
8
Latent Growth Curve Modeling

Thus far, the examples used to motivate the utility of structural equation
modeling have been based on cross-sectional data. Specifically, it has been

assumed that the data have been obtained from a sample of individuals mea-
sured at one point in time. Although it may be argued that most applications
of structural equation modeling are applied to cross-sectional data, it can also
be argued that most social and behavioral processes under investigation are
dynamic, that is, changing over time. In this case, cross-sectional data constitute
only a snapshot of an ongoing dynamic process and interest might naturally
center on the study of this process.

Increasingly, social scientists have access to longitudinal data that can pro-
vide insights into how outcomes of interest change over time. Indeed many
important data sets now exist that are derived from panel studies (e.g., NCES,
1988; NELS:88; The National Longitudinal Study; The Longitudinal Study of
American Youth; and the Early Childhood Longitudinal Study; to name a few).
Access to longitudinal data allows researchers to address an important class of
substantive questions—namely, the growth and development of social and
behavioral outcomes over time. For example, interest may center on the devel-
opment of mathematical competencies in young children (Jordan, Hanich, &
Kaplan, 2003a, 2003b; Jordan, Kaplan, & Hanich, 2002). Or, interest may cen-
ter on growth in science proficiency over the middle school years. Moreover,
in both cases, interest may focus on predictors of individual growth that are
assumed to be invariant across time (e.g., gender) or that vary across time (e.g.,
a student’s absenteeism rate during a school year).

This chapter considers the methodology of growth curve modeling—a
procedure that has been advocated for many years by researchers such as
Raudenbush and Bryk (2002); Rogosa, Brandt, and Zimowski, (1982); and
Willett (1988) for the study of intraindividual differences in change (see also
Willett & Sayer, 1994). The chapter is organized as follows. First, we consider
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growth curve modeling as a general multilevel problem. This is followed by
the specification of a growth curve model as a latent variable structural
equation model. In this section, we consider the problem of how time is
measured and incorporated into the model. The next section considers the
addition of predictors into the latent growth curve model, as well as using
the growth parameters as predictors of proximal and distal outcomes. This
is followed by a discussion of growth curve modeling extensions that
accommodate multivariate outcomes, nonlinear curve fitting, autoregressive
structures.

This chapter will not consider other important issues of structural equa-
tion modeling to dynamic data. In particular, we will not consider the sta-
tionarity of factors in longitudinal factor analysis (e.g., Tisak & Meredith,
1990), nor will we consider recent developments in the merging of time-series
models and structural equation models (e.g., Hershberger, Molenaar, &
Corneal, 1996). For a detailed account of growth curve modeling, see Bollen
and Curran (2006).

8.1 Growth Curve Modeling: 
A Motivating Example and Basic Ideas

To motivate the development of growth curve modeling, let us revisit the
input-process-output model in Figure 1.2. A criticism of the input-process-
output model, as diagrammed in Figure 1.2 is that it suggests a static educa-
tional system rather than a system that is inherently dynamic. For example, the
outcomes of achievement and attitudes are, arguably, constructs that develop
and change over time. Therefore, it may be of interest to adopt a dynamic per-
spective and ask how outcomes change over time and how those changes are
influenced by time-invariant and time-varying features of the educational 
system. In addition to examining the change in any one of these outcomes over
time, it may be of interest to examine how two or more outcomes change
together over time.

For the purposes of the example that will be used throughout this
chapter, we study change in science achievement and science attitudes sepa-
rately and together. To set the framework for this application, Figure 8.1
shows the empirical trajectories for 50 randomly chosen students on the
science achievement assessment over the five waves of LSAY. The figure shows
considerable variability in both level and trend in science achievement over
the waves of LSAY. Figure 8.2 shows the general trend in science attitudes over
the five grade levels. Unlike achievement in science, attitudes toward science
show a general linear decline over time. The advantage of growth curve 
modeling is that we can obtain an estimate of the initial level of science
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Figure 8.1 Fifty Random Science Achievement Observed Trajectories
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Figure 8.2 Fifty Random Science Attitude Observed Trajectories

achievement and the rate of change over time and link these parameters of
growth to time-varying and time-invariant variables. In this example, such
predictors will include student gender as well as teacher and parental push
variables. However, in addition to applying univariate growth curve models, we
also examine how these outcomes vary together in a multivariate growth curve
application.
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8.2 Growth Curve Modeling From 
the Multilevel Modeling Perspective

The specification of growth models can be viewed as falling within the class of
multilevel linear models (Raudenbush & Bryk, 2002), where Level 1 represents
intraindividual differences in initial status and growth, and Level-2 models
individual initial status and growth parameters as a function of interindividual
differences.

To fix ideas, consider a growth model for a continuous variable such
science achievement. We can write a Level-1 equation expressing outcomes
over time within an individual as

[8.1]

where yip is the achievement score for person p at time i, π0p represents the
initial status at time t = 0, π1p represents the growth trajectory, ti represents a
temporal dimension that here isassumed to be the same for all individuals—
such as grade level, and εip is the disturbance term. Later in this chapter, we
consider more flexible alternatives to specifying time metrics.

Quadratic growth can also be incorporated into the model by extending
the specification as

[8.2]

where π2p captures the curvilinearity of the growth trajectory. Higher-order
terms can also be incorporated. In Section 8.4.2, we explore an alternative to the
quadratic growth model in Equation [8.2] by allowing for general nonlinear
curve fitting.

The specification of Equations [8.1] and [8.2] can be further extended to
handle predictors of individual differences in the initial status and growth tra-
jectory parameters. In the terminology of multilevel modeling, individuals
would be considered Level-2 units of analysis. In this case, two models are spec-
ified, one for the initial status parameter and one for the growth trajectory
parameter. Consider, for example, a single time-invariant predictor of initial
status and growth for person p, denoted as xp. An example of such a predictor
might be socioeconomic status of the student. Then, the Level-2 model can be
written as

[8.3]

and

[8.4]p1p = mp1
+ gp1

xp + z1p,

p0p = mp0
+ gp0

xp + z0p

yip = p0p + p1pti +π2pt2
i + eip,

yip = p0p + p1pti + eip,
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where and are intercept parameters representing population true
status and population growth when xp is zero; and are slopes relating
xp to initial status and growth, respectively.

The model specified above can be further extended to allow individuals to
be nested in groups such as classrooms. In this case, classrooms become a
Level-3 unit of analysis. Finally, the model can incorporate time-varying pre-
dictors of change. In the science achievement example, such a time-varying
predictor might be changes in parental push or changes in attitudes toward
science over time. Thus, this model can be used to study such issues as the
influence of classroom-level characteristics and student-level invariant and
varying characteristics on initial status and growth in reading achievement
over time.

8.3 Growth Curve Modeling 
From the Structural Modeling Perspective

Research by B. Muthén (1991) and Willett and Sayer (1994) have shown how
the general growth model described in the previous section can also be incor-
porated into a structural equation modeling framework. In what follows, the
specification proposed by Willett and Sayer (1994) is described. The broad
details of the specification are provided; however, the reader is referred to
Willett and Sayer’s (1994) article for more detail.

The Level-1 individual growth model can be written in the form of the
factor analysis measurement model in Equation [4.24] of Chapter 4 as

[8.5]

where y is a vector representing the empirical growth record for person p. For
example, y could be science achievement scores for person p at the 7th, 8th, 9th,
10th, and 11th grades.

In this specification, τy is an intercept vector with elements fixed to zero
and Λy is a fixed matrix containing a column of ones and a column of constant
time values. Assuming that time is centered at the seventh grade,1 the time 
constants would be 0, 1, 2, 3, and 4. The matrix η contains the initial status and
growth rate parameters denoted as π0p and π1p, and the vector ε contains 
measurement errors, where it is assumed that Cov(ε) is a diagonal matrix of
constant measurement error variances. Because this specification results in the
initial status and growth parameters being absorbed into the latent variable vec-
tor η, which vary randomly over individuals, this model is sometimes referred to
as a latent variable growth model (B. Muthén, 1991). The growth factors, as in the
multilevel specification, are random variables.

y = τy +Λyη+ ε,

gp1
gp0

mp1
mp0
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Next, it is possible to use the standard structural model specification dis-
cussed in Chapter 4 to handle the Level-2 components of the growth model,
corresponding. Considering the Level-2 model without the vector of predictor
variables x, the model can be written as

[8.6]

where η is specified as before, α contains the population initial status and
growth parameters and , B is a null matrix, and ζ is a vector of
deviations of the parameters from their respective population means. Again,
this specification has the effect of parameterizing the true population initial
status parameter and growth parameter into the structural intercept vector α.
Finally, the covariance matrix of ζ, denoted as Ψ, contains the variances and
covariances of true initial status and growth.

The Level-2 model given in Equation [8.6] does not contain predictor
variables. The latent variable growth model can, however, be extended to
include exogenous predictors of initial status and growth. To incorporate
exogenous predictors requires using the x-measurement model of the sort
described in Chapter 4. Specifically, the model is written as

[8.7]

where here x is a vector of exogenous predictors, τx contains the mean vector,
Λx is an identity matrix, ξ contains the exogenous predictors deviated from
their means, and δ is a null vector. This specification has the effect of placing
the centered exogenous variables in ξ (Willett & Sayer, 1994, p. 374).

Finally, the full specification of the structural equation model given in
Equation [4.1] can be used to model the predictors of true initial status and
true growth, where, due to the centering of the exogenous predictors, it retains
its interpretation as the population mean vector of the individual initial status
and growth parameters (Willett & Sayer, 1994, p. 375).

An important feature of the structural equation modeling approach to
growth curve modeling is its flexibility in handling structured errors. That
is, the assumption of independent and homoscedastic errors can be
relaxed allowing for heteroscedasticity and autocorrelation. In the former
case, heteroscedasticity can be incorporated by relaxing the equality con-
straints among error variances in the diagonal of Θ

ε
. Autocorrelation can

be incorporated into growth curve models by allowing free off-diagonal
elements in Θ

ε
.

x= τx +Λxξ+ δ,

mp1
mp0

η=α+Bη+ ζ,
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8.3.1 AN EXAMPLE OF UNIVARIATE 
GROWTH CURVE MODELING

The data for this example come from the Longitudinal Study of American
Youth (LSAY; Miller, Hoffer, Sucher, Brown, & Nelson, 1992).2 LSAY includes
two sets of schools, a national probability sample of approximately 60 high
schools (Cohort 1) and approximately 60 middle schools (Cohort 2). An aver-
age of 60 10th graders (Cohort 1) and 60 7th graders (Cohort 2) from each of
the 60 high schools and middle schools have been followed since 1987, gather-
ing information on students’ family and school background, attitudes, and
achievement.

In addition to general background information, achievement and attitude
measures were obtained. Achievement tests in science and mathematics were
given to the students each year. The items for the mathematics and science
achievements tests were drawn from the item pool of the 1986 National
Assessment of Educational Progress (NAEP) tests (NAEP, 1986).

The measure of student attitudes toward science is based on a composite
which consists of an equally weighted average of four attitudinal subscales,
namely interest, utility, ability, and anxiety. There are nine variables in this
composite, for example, “I enjoy science”; “I enjoy my science class”; and so on.
Variables were recoded so that high values indicate a positive attitude toward
science. The composite is measured on a 0 to 20 metric.

For the purposes of this example, we concentrate the younger cohort,
measured at grades 7, 8, 9, 10, and 11. In addition to science achievement test
scores, we also include gender (male = 1) as a time-invariant predictor. Time-
varying predictors include a measure of parent academic push (PAP) and
student’s science teacher push (STP). PAP is an equally weighted average of eight
variables. Both student and parent responses are used in this composite.
Questions asked of the students are related to parental encouragement for
making good grades, doing homework, and interest in school activities.
Questions asked of the parents were related to their knowledge of their child’s
performance, homework, and school projects. This composite is measured on
a 0 to 10 metric. Although a composite measure of parent science push com-
posite was available for Cohort 2, it was not used because the items composing
this composite were not measured at all the time points.

Science teacher push is a composite based on five student response vari-
ables referring to teacher encouragement of science. Response values for this
composite range from 0 to 5.

The sample size for this study was 3,116. Analyses used Mplus (L. Muthén
& Muthén, 2006) under the assumption of multivariate normality of the data.

Latent Growth Curve Modeling—161

08-Kaplan-45677:08-Kaplan-45677.qxp 6/24/2008 8:31 PM Page 161



Missing data were handled by full information maximum likelihood imputa-
tion as discussed in Chapter 5. The analysis proceeds by assessing growth in
science achievement and science attitudes separately, then together in a multi-
variate growth curve model.

Growth in Science Achievement. Column 1 of Table 8.1 presents the results of
the linear growth curve model without predictors. A path diagram of this
model is shown in Figure 8.3. This model is estimated allowing for het-
eroscedastic but non-autocorrelated disturbances. The initial status is set at
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Table 8.1 Selected Results of Growth Curve Model of Science Achievement

Model 1a Model 2b Model 3c

Effect Maximum Likelihood Estimates

Intercept 50.507∗ 50.632∗ 47.042∗

Slope 2.207∗ 1.813∗ 1.810∗

Var(intercept) 71.665∗ 68.935∗ 67.755∗

Var(slope) 2.409∗ 1.563∗ 1.602∗

r(intercept and slope) −0.392∗ −0.352∗ −0.365

Intercept on gender 0.667∗ 0.736∗

Slope on gender −0.078 −0.083

SCIACH1 on PAP1 0.344∗

SCIACH2 on PAP2 0.340∗

SCIACH3 on PAP3 0.483∗

SCIACH4 on PAP4 0.377∗

SCIACH5 on PAP5 0.278∗

SCIACH1 on STP1 0.109

SCIACH2 on STP2 0.161

SCIACH3 on STP3 0.556∗

SCIACH4 on STP4 0.495∗

SCIACH5 on STP5 0.293∗

BIC 111359.030 116079.778 227152.878

a. Linear growth curve model—no covariates.

b. Linear growth curve model—gender as time-invariant covariate.

c. Linear growth curve model—gender as time-invariant covariate; parent academic push (PAP)
and science teacher push (STP) as time-varying covariates.
∗p < .05.
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seventh grade. The results indicate that the average seventh grade science
achievement score is 50.51 and increases an average of 2.21 points a year. The
correlation between the initial status and rate of change is negative suggesting
the possibility of a ceiling effect. Figure 8.1 presents a random sample of 50
model-estimated science achievement trajectories.

Column 2 of Table 8.1 presents the results of the linear growth curve
model with gender as a time-invariant predictor of initial status and growth
rate. A path diagram of this model is shown in Figure 8.4. The results indicate
a significant difference in favor of boys for seventh grade science achievement,
but no significant difference between boys and girls in the rate of change over
the five grades.

Column 3 of Table 8.1 presents the results of the linear growth curve model
with the time-varying covariates of PAP and STP included. The results for 
gender remain the same. A path diagram of this model is shown in Figure 8.5.
The results for the time-varying covariates suggest that early PAP is a stronger
predictor of early science achievement compared with STP. However, the
effects of both time-varying covariates balance out at the later grades.

Latent Growth Curve Modeling—163
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Growth in Attitudes Toward Science. Column 1 of Table 8.2 shows the results of
the simple linear growth curve model applied to the science attitude data. Path
diagrams for this and the remaining models are not shown. The results show a
seventh grade average attitude score of 14.25 points (on a scale of 1 to 20) and
a small but significant decline over time. Moreover, a strong negative correla-
tion can be observed between initial science attitudes and the change over time.
This suggests, as with achievement, that higher initial attitudes are associated
with slower change in attitudes over time.
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Column 2 of Table 8.2 examines sex differences in initial seventh grade
science attitudes and sex differences in the rate of decline over time. As with
science achievement we observe initial differences in attitudes at seventh grade
with boys exhibiting significantly higher positive attitudes compared with girls.
However, there appears to be no sex differences in the rate of attitude change
over time.
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Column 3 of Table 8.2 adds the time-varying covariates to model in Column 2.
The results here are somewhat different than those found for achievement.
Specifically, we observe that PAP is a relatively weak predictor of science attitudes
compared with STP. Moreover, an inspection of correlations between sex and
each of the time-varying predictors can be interpreted as representing whether
sex differences are occurring for PAP and STP. The results indicate small and
mostly nonsignificant sex differences in these time-varying covariates.
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Table 8.2 Selected Results of Growth Curve Model of Attitudes Toward Science

Model 1a Model 2 b Model 3 c

Effect Maximum Likelihood Estimates

Intercept 14.251∗ 14.058∗ 12.018∗

Slope −0.095∗ −0.094∗ 0.043

Var(intercept) 3.422∗ 3.388∗ 2.889∗

Var(slope) 0.121∗ 0.121∗ 0.107∗

r(intercept and slope) −0.578∗ −0.578∗ −0.564∗

Intercept on gender 0.369∗ 0.413∗

Slope on gender −0.003 −0.009

ATTITUDE1 on PAP1 0.148∗

ATTITUDE2 on PAP2 0.113∗

ATTITUDE3 on PAP3 0.086∗

ATTITUDE4 on PAP4 0.077∗

ATTITUDE5 on PAP5 0.091∗

ATTITUDE1 on STP1 0.284∗

ATTITUDE2 on STP2 0.330∗

ATTITUDE3 on STP3 0.332∗

ATTITUDE4 on STP4 0.312∗

ATTITUDE5 on STP5 0.218∗

BIC 69089.797 73588.288 184562.117

a. Linear growth curve model—no covariates.

b. Linear growth curve model—gender as time-invariant covariate.

c. Linear growth curve model—gender as time-invariant covariate; parent academic push (PAP)
and science teacher push (STP) as time-varying covariates.

∗p < .05.
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8.4 Extensions of the Basic Growth Curve Model

An important feature of growth curve modeling within the structural equation
modeling perspective is its tremendous flexibility in handling a variety of dif-
ferent kinds of questions involving growth. In this section, we consider four
important extensions of growth curve modeling. First, we consider the multi-
variate growth curve modeling, including models for parallel and sequential
processes. Second, we consider model extensions for nonlinear curve fitting.
Third, we consider an extension that incorporates an autoregressive compo-
nent to the model. Finally, we briefly consider some flexible alternatives 
to addressing the time metric. It should be noted that these three extensions
do not exhaust the range of analytical possibilities with growth curve model-
ing. For a more comprehensive treatment of the extensions of growth curve
modeling, see Bollen and Curran (2006).

8.4.1 MULTIVARIATE GROWTH CURVE MODELING

Consider the case where an investigator wishes to assess the relationship
between growth in mathematics and reading proficiency. It can be argued that
these achievement domains are highly related. Indeed, one may argue that
because measures of mathematics proficiency require reading proficiency,
reading achievement might be a causal factor for growth in mathematics pro-
ficiency. For now, however, we are only interested in assessing how these domains
change together.

A relatively straightforward extension of the growth curve specification
given in Equations [8.5] to [8.7] allows for the incorporation of multiple out-
come measures (Willett & Sayer, 1996). Important information about growth
in multiple domains arises from an inspection of the covariance matrix of η
denoted above as Ψ. Recall that in the case of univariate growth curve model-
ing the matrix Ψ contains the covariance (or correlation) between the initial
status parameter π0 and the growth parameter π1. In the multivariate exten-
sion, Ψ contains the measures of association among the initial status and
growth rate parameters of each outcome. Thus, for example, we can assess the
degree to which initial levels of reading proficiency are correlated with initial
proficiency levels in mathematics and also the extent to which initial reading
proficiency is correlated with the rates of growth in mathematics. We may also
ask whether rates of growth in reading are correlated with rates of growth in
mathematics. As in the univariate case, the multivariate case can be easily
extended to include time-invariant and time-varying predictors of all the
growth curve parameters.

If both mathematics and reading proficiency are measured across the
same time intervals, then we label this a parallel growth process. However, an
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interesting additional extension of multivariate growth curve modeling allows
the developmental process of one domain to predict the developmental process
of a later occurring outcome (see, e.g., B. Muthén & Curran, 1997). For exam-
ple, one might argue that development in reading proficiency in first, second,
and third grades predict the development of science achievement in fourth,
fifth, and sixth grades.

For this extension, the decision where to center the level of the process is
crucial. One could choose to center initial reading proficiency at first grade and
initial science proficiency at fourth grade. However, it may be the case that
reading proficiency at first grade shows little variation and thus may not be a
useful predictor of initial science proficiency. Perhaps a more sensible strategy
would be to center initial reading proficiency at the third grade and center ini-
tial science proficiency at fourth grade. One might expect more variation in
reading proficiency at the third grade and this variation might be more pre-
dictive of science proficiency at the fourth grade. As in the univariate case, the
issue of centering will most often be based on substantive considerations.

An Example of Multivariate Growth Curve Modeling

An inspection of Figures 8.1 and 8.2 suggests the need to study changes in
science achievement and science attitudes together. In the interest of space, we
fit the full time-invariant and time-varying model to the achievement and atti-
tude data in one analysis. A path diagram for this model is not shown. The
results are shown in Table 8.3. The results generally replicate those of the uni-
variate analyses, and in the interest of space, the time-varying covariate results
are not shown. However, it is important to focus on the correlations between
the growth parameters for achievement and attitudes. The results indicate a
positive correlation between seventh grade science achievement and seventh
grade science attitudes (r = 0.458). Moreover, we observe that higher rates of
growth in science achievement are associated with higher rates of growth in
attitudes toward science (r = 0.381). An apparent contradiction arises when
considering the negative correlation between initial science achievement and
rate of change in science attitudes. Again, an explanation might be a ceiling
effect, insofar as higher achievement scores are associated with higher attitudes
and therefore attitudes toward science cannot change much more.

8.4.2 NONLINEAR CURVE FITTING

In practical applications of growth curve modeling, it might be the case that
a nonlinear curve better fits the data. An approach to nonlinear curve fitting,
suggested by Meredith and Tisak (1990), entails freeing a set of the factor load-
ings associated with the slope. Specifically, considering the science achievement
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model, the nonlinear curve fitting approach suggested by Meredith and Tisak
would require that the first loading be fixed to zero to estimate the intercept, the
second loading would be fixed to one to identify the metric of the slope factor, but
the third through fifth loadings would be free. In this case, the time metrics are
being empirically determined. When this type of model is estimated, it perhaps
makes better sense to refer to the slope factor as a shape factor.

An Example of Nonlinear Curve Fitting

In this example, we estimate the science achievement growth model allow-
ing estimation of a general shape factor. As suggested by Meredith and Tisak
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Table 8.3 Selected Results of Multivariate Growth Curve Model of Science
Achievement and Attitudes Toward Science

Effect
Estimates Maximum Likelihood 

Ach. intercept 46.749∗

Ach. slope 2.325∗

Att. intercept 12.066∗

Att slope 0.064

Var(ach. intercept) 69.775∗

Var(ach. slope) 2.318∗

Var(att. intercept) 3.164∗

Var(att. slope) 0.167∗

r(ach. intercept/att. intercept) 0.458∗

r(ach. intercept/att. slope) −0.231∗

r(ach. intercept/ach. slope) −0.394∗

r(att. intercept/att slope) −0.616∗

r(att. intercept/ach. slope) −0.178∗

r(ach. slope/att. slope) 0.381∗

Ach. intercept on gender 0.846∗

Ach slope on gender −0.151

Att intercept on gender 0.416∗

Att slope on gender −0.012

BIC 295164.119

∗p < .05.
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(1990), we fix the first and second loadings as in the conventional growth curve
modeling case and free the loadings associated with the third, fourth, and fifth
waves of the study. The results are displayed in Table 8.4. It is clear from an
inspection of Table 8.4 that the nonlinear curve fitting model results in a sub-
stantial improvement in model fit. Moreover, we find that there are significant
sex differences with respect to the intercept in the nonlinear curve fitted model.

8.4.3 AUTOREGRESSIVE LATENT TRAJECTORY MODELS

Recently, Bollen and Curran (2004) and Curran and Bollen (2001) advo-
cated the blending of an autoregressive structure into conventional growth
curve modeling. They refer to this hybrid model as the autoregressive latent
trajectory (ALT) model.
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Table 8.4 Maximum Likelihood Estimates From Nonlinear Curve Fitting
Models

Model 0 Estimates Model 1 Estimates

Intercept by

Ach1 1.000 1.000

Ach2 1.000 1.000

Ach3 1.000 1.000

Ach4 1.000 1.000

Ach5 1.000 1.000

Shape by

Ach1 0.000 0.000

Ach2 1.000 1.000

Ach3 3.351 3.299

Ach4 3.928 3.869

Ach5 5.089 5.004

Ach. intercept 50.360∗ 49.966∗

Ach. shape 1.693∗ 1.770∗

r(shape, intercept) −0.397∗ −0.398∗

Intercept on

Male 0.737∗

Shape on

Male −0.091

BIC 111240.859 115769.718

∗p < .05.
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It is not difficult to make the case for specifying an ALT model for devel-
opmental research studies. Consider the example used throughout this chapter
where the focus is on modeling the development of science proficiency
through the middle and high school years. We can imagine that interest centers
on how change in science proficiency predicts later outcomes of educational
relevance—such as majoring in science-related disciplines in college. It is not
unreasonable, therefore, to assume that in addition to overall growth in science
proficiency prior science scores predict later science scores thus suggesting an
autoregressive structure.

In the case of long periods between assessment waves, we might reason-
ably expect small autoregressive coefficients, as opposed to more closely spaced
assessment waves. Nevertheless, if the ALT model represents the true data gen-
erating structure, then omission of the autoregressive part may lead to sub-
stantial parameter bias. A recent article by Sivo, Fan, and Witta (2005) found
extensive bias for all parameters of the growth curve model as well as biases in
measures of model fit when a true autoregressive component was omitted
from the analysis.

For the purposes of this chapter, we focus on the baseline lag-1 ALT
model with a time-invariant predictor. This will be referred to as the
ALT(1) model. The ALT(1) specification indicates that the outcome at time
t is predicted only by the outcome at time t − 1. It should be noted lags
greater than one can also be specified. As with conventional growth curve
modeling, the ALT model can be extended to include more than one out-
come, each having its own autoregressive structure, as well as extensions
that include proximal or distal outcomes and time-varying and time-
invariant predictors.

To contextualize the study consider the example of an ALT model for the
development of reading competencies in young children. The first model is a
baseline lag-1 ALT model. This model can be written in structural equation
modeling notation as

[8.8]

[8.9]

where y is a vector of repeated measures, Λ is a matrix of fixed coefficients that
specify the growth parameters, η is a vector of growth parameters, B is a matrix
of regression coefficients relating the repeated measures to each other, and δ is
a vector of residual variances with covariance matrix Cov(δδ′) = Θ. A path
diagram of ALT(1) model is shown in Figure 8.6.

η= τ+Γη+ ζ,

y =α+Λη+By + δ,
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An Example of an ALT Model

For this example, we estimate an ALT(1) among the science scores from
the LSAY example. Model 0 of Table 8.5 displays the results for the ALT(1)
model without the addition of gender as a time-invariant predictor. It can be
seen that the autocorrelation effects are small but statistically significant.
Model 1 under Table 8.5 adds gender to the ALT model. The addition of gen-
der in Model 1 appears to worsen the overall fit of the model as evidenced by
the increase in the BIC. 

8.4.4 ALTERNATIVE METRICS OF TIME

Up to this point, we have assumed a highly restrictive structure to the data.
Specifically, we have assumed that each wave of measurement is equidistant
and that we have complete data on all units of analysis at each time point. In
many cases, this assumption is too restrictive and we need a way of handling
more realistic time structures. For example, in developmental research, the
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SCIACH1 SCIACH2 SCIACH3 SCIACH4 SCIACH5

Initial
Status

Growth
Rate

1 1 1
1

1

0 1 2 3 4

Figure 8.6 Autoregressive Latent Trajectory(1) [ALT(1)] Model of Science
Achievement
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wave of assessment may not be nearly as important as the chronological age of
the child. In this case, there might be a quite a bit of variability in chronologi-
cal ages at each wave of assessment. In other cases, the nature of the assessment
design is such that each child has his or her own unique interval between test-
ing. In this section, we introduce two approaches that demonstrate the flexi-
bility in dealing with the time metric in longitudinal studies: The cohort
sequential design and the individual varying metrics of time design.

The Cohort Sequential Design. In cohort sequential designs, we consider age
cohorts within a particular time period (Bollen & Curran, 2006). Thus, at Wave 1
of the study, we may have children who vary in age from 5 years to 7 years. At
Wave 2 of the study, we may have children varying in age from 7 years to 9 years
years, and so on. Notice, there is an overlap of ages at each wave.

As Bollen and Curran (2006) point out, there are two ways that this type
of data structure can be addressed. First, we can go back to treating wave as 
the metric of time and use age of respondent as a covariate in the study. The
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Table 8.5 Maximum Likelihood Estimates From Autoregressive Latent
Trajectory Models

Model 0 Estimates Model 1 Estimates

Ach5 ON

Ach4 0.135∗ 0.135∗

Ach4 ON

Ach3 0.103∗ 0.103∗

Ach3 ON

Ach2 0.102∗ 0.102∗

Ach2 ON

Ach1 0.031∗ 0.031∗

Ach. intercept 50.335∗ 49.911∗

Ach. slope 0.246∗ 0.329∗

r(slope, intercept) −0.575∗ −0.573∗

Intercept on

Male 0.814∗

Slope on

Male −0.156

BIC 111195.653 115723.216

∗p < .05.
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second approach is to exploit the inherent missing data structure. In this case,
we could arrange the data as shown in Table 8.6 patterned after Bollen and
Curran (2006, p. 77). Notice that there are three cohorts and five time points.
Any given child in this example can provide between one and four repeated
measures. The pattern of missing data allows estimation using maximum like-
lihood imputation under the assumption of missing-at-random (Allison,
1987; Arbuckle, 1996; Muthén et al., 1987). Thus, the growth parameters span-
ning the entire time span can be estimated.

As Bollen and Curran (2006) point out, however, this approach suffers
from the potential of cohort effects. That is, children in Cohort 1 may have
been 7 years old at the second wave of assessment, but children in Cohort 2
would have been 7 at the first wave of assessment.

Individually Varying Metrics of Time. Perhaps a more realistic situation
arises when individuals have their own unique spacing of assessment waves.
An example of this would be the situation where a researcher is collecting
individual longitudinal assessments in schools. At the beginning of the
semester, the researcher and his or her assistants begin data collection.
Because it is probably not feasible that every child in every sampled school
can be assessed on exactly the same day, the assessment times may spread
over, say, a 2-week period. At the second wave of assessment, the first child
assessed at Wave 1 is not necessarily the same child assessed at Wave 2.
Indeed, in the worst case scenario, if the first child assessed at Wave 1 is the
last child assessed at Wave 2, the length of time between assessments will be
much greater than if the child is the last one assessed at Wave 1 and the first
assessed at Wave 2. Although I have presented the extreme case, the conse-
quences for a study of development, especially in young children, would be
profound. A better approach is to mark the date of assessment for each child
and use the time between assessments for each child as his or her own
unique metric of time. Time can be measured in days, weeks, or months,
with the decision based on developmental considerations.
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Table 8.6 Cohort Sequential Data Structure

Age of Assessment

Cohort Time 1 Time 2 Time 3 Time 4

1 6 7 8 9

2 7 8 9 10

3 8 9 10 11
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8.5 Evaluating Growth Curve 
Models Using Forecasting Statistics

It may be useful to consider if there are aspects of model fit that are pertinent
to the questions being addressed via the use latent growth curve models.
Clearly, we can apply traditional statistical and nonstatistical measures of fit,
such as the likelihood ratio chi-square, RMSEA, NNFI, or the like. In many
cases, the Bayesian information criterion is used to compare latent growth
curve models as well. However, these measures of fit are capturing whether the
restrictions that are placed on the data to provide estimates of the initial status
and growth rate are supported by the data. In addition, these measures 
are assessing whether such assumptions as non-autocorrelated errors are sup-
ported by the data.

The application of traditional statistical and nonstatistical measures of fit
does provide useful information. However, because growth curve models pro-
vide estimates of rates of change, it may be useful to consider whether the
model predicted growth rate fits the empirical trajectory over time. So, for
example, if we know how science achievement scores have changed over the
five waves of LSAY, we may wish to know if our growth curve model accurately
predicts the known growth rate. In the context of economic forecasting, this
exercise is referred to as ex post simulation. The results of an ex post simula-
tion exercise is particularly useful when the goal of modeling is to make fore-
casts of future values.

To evaluate the quality and utility of latent growth curve models, Kaplan
and George (1998) studied the use of six different ex post (historical) simula-
tion statistics originally proposed by Theil (1966) in the domain of economet-
ric modeling. These statistics evaluate different aspects of the growth curve.
The first of these statistics discussed by Kaplan and George was the root mean
square simulation error (RMSSE) as

[8.10]

where T is the number of time periods, y t
s is the simulated (i.e., predicted)

value at time t, and y t
a is the actual value at time t. The RMSSE provides a mea-

sure of the deviation of the simulated growth record from the actual growth
record and is the measure most often used to evaluate simulation models
(Pindyck & Rubinfeld, 1991).

Another measure is the root mean square percent simulation error
(RMSPE), which scales the RMSSE by the average size of the variable at time t.

RMSSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
�
T

t = 1
ðys
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t Þ
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r
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The RMSPE is defined as

[8.11]

A problem with the RMSPE is that its scale is arbitrary. Although the lower
bound of the measure is zero, the upper bound is not constrained. Thus, it is
of interest to scale the RMSSE to lie in the range of 0 to 1. A measure that lies
between 0 and 1 is Theil’s inequality coefficient, defined as

[8.12]

An inspection of Equation [8.12] shows that perfect fit of the simulated
growth record to the actual growth record is indicated by a value U = 0.
However, if U = 1, the simulation adequacy is as poor as possible.

An interesting feature of the inequality coefficient in Equation [8.12] is
that can be decomposed into components that provide different perspectives
on the quality of simulation performance. The first component of Theil’s U is
the bias proportion, defined as

[8.13]

where and are the means of the simulated and actual growth record,
respectively, calculated across the T time periods. The bias proportion provides
a measure of systematic error because it considers deviations of average actual
values from average simulated values (Pindyck & Rubinfeld, 1991).

The ideal would be a value of U M = 0. Values greater than 0.1 or 0.2 are
considered problematic.

Another component of Theil’s U is the variance proportion defined as

[8.14]
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where σs and σa are the standard deviations of the respective growth records
calculated across the T time periods. The variance proportion provides a
measure of the extent to which the model tracks the variability in the growth
record. If U S is large, it suggests that the actual (or simulated) growth record
varied a great deal while the simulated (or actual) growth record did not
deviate by a comparable amount.

A final measure based on the decomposition of the inequality coefficient
is the covariance proportion, defined as

[8.15]

where ρ is the correlation coefficient between y s
t and y a

t. The covariance
proportion U C provides a measure of unsystematic error, that is, error that
remains after having removed deviations from average values.

The decomposition of U results in the relation

U M + U S + U C = 1, [8.16]

and an ideal result for a simulation model would be U M = 0, U S = 0,
and U C = 1.

Values greater than zero for U M and/or U S are indicative of some problem
with the model vis-à-vis tracking the empirical growth record.

8.5.1 COMPARISON OF STANDARD 
GOODNESS-OF-FIT TESTS AND FORECASTING 
STATISTICS FOR SCIENCE ACHIEVEMENT GROWTH MODEL

Table 8.7 displays the forecasting statistics described above for the
science achievement model. It can be seen that the simple linear trend model
(Model 1) demonstrates the best historical forecasting performance as mea-
sured by all six forecasting statistics. Model 2 incorporates the time-invariant
predictor of gender. Here, it can be seen that historical forecasting perfor-
mance worsens. When time-varying predictors of teacher push and parent
push are added to account for the variability in the growth curve, the historical
forecasting performance improves as measured by U S as expected. Figure 8.7
compares the observed growth in science achievement with the model-
predicted growth curves.
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Table 8.7 Observed and Predicted Science Achievement Means and Forecasting
Statistics for the Science Achievement Model

Observed Predicted Means

Grade Means Model 1 Model 2 Model 3

7 50.345 50.507 50.591 49.953

8 52.037 52.714 52.404 51.748

9 56.194 54.921 54.217 55.722

10 56.840 57.128 56.030 56.511

11 58.970 59.335 57.843 57.021

Forecasting Statistics

RMSSE 0.681 1.098 0.935

RMSPSE 0.012 0.019 0.016

U 0.006 0.010 0.008

U M 0.004 0.361 0.539

U S 0.014 0.409 0.202

U C 0.982 0.230 0.259

Grade
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Figure 8.7 Observed Versus Model-Predicted Science Achievement Means
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8.6 Conclusion

This chapter focused on the extension of structural equation modeling to the
study of growth and change. We outlined how growth can be considered a
multilevel modeling problem with intraindividual differences in students
modeled at Level 1, individual differences modeled at Level 2, and individuals
nested in groups modeled Level 3. We discussed how this specification could
be parameterized as a structural equation model and discussed how the gen-
eral model could be applied to (a) the study of growth in multiple domains, 
(b) the study of binary outcomes, and (c) intervention studies.

In addition to the basic specification, we also discussed approaches to the
evaluation of growth curve models—focusing particularly on the potential of
growth curve modeling for prediction and forecasting. We argued that growth
curve modeling could be used to develop predictions of outcomes at future
time points, and we discussed the use of econometric forecasting evaluation
statistics as an alternative to more traditional forms of model evaluation.

Notes

1. Clearly, other choices of centering are possible. Centering will not affect the
growth rate parameter but will affect the initial status parameter.

2. LSAY was a National Science Foundation funded national longitudinal study of
middle and high school students. The goal of LSAY was to provide a description of
students’ attitudes toward science and mathematics focusing also on these areas as pos-
sible career choices (Miller et al., 1992, p. 1).
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