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CHAPTER 2. APPLYING
LGM TO EMPIRICAL DATA

Data

In the following, we demonstrate how to use growth curve models in prac-
tice. For this demonstration, we use data from the National Institute of Child
Health and Human Development (NICHD) Study of Early Child Care and
Youth Development (NICHD Early Child Care Research Network, 2006).
Quantification and subsequent analysis of parent—child relationships offer
a relatively objective way to approach familial problems. A great deal of
research examines the linkages between these relationships and outcomes
such as smoking or drinking (e.g., Blackson, Tarter, Loeber, Ammerman, &
Windle, 1996), self-regulation ability (e.g., Wills et al., 2001), and adoles-
cent pregnancy (see Miller, Benson, & Galbraith, 2001, for a review). Good
parent—child relationships are consistently found to be associated with pos-
itive child outcomes, but the associations between parent—child relationships
at any given time and later outcome measures are typically moderate in size.
One of the many reasons for the lack of perfect predictive validity of parent—
child relationships is that these relationships change over time. Theoretical
approaches ranging from the psychodynamic (e.g., Freud, 1958) to evolu-
tionary (e.g., Steinberg, 1989) and social-cognitive (e.g., Smetana, 1988) all
predict change in parent—child relationships as children mature, albeit for
different reasons. Studying change over time in parent—child relationships
provides additional opportunities to increase predictive accuracy, as well as
to arrive at a more complete understanding of how parent—child interactions
influence children’s and adolescents’ undesirable behaviors.

We selected two composite measures from the Child—Parent Relationship
Scale. Specifically, 15 rating-scale items from the Student-Teacher
Relationship Scale (Pianta, 1993) were adapted to assess parents’ report of
the child’s attachment to the parent. Each item was scored on a scale of 1 to 5,
where 1 = Definitely does not apply and 5 = Definitely applies. These items
were used to construct four composite measures, labeled Conflict With
Child (CNFL) and Closeness With Child (CLSN) for mothers and for
fathers. These variables were assessed during the elementary school years,
Grades 1 through 6 (data were not collected in the second grade). Mothers’
Closeness to Child served as the primary repeated-measures variable for
most of the models to be illustrated. In conjunction with these relationship
measures, a grouping variable (child gender) was selected so that we could
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demonstrate how groups can be included in longitudinal models. We
extracted data for all children who had at least one valid CLSN score, yield-
ing a total sample size of 1,127 children (571 boys and 556 girls). Analyses
were performed on all cases with complete data on the variables of interest.’
Descriptive information is included in Table 2.1. Mean scores for CLSN are
presented in Figure 2.1. Finally, the observed covariance matrix and means
for the 851 complete-data cases in our sample are given in Table 2.2.

Software

The models described below were estimated using three software packages.
We used LISREL 8.8 (Joreskog & Sorbom, 1996), Mx 1.1 (Neale et al.,
2003), and Mplus 4.2 (L. K. Muthén & Muthén, 1998-2006). Other user-
friendly packages are available for analyzing growth curve models, such as
AMOS and EQS. Mx is especially useful for its flexibility and the fact that
it is public domain software, freely available for downloading. A free stu-
dent version of LISREL, capable of estimating all models in this book, is
available at the SSI Web site as of this writing.> Ferrer, Hamagami, and
McArdle (2004) provide a guide to specifying growth curve models in a
variety of software applications.
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Figure 2.1 Mean Closeness Scores (Mothers), Grades 1-6. Error Bars
Represent One Standard Deviation.
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TABLE 2.1
Descriptive Statistics for Mother’s Closeness to Child Data
Entire Sample Boys Girls
Grade N Mean SD N Mean SD N Mean SD

Cases with incomplete data

1,016 37.96 2.56 508 37.73 2.77 508 38.20 2.30
1,025 37.19 2.82 508 37.07 2.73 517 37.32 2.90
1,022 36.96 3.33 516 36.62 3.53 506 37.31 3.08
1,018 36.56 3.25 506 36.65 3.34 512 36.77 3.16
1,024 36.18 3.56 512 35.93 3.63 512 36.42 3.47

AN N W=

Cases with complete data

1 851 37.95 2.53 417 37.76 2.66 434 38.14 2.38
3 851 37.28 2.74 417 37.20 2.62 434 37.35 2.86
4 851 37.05 3.28 417 36.74 3.45 434 37.34 3.07
5 851 36.57 3.21 417 36.34 3.31 434 36.79 3.09
6 851 36.14 3.59 417 35.84 3.73 434 36.42 3.43
TABLE 2.2
Mother—Child Closeness:
Means and Covariances of Cases With Complete Data (N = 851)
Grade Means Covariances
1 37.9542 6.3944
3 37.2785 3.2716 7.5282
4 37.0463 4.1435 6.0804 10.7290
5 36.5696 3.7058 5.1597 6.5672 10.2920
6 36.1363 4.1286 5.7608 7.2365 7.6463 12.9085

Overview of Model-Fitting Strategy

A typical application of LGM to a problem with repeated measures con-
tains variables measured at two levels of analysis. Level 2 units are the enti-
ties under study, which are usually (but not necessarily) individuals. Level 1
units are the repeated measurements taken on each Level 2 unit. Other vari-
ables may be measured either at Level 1 or at Level 2. Level 1 variables
include the outcome (y) variable(s) and all other variables that are measured
at the same occasion. Variables that are measured repeatedly and used to
predict variability across repeated measures of the outcome are referred to
as time-varying covariates (TVCs). Level 2 variables represent characteris-
tics of the Level 2 units and thus vary across individuals rather than within
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individuals over time; examples might include gender, contextual variables,
or stable personality traits. Level 2 predictors are often called time-invariant
covariates. Variability in the intercept or slope factors may be explained by
time-invariant covariates. For example, a researcher may be interested in
the change in parents’ perceptions of parent—child closeness as children
age. She or he may collect data from the same parents on a number of occa-
sions and may want to model the change in closeness over time. For this
model, the researcher might choose the zero point of the time scale to lie at
the first measurement occasion and then collect four subsequent waves of
data from the same children. If the researcher finds that trajectories (inter-
cepts and slopes) vary significantly across children, she or he may want to
investigate whether gender differences explain some of that interindividual
variability. Therefore, the researcher may introduce gender as a predictor of
initial level (the intercept factor), of rate of change (the slope factor), or
both. Here, gender is a time-invariant covariate because it varies over the
Level 2 units (children) but not within Level 2 units.

Especially with a technique as flexible as LGM, it is helpful to specify a
theoretically informed sequence of models to test before attempting to fit
models to data. One then checks the fit of an a priori sequence of theoreti-
cally plausible models in the specified order. When models of increasing
complexity no longer result in significant improvements in fit, one con-
cludes than an acceptable model has been found. In the next section, we
demonstrate this approach.

Model 0: The Null Model

The phrase null model generally is used to refer to a basis for comparison
of hypothesized models. The null model in LGM is different from that in
typical applications of SEM. In typical SEM applications, the null model is
one in which no relationships are predicted among measured variables.
Only variance parameters are estimated, and there are no latent variables.
However, in the context of LGM, we define the null model to be a model in
which there is no change over time and no overall variability in mean level
(Widaman & Thompson, 2003). Only the mean level (intercept; ¢,) and a
common disturbance variance (6,) are estimated:

A=, .1
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¥ = [0], 2.2)
a=1[o], 2.3)
0
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o 0 e

where A is a 5 x 1 matrix representing the fixed loadings of each of our 5
occasions of measurement on the intercept factor. In this model, there is
hypothesized to be no change over time, so the slope factor is omitted alto-
gether. Matrix W is a 1 x 1 matrix containing the variance of the intercept,
which is fixed to zero in this model. @, is a 5 X 5 diagonal matrix with all
elements on the diagonal constrained to equality. This equality constraint
represents the assumption of homoscedasticity.® Finally, ot is a 1 X 1 matrix
containing the estimated population mean, ¢,. If it is determined that the
null model is inappropriate for the data (it usually will be), the intercept
variance is usually estimated and a linear slope factor included to represent
change over time. Predictors of intercept and slope can be included, fol-
lowing either an a priori theory-guided approach or a more exploratory
approach. This simple two-parameter model, or a model adhering as closely
as possible to it, will serve as the null model throughout the rest of this
chapter for purposes of computing NNFI.

Model 1: Random Intercept

The random intercept model is the simplest example of a latent growth
curve model. In LGM, the random intercept model is equivalent to a one-
factor CFA model incorporating a mean structure, with all factor loadings
fixed to 1.0 and all disturbance variances constrained to equality (see
Figure 2.2). The parameter matrices are specified as in Equations 2.1, 2.2,
2.3, and 2.4, save that ¥ = [y, ], which corresponds to interindividual vari-
ability in overall level.

When we fit Model 1 to the data in Table 2.2 using LISREL, we obtained
the parameter estimates reported in Table 2.3.* Results showed that there
was significant unexplained intraindividual variance (6,) and interindivid-
ual variance (,,). In both cases, the significance of these parameters is
seen by their size relative to their standard errors, which exceeds a 2:1 ratio.
This significant variation may provide a statistical rationale for fitting more
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1: Random Intercept Model
¥2(17) = 661.09, p < .0001
RMSEA = 0.23, Cl g,: 0.22, 0.25
NNFI =0.70
SRMR =0.19

Figure 2.2 A Path Diagram Representing the Random Intercept Model.
NOTE: CLSN = Closeness with child.

complex models by, for example, including both time-varying and time-
invariant covariates.

At the same time, the fit statistics show that the random intercept model
does not provide an adequate fit to the data, as one might expect by exam-
ining Figure 2.1. The }? test rejects the model at p < .0001, the RMSEA far
exceeds the acceptable fit range (values less than .08 or so), and the model
is characterized by large average residuals. Clearly, an intercept-only model
is not appropriate for the mother—child closeness data. Next, a linear slope

TABLE 2.3
Model 1: Random Intercept Model

Parameter Estimate

Mean intercept &, 37.00 (0.09)
Intercept variance 5.27 (0.30)
Disturbance variance 0, 4.68 (0.11)

NOTE: Numbers in parentheses are standard errors of parameter estimates.
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factor is introduced to account for the roughly linear trend observed in
Figure 2.1.

Model 2: Fixed Intercept, Fixed Slope

In Model 2, we fix both the intercept and the slope, meaning that a single,
average intercept parameter (¢,) and linear slope parameter (c.,) are esti-
mated, ignoring any interindividual variation in the these aspects of change.
The slope is included by adding a column to A,. This column now codes the
slope factor and reflects two characteristics of the data. First, the loading
corresponding to the first grade measure is coded O to place the origin of
time at first grade. Second, the spacing between elements in the column
reflects the fact that there was no measurement in the second grade. Thus,
even though the elapsed time between the first and second measures is twice
that between the second and third measures, the model still reflects linear
growth because of the way in which time was coded (see Equation 2.5).

The latent growth curve specifications for Model 2 are presented in
Figure 2.3. Matrix representations for the intercept and slope factors, their
variances and covariances, and their means are as follows:

1 0
1 2
A=1 3], 2.5
1 4
1 5
_ 10 (2.6)
=5 o
a:r‘lJ, .7
[e%)
0
6(3: 0 E 3 . (2'8)
0 0 6,

Because both the intercept and the slope are fixed, their variances and
covariance are constrained to zero (hence ¥ contains zeroes). As in Model 1,
the matrix ©, is constrained to represent the assumption of equal distur-
bance variances.
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2: Fixed Intercept, Fixed Slope 4: Random Intercept, Random Slope
x2(17) =2094.41, p < .0001 x2(14) = 75.90, p < .0001
RMSEA = 0.45, Cl 4: 0.44, 0.47 RMSEA = 0.07, Cl 4: 0.06, 0.09
NNFI = 0.02 NNFI = 0.96
SRMR = 0.49 SRMR = 0.06
3: Random Intercept, Fixed Slope 5: Multiple Groups

¥2(16) = 297.40, p < .0001
RMSEA =0.15, Cl g5: 0.14, 0.16
NNFI = 0.86

SRMR = 0.19

x2(28) = 125.25, p < .0001
RMSEA =0.09, Cl g: 0.07,0.10
NNFI = 0.94

SRMR = 0.10 (boys), .07 (girls)

Vi Vs
CLSN CLSN
G1 G3 G4 G5 G6
O; O; O; O; O;
Figure 2.3 A Path Diagram Representing the General Linear Latent Growth Curve,

With Random Intercept, Random Slope, Intercept—Slope Covariance,
and Equal Disturbance Variances.

NOTE: CLSN = Closeness with child.

Results are reported in Table 2.4 and Figure 2.3. The new slope parameter
estimate ¢, is significant and negative, reflecting the fact that closeness between
mothers and children decreases over time during the elementary school years.
However, the fit of Model 2 (see Figure 2.3) is much worse than that of Model
1. This poor fit comes from the way in which the intercept and slope factors are
specified. Model 2 uses fixed intercept and slope factors. It constrains all
mother—child pairs to share the same initial value of closeness and obliges all

e



OZ—Preacher—45609:OZ—Preacher—45609.qxd$/3/2008 3:36 PM Page 30

30

TABLE 2.4
Model 2: Fixed Intercept, Fixed Slope

Parameter Estimate

Mean intercept &, 38.00 (0.09)
Mean slope &, —-0.36 (0.03)
Disturbance variance 0, 9.57 (0.21)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

pairs to decrease in closeness at precisely the same rate. People obviously differ,
and this model does not take this into account. Another way to understand this
lack of fit is to note that a fixed-intercept model implies that the between-person
proportion of variance (the intraclass correlation, or ICC) is zero. To the extent
that ICC deviates from zero in the data, the fixed-intercept model will fit more
poorly. A random intercept model implies a nonzero ICC and so can account for
some autocorrelation among the repeated measures. We address this issue first
by relaxing the constraint on the intercept variance, or “freeing” the intercept
(Model 3), and then by freeing both the intercept and slope (Model 4).

Model 3: Random Intercept, Fixed Slope

It is reasonable to suspect that not all mother—child pairs have the same level
of closeness at Grade 1. However, the previous model with a fixed intercept
was specified as if they did. Although we freed the intercept when we fit
Model 1, we fixed it once grade was included in the form of slope factor
loadings. A more realistic model would permit individuals to differ in inter-
cept by permitting the intercept variance to be freely estimated. This slightly
modified model represents interindividual variation in intercepts by estimat-
ing not only a mean intercept (¢,) but also an intercept variance (y,), indi-
cating the degree to which individuals’ intercepts vary about the population
mean intercept. The parameter estimates from Model 3 (see Table 2.5) are
similar to those from Model 2, with the average change in CLSN about
—0.36 units per grade and an average intercept of approximately 38. The
intercept variance (y;, = 5.37) is significant, indicating that there is nontrivial
variance between individuals in initial status. Allowing the intercept to be
random across individuals—freeing only one parameter from Model 2—
clearly improved model fit by a significant amount. As might be expected,
this model fits much better than the previous fixed intercept model, with
Ax*(1) = 1,797.° However, there is still room for improvement, as indicated
by the significant disturbance variance (6, = 4.21). Just as it was reasonable
to suppose that children vary at Grade 1 initial status, it is also reasonable to
suppose that mother—child pairs vary in their rate of change over time.
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TABLE 2.5
Model 3: Random Intercept, Fixed Slope

Parameter Estimate

Mean intercept ¢, 38.00 (0.10)
Mean slope ¢&, —-0.36 (0.02)
Intercept variance ¥/, 5.37 (0.30)
Disturbance variance 6, 4.21 (0.10)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

Note that the mean intercept and slope estimates in Model 3 are the same
as those from Model 2; all we have done is permit the interindividual vari-
ability around the mean intercept. An interesting point is that the sum of the
intercept variance and disturbance variance in Model 3 is equal to the dis-
turbance variance from Model 2. In Model 2, the intercept variance was
constrained to zero, forcing all the between-person variability to be
expressed as disturbance variance. In the next model, both intercepts and
slopes are permitted to vary.

Model 4: Random Intercept, Random Slope

Thus far, we have shown how to fit models with only fixed slopes. In general,
however, there will be between-individual differences in both baseline level
and in rate of change. Our previous models with fixed parameters each ignore
some of this between-individual variability. To better reflect the nature of our
data, we now specify both intercept and slope variance parameters to be ran-
dom. In Model 4, every individual is allowed to have a different slope and a
different intercept.® In addition to being more realistic in many contexts, this
model allows estimation of the intercept—slope covariance (¥,). In our exam-
ple, the intercept—slope covariance is interpreted as the degree to which
mother—child closeness at Grade 1 is related to rate of change over time.

As in the previous models, the LGM representation of Model 4 is rela-
tively simple. To specify this model, we free the variances of both intercept
and slope factors and add an intercept—slope covariance parameter. Matrix
¥ therefore becomes

Wy = [Wn (2.9)

Vo Ym } .

Estimating the parameters of Model 4 with LISREL yielded the estimates
shown in Table 2.6. The intercept variance is large relative to the slope
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variance, and the intercept—slope covariance (0.25, corresponding to a cor-
relation of 0.40) is significant. This indicates that children with higher
intercepts have shallower negative slopes or that mother—child pairs who
are closer at Grade 1 tend to decrease in closeness at a slower rate than
those who are less close at Grade 1.

TABLE 2.6
Model 4: Random Intercept, Random Slope

Parameter Estimate

Mean intercept &, 38.00 (0.08)
Mean slope &, —-0.36 (0.02)
Intercept variance 2.98 (0.29)
Slope variance J,, 0.14 (0.02)
Intercept/slope covariance 17, 0.25 (0.06)
Disturbance variance éE 3.70 (0.10)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

A chi-square difference test showed that this model with random inter-
cept and random slope significantly improved fit over that of Model 3,
which had only a random intercept, Ay*(2) = 221.5, p < .0001. The
RMSEA, NNFI, and SRMR fit indices indicate good fit as well. As noted,
the significant positive covariance between intercept and slope implies that
mother—child pairs who are closer in Grade 1 tend to experience less pre-
cipitous drops in closeness.

Returning to our comments about the interpretation of the intercept—
slope covariance (y,,), before the reader concludes that children who
have closer relationships with their mothers enjoy smaller decreases in
closeness over the remaining elementary school years, we caution that the
intercept—slope covariance might have been much less impressive had the
zero point been defined at some other age. For example, if most children
sampled had approximately identical mother—child closeness at kinder-
garten, then differences in slope alone would lead to the observed covari-
ance when time is centered at Grade 1. Indeed, if the age variable is
rescaled so that the intercept is defined at 2 years before Grade 1, a non-
significant intercept/slope correlation of —.03 is obtained. This under-
scores the importance of the decision of where to place the origin of the
time scale when fitting one’s model.

Mehta and West (2000) note that if the linear LGM is an appropriate
model for the data the true-score variance of the repeated measures will fol-
low a quadratic pattern. Denoting time by ¢ and the time origin by #*,
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0?([) =Yy + Ut —1%)7 4 20, (1 — 1%), (2.10)

where 0, is the true score variance at time ¢ and V,,, ¥,,, and y,, are,
respectively, the population intercept variance, the slope variance, and the
intercept—slope covariance. In other words, the collection of individual tra-
jectories will resemble a bow tie or fan spread. In many situations, the point
at which the between-person variability is minimized (the “knot” of the
bow tie) is of interest. This point, which Hancock and Choi (2006) have
termed the aperture, can be easily calculated as the choice of time origin

that minimizes the intercept variance; that is,

a=a* — =—, 2.11)

where a* is the occasion originally chosen for the time origin and ,, and
,, are, respectively, the estimated intercept—slope covariance and the slope
variance.” The aperture is the point at which y,, = 0 (Mehta & West, 2000).
Using the results of Model 4, the occasion at which children were most
similar in mother—child closeness is a = 0 — 0.2533/0.1366 = —1.85, or
nearly a year before kindergarten. Of course, caution in interpretation is
warranted whenever the aperture falls outside the range of occasions for
which data are observed, as it obliges the researcher to assume that a linear
model is appropriate for those occasions. This may not be the case.

To summarize our progress so far, we have proceeded from estimating a
null model through estimating a model with random intercept and slope.
The random intercept model (Model 1) indicated that most variation
occurred within individuals but that there also was a nonnegligible amount
of variation between individuals. Model 2 showed what one might expect
to find when between-individual variance is ignored and showed how con-
straining parameters to particular values can harm model fit when different
individuals have different trajectories on the outcome measure. Model 3
built on Model 2 by freeing the intercept variance parameter. We found that
allowing the intercept to vary across people resulted in a large improvement
in model fit. The model with random intercepts and slopes (Model 4) per-
formed much better than the previous, more constrained models (Models 2
and 3). In addition to improving overall fit, the advantages of Model 4
included discovering a significant positive covariance (,,) between inter-
cepts and slopes, implying that the rate at which closeness changes over
time was related to closeness at Grade 1. We use Model 4 as the basis for
all subsequent models. In Model 5, we examine the possibility that there are
(child) gender differences in mother—child closeness trajectories.

e



OZ—Preacher—45609:OZ—Preacher—45609.qxd$/3/2008 3:36 PM Page 34

34

Model 5: Multiple-Groups Analysis

The results from Model 4 imply that it is useful to think of individuals as
having different intercepts and slopes. It is possible that some of this vari-
ance is systematically related to other variables of interest. For example, we
can hypothesize and test group differences in mean intercept and slope for
boys and girls (McArdle & Epstein, 1987). There are at least two ways to
examine group differences in trajectories: (1) splitting the sample into two
groups and estimating parameters in both groups simultaneously and
(2) specifying the grouping variable as a predictor of both intercepts and
slopes. Specifying a two-groups analysis in LISREL involves splitting the
data file into two files based on gender and conducting a multisample
analysis in which models are fit simultaneously to both data sets. The two
models are specified in the same syntax file, and each model is as depicted
in Figure 2.3. Equality constraints are imposed on key parameters in corre-
sponding parameter matrices across groups to test hypotheses of group dif-
ferences in those parameters. This multiple-groups method can be applied
in principle to any number of groups, and models with different forms may
be specified in the different groups. This method enables a novel approach
to examining treatment effects and initial status X treatment interaction
effects in longitudinal settings, as we discuss in the next chapter. Using
group as a predictor variable is discussed in Model 6.

We follow the multiple-groups strategy for the closeness data, fitting sep-
arate models to boys and girls simultaneously with no cross-group con-
straints on model parameters. The results are reported in Table 2.7. NNFI
was calculated using separately specified two-parameter null models for
each group. Model fit is mediocre (RMSEA = .088; 90% confidence inter-
val [CI] = {.072, .104}), permitting cautious interpretation of parameter
estimates. All parameter estimates are significant for both boys and girls
except for the intercept—slope covariance for girls (,, = .14), which is
notably lower than that for boys (J,, = .36). The correlations corresponding
to these covariances are r = .22 (for girls) and r = .59 (for boys), indicating
a much stronger relationship between initial status (at first grade) and
change over time in mother—child closeness for boys than for girls.

Note that the intercept and the slope are lower for boys (37.85 and —0.38,
respectively) than for girls (38.14 and —0.33, respectively), indicating that,
on average, boys appear to start lower, and decrease at a faster pace, than
girls. Given these apparent differences, if a researcher had substantive rea-
son to test whether these differences were significant, one approach would
be to constrain these parameters to equality across groups and look for a
significant drop in model fit by means of a chi-square difference test. In this
case, if an equality constraint is applied to intercept means (permitting
slopes to vary), the result of the difference test is Ay*(1) = 3.11, p = .08,
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TABLE 2.7
Model 5: Multiple Groups Analysis

Parameter Estimate
Boys

Mean intercept ¢, 37.85 (0.12)
Mean slope ¢, -0.38 (0.03)
Intercept variance 3.03 (0.42)
Slope variance J,, 0.12 (0.03)
Intercept/slope covariance 7, 0.36 (0.08)
Disturbance variance 91__ 3.78 (0.15)
Girls

Mean intercept @, 38.14 (0.11)
Mean slope ¢, —-0.33 (0.03)
Intercept variance ¥, 2.90 (0.39)
Slope variance /,, 0.15 (0.03)
Intercept/slope covariance 7, 0.14 (0.08)
Disturbance variance 9; 3.63 (0.14)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

indicating that the intercepts are not significantly different. If the equality
constraint is instead applied to the slope means (permitting intercepts to
vary), the difference test again is nonsignificant, Ay*(1) = 1.47, p = .23,
indicating that the slopes are not significantly different. Despite appear-
ances, there is not enough evidence to suggest that boys and girls follow dif-
ferent linear trajectories in mother—child closeness from Grades 1 through 6.
Other cross-group constraints are possible as well, of course—theory may
suggest testing for differences in disturbance variances or intercept—slope
covariances (V,,). A test of the hypothesis that vy, is equal for boys and
girls also is inconclusive, Ay*(1) = 3.83, p > .05.

For examples and further discussion of multiple-groups LGM, see Curran,
Harford, and Muthén (1996), Curran, Muthén, and Harford (1998), McArdle
(1989), and McArdle and Epstein (1987). We close this section by noting that
we assume group membership is known (observable). If groups are assumed,
but membership is uncertain, the researcher may be interested in growth mix-
ture modeling, discussed in Chapter 3. Next, we illustrate an alternative
method of investigating gender differences in closeness trajectories.

Model 6: The Conditional Growth Curve Model

Instead of running multiple-groups models, the analysis of gender differ-
ences in intercept and slope may be considerably simplified by including
gender as an exogenous predictor (Level 2 predictor or time-invariant
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covariate) of both intercept and slope in a single-group analysis. Such pre-
dictors of random variables can be introduced to account for between-
individual variance in the estimates of intercept and slope. The variance
parameters were freed in Models 3 and 4. Because the intercept and slope
variances can be considered unexplained individual differences, they poten-
tially can be accounted for using this technique, which can equally well use
categorical or continuous Level 2 predictors. This type of model is some-
times termed a conditional LGM (Tisak & Meredith, 1990; Willett & Sayer,
1994), whereas Models 1 to 5 could be termed unconditional (Singer &
Willett, 2003). Although we chose only gender as a predictor, we could
choose any number of variables, for example, variables designed to mea-
sure between-individual differences in ethnicity, socioeconomic status, or
parental religiosity. A significant advantage of Model 6 over Model 5 is
that, because it is unnecessary to divide the sample into groups, the time-
invariant covariate may be either nominal (e.g., gender in this case) or con-
tinuous. A disadvantage is that the researcher must be able to assume
invariance of some model parameters across groups. For example, whereas
we were free to estimate different disturbance variances for boys and girls
in Model 5, we are not free to do so in Model 6 without significant addi-
tional effort.

We demonstrate the use of a grouping variable (gender) as a predictor in
Model 6. In this model, we include gender as a predictor of intercept with
a fixed coefficient, f,, which is interpreted as the mean effect of gender on
intercept.® Gender is also included as a predictor of slope, with fixed coef-
ficient 8,. When a time-invariant covariate is included as a predictor of
slopes, the effect is often called a cross-level interaction because time
(Level 1) interacts with the covariate (Level 2) to predict the repeated mea-
sures (Cronbach & Webb, 1975; Curran, Bauer, & Willoughby, 2004; Kreft
& de Leeuw, 1998; Raudenbush & Bryk, 2002). Note that if the effect of
age on mother—child closeness varies across individuals, and if gender par-
tially explains interindividual variability in that effect, then the cross-level
interaction has the same interpretation as a moderation effect in traditional
multiple regression analysis.’

Figure 2.4 contains a path diagram including gender as a predictor of
both intercept and slope. The variances of intercept and slope, as well as
their covariance, were reconceptualized as residual variances and a
residual covariance—that is, that portion of the variance and covariance
not accounted for by gender. These residual parameters are depicted in
Figure 2.4 as y,,, ¥,,, and y,,. The parameters 3, and f3, represent the
effects of gender on intercept and slope, respectively. Results for this
model are presented in Figure 2.4 and Table 2.8. NNFI was calculated
using Model 0 as a null model, augmented by estimating the mean and
variance of gender.
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¢11 6: Conditional Growth Curve
x2(17) = 81.65, p < .0001
RMSEA = 0.07, Cl g,: 0.05, 0.08
NNFI = 0.96

SRMR = 0.05

CLSN

G5
1 1 1 1 1
0: 0. 0: (2 0.

Figure 2.4 A Path Diagram Representing Gender as a Predictor of
Individual Differences in Both Intercept and Slope.

NOTE: CLSN = Closeness with child.

Results for Model 6 show that the coefficient for predicting intercept
from gender was —0.29; that is, mother—daughter pairs (coded 0) have
higher average closeness scores than mother—son pairs (coded 1) at first
grade, but not significantly higher. Mother—daughter pairs also showed less
change over time than mother—son pairs, but not significantly less change.
As we might expect, these results are consistent with those obtained in
Model 5. For example, the difference between mean intercepts for girls and
boys in Model 5 (see Table 2.7) was 37.85 — 38.14 = —0.29, equal to the
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TABLE 2.8
Model 6: Conditional Growth Curve Model

Parameter Estimate

Mean intercept &, 38.14 (0.11)
Mean slope ¢, —-0.33 (0.03)
Group effect on intercept B1 —0.29 (0.16)
Group effect on slope [?2 —0.05 (0.04)
Intercept variance 2.96 (0.28)
Slope variance 7, 0.14 (0.02)
Intercept/slope covariance 7, 0.25 (0.06)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

estimated fixed effect of gender, ,Bl, in Model 6 (see Table 2.8). Similarly,
the difference in slopes in Model 5 is —0.05, equal to the fixed effect of gen-
der on slope, f3,, obtained in Model 6. Because Models 5 and 6 are not com-
pletely identical (the disturbance variances are different across groups),
results may not always resemble each other so closely. We note that this
could easily be altered by imposing a cross-group equality constraint.

Treating time-invariant covariates as predictors of growth factors may lead
to difficulties. The conditional growth curve model may be understood as a
mediation model in which the growth factors are hypothesized to completely
mediate the effect of the time-invariant covariate on the outcome variables, but
complete mediation is rarely a tenable hypothesis. In Model 6, for example,
by omitting paths linking child gender directly to closeness, the direct effects
are implicitly constrained to zero. If these zero constraints are inappropriate,
model fit will suffer and estimated parameters likely will be biased. An alter-
native strategy is to relax constraints on the direct effects (therefore estimating
paths linking the covariate directly to each repeated measure) and instead con-
strain 3, and f3, to zero (Stoel, van den Wittenboer, & Hox, 2004). However,
this model may not address a question of substantive interest. In addition, it
should be borne in mind that interpretation of the effects of exogenous pre-
dictors on the intercept factor will vary with the scaling of time and the loca-
tion of the time origin (Stoel, 2003; Stoel & van den Wittenboer, 2003).

Model 7: Parallel Process Model

It is possible to investigate the relationship between aspects of change spe-
cific to each of two repeated-measures variables, modeling growth
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processes in more than one variable. This procedure permits examination
of relationships among aspects of change for different variables (McArdle,
1989). For example, a researcher may be interested in modeling growth in
mother—child conflict and father—child conflict simultaneously to examine
the relationship between the intercept of one and the slope of the other.
This kind of model, referred to variously as a parallel process model
(Cheong, MacKinnon, & Khoo, 2003), multivariate change model
(MacCallum et al., 1997), cross-domain individual growth model (Sayer &
Willett, 1998; Willett & Sayer, 1994, 1995), multiple-domain model
(Byrne & Crombie, 2003), fully multivariate latent trajectory model
(Curran & Hussong, 2003; Curran & Willoughby, 2003), simultaneous
growth model (Curran et al., 1996); bivariate growth model (Aber &
McArdle, 1991), or associative LGM (S. C. Duncan & Duncan, 1994,
T. E. Duncan, Duncan, & Strycker, 2006; T. E. Duncan et al., 1999; Tisak
& Meredith, 1990), follows easily from a simple random intercept, random
slope model. A parallel process model contains two sets of intercepts and
slopes, one set for each repeated-measures variable. The covariances
among the intercepts and slopes are estimated as well (see Figure 2.5). For
this example, we used mother—child closeness and mother—child conflict
as the two dependent variables (see Table 2.9). The sample consisted of
849 children (433 girls and 416 boys) having complete data for both
mother—child closeness and mother—child conflict. Model fit information
can be found in Figure 2.5. NNFI was calculated by specifying as a null
model a fixed intercept model for both closeness and conflict, permitting
occasion-specific disturbances to covary.

Table 2.9 contains some interesting results, probably few of which will
come as a surprise to parents of elementary-school-age children. First,
parameter estimates related to mother—child closeness are, as expected,
nearly identical to those from Model 4; any discrepancies can be attributed
to the fact that the sample is slightly smaller for Model 7 due to missing
data. Both closeness and conflict change over time, but in opposite direc-
tions, as indicated by their mean slope estimates. The estimates for
the covariances among the intercepts and slopes are reported in the “Curve
covariances” section of Table 2.9, and the correlations implied by these
covariances are in the section “Curve correlations.” The covariance of the
intercepts (,,) is significantly negative, indicating that children who were
particularly close to their mothers in first grade were also those who expe-
rienced the least conflict. Similarly, the slope covariance (,,) is signifi-
cantly negative, indicating that children characterized by steeper decline in
closeness tended to be those who experienced accelerated conflict as they
aged. Finally, conflict intercepts were negatively associated with closeness
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TABLE 2.9
Model 7: Parallel Process Model

Parameter Estimate

Mother—child closeness

Mean intercept ¢, 38.00 (0.08)
Mean slope ¢, —-0.36 (0.02)
Intercept variance 2.99 (0.29)
Slope variance 7, 0.14 (0.02)
Intercept/slope covariance 7, 0.25 (0.06)
Mother—child conflict

Mean intercept &, 15.24 (0.20)
Mean slope ¢, 0.30 (0.04)
Intercept variance 7, 25.74 (1.61)
Slope variance yJ,, 0.40 (0.06)
Intercept/slope covariance ,, —0.57 (0.23)
Curve covariances

Intercept covariance -3.88 (0.51)
CLSN intercept/CNFL slope covariance ,, 0.13 (0.09)
CNFL intercept/CLSN slope covariance {7/, -0.41 (0.12)
Slope covariance ,, -0.07 (0.02)
Curve correlations

Intercept covariance -0.44
CLSN intercept/CNFL slope covariance 0.12
CNFL intercept/CLSN slope covariance -0.22

Slope covariance -0.28

NOTE: Numbers in parentheses are standard errors of parameter estimates.
CLSN = Closeness with child; CNFL = Conflict with child.

slopes (y,,), meaning that those first graders who demonstrated relatively
more conflict with their mothers tended to experience more precipitous
decreases in closeness as they got older.

Extensions to the basic parallel process model are possible. If the slopes
associated with repeated measures of two variables are hypothesized to be not
merely related but causally related, directional paths among growth factors
may be specified. For example, Curran, Stice, and Chassin (1997) use a par-
allel process model in which both adolescent alcohol use and peer alcohol use
change linearly over time. Age, gender, and parental alcoholism are used to
predict aspects of change, and individual differences in intercepts from each
repeated-measures variable (scaled to be at the initial measurement occasion)
are used to predict variability in the other repeated-measures variable. Curran
and Hussong (2002) model parallel growth in antisocial behavior and read-
ing ability in children, predicting reading slopes with antisocial intercepts.
Curran et al. (1996) specified a model in which the intercepts of alcohol use
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and bar patronage were hypothesized to affect one another’s slopes.
Raudenbush, Brennan, and Barnett (1995) used a similar approach to model
predictors of simultaneous change in judgments of marital quality in
husband/wife dyads, where each member of a dyad was measured at three
yearly intervals. In addition, parallel processes in more than two repeated-
measures variables may be specified.

Model 8: Cohort-Sequential Designs

Both the cross-sectional and longitudinal approaches potentially suffer
from shortcomings when used to assess trajectories in single samples.
Cross-sectional designs are sometimes prone to cohort or history effects
that may mislead researchers into thinking a trend exists when one does not
or masking a trend that actually exists. Longitudinal designs, on the other
hand, are sometimes compromised by the threat of contamination due to
repeated measurement of the same individuals. Cohort-sequential designs
(Meredith & Tisak, 1990; Nesselroade & Baltes, 1979; Schaie, 1965, 1986;
Tisak & Meredith, 1990), also called accelerated longitudinal designs
(Miyazaki & Raudenbush, 2000; Raudenbush & Chan, 1992; Tonry, Ohlin,
& Farrington, 1991) or the method of convergence (Bell, 1953, 1954;
McArdle, 1988), have been suggested as a way to reduce the threat of these
potential confounds by combining the longitudinal and cross-sectional
approaches to examining developmental change. Cohort-sequential designs
also greatly collapse the time needed to conduct longitudinal studies and
reduce problems of attrition (Tonry et al., 1991). Consider the case in which
age is the metric of time. Rather than follow the same sample of high school
freshmen for 8 years through college, a researcher may instead elect to fol-
low three cohorts (high school freshmen, high school juniors, and college
freshmen) for only 4 years each. By employing multiple cohorts of subjects
and measuring at only a few occasions within each cohort, a full trajectory
for the entire time range of interest can be obtained. The cohort-sequential
design is more appropriately thought of as an efficient data collection strat-
egy than as a model, although this strategy leads to some interesting mod-
eling options.

To demonstrate analysis of cohort-sequential data in our example, we
created two artificial cohorts. We first randomly separated our data into two
groups and then deleted data to mimic the pattern of data that might be
gathered in a true cohort-sequential design. For Cohort 1, we deleted all mea-
surements for children in Grade 6, and for Cohort 2, we deleted all
measurements for children in Grade 1. This resulted in a data set in which
children in Cohort 1 provided data for Grades 1, 3, 4, and 5, and children
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in Cohort 2 provided data for Grades 3 through 6. In randomly assigning
cases to each cohort and deleting a portion of the data, our sample size was
reduced to 893 (n, = 426, n, = 467). In practice, of course, data from these
two cohorts would be collected concurrently over a single span of 5 years.
Even less overlap is probably acceptable.

Cohort-sequential data can be examined in either of two ways. First, the
researcher can aggregate the data and perform a single-group analysis. This
approach involves treating uncollected data for each cohort as MCAR,
which ordinarily is a safe assumption because such data are missing by
design (T. E. Duncan et al., 1999; B. Muthén, 2000). Alternatively, the
researcher can consider the cohorts as separate groups and perform a multi-
ple-groups analysis (McArdle & Hamagami, 1992). This approach is similar
to Model 5, with data separated by cohort and all corresponding parameters
constrained to equality across cohorts. The multiple-groups option derives
from one approach to dealing with missing data in which a relatively small
number of “missingness” patterns are identifiable (Allison, 1987; T. E.
Duncan et al., 1999; McArdle & Bell, 2000; McArdle & Hamagami, 1991;
B. Muthén et al., 1987). B. Muthén (2000) described the implementation of
cohort-sequential designs using these two approaches. It should be noted
that treating cohorts as separate groups may lead to estimation problems in
some circumstances (T. E. Duncan et al., 1999). With small groups, there
may even be more measurement occasions than subjects, resulting in the
necessary removal of some data, leaving some measurement occasions
unrepresented. Here, our sample is quite large, so this issue is not a concern.
We demonstrate both the single-group and multiple-groups approaches.

The specifications for the single-group approach are the same as for
Model 4, and the path diagram is therefore that in Figure 2.3. The only dif-
ference here is that all subjects in Cohort 1 have missing values for Grade 6,
and those in Cohort 2 have missing values for Grade 1. The results (see
Table 2.10) are similar to those obtained for Model 4, although, as one
would expect given the smaller sample size and the missing data, the stan-
dard errors are slightly larger. In spite of this, however, the results support
the same conclusions drawn from analysis of the larger sample. The esti-
mated mean closeness score at first grade is ¢, = 37.99, and the mean slope
is @, = —0.35. Both are similar to the Model 4 estimates, as were the vari-
ances and covariance of the intercept and the slope.

The multiple-groups cohort-sequential approach is similar to the two-
group analysis demonstrated earlier (Model 5), with all parameters con-
strained to equality across cohorts, including intercept and slope means. It
is important to exercise care in specifying the equality constraints. In our
analysis, each data file contains only those variables for which participants
provide data. Therefore, the data file for Cohort 1 has only four variables,
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TABLE 2.10
Model 8: Cohort-Sequential Design

Parameter Single-Group Estimate Multiple-Group Estimate
Mean intercept &, 37.99 (0.10) 37.95 (0.13)
Mean slope ¢&, —-0.35 (0.03) —0.36 (0.04)
Intercept variance \/,, 3.73(0.43) 3.73(0.43)
Slope variance J,, 0.10 (0.03) 0.10 (0.03)
Intercept/slope covariance 7, 0.21 (0.10) 0.21 (0.10)
Disturbance variance 60, 3.77 (0.12) 3.78 (0.12)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

corresponding to measurements at Grades 1, 3, 4, and 5. Similarly, the data
file for Cohort 2 contains measurements for only Grades 3 through 6. The
variable for closeness at Grade 4 in Cohort 1 is the third repeated measure,
whereas for Cohort 2 it is the second. The factor loading matrices for the
two cohorts, then, are

1 0
1 2

A= 13 (2.12)
1 4
1 2
1 3

A= | 4 (2.13)
1 5

The corresponding path diagram is shown in Figure 2.6.

The resulting parameter estimates on the right-hand side of Table 2.10
are highly similar to those obtained from the single-group analysis. For
additional examples of the multiple-groups cohort-sequential approach, see
reports by Aber and McArdle (1991), Anderson (1993), Baer and Schmitz
(2000), Buist, Dekovié¢, Meeus, and van Aken (2002), T. E. Duncan,
Duncan, and Hops (1993), S. C. Duncan, Duncan, and Hops (1996), and
McArdle and Anderson (1990).

Note that NNFI is not provided for the single-group cohort-sequential
design because some data are treated as missing. To permit the use of ML
estimation with access to all ML-based fit indices, we recommend using the
multiple-groups approach if complete data are available within each group,
using covariances and means as input data for each cohort. If some cases
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8: Cohort-Sequential Design

Single group
x2(14) = 73.16, p < .0001
RMSEA = 0.07, Cl g: 0.05, 0.08
Multiple group
¥2(20) = 78.95, p < .0001
RMSEA = 0.08, Cl g,:0.06, 0.10
NNFI = 0.96
SRMR = 0.07 (Cohort 1)

0.09 (Cohort 2)

Cohort 1

CLSN | | CLSN | [ CLSN | [ CLSN

G1 G3 G4 G5
081 052 gg(i 054
A A A

Cohort 2

Figure 2.6 A Path Diagram Representing a Multiple-Groups Cohort-
Sequential Design.

NOTE: The horizontal line represents the division between the two simultaneously estimated
models. Parameters with identical labels and subscripts are constrained to equality across models.

CLSN = Closeness with child.
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have missing data, we recommend using FIML to take advantage of miss-
ing data techniques that use all available data. It is rarely appropriate to dis-
card data. In addition, if it is desired to estimate disturbance variances
separately within each cohort, the multiple-groups approach is preferable.

The multiple-groups approach to testing cohort-sequential designs can
be used explicitly to test for cohort effects, such as cohort differences in
mean intercept or slope, by means of Ay” tests (Anderson, 1993; Meredith
& Tisak, 1990). The single-group approach also may be used to test for
cohort effects by including cohort as a dummy-variable predictor of inter-
cept and slope (Raudenbush & Chan, 1992) and noting significant effects,
but this model imposes the assumption of equal disturbance variances
across cohorts. '

Model 9: Time-Varying Covariates

Earlier we defined TVCs as variables measured repeatedly and used to pre-
dict repeated measures of an outcome variable. Very little attention has
been devoted to the treatment of TVCs in the LGM context, although much
has been written on the subject of TVCs in the context of multilevel mod-
eling. There are two ways to conceive of TVCs in LGM. These two meth-
ods address subtly different questions. The first, suggested by B. Muthén
(1993) and illustrated or used in articles by George (2003), Bijleveld and
van der Kamp (1998), and Curran and colleagues (Curran & Hussong,
2002, 2003; Curran & Willoughby, 2003; Curran et al., 1998; B. O. Muthén
& Curran, 1997), is to include TVCs directly in the model as repeated
exogenous predictors of the outcome, as in Figure 2.7. The 8 parameters in
this model are interpreted as occasion-specific effects of the covariate, or as
the ability of the covariate to predict occasion-specific deviations in the out-
come. In this approach, the effect of a TVC may vary across time, but not
across individuals. Alternatively, the 3 parameters could be constrained to
equality to represent the hypothesis that the covariate effect remains stable
over occasions. Either way, this model reflects growth in the repeated-
measure variable controlling for occasion-specific effects of the TVC.

We fit the model in Figure 2.7 to the closeness data, treating mother—
child conflict as a TVC measured concurrently with closeness. The results
are reported in Table 2.11 and in Figure 2.7. NNFI was computed by aug-
menting the null model in Model 0 by estimating the means and variances
of the five repeated measures of the TVC. The time-specific effect of con-
flict on closeness remained between —0.15 and —0.13 for all examined
grades, indicating that, at each occasion, conflict tended to be negatively
related to closeness after partialing out individual differences accounted for
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by the intercept and slope factors. To claim that this relationship is causal
would be unjustified without first satisfying the criteria for establishing a
causal relationship.

An alternative method of including TVCs in growth curve models makes
use of definition variables. This approach differs somewhat from standard
practice in SEM, but is equivalent to standard methods of including TVCs
in multilevel modeling (e.g., Raudenbush & Chan, 1993). The variable time
(or age, etc.) itself can be considered a TVC because time varies across
repeated measures of the outcome. If definition variables can accommodate

9a: Time-Varying Covariates

x2(24) = 95.76, p < .0001
RMSEA = 0.06, Cl 4: 0.05, 0.07
NNFI = 0.97

2% & SRMR =0.04

CLSN

G1 G3 G5
A A A A A
st A g @ﬂa 1 5 ﬁs |
0, o, 0, 95 0,
CNFL CNFL CNFL CNFL CNFL
G1 G3 G4 G5 G6
A A A A A

Figure 2.7 A Growth Curve Model Including a Time-Varying Covariate of
the Sort Suggested by B. Muthén (1993).

NOTE: Although not individually depicted, all variances and covariances among the
intercept factor, slope factor, and TVC variables are estimated.

CLSN = Closeness with child; CNFL = Conflict with child.
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TABLE 2.11

Model 9a: Time-Varying Covariates
Parameter Estimate
Mean intercept &, 40.17 (0.41)
Mean slope ¢&, -0.36 (0.12)
Intercept variance \/,, 2.41 (0.25)
Slope variance J,, 0.13 (0.02)
Intercept/slope covariance 17, 0.20 (0.05)
Disturbance variance éE 3.52 (0.10)
Conflict effect (G1) ﬁl -0.15 (0.03)
Conflict effect (G3) [?2 -0.13 (0.01)
Conflict effect (G4) f3, -0.13 (0.01)
Conflict effect (G5) ﬁ4 -0.13 (0.01)
Conflict effect (G6) [?5 —-0.13 (0.02)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

different occasions of measurement across individuals, they can also be
used to model the effects of any other TVC in a similar manner. An addi-
tional slope factor is added to the model to represent the TVC. Values of the
TVC are inserted into individual data vectors, essentially giving each indi-
vidual or Level 2 unit a unique A matrix. In this approach, the effect of a
TVC can vary across individuals, but not across time. That is, a mean effect
of the TVC across individuals is estimated and, if desired, the variance of
the TVC’s slope factor (and covariances with other aspects of change) also
can be estimated. This approach requires raw data as input.

For example, consider the model in Figure 2.8. At each occasion of mea-
surement (grade), each individual also provided data on mother—child con-
flict (the TVC). Three individual data vectors are illustrated. Numbers in
diamonds represent contents of each individual data vector for the TVC.
Similar notation can be found in Mehta and West (2000, p. 34). Using this
method, multiple TVCs may be included by using a different slope factor
for each covariate. Interactions among TVCs (e.g., the interaction between
grade and mother—child conflict) may be investigated by including slope
factors containing loadings equal to the products of slope loadings for the
involved covariates. For example, in Figure 2.8, the loadings on the inter-
action factor for Person 1 would be 0, 20, 21, 72, and 80. Cross-level inter-
actions between time-invariant and time-varying covariates may be
specified by including predictors of TVC slope factors. Models specified
this way are equivalent to multilevel models with Level 1 predictors.

Fitting the model in Figure 2.8 to our closeness and conflict data yielded
the results reported in Table 2.12. Because raw data were used as input, fit
indices such as RMSEA and NNFI are not provided. Because Mx was used
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for this analysis, we are able to provide likelihood-based 95% confidence
intervals'' for each parameter estimate rather than the usual standard errors
(Mx does not provide standard errors as a default option and, in fact, warns
against their use with parameters having nonnormal sampling distribu-
tions, such as variances). All parameter estimates, save two, are statisti-
cally significant.

TABLE 2.12
Model 9b: Time-Varying Covariates

Parameter Estimate 95% Confidence Interval
Mean intercept &, 40.12 {39.82, 40.43}
Mean grade slope &, -0.31 {-0.35, —-0.27}
Mean conflict slope @, -0.14 {-0.16, —0.12}
Intercept variance ¥, 4.93 {3.40, 6.72}
Grade slope variance /,, 0.11 {0.08, 0.15}
Conflict slope variance ¥, 0.02 {0.02, 0.03}
Intercept/grade slope covariance 7, 0.11 {-0.08, 0.29}
Intercept/conflict slope covariance 5, -0.28 {-0.39, -0.19}
Grade/conflict slope covariance ., 0.00 {-0.01, 0.01}
Disturbance variance éE 3.28 {3.09, 3.48}

Model 10: Polynomial Growth Curves

The trajectories we have examined with growth curve models have been
simple linear functions of time or age. The LGM user is not limited to lin-
ear functions, however. The framework presented thus far can accommo-
date any trajectories that are linear in parameters and nonlinear in
variables. That is, basic LGM models can accommodate any trajectory in
which the parameters of growth act as simple linear weights associated with
transformations of the time metric. A common example is the quadratic
latent growth curve (MacCallum et al., 1997; Meredith & Tisak, 1990;
Stoolmiller, 1995) illustrated in Figure 2.9. In Figure 2.9, the loadings asso-
ciated with the quadratic slope factor are the squares of the loadings associated
with the linear slope factor. The mean of the quadratic slope () represents
the degree of quadratic curvature in the trajectory.

We fit the quadratic growth curve in Figure 2.9 to the closeness data.
Results are reported in Table 2.13 and Figure 2.9. The mean of the qua-
dratic component is not significant (&, = —0.019, p = .077). A x* difference
test reveals that, compared with a purely linear model, the improvement in
model fit is negligible (Ay*(1) = 3.12, p = .078). Had there been a theoret-
ical motive to do so, we might also have chosen to permit the quadratic
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10: Quadratic Growth Curve

x2(13) = 72.78, p < .0001 1
RMSEA = 0.07, Cl o,: 0.06, 0.09
NNFI = 0.96 (24 (o) (24
SRMR = 0.06
Ya Y
Yo
Linear Quadratic
Intercept Slope Slope
1 0
0 )
2
1\ ' 1 3| ¢ /s
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Figure 2.9 A Latent Growth Curve Model Including a Fixed Quadratic Slope
Factor.

slope factor to vary randomly and to covary with the intercept and linear
slope factors (Willett & Sayer, 1994) despite the lack of a mean quadratic
effect. In fact, doing so results in a significant improvement in fit, but it is
likely that the added complexity, in the form of three additional free para-
meters, overfits the data by absorbing random variability.

All too frequently, we suspect, quadratic growth curves are fit when a lin-
ear LGM does not fit adequately. We caution against this use of a quadratic
model as capitalizing on possibly idiosyncratic characteristics of the par-
ticular sample under scrutiny. We suspect that there are few theories in the
social sciences that naturally lead to predictions of nonlinear change that
specifically imply a quadratic trend. Assuming there are enough repeated
measures so that additional variance and covariance parameters will be
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TABLE 2.13
Model 10: Polynomial Growth Curve

Parameter Estimate

Mean intercept &, 37.94 (0.09)
Mean linear slope &, —-0.26 (0.06)
Mean quadratic slope @&, —-0.02 (0.01)
Intercept variance 2.98 (0.29)
Linear slope variance ,, 0.14 (0.02)
Intercept/linear covariance 7, 0.25 (0.06)
Disturbance variance 01_ 3.70 (0.10)

NOTE: Numbers in parentheses are standard errors of parameter estimates.

identified, any number of polynomial growth factors may be added.
However, a proper theoretical rationale must exist for adding these aspects
of change.

It is possible to specify functional forms other than polynomial curves.
Later we discuss structured latent curves, extensions to traditional growth
curve models that can accommodate more complex functional forms that
are nonlinear in parameters, in which the parameters of growth are no
longer necessarily simple linear weights. One example is the exponential
function commonly used to model population growth.

Model 11: Unspecified Trajectories

In the models described to this point, the function relating the outcome vari-
able to time was completely defined. For example, in Figure 2.3, the paths
from the slope factor to the measured variables are fixed in a linear pro-
gression, from O through 5, corresponding to a linear influence of grade on
mother—child closeness. A creative extension of LGM involves the creation
of shape factors, aspects of change for which the shape of the growth func-
tion (and therefore the factor loadings) are unknown and must be estimated
from the data rather than specified a priori by the researcher (Meredith &
Tisak, 1990). For example, we could replace the linear factor with a shape
factor in Model 4, constrain the first and last loadings for this new factor to
0 and 1," respectively, and estimate the remaining three loadings (Ays Asys
and 4,,) using 0 and 1 as anchors. The estimated loadings would reveal the
shape of the longitudinal trend. Although the free loadings are not propor-
tions per se, even roughly linear growth should result in loadings that
monotonically increase from O to 1. Alternatively, the first two loadings can
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be constrained to 0 and 1, in which case subsequent intervals can be inter-
preted by using the change occurring between the first two occasions as a
benchmark (Hancock & Lawrence, 2006; Stoel, 2003). Models with shape
factors are sometimes called completely latent (Curran & Hussong, 2002,
2003; McArdle, 1989), fully latent (Aber & McArdle, 1991), or unspecified
(T. E. Duncan et al., 2006; Lawrence & Hancock, 1998; Stoolmiller, 1995;
J. Wang, 2004) because the trajectory has not been specified a priori. This
model is more exploratory than previously discussed models in that the
researcher is not testing hypotheses about specific trajectories. Rather, the
data are used to gain insight into what kind of trajectory might be appro-
priate. Freeing some of the loadings on a linear slope factor to create a
shape factor allows direct comparison of the two models using a nested-
model y” difference test, essentially a test of departure from linearity. Good
examples of unspecified trajectory models are provided by T. E. Duncan
et al. (1993), T. E. Duncan, Tildesley, Duncan, and Hops (1995), and
McArdle and Anderson (1990).

We applied an unspecified trajectory model to our mother—child close-
ness data, anchoring the first and fifth loadings to 0 and 35, respectively, to
mirror our previous scaling of time (see Figure 2.10). A y? difference test
comparing Model 11 with Model 4 resulted in a nonsignificant difference
(Ax*(3) = 2.68, p = .44), indicating that a linear trend is sufficient to model
the mother—child closeness data. This conclusion is bolstered by the fact
that the loadings followed a nearly perfectly linear trend even without being
constrained, as illustrated in Figure 2.11.

Summary

In this chapter, we described several latent growth curve models. Beginning
with a basic null model, each model was applied in turn to the same data set
to illustrate use of the models in practice. Beyond the basic linear LGM with
random intercepts and random slopes, we showed how the model could be
extended to handle multiple groups, predictors of intercept and slope factors,
and growth in more than one outcome variable or more than one age cohort.
We showed how TVCs may be added to a growth curve model and how
polynomial or unspecified nonlinear trajectories can be modeled.

We want to emphasize that the researcher need not be restricted to inves-
tigating the progression of models presented in this chapter. If theory or
past research suggests that a random intercepts, random slopes model is
appropriate, then there is little reason to fit a simpler model. Likewise, if
there is reason to expect a Level 2 predictor to explain individual differences
in the quadratic component of a polynomial trend, it is straightforward and
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11: Unspecified Trajectory

¥2(11) = 73.22, p < .0001
RMSEA = 0.08, Cl 4: 0.06, 0.10
NNFI = 0.95

SRMR = 0.06

CLSN CLSN CLSN CLSN CLSN
G1 G3 G4 G5 G6
0: 0; O: 0: 0:

Figure 2.10 A Path Diagram Representing a Latent Growth Curve With an

Unspecified Shape Factor.

NOTE: CLSN = Closeness with child.

appropriate to combine Models 6 and 10 rather than beginning with one
model or the other. In short, it is important to always look to theory first. If
theory is not sufficiently specific to suggest models to be investigated, then
the exploratory strategy illustrated in this chapter—beginning with a null
model, subsequently including a linear slope factor, and adding random
effects and predictors—can be useful in helping the researcher to under-
stand the data and appropriately model change over time.

Notes

1. 'We use complete data in this book for pedagogical simplicity and because the full array
of SEM fit indices is available when complete data are used. The data used in subsequent analy-
ses are provided along with syntax at http://www.quantpsy.org/.

2. LISREL is available from Scientific Software International (http://www.ssicentral.com/);
MXx is available from Virginia Commonwealth University (http://www.vcu.edu/mx/); and Mplus is
available from L. K. Muthén & Muthén (http:/www.statmodel.com/).
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Factor Loading

0 2 3 4 5
Years Since 1st Grade

Figure 2.11 A Plot of Factor Loadings Versus Years Since the First Grade.

NOTE: Open circles represent estimated loadings. Closed circles represent fixed loadings
used to anchor the estimation of the remaining loadings. Although the factor loadings follow
a positive linear trend, they actually describe a downward trajectory because the slope mean
is negative.

3. Throughout this book, we constrain the disturbance variances to equality for peda-
gogical simplicity and because it is reasonable to suppose that residual variability in mother—
child closeness remains stable over time. This equality constraint is not required, assuming
there are enough repeated measures to identify these parameters. Indeed, a strength of the
LGM approach is that we can explicitly model heteroskedasticity—or any of a number of other
disturbance covariance structures—by estimating different residual variances across occasions
(Willett & Sayer, 1994). All things being equal, however, we recommend that preference be
given to modeling homoscedasticity (equal disturbance variances) whenever possible to max-
imize parsimony, and because permitting residual variances to differ by occasion can some-
times mask or “soak up” nonlinearity in the trajectory, yielding deceptively good fit.

4. Syntax for this model, and for most subsequent models, is provided at our Web site
(http://www.quantpsy.org/).

5. This is the nested model test we mentioned earlier, in which the difference in y* values
for the two models is itself treated as a y* statistic with degrees of freedom equal to the dif-
ference in df for the two nested models.

6. To be clear, separate intercepts and slopes are not actually estimated in this proce-
dure; rather, the model imposes a multivariate normal distribution on the latent variables and
yields estimates of the means, variances, and covariances of those distributions.

7. Alternatively (and equivalently), the aperture can be directly estimated as a model para-
meter in some SEM programs by constraining Y, to zero and constraining the slope factors to
their original fixed values minus an aperture parameter.
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8. In this model, and later in Model 9, we make use of § parameters, which are elements
of a matrix of path coefficients (B) from the full structural equation model not discussed in
Chapter 1 (Bollen, 1989).

9. Because of this similarity, cross-level interactions in multilevel modeling may be
decomposed, probed, and plotted according to guidelines stated by Aiken and West (1991).
See Curran, Bauer, and Willoughby (2004) and Preacher, Curran, and Bauer (2006) for dis-
cussion.

10. These two approaches to testing for cohort effects are directly analogous to the two
approaches for examining the effects of exogenous predictors of change discussed in Models
5 and 6.

11. Likelihood-based CIs are computed by determining the values a parameter must adopt
for model fit to worsen by a given amount. For example, 95% Cls are formed by moving the
parameter value away from the ML estimate in small steps—reoptimizing the model each
time—until the ML fit function increases by 3.84 ¥ units (3.84 is the critical value of y* when
df = 1) (Neale et al., 2003; Neale & Miller, 1997). This method of creating CIs can be time-
consuming due to the amount of CPU-intensive reoptimization required, but likelihood-based
ClIs have several advantages over standard errors, which assume normality (typically untrue of
variance parameters, for example), require # tests that are not invariant to reparameterization,
and sometimes yield nonsensical results for bounded parameters. Standard errors are still de
rigueur when reporting parameter estimates, but we predict that likelihood-based CIs will
become more popular because of their desirable characteristics, particularly as computers
improve in cost and computational efficiency.

12. Two loadings must be constrained for this model to be identified. Any two loadings
will suffice, as long as they are constrained to different values.



