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Toward a New Approach to the
Practice of Structural Equation Modeling

Methodology is a frustrating and rewarding area in which to
work. Just as there is no best way to listen to a Tchaikovsky
symphony, or to write a book, or to raise a child, there is no
best way to investigate social reality. Yet methodology has a
role to play in all of this. By showing that science is not the
objective, rigorous, intellectual endeavor it was once thought
to be, and by demonstrating that this need not lead to anarchy,
that critical discourse still has a place, the hope is held out that
a true picture of the strengths and limitations of scientific
practice will emerge. And with luck, this insight may lead to a
better and certainly more honest, science.

—Caldwell (1982), as cited in Spanos, (1986)

The only immediate utility of all sciences is to teach us how to
control and regulate future events by their causes.

—Hume (1739)

As stated in the Preface, one goal of this book was to provide the reader
with an understanding of the foundations of structural equation model-
ing and hopefully to stimulate the use of the methodology through examples
that show how structural modeling can illuminate our understanding of social
reality—with problems in the field of education serving as motivating exam-
ples. At this point, we revisit the question of whether structural equation
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modeling can illuminate our understanding of social reality. I argue in this
chapter that the answer to this question rests not so much on the specific sta-
tistical details of the method, but rather on the approach taken to the applica-
tion of the method. However, as we will see, the approach taken to the
application of the method is intimately connected to the statistical underpin-
nings of the method itself.

Taking the position that the application of the method, and not the
method itself, is linked to what we can learn about social reality, this chapter
reconsiders the conventional approach to structural equation modeling as rep-
resented in most textbooks and substantive applications wherein structural
modeling has been employed. The conventional approach to structural equa-
tion modeling is considered in light of recent work in the practice of econo-
metric methodology—particularly simultaneous equation modeling.

It is not the intention of this chapter to argue that the econometric
approach is the “gold standard” of structural equation modeling practice in the
social sciences. Rather, the purpose of this chapter is to examine an alternative
formulation of modeling practice in econometrics and to argue that the cur-
rent discourse on econometric practice may have value when considered in
light of the conventional practice of structural equation modeling found in
other social sciences. In doing so, one goal of this chapter is to remind the
reader of the econometric history underlying structural equation modeling
and to outline how that history might have influenced the history of the
methodology in the other social sciences.

In addition to outlining an alternative approach to the practice of struc-
tural equation modeling, I argue that developments in our understanding of
causal inference in the social and behavioral sciences must be brought into cur-
rent practice to exploit the utility of structural equation modeling. These
developments include recent thinking on the counterfactual theory and related
manipulationist theory of causation.

The organization of this chapter is as follows. In the next section, we sum-
marize the conventional practice of structural equation modeling to set the
framework for the ensuing critique. This is followed by a sketch of the
so-called “textbook” practice of simultaneous equation modeling in econo-
metrics. Following this, we outline of the history and components of an alter-
native methodology proposed by Spanos (1986, 1990, 1995) referred to as the
probabilistic reduction approach. Following the outline of Spanos’s methodol-
ogy, we discuss the implications of the probabilistic reduction approach to the
practice of structural equation modeling. The chapter then turns to the prob-
lem of causal inference. Here, we focus attention on philosophical and
methodological work on the counterfactual and manipulationist theories of
causal inference that has informed econometric practice and may be useful to
the practice of structural equation modeling in the other social science disci-
plines. Finally, we close with a summary.
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10.1 Revisiting the Conventional
Approach to Structural Equation Modeling

The conventional approach to structural equation modeling was represented
in Chapter 1. Throughout this book, reference was made to how various sta-
tistical and nonstatistical techniques within structural equation modeling were
used in conventional practice. The conventional approach can be reiterated as
follows. First, the investigator postulates a theoretical framework to set the
stage for the specification of the model. In some cases, attempts are made to
relate the theoretical framework directly to the specification of the model as
typically portrayed in a path diagram. It is common to find an implicitly artic-
ulated one-to-one relationship between the theory and the path diagram—
implying that the theory and the diagram correspond to each other up to the
inclusion of disturbance terms.

Next, a set of measures are selected to be incorporated into the model. In
cases where multiple measures of hypothesized underlying constructs are desired,
investigators may digress into a study of the measurement properties of the data
before incorporating the variables into a full latent variable model. It can be
inferred from a reading of the extant literature that there is very close relationship
assumed between the theoretical variables and the empirical latent variables.

In the next phase, the specified model as portrayed in the diagram is esti-
mated. Rarely is the choice of the estimator based on an explicit assessment of
its underlying assumptions. Even if such a thorough assessment of the assump-
tions were made, in many cases, analysts are limited in their choice of estima-
tors due to such real constraints as sample size requirements. In other words,
investigators may very well understand the limitations of, say, maximum like-
lihood estimation to categorical and other nonnormal variables, but the sam-
ple size requirements for successful implementation of, say, weighted least
squares estimators may be prohibitive.

After the model parameters have been estimated, the fit of the model is
almost always assessed. It is quite common to find the presentation of alterna-
tive fit indices alongside the standard likelihood ratio chi-square statistic.
These indices are presented despite the fact that they are based on conceptually
different notions of model fit. For example, displaying the likelihood ratio chi-
square test of exact fit with the nonnormed fit index which assesses fit against
a baseline model of independence is conceptually dubious insofar as the “alter-
native hypotheses” being evaluated are entirely different.

As we noted in earlier chapters, it is often the case that a model is deter-
mined not to fit the data on a number of criteria. The lack of model fit could
be the result of the violation of one or more of the assumptions underlying the
chosen estimator. But regardless of the reasons for model misfit, the conven-
tional approach to structural equation modeling takes the next step of model
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modification. The modification of the model typically proceeds using the
modification index in conjunction with the expected change statistic. By neces-
sity, post hoc model modification is typically supplemented with post hoc jus-
tification of how the modification fits into the theoretical framework. In any
case, at some point in the cycle, model modification stops.

Once the model is deemed to fit the data, it is common to relate the find-
ings back to the original substantive question being posed. However, the results
of the model are often related back to the original question in a cursory man-
ner. Seldom is it the case that specific parameter estimates are directly inter-
preted. Nor do we find a discussion of how the parameter estimates, their
signs, and statistical significance support theoretical propositions. Rarer still do
we find examples of comparisons of structural models representing different
theoretical positions, with models being selected on the basis of, say, the Akaike
information criterion statistic.” Finally, it is rarely the case that models are used
for policy or clinically relevant prediction studies.

To summarize, the conventional approach to structural equation model-
ing in the social sciences can be described in five steps: (1) a model is specified
and considered to be a relatively close instantiation of a theory, (2) measures
are gathered, (3) the model is estimated, (4) then typically modified, and
finally (5) the results are related back to the original question. Interestingly, the
approach to structural equation modeling in the social sciences parallels the
conventional approach to econometric modeling described by Pagan (1984),
who wrote

Four steps almost completely describe it: a model is postulated, data gathered,
a regression run, some t-statistics or simulation performance provided and
another empirical regularity was forged.

Next, we outline the history that led to the conventional approach to

econometric practice characterized by Pagan to serve as a comparison the con-
ventional practice of structural equation modeling in the social sciences.

10.2 The Conventional Approach to Econometric Practice

In his historical account of econometric practice, Spanos (1989) argues that
the Harvard monograph by Haavelmo (1944) formally launched econometrics
as a distinct discipline. Moreover, Spanos laments the fact that this mono-
graph, although heavily cited, was rarely read and that there were many key
aspects of the work that have been neglected in practice. Neglect of these key
aspects of Haavelmo’s work may have contributed to the conventional practice
of econometric modeling and the difficulties it generated.
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A central aspect of Haavelmo’s approach was the notion of the joint
distribution of the process underlying the available data as being of most
importance to identification, estimation, and hypothesis testing. The joint dis-
tribution of the observed random variables over the time period of collection
is referred to by Spanos (1989) as the Haavelmo distribution. We consider the
Haavelmo distribution in more detail in Section 10.3.

The second aspect of Haavelmo’s contribution, which was arguably
ignored in the conventional practice of econometrics, concerned the notion
of statistical adequacy. Statistical adequacy was a concept introduced by
R. A. Fisher and brought to econometrics by Koopmans (1950) and is a prop-
erty of a statistical model applied to the observed data when the underlying
assumptions of the model are met. In cases where a statistical model is not
statistically adequate, inferences drawn from the statistical model are suspect at
best. Of central importance to the argument presented in this chapter is that
statistical adequacy must be established before testing theoretical suppositions
because the validity of these tests depends on the validity of the statistical model.

A third aspect of Haavelmo’s approach concerns his view of data mining.
Specifically, this issue concerns the distinction between the statistical model
and the estimable econometric model used for testing specific theoretical ques-
tions of interest. The statistical model carries with it aspects of the underlying
theory insofar as the theory dictates which variables to collect and, possibly,
how to measure them. However, the statistical model is designed to capture the
probabilistic structure of the data only and is, in an important sense, theory neu-
tral. The relationship between the statistical model and the theoretical parameters
of interest is handled by Haavelmo through the process of identification—
which in Haavelmo’s methodology is intimately linked with the probabilistic
structure of the observed data.

The final element of Haavelmo’s methodology, which seems to have been
neglected in the conventional practice of econometrics, concerns the error
term. Specifically, in Haavelmo’s methodology, the statistical model is speci-
fied in consideration of the probabilistic structure of the observed random
variables—not the error term. Spanos (1989) notes that this distinction sepa-
rates the post-Haavelmo paradigm in econometric methodology from the pre-
Haavelmo paradigm that rested on the Gaussian theory of errors.

10.2.1 COMPONENTS OF THE
TEXTBOOK APPROACH TO ECONOMETRICS

As Spanos (1989) noted, a lack of careful reading of Haavelmo resulted in
what came to be called the “textbook” practice of econometrics (Spanos, 1986).
The textbook practice was perhaps best exemplified by two important early
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econometric textbooks: Goldberger (1964) and Johnston (1972). It is interest-
ing to point out that Goldberger was influential in the application of structural
equation modeling to social sciences other than economics. Indeed, Goldberger
collaborated with the sociologist O. D. Duncan producing a classic edited
volume on structural equation modeling in the social science (Goldberger &
Duncan, 1972; Joreskog, 1973). Goldberger also collaborated with Karl
Joreskog on important applications to structural equation modeling—including
the MIMIC model discussed in Chapter 4 (Joreskog & Goldberger, 1975).°

The textbook approach to econometrics as represented by Johnston’s and
Goldberger’s texts incorporated aspects of Haavelmo’s probabilistic approach
only through the assumed structure of the error term. Moreover, Haavelmo’s
notions of obtaining a statistically adequate model did not influence the prac-
tice of simultaneous equation modeling because there was a prevailing view
that the use of sample information without underlying theory was inappropri-
ate (Spanos, 1989).* Clearly, under this viewpoint, there is no incentive to con-
sider the underlying probabilistic structure of the data. By default, data mining
is also discouraged.

The response to the textbook practice of econometrics was a series of sus-
tained critiques from a variety of perspectives. A discussion of these critiques
can be found in Spanos (1990). Suffice to say here that the critiques of the text-
book practice of econometrics centered on the validity of employing experi-
mental design reasoning to purely observational data and on the role of
statistically adequate models. A specific critique offered by Spanos (1989, 1990)
had its origins in the London School of Economics tradition (see, e.g., Hendry,
1983) and focused on the importance of the probabilistic structure of the data
and is based on a rereading and adaptation of Haavelmo’s original contribu-
tions. This approach is described next.

10.3 The Probabilistic Reduction Approach

In Chapter 1, we noted that econometric simultaneous equation modeling
could not compete with Box-Jenkins time-series models in terms of predictive
performance. One problem with simultaneous equation modeling centered on
the distinction between dynamic and static models. However, regardless of the
specific problem, econometricians were beginning to realize that simultaneous
equation models were not producing the kind of reliable predictions of the
behavior of the economy that the Cowles Commission had envisioned. The
problem, it seemed, lied in a conventional practice of econometric modeling
that deviated from what was originally intended by founders such as Haavelmo
(Haavelmo, 1943, 1944; see also Spanos, 1989). The result was that from the
mid-1970s to the present, there has been a sustained critique of the conven-
tional approach to econometric modeling.
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I argue that one response to this critique offered by Spanos (1986, 1990,
1995) may provide an alternative to the conventional practice of structural
equation modeling in the social sciences. Spanos refers to this alternative
approach as the probabilistic reduction approach.

10.3.1 THE HISTORICAL BACKGROUND
OF THE PROBABILISTIC REDUCTION APPROACH

In the development of the probabilistic reduction approach, Spanos
(1995) traces the general problem of simultaneous equation modeling to two
historical paradigms in statistics: (1) Fisher’s experimental design paradigm
and (2) the Gaussian theory of errors paradigm. The conventional practice of
simultaneous equation modeling in econometrics resulted from a combination
of the influence of these paradigms and a lack of careful reading of Haavelmo’s
(1943, 1944) original work.

Fisher’s Experimental Design Paradigm. In the case of Fisher’s paradigm, the
experimental design represents the theory and the statistical model is chosen
before the data are collected. Indeed, the correspondence between the statisti-
cal model and the experimental design as representing the theory are nearly
identical, with the statistical model differing from the design by the incorpora-
tion of an error term.

The major contributions of Fisher’s paradigm notwithstanding,’ the con-
ventional approach to simultaneous equation modeling borrowed certain fea-
tures of the paradigm that are problematic in light of the reality of economic
and social science phenomena. Specifically, as noted by Spanos (1995) the
social theory under investigation (e.g., input-process-output theory in educa-
tion) replaces the experimental designer. Moreover, the theory is required to
lead to a theoretical model that does not differ in any substantial way from the
statistical model. In other words, adapting the Fisher paradigm to economics
and social science applications of structural modeling assumes that the theory
and the designer are one and the same and that the statistical model and the
theoretical model as derived from the theory differ only up to the inclusion of
a white-noise disturbance term.

The Theory of Errors Paradigm. The theory of errors paradigm had its roots
in the mathematical theory of approximation and led to the method of least
squares proposed by Legendre in 1805. A probabilistic foundation was given to
the least squares approach by Gauss in 1809 and developed into a “theory of
errors” by Laplace in 1812.

The basic idea originally proposed by Legendre was that a certain function
was optimally approximated by another function via the minimization of the
sum of the squared deviations about the line. The probabilistic formulation
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proposed by Gauss and later Laplace was that if the errors were the result of
insignificant omitted factors, then the distribution of the sum of the errors
would be normal as the number of errors increased. If it could be argued that
the omitted variables were essentially unrelated to the systematic part of the
model, then the phenomena under study could be treated as if it were a nearly
isolated system (as cited in Spanos, 1995; Stigler, 1986).

Arguably, the theory of errors paradigm had a more profound influence
on econometric and social science modeling than the Fisher paradigm. Specifically,
the theory of errors paradigm led to a tremendous focus on statistical estima-
tion. Indeed, a perusal of most econometric textbooks shows that the domi-
nant discussion is typically around the choice of an estimation method. The
choice of an alternative estimator, whether it be two-stage least squares,
limited-information maximum likelihood, instrumental variable estimation,
or generalized least squares, is the result of viewing ordinary least squares as
not living up to its optimal properties in the context of real data.

A Comparison of the Two Approaches. The common denominator between the
Fisher paradigm and the theory of errors paradigm is the assumptions made
regarding the error term. In both cases, the assumptions made regarding the
error term lead to the view that the phenomenon under study exists as a nearly
isolated system. Where the two traditions differ however, is in their views of
redesign and data mining (Spanos, 1995). Specifically, in the Fisher paradigm it
is entirely possible that an experiment can be redesigned. Moreover, given that
the design is the de facto reality under study, data mining could lead to “discov-
ering a theory in the data.” In the context of the theory of errors paradigm, the
data are nonexperimental in nature and thus data mining is nonproblematic.
Spanos (1995) cites the example of Kepler. Spanos writes, “Kepler’s insight was
initially suggested by looking at the data and not by a theory. Indeed, the theory
came much later in the form of Newton’s theory of universal gravitation” (pp.
195-196). In addition, in nonexperimental research, such “experiments” cannot
be redesigned.

Regardless of the similarities and differences between the Fisher and
theory of errors paradigms, the conventional approach to econometric model-
ing, and indeed statistical modeling in the social sciences generally, adopted
aspects of both. In particular, econometric modeling historically took a dim
view with respect to data mining, and social science applications of structural
equation modeling have been somewhat silent on this issue. As noted above,
this could be the result of confusion between the theory and the experimental
design that arises from the Fisher paradigm. A close look at this bias in the con-
text of nonexperimental data leads to the conclusion that the bias is somewhat
irrational. Moreover, as we will see when we outline the probabilistic reduction
approach, this negative view toward data mining disappears, and instead, the
activity becomes positively encouraged.
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10.4 Elements of the Probabilistic Reduction Approach

The probabilistic reduction approach to structural equation modeling is pre-
sented in Figure 10.1. A key feature of Figure 10.1 is the separation of the theory
from the actual data-generating process, or DGP. In this formulation, a theory is
a conceptual construct that serves to provide an idealized description of the phe-
nomena under study. For example, the input-process-output “model” discussed
in Chapter 1, is actually a theory insofar as it describes, in entirely conceptual
terms, the processes that leads to important educational outcomes.® The con-
structs that make up the theory are not observable entities, nor are they latent
variables derived from observable data. Yet, the theory should be articulated well
enough to suggest what measures to obtain even if it does not directly suggest the
scales on which they should be measured. Finally, the theory should be suffi-
ciently detailed to allow for predictions based on a statistical model. That is, the
statistical model, to be described below, should be capable of a reparameteriza-
tion sufficiently detailed to allow tests of predictions suggested by the theory.

10.4.1 THE DATA-GENERATING PROCESS

We next consider a very important component of the probabilistic reduction
approach—namely the actual data-generating process or DGP. In the simplest
terms, the DGP is the actual phenomenon that the theory is put forth to explain.
In essence, the DGP corresponds to the reality that generated the observed data. It
is the reference point for both the theory and the statistical model. In the former
case, the theory is put forth to explain the reality under investigation—be it the
cyclical behavior of the economy or the organizational structure of schooling that
generates student achievement. In the latter case, the statistical model is designed
to capture the systematic nature of the observed data as generated by the DGP.

10.4.2 THE THEORETICAL MODEL

A theoretical model, according to Spanos, is a mathematical formulation
of the theory. The theoretical model is not necessarily the statistical model with
a white-noise term added. In social science applications of structural equation
modeling, we tend not to see theoretical models as such. Instead, we view the
statistical model with the restrictions added as somehow separate from a the-
oretical model. It is argued below that the restrictions placed on a statistical
model, and indeed the issue of identification, implies an underlying theoreti-
cal model even if not directly referred to as such.

10.4.3 THE ESTIMABLE MODEL

In some cases, the theoretical model may not be capable of being estimated.
This is because the theoretical model is simply a mathematical formulation of
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Figure 10.1 Diagram of the Probabilistic Reduction Approach to Structural
Equation Modeling

SOURCE: Adapted from Spanos (1986).

a theory, and the latter does not always provide information regarding what
can be observed or how it should be measured. One only need think of “school
quality” as an important theoretical variable of the input-process-output
theory to realize how many different ways such a theoretical variable can be
measured. Therefore, a distinction needs to be made regarding the theoretical
model and an estimable model, where the estimable model is specified with an
eye toward the DGP (Spanos, 1990).

As an example, let us assume the appropriateness of the input-process-
output theory. If interest centers on the measurement of school quality via a
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survey of school climate, this will have bearing on the form of the estimable
model as well as the form of the statistical model (to be described next). If
school quality actually referred to the distribution of resources to classrooms,
then clearly the estimable model will differ from the theoretical model and aux-
iliary measurements might need to be added. It may be interesting to note that
the theoretical model and estimable model coincides when data are generated
from an experimental arrangement. However, we noted that such arrangements
are rare in social science applications of structural equation modeling.

10.4.4 THE STATISTICAL MODEL

The statistical model describes an internally consistent set of probabilistic
assumptions made about the obtained data series. As Spanos (1990) notes,
the statistical model should be an adequate and convenient summary of the
observed data. The term “adequate” is used in the sense that it does not exclude
systematic information in the data. The term “convenient” is used to suggest
that the statistical model can be used to consider aspects of the theory.

To be clear, the statistical model is not a one-to-one instantiation of the
theory. Rather, within the probabilistic reduction approach, the statistical
model is chosen to adequately represent the probabilistic information in the
data (Spanos, 1990). However, the choice of a statistical model is partly guided
by theory insofar as the statistical model must be capable of being used to
answer theoretical question of interest.

It is in the context of our discussion of the statistical model that we may
wish to revisit the issue of data mining. In the probabilistic reduction approach,
the statistical model is specified to capture as much systematic probabilistic
information in the data as possible. No theoretical specification is imposed. To
take an example from educational research, the lack of independence among
observations due to nesting of students in schools is unrelated to the number
of plots or other exploratory methods used to detect it. As such, data mining
in the form of plots and other methods of exploratory data analysis is not only
valid but also strongly encouraged as a means of capturing the systematic
information in the data.

Because the notion of the statistical model is unique to the probabilistic
reduction approach, it is required that we develop the concept more fully. To
begin, consider the joint distribution of the data denoted as f(y, x|0). Generally,
statistical models such as regression involve a reduction of the joint distribu-
tion of the observed data. Such a reduction can be written as

f(y,x10) = f(y[x; 61)f (x;82), [10.1]
where the first term on the right-hand side of Equation [10.1] is the conditional

distribution of the endogenous variables given the exogenous variables, and
the second term on the right-hand side is the marginal distribution of the
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exogenous variables. The parameter vectors 9, and 0, index the parameters of
the conditional distribution and marginal distribution, respectively. To take an
example from simple regression, the vector , contains the intercept, slope, and
disturbance variance parameters of the regression model, while the vector 9,
contains the mean and variance of the marginal distribution of x.

Weak Exogeneity. The development of a statistically adequate model proceeds
by focusing attention on the conditional distribution of y given x. However,
this immediately raises the question of whether one can ignore the marginal
distribution of x. This question concerns the problem of weak exogeneity
(Ericsson & Irons, 1994; Richard, 1982) and represents the first and perhaps
most important assumption that needs to be addressed. The problem of weak
exogeneity was discussed in Chapter 5. Suffice to say that with regard to the
choice of the variables in the model vis-a-vis the theory, the assumption of
weak exogeneity requires serious attention.

Continuing with our discussion, if we can assume weak exogeneity, then
we can focus our attention on the conditional distribution f(y,x|6;). In the
context of structural equation modeling, we may write f(y,x|0;) as

y=MOx+¢", [10.2]

which we note is the reduced form specification discussed in Chapter 2 and, in
fact, is the multivariate general linear model.

Within the probabilistic reduction approach applied to structural equa-
tion modeling, the reduced form specification constitutes the statistical model
while the structural form constitutes the theoretical model. Prior to testing
restrictions implied by the theory via the structural form, it is necessary to
assess the statistical adequacy of the reduced form.

A Note on Identification. It may be interesting to note that the probabilistic
reduction approach yields two notions of identification (Spanos, 1990). First, in
the context of the statistical model, identification concerns the adequacy of the
sample information for estimating the parameters of the joint distribution of
the data. It could be the case that there is insufficient information in the form
of colinearity that limits the estimation of the statistical model. Colinearity was
not explicitly discussed in this book. For a discussion of colinearity in the con-
text of structural equation modeling, see Kaplan (1994).

Second, identification problems in the form of insufficient sample infor-
mation can be distinguished from identification problems related to insuffi-
cient theoretical information—in essence whether structural parameters can
be identified from reduced form parameters. However, it must be made clear
that the probabilistic reduction approach does not view theoretical identifica-
tion issues as separate from the statistically adequate model on which it rests.
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The two forms of identification are related, but distinction is useful from the
view point of the probabilistic reduction approach (see Spanos, 1990).

10.4.5 THE EMPIRICAL SOCIAL SCIENCE MODEL

It is important to note that the statistical model discussed in Section 10.4.4
refers to a model that captures the systematic probabilistic information in the
data. Once a convenient and adequate statistical model is formulated, the
empirical social science model is reparameterized for purposes of description,
explanation, or prediction. The reparameterization that would be easily recog-
nized by practitioners of structural equation modeling is in the form of
restricting parameters to zero.” In other words, after a statistical model is cho-
sen, the next step is to restrict the model in ways suggested by theory or as a
means of testing competing theories.

For example, after formulating an adequate representation of the reduced
form of the science achievement model, one could test a set of theoretical
propositions of the sort implied by the path diagram in Figure 2.1.* The path
diagram, therefore, represents the empirical model of interest—providing a
pictorial representation of the restrictions to be placed on a statistically ade-
quate reduced form model.

10.4.6 RECAP: MODELING STEPS USING THE
PROBABILISTIC REDUCTION APPROACH

It is important to be clear regarding the modeling steps that are suggested
by the probabilistic reduction approach and to contrast them with the conven-
tional approach described above. The probabilistic reduction approach assumes
that there exists a theory (or theories) that the investigator wishes to test.
It is assumed that the theory is sufficiently detailed insofar as it is able to sug-
gest the type of measures to be obtained. The theory is assumed to describe
some actual phenomenon—referred to as the DGP. In this regard, there is no
philosophical difference between the probabilistic reduction approach and the
conventional approach.

Assuming that a set of data has been gathered, the next step is to specify a
convenient and adequate statistical model of the observed data. Such a statistically
adequate model should account for all the systematic probabilistic information in
the data. That is, the statistical model is developed on the joint distribution of the
data. All means necessary to model the probabilistic nature of the joint distribu-
tion should be used because the statistical parameters of the joint distribution
have no theoretical interpretation at this point. Indeed, the probabilistic reduction
approach advocated by Spanos calls for the free use of data plots and other forms
of data summary in an effort to arrive at an adequate and convenient statistical
model. Note that model assumptions relate to the conditional distribution of the
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data, and it may be necessary to put forth numerous statistical models until one
is finally chosen. These assumptions include exogeneity, normality, linearity,
homogeneity, and independence. Weak exogeneity becomes a very serious
assumption at this step because evidence against weak exogeneity implies that
conditional estimation is inappropriate—that is, the conditional and marginal
distributions must be both taken into consideration during estimation. In any
case, a violation of one or more of these assumptions requires respecification and
adjustment until a statistically adequate model is obtained.

The next step in the probabilistic reduction approach is to begin testing
theoretical propositions of interest via parameter restrictions placed on a sta-
tistically adequate model. Note that whereas the resulting statistical model may
be based on considerable data mining, this does not present a problem because
the parameters of the statistical model do not have a direct interpretation rel-
ative to the theoretical parameters. However, the process of parameter restric-
tion of the statistical model is based on theoretical suppositions and should not
be data specific. Indeed, as Spanos points out, the more restrictions placed on
the model, the less data-specific the theoretical/estimable model becomes.
From the point of view of structural equation modeling in the social sciences,
this means that we tend to favor models with many degrees of freedom.

In contrast to the probabilistic reduction approach, the conventional
approach typically starts with an over-identified model wherein the more overi-
dentifying restrictions the better from a theoretical point of view. However, the
process of model modification that characterizes the conventional approach
becomes problematic insofar as it does not rest on a statistically adequate and
convenient summary of the probabilistic structure of the data.

10.5 Structural Equation Modeling and Causal Inference

In the previous section, a detailed account of an alternative to the conventional
application of structural equation modeling was offered. This alternative
approach to conventional structural equation modeling focuses almost entirely
on the statistical features of the methodology and its common practice. Moreover,
in our discussion, attention was paid to the use of the probabilistic reduction
approach to improve prediction. Although prediction is critically important in
the social and behavioral sciences, an equally important activity is the testing of
causal propositions and developing explanations of substantive processes.

It is important to contrast models used for prediction versus models used
for causal inference and explanation. In the former case, it is sufficient to have
used the probabilistic reduction approach to capture the covariance structure
of the data. In the latter case, the logic of causal inference lies outside of the
statistical analysis and requires that we examine variables with regard to their
potential for manipulation and control.
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Historically, developers and practitioners of structural equation modeling
have been reluctant to consider it as a tool for assessing causal claims. However, in
what is undeniably a classic study of the problem of causality, Pearl (2000) in his
book Causality: Models, Reasoning and Inference deals directly with, among many
other things, the reluctance of practitioners to use structural equation modeling
for warranting causal claims. Pearl noted that many of those who have been instru-
mental in developing structural equation modeling and propagating its use have
either explicitly warned against using causal language in regards to its practice (e.g.,
Muthén, 1987), or have simply not discussed causality at all. However, as Pearl
pointed out, the founders of structural equation modeling (especially Haavelmo,
1943; Koopmans et al., 1950; Wright, 1921, 1934) have noted that it can be used to
warrant causal claims as long as we understand that certain causal assumptions
must be made first.” Haavelmo, for instance, believed that structural equations
were statements about hypothetical controlled experiments.

Pearl sees the elimination of causal language in structural equation model-
ing as arising from two distinct sets of issues. First, from the econometric end,
Pearl] argues that the Lucas’s (1976) critique may have led economists to avoid
causal language. The Lucas critique centers on the use of econometric models
for policy analysis because such models contain information that changes as a
function of changes in the phenomenon under study. The following quotation
from Lucas (1976; as cited in Hendry, 1995) illustrates the problem.

Given that the structure of an econometric model consists of optimal deci-
sion rules for economic agents, and that optimal decision rules vary system-
atically with changes in the structure of the series relevant to the decision
maker, it follows that any change in policy will systematically alter the struc-
ture of econometric models. (Lucas, 1976, as cited in Hendry, 1995, p. 529)

As Hendry (1995) summarizes, “a model cannot be used for policy if
implementing the policy would change the model on which that policy was
based, since then the outcome of the policy would not be what the model had
predicted” (p. 172). From the more modern structural equation modeling per-
spective, Pearl argues that the reluctance to use of causal language may have
been due to practitioners wanting to gain respect from the statistical commu-
nity who have traditionally eschewed invoking assumptions that they deemed
untestable. Finally, Pearl lays some of the blame at the feet of the founders,
who, he argues, developed an algebraic language for structural equation mod-
eling that precluded making causal assumptions explicit.

Despite these concerns, a great deal of philosophical and methodological
research has developed that, I argue, provides a sensible foundation for testing
causal claims within the structural equation modeling context. Specifically,
that foundation rests on the counterfactual model of causation. Next, I provide
a brief review modern philosophical ideas and econometric theory related
specifically to the counterfactual theory of causation.
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10.6 The Counterfactual Theory of Causation

My focus on the counterfactual theory of causation and the careful formula-
tion of model-based counterfactual claims rests on the argument that properly
developed measures that are closely aligned with the data-generating mecha-
nism provides a system for testing counterfactual claims in the context of
structural equation models. The probabilistic reduction approach described
earlier is, in my view, a more statistically sophisticated approach to developing
measures and models that are closely aligned with the DGP than the con-
ventional approach. The counterfactual theory of causation provides a logical
overlay to the probabilistic reduction approach and can lead to a sophisticated
study of causation within structural equation modeling.

It should be mentioned at the outset that this section of the chapter nei-
ther covers all aspects of a theory of causation that is of relevance to structural
equation modeling nor does it overview existing debates between those hold-
ing a so-called structural view of causation (e.g., Heckman, 2005) versus those
holding a treatment effects view of causation (e.g., Holland, 1986). A more
comprehensive review of these issues in general can be found in Kaplan (in
press). Instead, this section deals with specific theories of causation that
arguably hold great promise in improving the practice of structural equation
modeling for advancing the social and behavioral sciences.

10.6.1 MACKIE AND THE INUS CONDITION FOR CAUSATION

A great deal has been written on the counterfactual theory of causation. For
the purposes of this chapter, I will focus specifically on the work of Mackie (1980)
in his seminal work The Cement of the Universe as well as Hoover’s (1990, 2001)
applications of Mackie’s thinking within the econometric framework. A specific
extension of the counterfactual theory by Woodward (2003) which advocates a
manipulationist view of causation is also discussed. I argue that these works on
counterfactual propositions sets the basis for a more nuanced approach to causal
inference amenable to structural equation modeling. The seminal work on the
counterfactual theory of causation can be found in Lewis (1973). An excellent
recent discussion can be found in Morgan and Winship (2007).

To begin, Mackie (1980) situates the issue of causation in the context of a
modified form of a counterfactual conditional statement—namely, if X causes Y,
then this means that X occurred and Y occurred, and Y would not have occurred
if X had not. This strict counterfactual proposition is challenging because there
are situations were we can conceive of Y occurring if X had not."” Thus, Mackie
suggests that a counterfactual statement must be augmented by considering
the circumstances or conditions under which the causal event took place—or
what Mackie refers to as a causal field. To quote Mackie (1980),
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What is said to be caused, then, is not just an event, but an event-in-a-certain-
field, and some ’conditions’ can be set aside as not causing this-event-in-this-
field simply because they are part of the chosen field, though if a different field
were chosen, in other words if a different causal question were being asked,
one of those conditions might well be said to cause this-event-in-that-other-
field. (p. 35)

Contained in a casual field can be a host of factors that could qualify as
causes of an event. Following Mackie (1980), let A, B, C, . . . , and so on, be a list
of factors within a causal field that lead to some effect whenever some conjunc-
tion of the factors occurs. A conjunction of events may be ABC or DEF or JKL,
and so on. This allows for the possibility that ABC might be a cause or DEF
might be a cause, and so forth. For simplicity, assume the collection of factors is
finite—namely ABC, DEE, and JKL. Each specific conjunction, such as ABC is
sufficient but not necessary for the effect. In fact, following Mackie, ABC is a
“minimal sufficient” condition insofar as none of its constituent parts are redun-
dant. That is, ABis not sufficient for the effect, and A itself is neither a necessary
nor sufficient condition for the effect. However, Mackie states that the single fac-
tor, in this case, A, is related to the effect in an important fashion—namely, “[I]t
is an insufficient but non-redundant part of an unnecessary but sufficient con-
dition: it will be convenient to call this . . . an inus condition” (p. 62).

It may be useful to briefly examine the importance of Mackie’s work in the
context of a substantive illustration. For example, in testing models that can be
used to examine ways of improving reading proficiency in young children,
Mackie would have us first specify the causal field or context under which the
development of reading proficiency takes place. Clearly, this would be the
home and schooling environments. We could envision a large number of fac-
tors that could qualify as causes of reading proficiency within this causal field.

In Mackie’s analysis, the important step would be to isolate the set of con-
junctions, any one of which might be minimally sufficient for improved read-
ing proficiency. A specific conjunction might be phonemic awareness, parental
support and involvement, and teacher training in early literacy instruction.
This set is the minimal sufficient condition for reading proficiency in that none
of the constituent parts are redundant. Any two of these three factors is not
sufficient for reading proficiency and one alone—say, focusing on phonemic
awareness, is neither necessary nor sufficient. However, phonemic awareness is
an inus condition for reading proficiency. That is, the emphasis on phonemic
awareness is insufficient as it stands, but it is also a nonredundant part of a set
of unnecessary but (minimally) sufficient conditions.

Mackie’s analysis, therefore, provides a framework for considering the
exogenous and mediating effects in a structural equation model. Specifically,
when delineating the exogenous variables and mediating variables in a struc-
tural equation model, explicit attention should be paid to the causal field
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under which the causal variables are assumed to operate. This view encourages
the practitioner to provide a rationale for the choice of variables in a particu-
lar model and how they might work together as a field within which a select set
of causal variables operates. This exercise in providing a deep description of
the causal field and the inus conditions for causation should be guided by
theory and, in turn, can be used to inform and test theory.

10.6.2 CAUSAL INFERENCE AND
COUNTERFACTUALS IN ECONOMETRICS

Because structural equation modeling has its roots in econometrics, it is
useful to examine aspects of the problem of causal inference from that disci-
plinary perspective. Within econometrics, an important paper that synthesized
much of Mackie’s (1980) notions of inus conditions for causation was Hoover
(1990). Hoover’s essential point is that causal inference is a logical problem and
not a problem whose solution is to be found within a statistical model per se."!
Moreover, Hoover argues that discussions of causal inference in econometrics
are essential and that we should not eschew the discussion because of its seem-
ingly metaphysical content. Rather, as with medicine, but perhaps without the
same consequences, the success or failure of economic policy might very well
hinge on a logical understanding of causation. A central thesis of the present
chapter is that such a logical understanding of causation is equally essential to
rigorous studies in the other social and behavioral sciences that use structural
equation modeling.

In line with Mackie’s analysis, Hoover suggests that the requirement that a
cause be necessary and sufficient is too strong, but necessity is crucial in the
sense that every consequence must have a cause (Holland, 1986). As such,
Hoover views the inus condition as particularly attractive to economists because
it focuses attention on some aspect of the causal problem without having to be
concerned directly with knowing every minimally sufficient subset of the full
cause of the event. In the context the social and behavioral sciences, these ideas
should also be particularly attractive. As in the aforementioned example of
reading proficiency, we know that it is not possible to enumerate the full cause
of reading proficiency, but we may be able isolate an inus condition—say
parental involvement in reading activities.

Hoover next draws out the details of the inus condition particularly as it
pertains to the econometric perspective. Specifically, in considering a particu-
lar substantive problem, such as the causes of reading proficiency, we may
divide the universe into antecedents that are relevant to reading proficiency, C,
and those that are irrelevant, non-C. Among the relevant antecedents are those
that we can divide into their disjuncts C, and then further restrict our attention
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to the conjuncts of particular inus conditions. But what of the remaining rele-
vant causes of reading proficiency in our example? According to Mackie, they
are relegated to the causal field. Hoover views the causal field as the standing
conditions of the problem that are known not to change, or perhaps to be
extremely stable for the purposes at hand. In Hoover’s words, they represent
the “boundary conditions” of the problem.

However, the causal field is much more than simply the standing condi-
tions of a particular problem. Indeed, from the standpoint linear statistical
models generally, those variables that are relegated to the causal field are part
of what is typically referred to as the error term. Introducing random error
into the discussion allows Mackie’s notions to be possibly relevant to indeter-
ministic problems such as those encountered in the social and behavioral sci-
ences. However, according to Hoover, this is only possible if the random error
terms are components of Mackie’s notion of a causal field.

Hoover argues that the notion of a causal field has to be expanded for
Mackie’s ideas to be relevant to indeterministic problems. In the first instance,
certain parameters of a causal process may not, in fact, be constant. If parame-
ters of a causal question were truly constant, then they can be relegated to the
causal field. Parameters that are mostly stable over time can also be relegated
to the causal field, but should they in fact change, the consequences for the
problem at hand may be profound. In Hoover’s analysis, these parameters are
part of the boundary conditions of the problem. Hoover argues that most inter-
ventions are defined within certain, presumably constant, boundary conditions—
although this may be questionable outside of economics.

In addition to parameters, there are also variables that are not of our imme-
diate concern and thus part of the causal field. Random errors, in Hoover’s
analysis, contain the variables omitted from the problem and are “impounded”
in the causal field. “The causal field is a background of standing conditions and,
within the boundaries of validity claimed for the causal relation, must be invari-
ant to exercises of controlling the consequent by means of the particular causal
relation (INUS condition) of interest” (Hoover, 2001, p. 222).

Hoover points out that for the inus condition to be a sophisticated approach
to the problem of causal inference, the antecedents must truly be antecedent.
Frequently, this requirement is presumed to be met by appealing to temporal
priority. But the assumption of temporal priority is often unsatisfactory.
Hoover gives the example of laying one’s head on a pillow and the resulting
indentation in the pillow as an example of the problem of simultaneity and
temporal priority.'* Mackie, however, sees the issue somewhat more simply—
namely the antecedent must be directly controllable. This focus on direct con-
trollability is an important feature Woodward’s (2003) manipulability theory
of causation described next.

e



10-Kaplan-45677:10-Kaplan-45677.gxp 6/24/2%f§ 8:22 PM Page 226

226 STRUCTURAL EQUATION MODELING

10.7 A Manipulationist Account of
Causation Within Structural Equation Modeling

A very important discussion of the problem of manipulability was given by
Woodward (2003) who directly dealt with causal interpretation in structural
equation modeling. First, Woodward considers the difference between descrip-
tive knowledge versus explanatory knowledge. While not demeaning the use-
fulness of description for purposes of classification and prediction, Woodward
is clear that his focus is on causal explanation. For Woodward, a causal expla-
nation is an explanation that provides information for purposes of mani-
pulation and control. To quote Woodward,

my idea is that one ought to be able to associate with any successful explana-
tion a hypothetical or counterfactual experiment that shows us that and how
manipulation of the factors mentioned in the explanation . . . would be a way
of manipulating or altering the phenomenon explained...Put in still
another way, an explanation ought to be such that it can be used to answer
what I call the what-if-things-had-been-different question . .. (p. 11)

We clearly see the importance of the counterfactual proposition in the
context of Woodward’s manipulability theory of causation. However, unlike
Mackie’s analysis of the counterfactual theory, Woodward goes a step further
by linking the counterfactuals to interventions. For Woodward, the types of
counterfactual propositions that matter are those that suggest how one variable
would change under an intervention that changes another variable.

10.7.1 INVARIANCE AND MODULARITY

A key aspect of Woodward’s theory is the notion of invariance. Specifically,
it is crucial to the idea of a causal generalization regarding the relationship
between two variables (say X and Y) that the relationship remains invariant
after an intervention on X. According to Woodward, a necessary and sufficient
condition for a generalization to describe a causal relationship is that it be
invariant under some appropriate set of interventions. This is central for
Woodward insofar as invariance under interventions is what distinguishes
causal explanations from accidental association. It should be briefly noted that
a stronger version of invariance is super-exogeneity, which links the statistical
concept of weak exogeneity to the problem of invariance (Ericsson & Irons,
1994; Kaplan, 2004). With regard to causal processes represented by systems of
structural equations, another vital issue to the manipulability theory of causa-
tion is that of modularity (Hausman & Woodward, 1999, 2004). Quoting from
Woodward (2003),
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A system of equation is modular if (i) each equation is level invariant under
some range of interventions and (ii) for each equation there is a possible inter-
vention on the dependent variable that changes only that equation while the
other equations in the system remain unchanged and level invariant. (p. 129)

In the above quote, level-invariance refers to invariance within equations,
while modularity refers generally to invariance between equations, so-called
equation invariance. In the context of structural equation modeling, level
invariance and modularity require very careful consideration. The distinction
between the two concepts expands the notion of how counterfactual proposi-
tions can be examined. Level-invariance concerns a type of local counterfactual
proposition—local in the sense that it refers to invariance to interventions
within a particular equation. In other words, the truth of the counterfactual
proposition is localized to that particular equation. Modularity, on the other
hand, concerns invariance in one equation given interventions occurring in
other equations in the system. In the context of the social and behavioral sci-
ences, modularity is, arguably, a more heroic and more serious assumption.
For a general critique of modularity, see Cartwright (2007).

10.7.2 OBSERVATIONALLY EQUIVALENT MODELS

A particularly troublesome issue related to level-invariance and modular-
ity concerns the relationship between the reduced form and structural form of
a structural model and the attendant issue of observationally equivalent mod-
els. We saw in Chapter 2 that the reduced form of a model (essentially equiva-
lent to multivariate regression) can be used to obtain structural parameters
provided the parameters are identified. Following Woodward (2003), consider
the following structural model

y=PBx+u, [10.3]
z=yx+Ay+v. [10.4]
The reduced form of this model can be written as
y=PBx+u, [10.5]
z=nx+ W, [10.6]
where m=v+ BA, and w=Au+v. The problem is that for just-identified

models, the reduced form solution provides exactly the same information
about the pattern of covariances as the structural form solution. As Woodward
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points out, although these two sets of equations yield observationally equivalent
information, they are distinct causal representations.

To see this, note that Equations [10.3] and [10.4] say that x is a direct cause
of y and x and y are direct causes of z. But, Equations [10.5] and [10.6] say that
x is a direct cause of y and z and says nothing about y being a direct cause of z.
If Equations [10.3] and [10.4] represent the true causal system and is assumed
to be modular in Woodward’s sense, then Equations [10.4] and [10.5] cannot be
modular. For example, if y is fixed to a particular value due to intervention, then
this implies that B = 0. Nevertheless, despite this intervention, Equation [10.4]
will continue to hold. In contrast, given modularity of Equations [10.3] and
[10.4], we see that Equation [10.5] will change because 7 is a function of f.

We see then, that the structural form and reduced form are distinct causal
systems, and although they provide identical observational information as well
as inform the problem of identification, they do not provide identical causal
information. Moreover, given that numerous equivalent models can be formed,
the criterion for choosing among them, according to Woodward, is that the
model satisfies modularity, because that will be the model that fully represents
the causal mechanism and set of relationships (Woodward, 2003, p. 332).

In what sense does the manipulability theory of causation inform model-
ing practice? For Woodward (2003), the problem is that the model possessing
the property of modularity cannot be unambiguously determined from among
competing observationally equivalent models. Only the facts about causal
processes can determine this. For Woodward therefore, the prescription for
modeling practice is that researchers should theorize distinct causal mecha-
nisms and hypothesize what would transpire under hypothetical interventions.
This information is then mapped into a system of equations wherein each
equation represents a clearly specified and distinct causal mechanism. The
right-hand side in any given equation contains those variables on which inter-
ventions would change the variables on the left-hand side. And, although dif-
ferent systems of equations may be mathematically equivalent, this is only a
problem if we are postulating relatively simple associations. As Pearl (2000)
points out, mathematically equivalent models are not syntactically equivalent
when considered in light of hypothetical interventions. That is, each equation
in a system of equations should “encode” counterfactual information necessary
for considering hypothetical interventions (Pearl, 2000; Woodward, 2003).

10.7.3 PEARL'S INTERVENTIONAL INTERPRETATION
OF STRUCTURAL EQUATION MODELING

Although we have focused mainly on Woodward’s treatment of structural
equation modeling, it should also be pointed out that Pearl (2000), among
other things, offered an interventionist interpretation of structural equation
modeling. Briefly, Pearl notes that in practice researchers will often imbue
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structural parameters with more meaning than they would covariances or
other statistical parameters. For example, the interpretation of a purely medi-
ating model

y=Pz+u, [10.7]
z=vyx+v [10.8]

is interpreted quite differently from the case where we also allow x to directly
influence y—that is,

y=PBz4+Ax+u, [10.9]
z=Yyx+v. [10.10]

In the purely mediating model given in Equations [10.7] and [10.8], the effect
of intervening on x is to change y by py. In the model in Equations [10.9] and
[10.10], the effect of intervening on x is to change y by By + 2.

The difference between the interpretations of these two models is not
trivial. They represent important causal information regarding what would
obtain after an intervention on x. For Pearl (2000), structural equations are
meant to define an equilibrium state, where that state would be violated when
there is an outside intervention (p. 157). As such, structural equations encode
not only information about the equilibrium state but also information about
which equations must be perturbed to explain the new equilibrium state. For
the two models just described, an intervention on x would lead to different
equilibrium states.

Much more can be said regarding Woodward’s (2003) manipulability
theory of causation as well as Pearl’s (2000) interventional interpretation of
structural equation modeling, but a full account of their ideas is simply beyond
the scope of this chapter. Suffice to say that in the context of structural equa-
tion modeling, Woodward’s (2003) as well as Pearl’s (2000) expansion of the
counterfactual theory of causation to the problem of hypothetical interven-
tions on exogenous variables provides a practical framework for using struc-
tural equation modeling to guide causal inference and is line with how its
founders (Haavelmo, 1943; Marschak, 1950; Simon, 1953) viewed the utility of
the methodology.

10.8 Conclusion

Over the past 10 years, there have been important developments in the
methodology of structural equation modeling—particularly in methods
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such as multilevel structural equation modeling, growth curve modeling, and
structural equation models that combine categorical and continuous latent
variables. These developments indicate a promising future with respect to sta-
tistical and substantive applications. However, it is still the case that the con-
ventional approach to structural equation modeling described earlier in this
chapter dominates its applications to substantive problems and it is also still
the case that practitioners remain reluctant to fully exploit structural equation
modeling for testing causal claims.

How might we reconcile statistical issues with causal issues and at the
same time improve the practice of structural equation modeling? In this
regard, Pearl (2000) offers a distinction between statistical and causal con-
cepts that I argue is helpful as we attempt to advance the use of structural
equation modeling in the social and behavioral sciences. Specifically, Pearl
defines a statistical parameter as a quantity determined in terms of a joint
probability distribution of observables without regard to any assumptions
related to the existence of unobservables. Thus, E(y|x), the regression coeffi-
cient f, and so on are examples of statistical parameters. By contrast, a causal
parameter would be defined from a causal model, such as path coefficients,
the expected value of y under an intervention, and so on. Furthermore, a
statistical assumption is any constraint on the joint distribution of the
observables—for example, the assumption of multivariate normality. A causal
assumption, by contrast is any constraint on the causal model that is not
based on statistical constraints. Causal assumptions may or may not have sta-
tistical implications. An example would be identification conditions, which
are causal assumptions that can have statistical implications. Finally, in Pearl’s
view, statistical concepts include: correlation, regression, conditional indepen-
dence, association, likelihood, and so on. Causal concept, by contrast, include
randomization, influence, effect, exogeneity, ignorability, intervention,
invariance, explanation, and so forth.

Pearl argues that researchers should not necessarily ignore one set of
concepts in favor of the other but to treat each with the proper set of tools.
In the context of structural equation modeling, I argue that the probabilistic
reduction approach provides an improved set of tools that focus on the
statistical side of modeling, whereas the counterfactual and manipulation-
ist views of causation articulated by, for example, Hoover (2001), Mackie
(1980), and Woodward (2003) provide the set of tools and concepts for
engaging in causal inference. I argue that keeping the distinction between
statistical and causal activities clear, but boldly and critically engaging in
both, should help us realize the full potential of structural equation model-
ing as a valuable tool in the array of methodologies for the social and behav-
ioral sciences.
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Notes

1. However, with the advent of new estimation methods, such as those discussed
in Chapter 5, this may become less of a concern in the future.

2. Except perhaps indirectly when using the Akaike information criterion for
nested comparisons.

3. Itis beyond the scope of this chapter to conduct a detailed historical analysis,
but it is worth speculating whether Goldberger’s important influence in structural
equation modeling may partially account for the conventional practice observed in the
social sciences.

4. As noted in Spanos (1989) this view was based on the perceived outcome of a
classic debate between Koopmans (1947) and Vining (1949).

5. Included are such important contributions as randomization, replication, and
blocking.

6. A difficulty that arises in the context of this discussion is the confusion of
terms such as theory, model, and statistical model. No attempt will be made to resolve
this confusion in the context of this chapter and thus it is assumed that the reader will
understand the meaning of these terms in context.

7. Of course, nonzero restrictions and equality constraints are also possible.

8. Note that one can also use the multilevel reduced form discussed in Chapter 7
for this purpose as well.

9. Haavelmo, Wright, and Koopmans were referring to simultaneous equation
modeling, but the point still holds for structural equation modeling as understood in
this book.

10. An example might be a match being lit without it being struck—for example,
if it were hit by lightning.

11. In this regard, there does not appear to be any inherent conflict between the
probabilistic reduction approach described earlier and the counterfactual model of
causal inference.

12. This example was originally put forth by Emanuel Kant in the context of an
iron ball depressing a cushion.





