yielding
likelihood L, we need not consider an alternative
hypothesis H with more than b(L, ) unknown con-
tributors, where

Iny

b(y) =~
0= 35 o,

since that would yield a likelihood smaller than L.

Once it has been agreed to limit attention to
some maximum total number of potential con-
tributors, cases where the number of unknown
contributors is itself uncertain can again be
addressed using a Bayesian network, now includ-
ing nodes for the number of unknown contribu-
tors and the total number of contributors (Mortera
et al., 2003). This can be used for computing the
posterior distribution of the total number of con-
tributors to the mixture, as well as likelihood ra-
tios for comparing all plausible hypotheses.

The modular structure of the Bayesian net-
works can be used to handle still further complex
mixture problems. For example, we can consider
together missing individuals, silent alleles, and a
mixed crime trace simply by piecing together the
appropriate modules.

The issue of silent alleles in a mixed trace
arose in the celebrated case of People v. O. J.
Simpson (Los Angeles County Case BA097211).
At VNTR marker D2S44, the crime trace showed
a three-band profile ABC, the victim had profile
AC and the suspect had profile AB. The popula-
tion allele frequencies are taken as p4 = 0.0316,
pp =0.0842, and pc = 0.0926 and the frequency
of a silent allele as p, = 0.05. For this marker,
Table 24.2 gives the likelihoods (arbitrarily nor-
malized to sum to 1) based on a network that
handles silent alleles and allows for up to two
unknown contributors. Results are shown both

Table 24.2 0. J. Simpson case: Likelihoods for hy-
potheses as to constitution of mixed trace, for suspect
s, victim v, and varying number of contributors u (al-
lowing for silent alleles).

Hypothesis ~ Without Silent ~ With Silent Allele

Exact  2p Rule
s&v&2u 0.0017 0.0039  0.0836
s & 2u 0.0015 0.0032  0.0598
v & 2u 0.0015 0.0031  0.0719
2u 0.0006 0.0008  0.0027
s&v&u 0.0392 0.0578  0.1886
s&u 0.0271 0.0340  0.0878
v&u 0.0253 0.0315  0.0805
s&v 0.9031 0.8657  0.4251

ignoring and allowing for silent alleles, and also
for a “simplified” rough rule for accounting for si-
lence, recommended in the report of the National
Research Council (1996), which replaces the fre-
quency p? by the much larger quantity 2p.

Note that the likelihood ratio in favor of
Hy: s&v against H;: v&u, when correctly ac-
counting for a silent allele, is 27.5, as compared
with 5.3 based on the 2p rule. This clearly shows
that in this case the rule recommended by the
National Research Council is over conservative.
Without accounting for the possibility of a silent
allele, the likelihood ratio is 35.7.

So far we have only used qualitative informa-
tion, namely which allele values are present in
the mixture and the other profiles. A more sen-
sitive analysis additionally uses measured “peak
areas,” which give quantitative information on the
amounts of DNA involved. This requires much
more detailed modeling, but again this can be ef-
fected by means of a Bayesian network (Cowell et
al., 2007). Because the mixture proportion frac
of DNA contributed by one of the parties is a
common quantity across markers, we must now
handle them all simultaneously within one “su-
per network.” Figure 24.7 shows the top-level net-
work for two contributors, involving six markers,
each an instance of a lower-level network marker
as shown in Figure 24.8. This network is an ex-
tended version of the one shown in Figure 24.6,
incorporating additional structure to model the
quantitative peak area information. In particular,
the nodes Aweight etc. in marker are instances
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Figure 24.7  Six-marker OOBN for mixture using peak areas, two contributors.

SOURCE: Cowell, R. G., Lauritzen, S. L., & Mortera, J. (2007). Identification and separation of DNA mixtures using peak
area information. Forensic Science International, 166, 28-34.

Aweight Bweight Cweight xweight

Figure 24.8  Network marker with three observed allele peaks.
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Table 24.3  Data for mixed trace with two contributors.

Marker D8 DI8 D21

Alleles 10* 11 14* 13* 16 17 59 65 67" 70*

Peak area 6,416 383 5,659 38,985 1,914 1,991 1,226 1,434 8,816 8,894
Marker FGA THOI vWA
Alleles 21* 22% 23 8* 9.3* 16* 17 18* 19
Peak area 16,099 10,538 1,014 17,441 22,368 4,669 931 4,724 188

NOTE: The starred values are the suspect’s alleles.

of a class network that models the quantitative in-
formation on the peak weight.

Cowell et al. (2007) analyze the data shown in
Table 24.3, taken from Evett, Gill, and Lambert
(1998), involving a six-marker mixed profile with
between two and four distinct observed bands per
marker and a suspect whose profile is contained
in these. It is assumed that this profile is a mixture
either of the suspect and one other unobserved
contributor or of two unknowns. Using only the
allele values as data, the likelihood ratio for the
suspect being a contributor to the mixture is

be broken down into simpler structures that can
then be pieced back together in many ways, so
allowing us to address a wide range of forensic
queries. In particular, using OOBN we have con-
structed a flexible computational toolkit and used
it to analyze complex cases of DNA profile evi-
dence, accounting appropriately for such features
as missing individuals, mutation, silent alleles,
and mixed DNA traces.
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