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Structural Models for Categorical
and Continuous Latent Variables

This chapter describes what can be reasonably considered the state of the
art in structural equation modeling—namely, structural equation models
that combine categorical and continuous latent variables for cross-sectional
and longitudinal designs. The comprehensive modeling framework described
in this chapter rests on the work of B. Muthén (2002, 2004),which builds on
the foundations of finite mixture modeling (e.g., McLachlan & Peel, 2000) and
conventional structural equation modeling for single and multiple groups as
described in Chapter 4.

It is beyond the scope of this chapter to describe every special case that
can be accommodated by the general framework. Rather, this chapter
touches on a few key methods that tie into many of the previous chapters.
The organization of this chapter is as follows. First, we set the stage for the
applications of structural equation modeling for categorical and continuous
latent variables with a brief review of finite mixture modeling and the
expectation-maximization (EM) algorithm, following closely the discussion
given in McLachlan and Peel (2000). This is followed by a discussion of
applications of finite mixture modeling for categorical outcomes leading to
latent class analysis and variants of Markov chain modeling. Next, we dis-
cuss applications of finite mixture modeling to the combination of contin-
uous and categorical outcomes, leading to growth mixture modeling. We
focus solely on growth mixture modeling because this methodology encom-
passes structural equation modeling, factor analysis, and growth curve
modeling for continuous outcomes. The chapter closes with a brief overview
of other extensions of the general framework that relate to previous chapters
of this book.
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9.1 A Brief Overview of Finite Mixture Modeling

The approach taken to specifying models that combine categorical and con-
tinuous latent variables is finite mixture modeling. Finite mixture modeling
relaxes the assumption that a sample is drawn from a population characterized
by a single set of parameters. Rather, finite mixture modeling assumes that the
population is composed of a mixture of unobserved subpopulations charac-
terized by their own unique set of parameters.

To fix notation, let z=(z),2},...,7,)" denote the realized values of a
p-dimensional random vector Z=(Z},Z), ...Z!)" based on a random sample
of size n. An element Z, of the vector Z has an associated probability density
function f(z,). Next, define the finite mixture density as

K
flz) =Y mfi(z), (i=1,2,...,m k=1,2,...,K), [9.1]
k=1

where fi(z;) are component densities with mixing proportions (0 <m; <1)
and ¥ _, w,= 1.

It may be instructive to consider how data are generated from a K-class
finite mixture model.' Following McLachlan and Peel (2000), consider a cate-
gorical random variable C, referred to here as a class label, which takes on val-
ues 1,2,..., K with associated probabilities 1, 75, . . ., ¢ In this context, the
conditional density of Z, given that the class label C, = kis f;(z;) and the mar-
ginal density of Z. is f(z,).

We can arrange the class label indicators in a K-dimensional vector denoted
as C=(C|,C),...,C,)" with corresponding realizations c=(c,¢y,...,c,)
Here, the elements of ¢, are all zero except for one element whose value is unity
indicating that z, belongs to the kth mixture class. It follows then, that the
K-dimensional random vector C, possesses a multinomial distribution, namely,

Ci"’Mult[((l,J‘t), [9.2]
where the elements of 1t defined earlier arise from the fact that

Qi

pr{C;=c;} =nins Ki [9.3]

.TCK

A practical way of conceptualizing the finite mixture problem is to imag-
ine that the vector Z, is drawn from population J consisting of K groups
(J1; Ja> - - -» Jx) with proportions 71, T, . . ., k. Then, the density function of Z,
in group J, given C, = kis fi(z;) for k=1,2,...,K . Note that the proportion
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7, can be thought of as the prior probability that individual i belongs to mix-
ture class k. Thus, from Bayes’s theorem, the posterior probability that individ-
ual 7 belongs to class k given the data z, can be written as

T fie(zi) . C 1
w(z) = ) (i=1,2,...,m k=1,2,...,K). [9.4]
Estimated posterior probabilities from Equation [9.4] provide one approach
for assessing the adequacy of the finite mixture model, as will be demonstrated
in the examples below.

In the context of this chapter, it is necessary to provide a parametric form
of the finite mixture model described in this section. The parametric form of
the finite mixture model in Equation [9.1] can be written as

K
flzi )= mfi(zi;0), (i=1,2,....,m k=1,2,...,K), [95]
k=1

where  is a parameter vector containing the unknown parameters of the
mixture model, namely,

SZ:(TCI)TEZ’--~)TEK—1)®)1 [96]
where © contains the parameters 0,,0,, . ..,0x, and where
= (m,my,...,7K) [9.7]

is the vector of mixing proportions defined earlier. Because the probabilities in
Equation [9.7] sum to unity, one of them is redundant as represented in
Equation [9.6]. As outlined below, the vector ® will contain the parameters of
the various models under consideration—such as growth mixture models. For
now, we consider ® to be any general parameter vector whose elements are
distinct from .

9.2 The Expectation-Maximization Algorithm

Standard estimation algorithms for structural equation models, such as maxi-
mum likelihood (ML) and the class of weighted least squares estimators, were
covered in Chapter 2. The method of estimation typically employed for finite
mixture models is ML using the EM algorithm. The EM algorithm was origi-
nally developed as a means of obtaining maximum likelihood estimates in the
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context of incomplete data problems (Dempster et al., 1977; see also Little &
Rubin, 2002). However, it was soon recognized that a wide array of statistical
models, including the latent class model, could be conceptualized as incomplete
data problems, including finite mixture modeling. Specifically, in context of
finite mixture models, the component label vector ¢ is not observed. The EM
algorithm proceeds by specifying the complete-data vector, denoted here as
Zcomp = (Zl, C/),. [98]
The complete-data log-likelihood must account for the distribution of the
class-label indicator vector as well as the distribution of the data. Thus, from
Equation [9.5], the complete data log-likelihood for € can be written as

K n
log Leomp (82) = Z ci{log Ty + log fi(zi]0)}, [9.9]

k=1i=1

where ¢, is an element of c. The form of Equation [9.9] shows the role of ¢, as
an indicator of whether individual i is a member of class k.

The EM algorithm involves two steps. The E-step begins by taking the
conditional expectation of Equation [9.9] given the observed data z using
the current estimates of € based on a set of starting values, say .
Following McLachlan and Peel (2000), the conditional expectation is writ-
ten as

Q(R; 1) = Eg o) {l0g Leomp ()2} [9.10]

Let ™ be the updated value of  after the mth iteration of the EM algo-
rithm. Then the E-step on the (m + 1)th iteration calculates Q(£2, ™).

With regard to the class-label vector c, the E-step of the EM algorithm
computes the conditional expectation of C, given z, where C, is an element of
C. Specifically, on the (m + 1)th iteration, the E-step computes

Eqm (Cik|z) = prom { Cic = 1]z} 0.11]

=1;(z;; M), .
where T (z;; ™) is the posterior probability of class membership defined in
Equation [9.4]. The M-step of the EM algorithm maximizes Q(2, ) with
respect to ® providing the updated estimate " * V. Note that the E-step
replaces ¢, in Equation [9.9] with t;(z; ("), Therefore, the updated estimate
of the mixing proportion for class k, denoted as n{"* " is
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n
ném-rl): ZTk(ZiQQ(m))/” (k=1,2,...,K). [9.12]

i=1

9.3 Cross-Sectional Models
for Categorical Latent Variables

In this section, we discuss models for categorical latent variables, with applica-
tions to cross-sectional and longitudinal designs. This section is drawn from
Kaplan (in press). To motivate the use of categorical latent variables consider the
problem of measuring reading ability in young children. Typical studies of read-
ing ability measure reading on a continuous scale. Using the methods of item
response theory (see, e.g., Hambleton & Swaminathan, 1985), reading measures
are administered to survey participants on multiple occasions, with scores
equated in such a way as to allow for a meaningful notion of growth. However,
in large longitudinal studies such as the Early Childhood Longitudinal Study
(NCES, 2001), not only are continuous scale scores of total reading proficiency
available for analyses but also mastery scores for subskills of reading. For exam-
ple, a fundamental subskill of reading is letter recognition. A number of items
constituting a cluster that measures letter recognition are administered, and,
according to the ECLS-K scoring protocol, if the child receives 3 out of 4 items
in the cluster correct, then the child is assumed to have mastered the skill with
mastery coded “1” and nonmastery coded as “0.” Of course, there exist other,
more difficult, subskills of reading, including beginning sounds, ending sounds,
sight words, and words in context with subskill cluster coded for mastery.

Assume for now that these subskills tap a general reading ability factor. In
the context of factor analysis, a single continuous factor can be derived that
would allow children to be placed somewhere along the factor. Another approach
might be to derive a factor that serves to categorize children into mutually exclu-
sive classes on the latent reading ability factor. Latent class analysis is designed to
accomplish this categorization.

9.3.1 LATENT CLASS ANALYSIS

Latent class models were introduced by Lazarsfeld and Henry (1968) for
the purposes of deriving latent attitude variables from responses to dichoto-
mous survey items. In a traditional latent class analysis, it is assumed that an
individual belongs to one and only one latent class, and that given the individ-
ual’s latent class membership, the observed variables are independent of one
another—the so-called local independence assumption (see Clogg, 1995). The
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latent classes are, in essence, categorical factors arising from the pattern of
response frequencies to categorical items, where the response frequencies play
arole similar to that of the correlation matrix in factor analysis (Collins, Hyatt,
and Graham, 2000). The analogues of factor loadings are probabilities associ-
ated with responses to the manifest indicators given membership in the latent
class. Unlike continuous latent variables, categorical latent variables serve to
partition the population into discrete groups based on response patterns
derived from manifest categorical variables.

9.3.2 SPECIFICATION, IDENTIFICATION,
AND TESTING OF LATENT CLASS MODELS

The latent class model can be written as follows. Let

A
Pj= Y 8aPiaPjaPiaPla> [9.13]

a=1

where 8 is the proportion of individuals in latent class a. The parameters p, ,
Pjo Puo and p, are the response probabilities for items 4, j, k, and [, respectively
conditional on membership in latent class a.

In the case of the ECLS-K reading example, there are five dichotomously
scored reading subskill measures, which we will refer to here as A, B, C, D, and E.
Denote the response options for each of the measures respectively by 3, j, k, [, and
m(i=1,...,Lj=1,...,k=1,...,K1=1,...,L;m=l,..., M) and denote
the categorical latent variable as €. Then, the latent class model can be written as

ABCDEE _ ngnA\énB\E f\&ni\;nﬂf’ [9.14]

T ijklmc cic "Yje

where T is the probability that a randomly selected child will belong to latent
class ¢ (c =1, 2,..., C) of the categorical latent variable &, TE is the
conditional prpbablhty of response i to variable A given membershlp in latent
class ¢, and njc , ﬂ,i‘é, ng‘a, and 1% are likewise the conditional probabilities for
items B, C, D, and E, respectively. For this example, the manifest variables are
dichotomously scored, and so there are two response options for each item.?

Identification of a latent class model is typically achieved by imposing the
constraint that the latent classes and the response probabilities that serve as
indicators of the latent classes sum to 1.0—namely, that

Znﬁ_znz‘\li ZRBIE ZRC\E ZTED‘&" ZTEE‘&"—IO 9.15]
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where the first term on the left-hand side of Equation [9.15] indicates that the
latent class proportions must sum to 1.0, and the remaining terms on the left-
hand side of Equation [9.15] denote that the latent class indicator variables
sum to 1.0 as well (McCutcheon, 2002).?

To continue with our reading example, suppose that we hypothesize that
the latent class variable £ is a measure of reading ability with three classes (1 =
advanced reading ability, 2 = average reading ability, and 3 = beginning reading
ability). Assume also that we have a random sample of first semester kinder-
garteners. Then, we might find that a large proportion of kindergartners in the
sample who show mastery of letter recognition (items A and B, both coded 1/0)
are located in the beginning reading ability class. A smaller proportion of
kindergartners demonstrating mastery of ending sounds and sight words might
be located in the average reading ability class, and still fewer might be located in
the advanced reading class. Of course at the end of kindergarten and hopefully
by the end of first grade, we would expect to see the relative proportions shift.*

An Example of Latent Class Analysis

The following example comes from Kaplan and Walpole (2005) using data
from the Early Childhood Longitudinal Study: Kindergarten Class of 1998—1999
(NCES, 2001). The ECLS-K database provides a unique opportunity to estimate
the prospects of successful reading achievement (which Kaplan and Walpole
define as the ability to comprehend text) by the end of first grade for children
with different levels of entering skill and different potential barriers to success.
The ECLS-K data available for their example include longitudinal measures of
literacy achievement for a large and nationally representative sample—a sample
unprecedented in previous investigations of early reading development.

Data used in the Kaplan and Walpole (2005) example consist of the
kindergarten base year (Fall 1998/Spring 1999) and first grade follow-up (Fall
1999/Spring 2000) panels of ECLS-K. Only first-time public school kinder-
garten students who were promoted to and present at the end of first grade
were chosen for this study. The sample size for their example was 3,575.°

The measures used in their example consisted of a series of reading assess-
ments. Using an item response theory framework, the reading assessment
yielded scale scores for (1) letter recognition, (2) beginning sounds, (3) ending
sounds, (4) sight words, and (5) words in context.

In addition to reading scale scores, ECLS-K provides transformations of
these scores into probabilities of proficiency as well as dichotomous profi-
ciency scores, the latter which Kaplan and Walpole used in their study. The
reading proficiencies were assumed to follow a Guttman simplex model, where
mastery at a specific skill level implies mastery at all previous skill levels.
Details regarding the construction of these proficiency scores can be found in
Kaplan and Walpole (2005).
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Table 9.1 presents the response probabilities measuring the latent classes
for each wave of the study separately. The interpretation of this table is similar
to the interpretation of a factor loading matrix. The pattern of response proba-
bilities across the subsets of reading tests suggest the labels that have been given
to the latent classes—namely, low alphabet knowledge (LAK), early word read-
ing (EWR), and early word comprehension (ERC). The extreme differences
across time in the likelihood ratio chi-square tests are indicative of sparse cells,
particularly occurring at spring kindergarten. For the purposes of this chapter,
I proceed with the analysis without attempting to ameliorate the problem.

Table 9.1 Response Probabilities and Class Proportions for Separate Latent
Class Models: Total Sample

Subtest Response Probabilities'

Class
Latent Class LR* BS ES SW WIC Proportions x:,(29 df)
Fall K
LAK® 047 0.02 0.01 0.00 0.00 0.67 3.41
EWR 0.97 0.87 0.47 0.02 0.00 0.30
ERC 1.00 0.99 098 0.97 045 0.03
Spring K
LAK 0.56 0.06 0.00 0.00 0.00 0.24 4831.89"
EWR 099 092 063 0.05 0.00 0.62
ERC 0.00 0.99 099 0.96 0.38 0.14
Fall First
LAK 0.52 0.08 0.01 0.00 0.00 0.15 11.94
EWR 1.00 092 0.71 0.05 0.03 0.59
ERC 1.00 0.99 098 0.98 0.42 0.26
Spring First
LAK 0.19 0.00 0.00 0.00 0.00 0.04 78.60"
EWR 098 090 079 035 0.00 0.18
ERC 1.00 0.99 098 0.99 0.60 0.78

a. Response probabilities are for passed items. Response probabilities for failed items can be com-
puted from 1 — prob (mastery).

b. LR = letter recognition, BS = beginning sounds, ES = ending letter sounds, SW = sight words,
WIC = words in context.

c. LAK = low alphabet knowledge, EWR = early word reading, ERC = early reading comprehension.

“p <.05. Extreme value likely due to sparse cells.

e



09-Kaplan-45677:09-Kaplan-45677.gxp 6/24/2%f§ 8:22 PM Page 189

Structural Models for Categorical and Continuous Latent Variables 189

The last column of Table 9.1 presents the latent class membership pro-
portions across the four ECLS-K waves for the full sample. We see that in fall
of kindergarten, approximately 67% of the cases fall into the LAK class,
whereas only approximately 3% of the cases fall into the ERC class. This break-
down of proportions can be compared with the results for Spring of first grade;
by that time, only 4% of the sample are in the LAK class, whereas approxi-
mately 78% of the sample is in the ERC class.

9.4 Longitudinal Models for Categorical
Latent Variables: Markov Chain Models

The example of latent class analysis given in the previous sections presented
results over the waves of the ECLS-K but treated each wave cross-sectionally.
Nevertheless, it could be seen from Table 9.1 that response probabilities did
change over time as did latent class membership proportions. Noting these
changes, it is important to have a precise approach to characterizing change in
latent class membership over time. In this section, we consider changes in
latent class membership over time. We begin by describing a general approach
to the study of change in qualitative status over time via Markov chain model-
ing, extended to the case of latent variables. This is followed by a discussion of
latent transition analysis, a methodology well-suited for the study of stage-
sequential development.

9.4.1 IDENTIFICATION, ESTIMATION,
AND TESTING OF MARKOV CHAIN MODELS

In this section, we briefly discuss the problem of parameter identification,
estimation, and model testing in Markov chain models. As with the problem of
identification in factor analysis and structural equation models, identification
in Markov chain models is achieved by placing restrictions on model.

With regard to manifest Markov chains, identification is not an issue. All
parameters can be obtained directly from manifest categorical responses. In
the context of latent Markov chain models with a single indicator, the situation
is somewhat more difficult. Specifically, identification is achieved by restricting
the response probabilities to be invariant over time. As noted by Langeheine &
Van de Pol (2002), this restriction simply means that measurement error is
assumed to be equal over time. For four or more time points, it is only required
that the first and last set of response frequencies be invariant. As with latent
class analysis, parameters are estimated via ML using the EM algorithm as dis-
cussed in Sections 9.1 and 9.2.
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After obtaining estimates of model parameters, the next step is to assess
whether the specified model fits the data. In the context of Markov chain mod-
els and latent class extensions, model fit is assessed by comparing the observed
response proportions against the response proportions predicted by the
model. Two statistical tests are available for assessing the fit of the model based
on comparing observed versus predicted response proportions. The first is the
classic Pearson chi-square statistic. As an example from the latent class frame-
work, the Pearson chi-square test can be written as

= (it — fim)?
- fi [9.16]

where Fj, are the observed frequencies of the IJKL contingency table and f,
are the expected cell counts. The degrees of freedom are obtained by subtracting
the number of parameters to be estimated from the total number of cells of the
contingency table that are free to vary.

In addition to the Pearson chi-square test, a likelihood ratio statistic can
be obtained that is asymptotically distributed as chi-square, where the degrees
of freedom are calculated as with the Pearson chi-square test. Finally, the
Akaike information criterion (AIC) and Bayesian information criterion (BIC)
discussed in Chapter 6 can be used to choose among competing models.

9.4.2 THE MANIFEST MARKOV MODEL

The manifest Markov model consists of a single chain, where predicting
the current state of an individual only requires data from the previous occa-
sion. In line with the example given in Section 4, consider measuring mastery
of ending letter sounds at four discrete time points. The manifest Markov
model can be written as

. s1.21_32_43
Piji = 8; T Ty Tijpo [9.17]

where Py, is the model-based expected proportion of respondents in the
defined population in cell (4, j, k, I). The subscripts, i, j, k, and [ are the manifest
categories for times 1, 2, 3, and 4, respectively, with i=1,... L j=1,...J
k=1,...Kandl=1,... L. In this study, there are two categorical responses
for i, j, k, and —namely, mastery or nonmastery of ending letter sounds Thus,
I=]= K= L=2.The parameter is the observed proportion of individuals at
time 1 who have or have not mastered ending letter sounds and corresponds to
the initial marginal distribution of the outcome. The parameters 1']2‘1 R Tzfj, and
Tj1, are the transition probabilities. Specifically, the parameter szﬁ represents the
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transition probability from time 1 to time 2 for those in category j given they
were in category i at the beginning of the study. The parameter Tif] represents
the transition probability from time 2 to time 3 for those in category k given
they were in category j at the previous time point. Finally, the parameter T/ is
the transition probability from time 3 to time 4 for those in category lgiven
that they were in category k at the previous time point.

The manifest Markov model can be specified to allow transition probabil-
ities to be constant over time or to allow transition probabilities to differ over
time. The former is referred to as a stationary Markov chain while the latter is
referred to as a nonstationary Markov chain.

Application of the Manifest Markov Model

Table 9.2 presents the results of the nonstationary manifest Markov model
applied to the development of competency in ending sounds.® It can be seen
that over time, the probabilities associated with moving from nonmastery of
ending sounds to master of ending sounds changes. For example, at the begin-
ning of kindergarten and the beginning of first grade, the proportions who
have not mastered beginning sounds and the proportion who then go on to
master ending sounds is relatively constant. However, the transition from non-
mastery of ending sounds to mastery of ending sounds is much greater from
the beginning of first grade to the end of first grade. Nevertheless, approxi-
mately 25% of the sample who did not master ending sounds at the beginning
of first grade does not appear to have mastered ending sounds by the end of
first grade.

9.4.3 THE LATENT MARKOV MODEL

A disadvantage of the manifest Markov model is that it assumes that the
manifest categories are perfectly reliable measures of a true latent state. In the
context of the ending sounds example, this would imply that the observed cat-
egorical responses measure the true mastery/nonmastery of ending sounds.
Rather, it may be more reasonable to assume that the observed responses are
fallible measures of an unobservable latent state, and it is the study of transi-
tions across true latent states that are of interest.

The latent Markov model was developed by Wiggins (1973) to address the
problem of measurement error in observed categorical responses and as a
result, to obtain transition probabilities at the latent level. The latent Markov
model can be written as

B C
1.1 .21 2 .32 3 _43 4
Pijy = Z Z Z Z 04PilaTolaPjibTeibPiic Talc Plld> [9.18]

a=1lb=1c=1d=1
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Table 9.2 Results of the Nonstationary Manifest Markov Chain Model Applied
to Mastery of Ending Sounds

Ending Sounds Time 1 (Rows) by Ending Sounds Time 2 (Columns)*

1 2
1 0.55 0.45
2 0.10 0.90

Ending Sounds Time 2 (Rows) by Ending Sounds Time 3 (Columns)

1 2
1 0.57 0.43
2 0.10 0.90

Ending Sounds Time 3(Rows) by Ending Sounds Time 4 (Columns)

1 2
1 0.25 0.75
2 0.03 0.97

Goodness-of-fit tests®

¥ (8 df) = 133.77, p< .05
Yix (8 df) =150.23, p <.05
BIC =13363.49

a. 1 = nonmastery, 2 = mastery.

b. y; refers to the Pearson chi-square test, 7, refers to the likelihood ratio chi-square test.

where the parameters in Equation [9.18] taken on slightly different meanings
from those in Equation [9.17]. In particular, the parameter 8! represents a latent
distribution having A latent states. The linkage of the latent states to manifest
responses is accomplished by the response probabilities p. The response
probabilities thus serve a role analogous to that of factor loadings in factor
analysis. Accordingly, pj, refers to the response probability associated with
category i given membership in latent state a. The parameter pjj, is interpreted as
the response probability associated with category j given membership in latent
state b at time 2. Remaining response probabilities are similarly interpreted.

As with the manifest Markov model, the transition from time 1 to time 2
in latent state membership is captured by ;. At time 2, the latent state is mea-
sured by the response probabilities pj,. Remaining response and transition
probabilities are analogously interpreted. Note that an examination of
Equation [9.18] reveals that if the response probabilities were all 1.0 (indicat-
ing perfect measurement of the latent variable), then Equation [9.18] would
essentially reduce to Equation [9.17]—the manifest Markov model.
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Table 9.3 compares the transition probabilities for the manifest Markov
model and the latent Markov model under the assumption of a stationary
Markov chain. The results show small but noticeable differences in the transi-
tion probabilities when taking account measurement error in the manifest cat-

egorical responses.

9.4.4 LATENT TRANSITION ANALYSIS

Although the application of Markov models for the analysis of psycholog-
ical variables goes back to Anderson (1959; as cited in Collins & Wugalter,
1992), most applications focused on single manifest measures. However, as
with the early work in the factor analysis of intelligence tests (e.g., Spearman,
1904), it was recognized that many important psychological variables are

Table 9.3 Comparison of Transition Probabilities for Manifest and Latent

Markov Chain Model With Homogenous Transition Probabilities:

Application to Ending Letter Sounds

Manifest Markov Chain Latent Markov Chain

Ending Sounds Time 1 (Rows) by Ending Sounds Time 2 (Columns)*

1 2 1
1 0.50 0.50 1 0.47
2 0.38 0.62 2 0.38

Ending Sounds Time 2 (Rows) by Ending Sounds Time 3 (Columns)

1 2 1
1 0.50 0.50 1 0.47
2 0.38 0.62 2 0.38

Ending Sounds Time 3(Rows) by Ending Sounds Time 4 (Columns)

1 2 1
1 0.50 0.50 1 0.47
2 0.38 0.62 2 0.38
Goodness-of-fit tests
X2 (13 df) = 6946.62, p < .05 7040.50, p < .05
%2, (13 df) = 6169.320, p < .05 6299.62, p < .05
BIC =19341.68 19471.99, p < .05

0.53
0.62

0.53
0.62

0.53
0.62

a. 1 = nonmastery, 2 = mastery.
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latent—in the sense of not being directly observed but possibly measured by
numerous manifest indicators. The advantages to measuring multiple latent
variables via multiple indicators are the known benefits with regard to reliabil-
ity and validity. Therefore, it might be more realistic to specify multiple mani-
fest categorical indicators of the categorical latent variable and combine them
with Markov chain models.

The combination of multiple indicator latent class models and Markov
chain models provides the foundation for the latent transition analysis of stage-
sequential dynamic latent variables. In line with Collins and Flaherty (2002),
consider the current reading example where the data provide information on
the mastery of five different skills. At any given point in time, a child has mas-
tered or not mastered one or more of these skills. It is reasonable in this exam-
ple to postulate a model that specifies that these reading skills are related in
such a way that mastery of a later skill implies mastery of all preceding skills.
At each time point, the child’s latent class membership defines his or her latent
status. The model specifies a particular type of change over time in latent sta-
tus. This is defined by Collins and Flaherty (2002) as a “model of stage-sequential
development, and the skill acquisition process is a stage-sequential dynamic
latent variable” (p. 289). It is important to point out that there is no funda-
mental difference between latent transition analysis and latent Markov chain
modeling. The difference is practical, with latent transition analysis being
perhaps better suited conceptually for the study of change in developmental
status.

The model form for latent transition analysis uses Equation [9.18] except
that model estimation is undertaken with multiple indicators of the latent cat-
egorical variable. The appropriate measurement model for categorical latent
variables is the latent class model.

Application of Latent Transition Analysis

Using all five of the subtests of the reading assessment in ECLS-K, this sec-
tion demonstrates a latent transition analysis. It should be noted that a specific
form of the latent transition model was estimated—namely, a model that
assumes no forgetting or loss of previous skills. This type of model is referred
to as a longitudinal Guttman process and was used in a detailed study of stage
sequential reading development by Kaplan and Walpole (2005).

A close inspection of the changes over time in class proportions shown in
Table 9.1 points to transition over time in the proportions who master more
advanced reading skills. However, these separate latent class models do not
provide simultaneous estimation of the transition probabilities, which are cru-
cial for a study of stage-sequential development over time.
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In Table 9.4, the results of the latent transition probabilities for the full latent
transition model are provided. On the basis of the latent transition analysis, we see
that for those in the LAK class at Fall kindergarten, 30% are predicted to remain
in the LAK class, while 69% are predicted to move to the EWR class and 1% are
predicted to transition to ERC in Spring kindergarten. Among those in the EWR
class at Fall kindergarten, 66% are predicted to remain in that class, and 34% of
the children are predicted to transition to the ERC class in Spring kindergarten.

Among those children who are in the LAK class at Spring Kindergarten,
59% are predicted to remain in that class at Fall of first grade, while 40% are
predicted to transition to the EWR class, with 1% predicted to transition to the
ERC class. Among those children who are in the EWR class in Fall kinder-
garten, 82% are predicted to stay in the EWR class while 18% are predicted to
transition to the ERC class.

Finally, among those children who are in the LAK class in Fall of first grade,
30% are predicted to remain in that class at Spring of first grade, while 48% are
predicted to transition to the EWR class by Spring of first grade, with 22%

Table 9.4 Transition Probabilities From Fall Kindergarten to Spring First Grade
Wave LAK* EWR ERC
FallK Spring K
LAK 0.30 0.69 0.01
EWR 0.00 0.66 0.34
ERC 0.00 0.00 1.00
Spring K Fall First
LAK 0.59 0.40 0.01
EWR 0.00 0.82 0.18
ERC 0.00 0.00 1.00
Fall First Spring First
LAK 0.30 0.48 0.22
EWR 0.01 0.13 0.86
ERC 0.00 0.00 1.00

Goodness-of-fit tests

X2 (1048528 df) = 12384.21, p= 1.0
Yip (1048528 df) = 6732.31, p=1.0
BIC = 44590.80

a. LAK = low alphabet knowledge, EWR = early word reading, ERC = early reading comprehension.
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transitioning to the ERC class. Among those children in the EWR class at fall
of first grade, 13% are assumed to remain in that class with 86% transitioning
to the ERC class by Spring of first grade.

9.4.5 MIXTURE LATENT MARKOV
MODEL (THE MOVER-STAYER MODEL)

A limitation of the models described so far is that they assume that the sam-
ple of observations arises from a single population that can be characterized by a
single Markov chain (latent or otherwise) and one set of parameters—albeit per-
haps different for certain manifest groups such as those children
living above or below poverty. It is possible, however, that the population is com-
posed of a finite and unobserved mixture of subpopulations characterized by
qualitatively different Markov chains. To the extent that the population consists of
finite mixtures of subpopulations, then a “one-size-fits-all” application of the
Markov model can lead to biased estimates of the parameters of the model as well
as incorrect substantive conclusions regarding the nature of the developmental
process in question. A reasonable strategy for addressing this problem involves
combining Markov chain-based models under the assumption of a mixture dis-
tribution (see, e.g., McLachlan & Peel, 2000 for an excellent overview of finite
mixture modeling). This is referred to as the mixture latent Markov model.”

An important special case of the mixture latent Markov model is referred
to as the mover-stayer model (Blumen, Kogan, & McCarthy, 1955). In the
mover-stayer model, there exists a latent class of individuals who transition
across stages over time (movers) and a latent class that does not transition
across stages (stayers). In the context of reading development, the stayers are
those who never move beyond, say, mastery of letter recognition. Variants of
the mover-stayer models have been considered by Van de Pol and Langeheine
(1989; see also Mooijaart, 1998).

The mixture latent Markov model can be written as

A B C D
_ 1 11 21 2 .32 3 43 4
Pljkl_ § : E : E : E : ns&u\spi\ustlﬂuspj|bsrc\jbspk\csrl\kspl\ds’ [9.19]

s=la=1lb=1c=1d=1

where _represents the proportion of observations in Markov chain s (= 1,
2,...,S), and the remaining parameters are interpreted as in Equation [9.18],
with the exception that they are conditioned on membership in Markov chain s.

The model in Equation [9.19] is the most general of those considered in
this article with the preceding models being derived as special cases. For example,
with s= 1, Equation [9.19] reduces to the latent Markov model in Equation [9.18].
Also, with s = 1, and no transition probabilities, the model in Equation [9.19]
reduces to the latent class model of Equation [9.13].
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Application of the Mover-Stayer Model

For this example, we estimate the full latent transition analysis model with
the addition of a latent class variable that is hypothesized to segment the sam-
ple into those who do transition over time in their development of more com-
plex reading skills (movers) versus those that do not transition at all (stayers).
The results of the mover-stayer latent transition analysis are given in Table 9.5.
In this analysis, it is assumed that the stayer class has zero probability of mov-
ing. An alternative specification can allow the “stayers” to have a probability
that is not necessarily zero but different from the mover class.

From the upper panel of Table 9.5, it can be seen that 97% of the sample
transition across stages, with 71% of the movers beginning their transitions to
full literacy from the LAK status, 26% beginning EWR status, and 2% already
in the ERC status. The stayers represent only 3% of the sample, corresponding
to approximately 90 children. These children are in the low alphabet knowl-
edge class and are not predicted to move.

The lower panel of Table 9.5 gives the transition probabilities for the whole
sample. In many cases, it would be necessary to compute the transition probabil-
ities separately for the movers, but because all the stayers are in the LAK class, they
do not contribute to the transition probabilities for the movers. The slight differ-
ences between the mover transition probabilities compared with the transition
probabilities in Table 9.4 are due to the fact that 3% of the sample is in the stayer
class. Finally, it may be interesting to note that based on a comparison of the BICs
the results of the mover-stayer specification provides a better fit to the manifest
response frequencies than the latent transition analysis model in Table 9.4.
However, the discrepancy between the likelihood ratio chi-square and Pearson
chi-square is, again, indicative of sparse cells and would need to be inspected
closely.

9.5 Models for Categorical
and Continuous Latent Variables

Having introduced the topic of categorical latent variables, we can now
move to models that combine categorical and continuous latent variables.
The basic idea here, as before, is that a population might be composed of
finite mixtures of subpopulations characterized by their own unique para-
meters, but where the parameters are those of models based on continuous
latent variables—such as factor analysis and structural equation models.
For this section, we focus on finite mixture modeling applied to growth
curve modeling because growth curve modeling encompasses many special
cases, including factor analysis, structural equation modeling, and MIMIC
modeling.
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Table 9.5

Transition Probabilities for the Mover-Stayer Model: Total Sample

Proportion of

Movers and Stayers (Rows) by Time 1 Classes (Columns) Total Sample
LAK EWR ERC

Movers 0.71 0.26 0.02 0.97

Stayers 1.00 0.00 0.00 0.03

Results for Movers

LAK
EWR
ERC

LAK
EWR
ERC

LAK
EWR
ERC

Fall K Classes (Rows) by Spring K Classes (Columns)

LAK EWR ERC
0.34 0.65 0.01
0.00 0.62 0.38
0.00 0.00 1.00

Spring K Classes (Rows) by Fall First Classes (Columns)

LAK EWR ERC
0.61 0.39 0.00
0.00 0.84 0.16
0.00 0.00 1.00

Fall First Classes (Rows) by Spring First Classes (Columns)

LAK EWR ERC
0.22 0.55 0.23
0.01 0.12 0.87
0.00 0.00 1.00

Goodness-of-fit tests

%> (1048517 df) = 10004.46, p=1.0
ka (1048517 df) = 5522.87,p=1.0
BIC =43397.29

a. LAK = low alphabet knowledge, EWR = early word reading, ERC = early reading comprehension.

9.5.1 GENERAL GROWTH MIXTURE MODELING

Conventional growth curve modeling and its extensions were discussed in
Chapter 8. The power of conventional growth curve modeling notwithstand-
ing, a fundamental constraint of the method is that it assumes that the
manifest growth trajectories are a sample from a single finite population of
trajectories characterized by a single average level parameter and a single aver-
age growth rate. However, it may be the case that the sample is derived from a
mixture of populations, each having its own unique growth trajectory. For
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example, children may be sampled from populations exhibiting very different
classes of math development—some children may have very rapid rates of
growth in math that level off quickly, others may show normative rates of
growth, while still others may show very slow or problematic rates of growth.

An inspection of Figure 9.1 reveals heterogeneity in the shapes of the
growth curves for a sample of 100 children who participated in the Early
Childhood Longitudinal Study. If such distinct growth functions are actually
present in the data, then conventional growth curve modeling applied to a
mixture of populations will ignore this heterogeneity in growth functions and
result in biased estimates of growth. Therefore, it may be preferable to relax the
assumption of a single population of growth and allow for the possibility that
the population is composed of mixtures of distinct growth trajectory shapes.

Growth mixture modeling begins by unifying conventional growth curve
modeling with latent class analysis (e.g., Clogg, 1995) under the assumption
that there exists a finite mixture of populations defined by unique trajectory
classes. An extension of latent class analysis sets the foundation for growth
mixture modeling. Specifically, latent class analysis can be applied to repeated
measures at different time points. This is referred to as latent class growth
analysis (see, e.g., B. Muthén, 2001; Nagin, 1999). As with latent class analysis,
latent class growth analysis assumes homogenous growth within classes.
Growth mixture modeling relaxes the assumption of homogeneous growth
within classes and is capable of capturing two significant forms of heterogene-
ity. The first form of heterogeneity is captured by individual differences in
growth through the specification of the conventional growth curve model. The
second form of heterogeneity is more basic—representing heterogeneity in
classes of growth trajectories.

Ecls Scale Scores

x < B % T
= o 2 £ =
g £ = ' E
5 F g 5
s i
%)
Figure 9.1 Sample of 100 Empirical Growth Trajectories
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9.5.2 SPECIFICATION OF THE GROWTH MIXTURE MODEL

The growth mixture model is similar to that given for the conventional
growth curve model. The difference lies in allowing there to be different
growth trajectories for different classes. Thus, in line with Equations 8.5 and 8.6,
we can represent the presence of trajectory classes as

y;=v+An; +Kxi+e; [9.20]
and

n,=o.+Bn,+Tx; +;, [9.21]
where the subscript ¢ represents trajectory class (c=1,2,..., C).

The advantage to using growth mixture modeling lies in the ability to
characterize across-class differences in the shape of the growth trajectories.
Assuming that the time scores are constant across the classes, the different
reading trajectory shapes are captured in o . Relationships among growth
parameters contained in B, are also allowed to be class-specific. The modeling
framework is flexible enough to allow differences in measurement error vari-
ances (@) and structural disturbance variances (W = Var(g)) across classes as
well. Finally, of relevance to this chapter, the different classes can show differ-
ent relationships to a set of covariates x. In the context of our example,
Equation [9.21] allows one to test whether poverty level has a differential effect
on growth depending on the shape of the growth trajectories Again, one might
hypothesize that there is a small difference between poverty levels for children
with normative or above average rates of growth in math, but that poverty has
a strong positive effect for those children who show below normal rates of
growth in math.

Application of Growth Mixture Modeling

The results of the conventional growth curve modeling provide initial
information for assessing whether there are substantively meaningful growth
mixture classes. To begin, the conventional growth curve model can be consid-
ered a growth mixture model with only one mixture class. From here, we spec-
ified two, three, and four mixture classes. We used three criteria to judge the
number of classes that we decided to retain. The first criterion was the pro-
portion of ECLS-K children assigned to the mixture classes. The second crite-
rion was BIC, which was used to assess whether the extraction of additional
latent classes improved the fit of the model. The third criterion was the ade-
quacy of classification using the average posterior probabilities of classifica-
tion. On the basis of these three criteria, and noting that the specification of
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the model did not include the covariate of poverty level, we settled on retain-
ing three growth mixture classes. A plot of the three classes can be found in
Figure 9.2.

From Table 9.6 and Figure 9.2, we label the first latent class, consisting of
35.5% of our samples, as “below average developers.” Students in this class evi-
denced a spring kindergarten mean math achievement score of 23.201, a linear
growth rate of 1.317, and a de-acceleration in growth of .005. We labeled the
second latent class, comprising of 58.3% of our sample, as “average develop-
ers.” Students in this class evidenced a spring kindergarten mean math achieve-
ment score of 33.646, a linear growth rate of 1.890, and a de-acceleration of
.006. Finally, we labeled the third latent class, consisting of 35.5% of our sam-
ple as, “above average developers.” Students in this class evidenced a spring
kindergarten mean math achievement score of 54.308, a linear growth rate of
1.988, and a de-acceleration of —.016.

When poverty level was added into the growth mixture model, three latent
classes were again identified.® The above average developer class started signifi-
cantly above their peers and continued to grow at a rate higher than the rest of
their peers. Interestingly, the above average achiever group was composed
entirely of students living above the poverty line. The average achiever group
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—@— Above Average Developers
—A— Below Average Developers

Figure 9.2 The Three-Class Growth Mixture Model
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Table 9.6 Results of Three-Class Growth Mixture Model
Class 1 Class 2 Class 3

Coefficient Model 1 Model 2 Model1 Model2 Model 1  Model 2
Intercept (I) 23.201 24.968 33.646 34.943 54.308 56.081
Linear slope (S) 1.317 1.365 1.890 1.912 1.988 1.989
Quadratic (Q) -0.005  -0.006  -0.006 —0.007 —-0.016 -0.017
I on below poverty —4.513 —-10.418 —24.376
S on below poverty —0.194 —0.434 —0.129
Q on below poverty 0.002 0.002" 0.012

“Not statistically significant.

was composed of both students who lived above and below the poverty line.
The below average achiever group was composed disproportionately of below
poverty students but did contain some above poverty students. A plot of the
three-class solution with poverty added to the model can be found in Figure 9.3.
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Figure 9.3 The Three-Class Growth Mixture Model With Poverty Status Added
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The posterior probabilities of classification without and with poverty
added to the model can be found in Tables 9.7 and 9.8, respectively. We observe
that students who should be classified above average achievers had a .882 prob-
ability of being correctly classified as below average developers. Students in the
average developer class had a .855 probability of being correctly classified by
the model as average achievers. Finally, students in the above average class had
a .861 probability of being correctly classified by the model into the below
average class. The posterior probabilities do not change dramatically with the
addition of poverty to the model, as seen in Table 9.8.

Table 9.7 Average Posterior Probabilities for the Three-Class Solution for
Baseline Model
Class 1 Class 2 Class 3
Class 1 0.882 0.027 0.090
Class 2 0.138 0.855 0.007
Class 3 0.138 0.001 0.861

NOTE: Class 1 = average developing; Class 2 = above average; Class 3 = below average.

Table 9.8 Average Posterior Probabilities for the Three-Class Solution With
Poverty Status Included
Class 1 Class 2 Class 3
Class 1 0.858 0.041 0.101
Class 2 0.155 0.826 0.019
Class 3 0.191 0.008 0.801

NOTE: Class 1 = average developing; Class 2 = above average; Class 3 = below average.

9.6 Conclusion

This chapter provided an overview of models for categorical latent variables
and the combination of categorical and continuous latent variables.
Methodologies that were reviewed in this section included latent class model-
ing, manifest and latent Markov modeling, latent transition analysis, and
mixture latent transition analysis (the mover-stayer model). In the context of
combining continuous and categorical latent variables, we focused on growth
mixture modeling.
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The general framework that underlies these methodologies recognizes the
possibility of population heterogeneity arising from finite mixture distribu-
tions. In the case of the mover-stayer model, the heterogeneity manifests itself
in a subpopulation of individuals who do not exhibit any stage transition over
time. In the case of growth mixture modeling, the heterogeneity manifests
itself as subpopulations exhibiting qualitatively different growth trajectories.

As we noted in the introduction to this chapter, the general framework
developed by Muthén and his colleagues is quite flexible, and covering every
conceivable special case of the general framework is simply not practical.
Suffice to say here that the general framework can be applied to all of the mod-
els discussed prior to this chapter—including mixture factor analysis, mixture
structural equation modeling in single and multiple groups, mixture MIMIC
modeling, and perhaps most interestingly, mixture multilevel structural equa-
tion modeling. This latter methodology allows for heterogeneity in the para-
meters of multilevel models. An application to education would allow models
for students nested in schools to exhibit unobserved heterogeneity that might
be explained by unique student and school characteristics.

Still another powerful application of the general framework focuses on
estimating causal effects in experimental studies—the so-called complier aver-
age causal effects (CACE) method (see, e.g., Jo & Muthén, 2001). For example,
in a field experiment of an educational intervention, not all individuals who
receive the experimental intervention will comply with the protocol. Standard
approaches analyze the treatment and control groups via an intent-to-treat
analysis, essentially ignoring noncompliance. The result of such an approach
can, in principle, bias the treatment effect downward. A viable alternative
would be compare the treatment compliers to those in the control group who
would have complied had they received the treatment. However, this latter
group is unobserved. The CACE approach under the general framework uses
finite mixture modeling and information about treatment compliers to form a
latent class of potential complier, and forms the experimental comparison
between these two groups.’

While certainly not exhaustive, it is hoped that this chapter provides the
reader with a taste the modeling possibilities that the general framework
allows. The models in this chapter scratch only the surface of what has been
described as “second-generation” structural equation modeling.

Notes

1. From here on, we will use the term “class” to refer to components of the mix-
ture model. The term is not to be confused with latent classes (e.g., Clogg, 1995)
although finite mixture modeling can be used to obtain latent classes (McLachlan &
Peel, 2000).
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2. Note that latent class models can handle polytomously scored items.

3. For dichotomous items, it is only necessary to present the value of one latent
class indicator.

4. Methods for assessing latent class membership over time are discussed in
Section 10.4.

5. The sampling design of ECLS-K included a 27% subsample of the total sample
at Fall of first grade to reduce the cost burden of following the entire sample for four
waves but to allow for the study of summer learning loss (NCES, 2001).

6. A nonstationary Markov model is one that allows heterogeneous transition
probabilities over time. In contrast, stationary Markov models assume homogeneous
transition probabilities over time.

7. It should be noted that finite mixture modeling has been applied to continuous
growth curve models under the name general growth mixture models (B. Muthén, 2004).
These models have been applied to problems in the development of reading competen-
cies (Kaplan, 2002), and math competencies (Jordan, Kaplan, Nabors-Olah, & Locuniak,
2006 ).

8. Itis sometimes the case that adding covariates can change the number of mix-
ture classes. See Kaplan (2002) for an example of this problem in the context of reading
achievement.

9. This is an admittedly simple explanation. The CACE approach makes very
important assumptions—including random assignment, and stable unit treatment
value (Jo & Muthén, 2001).
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