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CHAPTER 1. INTRODUCTION

A fundamental observation in the social and behavioral sciences is that 
people change over time, but not necessarily in the same way or at the same
rate. For example, verbal ability increases steadily throughout the elemen-
tary school years, but it does not increase at the same rate for all students.
There are individual differences in the rate and direction of change in many
contexts, and these individual differences in change are often of scientific
or practical interest. Change over time can be measured in seconds, as in
studies of cardiac reactivity, or in decades, as in life span development stud-
ies. Marital arguments, for example, may cause significant endocrinologi-
cal change over the course of only a few minutes, but these changes can 
be quite different for husbands than for wives (Kiecolt-Glaser et al., 1997).
Flora and Chassin (2005) examined growth in drug use among adolescents
as a function of parent alcoholism, following participants over a number of
years through young adulthood. Early approaches to investigating change
were very limited in that (a) they focused exclusively either on group-level
or on individual-level growth and (b) they addressed only two occasions of
measurement, resulting in data too impoverished to allow examination of
some of the most basic and interesting hypotheses about change over time.
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More extensive data and more advanced statistical methods are often
needed to enable scientists to discern and understand not only the shape and
direction of change (trajectory) but also to identify the sources and conse-
quences of change.

Longitudinal designs can yield valuable information about trends in 
psychological phenomena as well as individual differences in aspects of
change over time. The richness of such data increases with the number of
waves of data collection. Willett (1989) and Willett and Sayer (1994) dis-
cuss several advantages associated with longitudinal data drawn from mul-
tiple waves of data collection, relative to two-wave data: (a) the quality of
research findings will be enhanced, (b) psychological theories may suggest
appropriate functional forms for growth, (c) it is possible to test hypotheses
about systematic interindividual differences in growth, (d) it is possible to
associate features of growth with background characteristics, and (e) preci-
sion and reliability in growth measurement is a rapid monotonic increasing
function of the number of waves. In short, longitudinal data not only
enhance the statistical power of hypothesis tests but also enable researchers
to test hypotheses they would be unable to address with cross-sectional or
two-wave data.

Although many techniques have been developed to capitalize on these
desirable features of longitudinal data, the focus of this book is on latent
growth curve modeling (LGM). LGM represents a broad class of statistical
methods that permit better hypothesis articulation, provide enhanced statis-
tical power, and allow greater correspondence between the statistical model
and the theory under investigation relative to competing methods. LGM
permits straightforward examination of intraindividual (within-person)
change over time as well as interindividual (between-person) variability in
intraindividual change. LGM is appealing not only because of its ability to
model change but also because it allows investigation into the antecedents
and consequents of change.

A selection of the kinds of questions the LGM framework can enable sci-
entists to articulate and test include the following:

• What is the shape of the mean trend over time?
• Does the initial level predict rate of change?
• Do two or more groups differ in their trajectories?
• Does rate of change or degree of curvature in the mean trend predict

key outcomes?
• What variables are systematically associated with change over time?
• Are theoretical hypotheses about the trajectory tenable given observed

data?
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• Does significant between-person variability exist in the shape of the
trajectory?

• Is change over time in one variable related to change over time in
another variable?

This list is by no means exhaustive. We now provide an overview of the
rest of the book.

Overview of the Book

This book is intended for readers interested in studying change in phe-
nomena over time. However, because LGM is an application of structural
equation modeling (SEM), it is recommended that the reader have a basic
working knowledge of SEM. It is important that researchers interested in
LGM also be modestly familiar with topics such as multiple linear regres-
sion, the use of path diagrams to represent models, model identification
issues, and the concept of fixed and free parameters. Useful introductory
SEM texts include Kline (2004), Maruyama (1997), and Raykov and
Marcoulides (2000). A more advanced treatment can be found in Bollen
(1989).

We demonstrate the utility and flexibility of the LGM technique by
beginning with a very basic model and building on this basic model with
common extensions that permit deeper understanding of change processes
and better articulated hypothesis tests. With each step, we apply the model
to an existing data set to demonstrate how researchers can approach prob-
lems in practice. We demonstrate how to use LISREL (Jöreskog & Sörbom,
1996), Mx (Neale, Boker, Xie, & Maes, 2003), and Mplus (L. K. Muthén
& Muthén, 1998–2006)—three popular SEM applications—to fit these
models to data, although other user-friendly SEM packages could be used
(e.g., EQS, AMOS). All results were identical (or nearly so) in LISREL and
Mx. Syntax is provided on our Web site,1 but most of the models we
describe can be applied using virtually any SEM software package. In addi-
tion, we provide an extensive reference section so that interested readers
will know where to go for more information. Thus, this book will bring
researchers up to speed in LGM, but it also serves as a gateway to literature
that explores these topics in greater depth.

We begin with a summary of research leading up to the development of
LGM. We then describe the formal model specification, followed by sec-
tions on parameter estimation and model evaluation. Following this intro-
ductory material, we describe the data set we use throughout this book
and the software used for analyses. The remainder of the book is devoted
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to descriptions of specific models likely to be encountered or used in
practice. Beginning with a basic (null) model, we explore more complex
growth curve models by gradually relaxing constraints on parameters and
adding additional variables to the model. We then explore some interest-
ing and common extensions to the basic LGM, including related growth
curves (multiple growth processes modeled simultaneously), cohort-
sequential designs, the addition of time-varying covariates, and more
complicated growth functions. Following these examples, we discuss
relationships between LGM and other techniques, including growth 
mixture modeling, piecewise growth curves, modeling change in latent
variables, and the interface between multilevel (random coefficients)
modeling and LGM.

Latent Growth Curve Modeling: 
A Brief History and Overview

Historically, growth curve models (e.g., Potthoff & Roy, 1964) have been
used to model longitudinal data in which repeated measurements are
observed for some outcome variable at a number of occasions. The latent
growth curve approach is rooted in the exploratory factor analysis (EFA)
and principal components analysis (PCA) literature. Covariances among
repeated measures can be modeled with EFA (Baker, 1954; Rao, 1958) or
PCA (Tucker, 1958, 1966). Factors or components are then conceptualized
as aspects of change or chronometric (as opposed to psychometric) factors
(McArdle, 1989; McArdle & Epstein, 1987), and loadings may be inter-
preted as parameters representing the dependence of the repeated mea-
sures on these unobservable aspects of change. These aspects of change
could include, for example, linear, quadratic, or S-shaped trends. These
appro aches have a number of problems for the study of change, however.
One primary obstacle to using these approaches in practice is rotational
indeterminacy—there is no clear rotation criterion that would select a load-
ing pattern conforming to interpretable aspects of change (e.g., a set of
polynomial curves). Although attempts have been made to develop rotation
criteria that could be used to identify smooth functions (e.g., Arbuckle &
Friendly, 1977; Tucker, 1966), none were completely satisfactory. An addi-
tional limitation of these methods was that they approached the problem of
modeling change from the standpoint of estimating free loadings repre-
senting unknown functional trends (an exploratory approach) rather than
testing the feasibility of a particular set of loadings (a confirmatory
approach). The ability to test specific hypothesized trends is of great inter-
est to substantive researchers.
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Meredith and Tisak (1990) described latent curve analysis (LCA), an
application of confirmatory factor analysis (CFA) that neatly sidesteps the
rotational indeterminacy problem by allowing researchers to specify load-
ings reflecting specific hypothesized trends in repeated-measures data. This
LCA approach is equivalent to what we call LGM. Because LGM is an
application of CFA, which in turn is a special case of SEM, growth curve
models can be imbedded in larger theoretical models. For readers interested
in more details of the historical development of LGM, Bollen and Curran
(2006) provide a thorough overview of its history.

Several advantages are associated with the use of LGM over competing
methods, such as ANCOVA and multilevel modeling. LGM permits the
investigation of interindividual differences in change over time and allows
the researcher to investigate the antecedents and consequences of change.
LGM provides group-level statistics such as mean growth rate and mean
intercept, can test hypotheses about specific trajectories, and allows the
incorporation of both time-varying and time-invariant covariates. LGM
possesses all the advantages of SEM, including the ability to evaluate the
adequacy of models using model fit indices and model selection criteria, the
ability to account for measurement error by using latent repeated measures,
and the ability to deal effectively with missing data. It is straightforward to
compare growth across multiple groups or populations. LGM is a very flex-
ible modeling strategy and can be easily adapted to new situations with
unusual requirements.

Curran and Willoughby (2003) make an important point in stating that
growth curve models “might be viewed as residing at an intersection
between variable-centered and person-centered analysis” (p. 603). An
exclu sively variable-centered (nomothetic) perspective of change empha-
sizes mean trends over time, whereas an exclusively person-centered (idio-
graphic) perspective focuses only on idiosyncratic trends characterizing
individuals. Important insights can be gained from each perspective. Rather
than focusing on one or the other, LGM capitalizes on both nomothetic
aspects of change over time (mean trends) and idiographic aspects (indi-
vidual departures from the mean trend).

Model Specification and Parameter Interpretation

A latent growth model can be represented as a special case of SEM. SEM
is a general modeling framework for specifying and testing hypothesized
patterns of relationships among sets of variables, some of which are mea-
sured (observed) while others are latent (unobserved). Latent variables
often serve as proxies for psychological constructs that are impossible to
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measure directly. A typical structural equation model contains a small num-
ber of latent variables linked by path coefficients, which are interpreted as
regression weights. Latent variables, in turn, are represented by measured
indicator variables. The relationship between latent variables and indicators
corresponds to the factor analysis model. That is, factor loadings represent
effects of latent variables on their indicators.

A special case of this general SEM system yields the basic latent growth
curve model. We present this special case here, and in subsequent develop-
ments involving more complex LGM, we employ more of the full SEM
framework. In LGM, the measured variables are repeated measures of the
same variable y. The latent variables of primary importance are not psy-
chological constructs; they instead represent patterns, or aspects, of change
in y. In a basic LGM, often two factors are specified to represent aspects of
change. These factors are defined by specifying factor loadings of repeated
measures of y such that the factor loadings describe trends over time in y.
The intercept factor represents the level of the outcome measure, y, at
which the time variable equals zero, and the slope factor represents the lin-
ear rate at which the outcome measure changes. For example, a researcher
interested in the rate of linear change in children’s externalizing could col-
lect repeated measurements of externalizing behavior, then treat these
repeated measurements as indicators of intercept and slope factors (con-
straining loadings to reflect the expected pattern of change in that variable).
As we will illustrate, the flexibility of the LGM framework permits the
specification of more sophisticated models as well.

An LGM can be represented in matrix notation in terms of a data model,
a covariance structure, and a mean structure. The data model represents the
relationship between the factors and the repeated measures of y.2 This
model represents the p × 1 vector of observations (y) as a linear function of
intercepts (τy, p × 1), m latent variables representing aspects of change 
(η, m × 1), and disturbance terms (ε, p × 1), treating factor loadings 
(Λy, p × m) as regression coefficients3:

y = τy + Λy η + ε. (1.1)

The τy term is typically fixed to zero for model identification reasons. In
expanded form (for m = 2), this model represents yti, the score at occasion
t for individual i, as a function of two latent variables (η1i and η2i) and an
error term (εti):

yti = λ1tη1i + λ2tη2i + εti. (1.2)
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The latent variables, in turn, may be expressed as functions of latent means
(α1 and α2) and individual deviations away from those means:

η1t = α1 + ζ1t , (1.3)

η2i = α2 + ζ2i . (1.4)

The latent variables η1i and η2i are often referred to as random coefficients.
The ζ residuals, representing individuals’ deviations from the means of η1i

and η2i, are sometimes referred to as random effects.
From the data model in Equation 1.1, one can derive a covariance struc-

ture and a mean structure. The covariance structure represents the popula-
tion variances and covariances of the repeated measures of y as functions of
model parameters, and the mean structure represents the population means
of those repeated measures as another function of model parameters. The
mean and covariance structures differ from the data model in that they do
not contain scores for individuals on the factors (e.g., intercept and slope
factors). These models are often used for parameter estimation and model
evaluation. In the covariance structure, the variances and covariances of
observed variables (Σ, p × p) are represented as functions of factor loadings
(Λy), factor variances and covariances (Ψ, m × m), and disturbance vari-
ances and covariances (Θε, p × p) (Bollen, 1989):

Σ = Λy ΨΛy′ + Θε. (1.5)

The mean structure, obtained by taking the expectation of the data model,
represents population means of observed variables (μy, p × 1) as functions
of intercepts (τy, p × 1) and latent variable means (α, m × 1):

μy = τy + Λy α. (1.6)

In LGM, the elements of τy are typically (but not always) constrained to
zero, yielding a simplified data model and mean structure. Thus, the para-
meters of interest are contained in the matrices Λy, Ψ, and Θε and the vec-
tor α. Columns of Λy are known as basis curves or latent growth vectors
(Singer & Willett, 2003).

In the model in Figure 1.1, Y1 through Y5 represent equally spaced
repeated measures of variable Y. Here, change in Y is modeled as a func-
tion of two basis curves, and thus, the loading matrix Λy has two columns.
Loadings on the intercept factor are fixed to 1.0 to represent the influence
of a constant on the repeated measures. Loadings on the slope factor are
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fixed to a linear progression to represent linearly increasing growth over
time. Although it is traditional to begin the slope loadings at 0 to indicate
that the first occasion of measurement indicates the initial response, this is
by no means necessary, and indeed is often contraindicated. Additional fac-
tors are possible, each representing additional aspects of growth, often, but
not necessarily, polynomial (see Model 10 in Chapter 2). In addition, the
covariances among these aspects of change can be estimated by specifying
covariance paths among factors. The ability to estimate these covariances
can be impor tant in situations where, for example, it is of interest to deter-
mine whether rate of growth in some variable is related to initial status. The
triangle in Figure 1.1 represents the constant 1.0. Thus, the path coefficients
linking the triangle to the basis factors are regressions onto a constant and,
thus, represent means of the intercept and slope factors.

In the matrix representation of the covariance structure of Y1 through Y5,
specifying the loadings of the repeated measures on intercept and slope fac-
tors equates to completely specifying the contents of Λy, the factor loading
matrix. The important parameters, including the necessary constraints for a
simple linear growth model with homoscedastic and uncorrelated distur-
bance variances, are

(1.7)

(1.8)

(1.9)

(1.10)

Interpretation of the parameters in these matrices is straightforward.
Elements of Λy are fixed by the researcher to represent hypothesized

= ψ11

ψ21 ψ22

� �
,Ψ

Λy =

1 0

1 1

1 2

1 3

1 4

2
66664

3
77775,

Θε =

θε
0 θε
0 0 θε
0 0 0 θε
0 0 0 0 θε

2
66664

3
77775:

α= α1

α2

� �
,
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Figure 1.1 A Complete Path Diagram for a Typical Latent Growth Curve
Model, Including Random Intercept, Random Linear Slope, and
Intercept–Slope Covariance Parameters.

NOTE: By SEM convention, circles represent latent variables, squares represent measured
variables (here, Y1 through Y5 are equally spaced repeated measures), triangles represent
constants, double-headed arrows represent variances or covariances, and single-headed
arrows represent regression weights. Numerical values correspond to fixed parameters,
whereas symbols represent free parameters (those to be estimated).

trajectories, where each column of loadings represents a hypothesized
aspect of change. In Equation 1.7, all elements in the first column are
constrained to 1.0 to reflect the fact that each individual’s intercept
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remains constant over the repeated measures. The linear progression in
the second column of Λy reflects the hypothesis of linear growth with
equal time intervals. Elements of Ψ represent the variances and covari-
ances of these aspects of change. In the case of simple linear growth
represented in Figure 1.1, the Ψ matrix includes the intercept variance
(ψ11), the slope variance (ψ22), and the covariance of intercepts and
slopes (ψ21). The elements of α are regression coefficients predicting
aspects of change from a constant (1.0), and can be interpreted as the
mean intercept and slope. In particular, α2 in Equation 1.9 represents
the expected change in the outcome variable associated with a change
of one unit in the time metric. Finally, elements of Θε are variances and
covariances of disturbance terms, representing the portion of the vari-
ance in data not associated with the hypothesized latent curves.4 If
homoscedastic disturbance variance is assumed (as they are in
Equation 1.10), the single disturbance variance may be represented by
placing an equality constraint on the diagonal elements of Θε. The off-
diagonal terms in Θε are usually fixed to zero to represent the hypoth-
esis that disturbances are uncorrelated over time, although this
assumption is not required. This basic LGM may be extended to incor-
porate predictors of intercept and/or slope, parallel growth curves for
multiple outcomes, and parameter constraints (e.g., the covariance of
the intercept and slope may be constrained to zero). These extensions
and others are discussed later.

To summarize, there are six parameters estimated in a typical linear
application of LGM, regardless of the number of repeated measurements.
These include the mean intercept and slope (α1 and α2), the intercept and
slope variances and covariance (ψ11, ψ22, and ψ21), and a disturbance vari-
ance (θε) that remains constant over repeated measurements. The remaining
parameters are typically constrained to zero or to values consistent with a
particular pattern of change. As you will see, some of these constraints can
be changed or relaxed in various ways, depending on the characteristics of
particular applications. Additional free parameters are added to the model
in more complex models, such as those involving nonlinear growth or pre-
dictors of change over time.

The Scaling of Time

In Figure 1.1 and Equation 1.7, time was coded in a way that expressed
linear change, placing the origin of the time scale at the first occasion of
measurement (λ1,2 = 0). The loading pattern illustrated in Equation 1.7, in
which the intercept is interpreted as “initial status,” is typical, but other
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patterns may be useful as well, depending on the particular research ques-
tion under consideration. Consider a case in which the last occasion of
measurement (e.g., graduation from a drug rehabilitation program) is the
occasion of most interest. In such situations, it is more sensible to code the
final occasion of measurement as 0, as in the following loading matrix:

(1.11)

In Equation 1.11, the slope loadings increase linearly, but the intercept is
defined to lie at the fifth, and last, occasion. In addition, if it is more sensi-
ble to code time in terms of months rather than years, Equation 1.11 could
be reparameterized as follows:

(1.12)

The interpretation of some model parameters related to the slope factor
(e.g., the mean slope or regression weights associated with predictors of
slope) will be different for loading matrices in Equations 1.11 and 1.12, but
the fit of the overall model will not. In fact, any linear transformation of the
loading matrix will not alter model fit, although transformation of Λy does
have important consequences for parameter interpretation (Biesanz, Deeb-
Sossa, Papadakis, Bollen, & Curran, 2004; Hancock & Lawrence, 2006;
Mehta & West, 2000; Rogosa & Willett, 1985; Stoel, 2003; Stoel & van den
Wittenboer, 2003; Stoolmiller, 1995; Willett, Singer, & Martin, 1998). It is
rarely sensible, for example, to center the time variable at its mean because
the central occasion of measurement is not usually of most interest.5 Rather,
time should be coded in a way that facilitates answering substantive ques-
tions. The zero point of the time scale should be placed at a meaningful
occasion of measurement, in part because this choice determines the point
in time at which to interpret the mean intercept, intercept variance, and 
intercept–slope covariance (Rogosa & Willett, 1985). Stoel (2003) and Stoel
and van den Wittenboer (2003) suggest that the intercept is meaningful only

Λy =

1 0

1 12

1 24

1 36

1 48

2
66664

3
77775:

Λy =

1 − 4

1 − 3

1 − 2

1 − 1

1 0

2
66664

3
77775:
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for growth processes with a natural origin; if the time origin is chosen arbi-
trarily, interpretation of any intercept-related parameters should be avoided.
Similarly, the metric of time should be chosen so as to maximize inter-
pretability (Biesanz et al., 2004). In some circumstances, this may involve
using two metrics of time simultaneously in the same model (e.g., age and
wave; see McArdle & Anderson, 1990).

A common question concerns the optimal number of repeated measures to
use. To a large extent this choice will be dictated by practical concerns such
as time and cost. The minimum number of repeated measures necessary to
achieve a model with at least one degree of freedom (df) for m polynomial
growth factors, regardless of whether or not the disturbance variances are
constrained to equality over time, is m + 1. This formula will always hold,
assuming that the estimated parameters include only factor means, factor
(co)variances, and disturbance variances. A model with at least 1 df (i.e., an
overidentified model) is necessary because, if there are at least as many free
parameters as there are sample means and (co)variances, the model will not
be identified and will thus be untestable (see Bollen, 1989; Bollen & Curran,
2006, for more details on model identification).

But how many repeated measures should be used, given m + 1 as an
absolute minimum? Stoolmiller (1995) suggests that four to five measure-
ment occasions are probably sufficient for modeling linear growth.
MacCallum, Kim, Malarkey, and Kiecolt-Glaser (1997) note that there is
no reliable rule of thumb, but suggest that linear models demand at least
four or five repeated measures, whereas more complex models may
demand “substantially more than that” (p. 217). To obtain adequate power
for testing covariances among slope factors in parallel process latent growth
curve models (Model 7 in Chapter 2), Hertzog, Lindenberger, Ghisletta,
and von Oertzen (2006) recommend that at least six repeated measures be
collected, but this figure may shift up or down with changes in effect size,
sample size, or growth curve reliability (the ratio of total variance explained
by aspects of growth). As in almost every other aspect of data analysis,
more is better—more data yield more information, and that is never a bad
thing. However, it is our experience that parsimonious linear models often
have trouble adequately fitting more than six repeated measures. This
should come as no surprise, as few natural processes are likely to follow
precisely linear trajectories. No model is correct, so researchers should be
prepared to see simple models fit poorly as information accumulates. LGM
is best suited for modeling trends measured over a limited number of occa-
sions in large samples. Regardless of the number of measurements, the
range of measurement should be sufficient to span the entire time frame of
theoretical interest.
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Finally, we note that occasions of measurement need not be equally
spaced. For example, if longitudinal data were collected in 1977, 1979,
1983, and 1984, the intervals between occasions of measurement become
2, 4, and 1:

(1.13)

The loading matrix in Equation 1.13 still represents linear change; the
intervals between slope loadings are themselves linear rescalings of the
intervals between occasions of measurement. If one takes 1977 as a base-
line, subsequent measurement occasions occurred 2, 6, and 7 years after it.
In nonlinear models (such as the polynomial latent curve models described in
Chapter 2 or the structured latent curve models discussed in Chapter 3), it
is often a good idea to not only collect more than five repeated measures
but also to space measurements more closely together during periods when
change is occurring the most rapidly. This helps avoid estimation problems
and to more accurately estimate parameters characterizing change.

Our point is that there is no “one-size-fits-all” design and corresponding
growth curve model. The number of measurement waves, times between
waves, units of time, and placement of the time origin may vary greatly
both within and across studies. More in-depth discussion of the scaling of
time may be found in Biesanz et al. (2004), Curran and Willoughby (2003),
Hancock and Choi (2006), Schaie (1986), and Stoolmiller (1995).

Asynchronous Measurement

Loadings in Λy are fundamentally unlike other fixed parameters with
which users of SEM may be familiar. Regardless of how time is coded,
the contents of Λy represent functions of time. For example, the slope
loadings contain values of what might be considered the predictor time in
other modeling contexts. Many applications of LGM make the oversim-
plifying assumption that data are collected at the same occasions across
all individuals (Mehta & West, 2000). Such data are referred to as time-
structured data (Bock, 1979). The fact that all subjects share the same
occasions of measurement permits these values to be placed in a common
Λy matrix. But this is unrealistic in most applications. In situations where
individuals are not measured at the same occasions, or are measured at the

Λy =
1 0

1 2

1 6

1 7

2
664

3
775:
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same occasions but at different ages, the basic LGM described earlier will
not be sufficient. As we now discuss, there are two main strategies for
estimating growth curve models in situations when individuals are mea-
sured at different occasions. Both strategies allow for individual differ-
ences in factor loadings.

When all individuals are not measured at the same occasions, but there
is a limited set of measurement schedules, a multiple-group strategy can be
employed in which multiple models, each characterized by a distinct Λy

matrix, are estimated simultaneously. We discuss this strategy in more
detail in the next section, but basically it involves placing individuals with
the same measurement schedule into groups and fitting the model simulta-
neously to all such groups (Allison, 1987; T. E. Duncan, Duncan, Strycker,
Li, & Alpert, 1999; McArdle & Bell, 2000; McArdle & Hamagami, 1991;
B. Muthén, Kaplan, & Hollis, 1987). Thus, all individuals measured only at
times 1, 3, 5, and 6 may belong to Group 1, whereas all individuals mea-
sured only at times 1, 2, 4, and 5 may belong to Group 2.

But consider the case in which there are too many distinct measurement
schedules to be accommodated by the multiple-groups solution. A more
general solution exists. An attractive feature of the Mx and Mplus programs
is that they can accommodate individual slope loadings via implementation
of definition variables, or individual data vectors—special parameter vec-
tors containing fixed values for each individual (Hamagami, 1997; Neale 
et al., 2003). Whereas the traditional approach involves applying a model
in which all individuals are assumed to share the same basis curves and thus
the same Λy, the use of definition variables involves creating a set of slope
factor loadings unique to each individual. In the special case of longitudi-
nal research involving age, this is referred to as scaling age across individ-
uals (Mehta & West, 2000). A sample Mx script demonstrating this
technique is included in Appendix A of Mehta and West (2000) and at our
Web site (http://www.quantpsy.org/).

Assumptions

LGM with maximum likelihood (ML) estimation invokes certain important
assumptions. Most assumptions involve the distributions of latent variables
(in LGM, these are, for instance, intercept, slopes, and disturbances).
Because these variables are by definition unobservable, it is customary to
assume their characteristics. We assume that the means of residuals and dis-
turbance terms in Equations 1.2, 1.3, and 1.4 are zero. At each occasion, this
assumption applies to means computed across the population of individuals
and across theoretical repeated observations of the same person. In other
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words, if it were possible to measure the same individual repeatedly at a
given occasion, we assume that the mean of the disturbances across those
measurements is zero. In a similar sense, the covariances among all residual
terms are assumed to be zero within and between occasions, and all covari-
ances between residuals in Equation 1.2 and random intercepts and slopes
are assumed to be zero. To use ML estimation, it is necessary to make the
additional assumption that observed variables are derived from population
distributions with roughly the same multivariate kurtosis as a multivariate
normal distribution. The assumptions underlying LGM are treated exten-
sively by Bollen and Curran (2006).

Byrne and Crombie (2003) discuss three additional assumptions. They
require the assumptions that the trajectory be linear, that the disturbances
be uncorrelated across occasions, and that the disturbance variances remain
equal across occasions. In fact, these are not assumptions of LGM or of
ML. Byrne and Crombie’s assumption of linearity refers to the linearity of
the growth trajectory, not to the loadings. Technically, this is not an assump-
tion; rather, it is the central hypothesis under scrutiny. Two ways to test the
hypothesis of linearity are to compare the fit of a linear growth curve model
to a baseline of absolute fit or relative to an unspecified trajectory model
(see Model 11 in Chapter 2). The other two assumptions discussed by
Byrne and Crombie (independence and homoscedasticity of disturbances)
may be common aspects of model specification in LGM but are not
required; in fact, the ability to estimate different occasion-specific distur-
bance variances is considered a strength of the LGM approach and is
required for approaches that combine LGM with autoregressive strategies
(Curran & Bollen, 2001; McArdle, 2001).

Parameter Estimation and Missing Data

Parameter estimation in SEM traditionally is accomplished with ML esti-
mation, the use of which assumes that measured variables are multivariate
normally distributed. For models such as latent growth curve models that are
designed to explain covariances as well as means of measured variables, the
data are typically in the form of a sample covariance matrix, S, and sample
mean vector, y–, computed from complete data (the data are sometimes
forced to be complete through listwise deletion or one of several data impu-
tation methods). Matrix S is of order p × p and contains the sample variances
and covariances of the p repeated measures of y. Vector yy– contains the
sample means of those p repeated measures. According to the covariance
and mean structure models in Equations 1.5 and 1.6, the population covari-
ance matrix, Σ, and mean vector, μ, are functions of model parameters. If we

15

01-Preacher-45609:01-Preacher-45609.qxd 6/3/2008 3:36 PM Page 15



let all the parameters in Equations 1.5 and 1.6 be organized into a single vec-
tor, θ, then the objective in parameter estimation is to find parameter esti-
mates in θ̂ such that the resulting implied Σ and μ are as similar as possible
to S and yy–, respectively. In ML estimation, this optimality is defined using
the multivariate normal likelihood function. That is, ML estimation results
in a set of parameter estimates θ̂ that maximize the log of the likelihood
function:

(1.14)

Extending developments by Jöreskog (1967), it can be shown that lnL is
maximized when the following discrepancy function is minimized:

(1.15)

Thus, given S and yy–, ML estimation seeks a vector of parameter estimates,
θ̂, that produce implied Σ and μ matrices (from Equations 1.5 and 1.6) that
minimize FML. Note that if Σ = S and μ = yy–—that is, if the model perfectly
reproduces the data—then FML = 0.

The minimization of the FML discrepancy function assumes that complete
sample data are used to obtain S and yy–. If some data are missing—for exam-
ple, if individuals are measured at different occasions or if data simply are
not obtained for some individuals at some occasions—this strategy will not
work because covariance matrices computed using the available data may
not be internally consistent. Fortunately, options are available for dealing
with missing data. The multiple-group strategy mentioned earlier in the
context of multiple measurement schedules can be considered a general
model-based approach to addressing missing data (T. E. Duncan & Duncan,
1995; Marini, Olsen, & Rubin, 1979; McArdle & Hamagami, 1992; 
B. Muthén et al., 1987). For example, if some individuals are measured at
occasions 1, 2, 3, and 5 and others are measured at occasions 1, 3, 4, and 5,
a two-group model may be specified in which all members within each
group share the same occasions of measurement. For multisample analyses,
the discrepancy function in Equation 1.15 is generalized to a multisample
expression and is then minimized so that optimal fit is obtained to all
groups simultaneously.

The multiple-groups approach to dealing with missing data becomes
impractical when there are more than a few distinct measurement schedules.
Until recently, this limitation presented a real problem, given the prevalence

ln L=− 1

2
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of missing data in real longitudinal designs. Advances in estimation that
allow models to be fit directly to raw data have made it possible to include
incomplete cases in the analysis. In situations involving missing (partially
complete) data, the full information maximum likelihood (FIML) method is
often recommended to obtain ML parameter estimates. To allow for incom-
plete data, the log likelihood in Equation 1.14, which implies the availabil-
ity of complete data, can be modified as follows:

(1.16)

where yi is the measured portion of the data vector for individual i and μi

and Σi are the modeled mean vector and covariance matrix, respectively,
with rows and columns corresponding to the data present for individual
i (Arbuckle, 1996; Wothke, 2000). FIML estimation involves maximiz-
ing this function. FIML is more efficient and less biased than methods
involving data imputation or deletion of partial data and yields unbiased
estimates when data are missing completely at random (MCAR) or miss-
ing at random (MAR; Neale, 2000; Rubin, 1976).6 When compared with
pairwise and listwise deletion and imputation methods, FIML has been
shown to have a lower incidence of convergence failure, higher effi-
ciency, lower bias, and more accurate model rejection rates (Enders &
Bandalos, 2001). The characteristics of the two methods are similar. In
fact, they are equivalent when no data are missing. For a clear, more 
in-depth description of the FIML algorithm with comparisons to other
methods, see Enders (2001).

FIML is only one of several discrepancy functions that can be minimized
to yield parameter estimates in the presence of missing data. Other
approaches include the application of generalized least squares, unweighted
least squares, the E-M algorithm, and asymptotically distribution free
methods to data that have been rendered “complete” through pairwise or
listwise deletion or through single or multiple imputation. FIML is often
preferable to these methods because (a) it uses all available information to
estimate parameters, (b) it does not require extremely large samples, and 
(c) standard errors may be obtained by inverting the asymptotic covariance
matrix of parameter estimates. Pairwise and listwise deletion omit some
data from consideration, and pairwise deletion risks the possibility of
encountering a covariance matrix that is not positive definite. Furthermore,
FIML is now a standard estimation option in most SEM software, includ-
ing AMOS (Arbuckle & Wothke, 1999), Mplus (L. K. Muthén & Muthén, 
1998–2006), Mx (Neale et al., 2003), EQS (Bentler, 1995), and LISREL
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(Jöreskog & Sörbom, 1996). In LISREL, for example, FIML is automati-
cally invoked if raw data are used as input. Missing data issues are dis-
cussed in more depth by Allison (1987, 2002). The primary drawback to
using FIML estimation is that, if some data are missing, the full array of
ML fit indices is not available.7

Model Evaluation and Selection

Specifying and testing models as representations of theoretical predictions
is fundamental to the practice of modern empirical science. In developing
a model to be fit to observed data, it is critical that the specified model accu-
rately reflect the predictions or implications of a substantive theory of
growth (Collins, 2006; Curran, 2000; Curran & Hussong, 2003; Curran &
Willoughby, 2003). In addition, although the focus here is on model evalu-
ation, it is usually preferable not to specify and evaluate models in isola-
tion, but rather to compare competing, theoretically derived models.

Given a theoretically plausible model, hypotheses in LGM can be tested
by assessing the statistical and practical significance of model parameters,
including the means of the intercept and slope factors and the variances and
covariances among aspects of change. An informal test of the significance
of a parameter is conducted by dividing the point estimate by its standard
error; if the ratio exceeds about 2.00 (1.96 in very large samples), the para-
meter estimate is said to be significantly different from zero at the .05 level.
The determination of practical significance depends heavily on the context.

In SEM, the fit of an entire model also can be assessed. Indeed, good fit
by global criteria is usually a prerequisite for interpreting parameter esti-
mates.8 Under multivariate normality and under the null hypothesis of per-
fect fit, F̂ML × (Ν − 1) is distributed as χ2 with degrees of freedom df = 
[p(p + 3)/2] − q*, where p is the number of variables and q* is the effective
number of free model parameters.9 This χ2 statistic forms the basis for an
array of fit indices that can be used to gauge the match between a model’s
predictions and observed data. We recommend the root mean square error of
approximation (RMSEA; Browne & Cudeck, 1993; Steiger & Lind, 1980):

(1.17)

available in several SEM programs. The numerator under the radical in
Equation 1.17 is an estimate of model misfit (discrepancy) in the popula-
tion. Thus, the quantity under the radical represents estimated population

RMSEA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max F̂ML − df
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model error per degree of freedom and thus smaller values are better.
RMSEA is preferred because it is an estimate of misfit in the population
rather than simply a measure of misfit in the sample. Importantly, one can
obtain confidence intervals for RMSEA, providing a measure of precision
of this fit index in addition to a point value.

Because χ2-based indices are known to suffer from problems associated
with near-singular matrices (Browne, MacCallum, Kim, Andersen, &
Glaser, 2002), violations of distributional assumptions (Curran, West, &
Finch, 1996), and large N (Tucker & Lewis, 1973), it is also advisable to
examine simple residuals between elements of S and Σ̂. A common index
based only on residuals is the standardized root mean square residual
(SRMR; Jöreskog & Sörbom, 1996), a summary measure of the magnitude
of the residuals. SRMR is the square root of the average squared absolute
difference between observed correlations and model-implied correlations
(and thus smaller values are better). Like RMSEA, SRMR is included as
default output in many SEM programs, although it should be kept in mind
that SRMR assesses fit of the covariance structure only and is not sensitive
to misfit in the mean structure.

Another family of fit indices reflects the incremental fit of the specified
model over the fit of an appropriately specified null model (see Model 0 in
Chapter 2). One example of this sort of fit index is the nonnormed fit index
(NNFI; Bentler & Bonett, 1980; Tucker & Lewis, 1973):

(1.18)

where χ2
0 and df0 are computed with respect to the null model, and χ2

k and dfk

are computed with respect to the model of interest. NNFI has been
demonstrated to be relatively robust to violations of distributional
assumptions (Lei & Lomax, 2005). We elaborate on the appropriate null
model in the next chapter. In this book, we report χ2, RMSEA, NNFI, and
SRMR for all fitted models.

In addition to evaluation of models in isolation, a model selection
approach can be used to evaluate the relative fit of nested or nonnested
models. One model is said to be nested in another if the estimated parame-
ters of one (Model A) are a subset of those in the latter (Model B). In other
words, if some of the parameters in B are constrained to yield A, A is nested
within B. When some data are partially missing, some fit indices can 
no longer be computed (Enders, 2001), for example, GFI and SRMR.
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Under the null hypothesis of no difference between models, the difference
in χ2 statistics (Δχ2) for complete data, or between −2lnL values for incom-
plete data, is itself distributed as a χ2 statistic, with df equal to the differ-
ence in the number of parameters estimated. For models that are not nested,
information-based model selection criteria (e.g., Akaike information crite-
rion, Bayesian information criterion) may be used to select models.

Statistical Power

As with most applications of inferential statistics, statistical power is
important in the LGM context. Power refers to the probability of correctly
rejecting a false null hypothesis. In the LGM context, the null hypothesis is
the researcher’s latent growth curve model, so power is the probability that
one’s model of growth will be rejected if it is not correct in the population.
LGM models are generally never exactly correct in the population, so a
high level of statistical power will tend to ensure rejection of models that
are very good, but not perfect. This rejection of good models is, of course,
not desirable in practice, but is a well-known limitation of the likelihood
ratio test of model fit. In practice, this situation is remedied through the use
of various descriptive measures of fit such as those described earlier rather
than focusing exclusively or heavily on the likelihood ratio test of model fit.

MacCallum, Browne, and Sugawara (1996) describe a method of com-
puting power (given sample size) or minimum required sample size (given
a desired level of power) that involves the RMSEA fit index. The researcher
chooses null and alternative hypotheses corresponding to values of
RMSEA that reflect, respectively, good fit (ε0) and poor fit (εA). For exam-
ple, the test of exact fit might involve selecting ε0 = 0.00 (exact fit) and εA =
0.08 (mediocre fit). A test of close fit might involve selecting ε0 = 0.05
(close fit) and εA = 0.10 (unacceptable fit). SAS code provided by the
authors will supply the minimum N necessary for rejecting a poor model at
a given level of power, model df, and a pair of null and alternative hypothe-
ses defining good and poor fits in terms of RMSEA. Conversely, their code
will supply the level of statistical power associated with a pair of null and
alternative hypotheses given a particular N and model df.

In addition to the power to reject a poor model, it is also sensible to con-
sider the power to detect nonzero parameters. This kind of power represents
a largely unstudied topic in the LGM context. An exception is a recent
study by Hertzog et al. (2006), who found that the power to detect slope
covariances in parallel process latent growth curve models (see Model 7 in
Chapter 2) depends heavily on effect size, the number of repeated mea-
sures, growth curve reliability, and sample size.

20

01-Preacher-45609:01-Preacher-45609.qxd 6/3/2008 3:36 PM Page 20



Notes

1. http://www.quantpsy.org/
2. For those readers familiar with the LISREL framework for model specification

in SEM, the mathematical representation here uses the “all-y” model, where all
latent variables are considered as endogenous.

3. Vectors are denoted by underscores, and matrices are denoted by boldface.
4. It is important to remember that elements of Θε do not represent error variance

in the usual sense. Rather, the tth variance in Θε reflects the degree to which a lin-
ear model does not adequately capture individuals’ scores at occasion t. Much of
this variability may be due to error, but it also may be amenable to prediction by
other variables.

5. Stoolmiller (1995), on the other hand, recommends centering the time variable
in polynomial models to avoid estimation problems due to linear dependence
among the polynomial terms.

6. Missing data (for x) are MCAR when “missingness” depends neither on
observed nor unobserved responses of x or any other variable. Missing x data are
MAR when missingness depends neither on observed nor unobserved responses of
x after controlling for other variables in the data set (Allison, 2002).

7. Mplus is the only SEM software, of which we are aware, that will compute fit
indices when some data are missing.

8. Perhaps owing to their highly constrained nature, it is common for growth
curve models to fit poorly by global fit criteria. However, models may fit poorly in
situations even when individual growth curves are approximated well. Coffman and
Millsap (2006) recommend that global fit indices be supplemented with individual
fit criteria.

9. This formulation of df assumes that sample data comprise both means and
covariances. Growth curve models are almost always fit to means and covariances.
If the mean structure is not modeled, df = [p(p + 1)/2] − q*.
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