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CHAPTER 2

Design Sensitivity

Statistical Power for
Applied Experimental Research

Mark W. Lipsey

Sean M. Hurley

Applied experimental research investigates the effects of deliberate interven-
tion in situations of practical importance. A psychotherapist, for instance,
might study the efficacy of systematic desensitization for reducing the

symptoms of snake phobia, a school might evaluate the success of a drug education
program, or a policymaker might ask for evidence that increasing the tax rate on
gasoline will discourage consumption. The basic elements of experimental research
are well-known: selection of participants and assignment of them to treatment and
control conditions, preferably using a random procedure; application of the inter-
vention of interest to the treatment group but not to the control group; monitoring
the research situation to ensure that there are no differences between the treatment
and control conditions other than the intervention; measurement of selected out-
comes for both groups; and statistical analysis to determine if the groups differ on
those dependent variable measures. To ensure that the conclusions about interven-
tion effects drawn from experimental design are correct, the design must have both
sensitivity and validity. Sensitivity refers to the likelihood that an effect, if present,
will be detected. Validity refers to the likelihood that what is detected is, in fact, the
effect of interest. This chapter is about the problem of sensitivity.
Sensitivity in intervention research is thus the ability to detect a difference

between the treatment and control conditions on some outcome of interest. If the
research design has high internal validity, that difference will represent the effect of
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the intervention under investigation. What, then, determines our ability to detect
it? Answering this question requires that we specify what is meant by detecting a
difference in experimental research. Following current convention, we will take this
to mean that statistical criteria are used to reject the null hypothesis of no differ-
ence between the mean on the outcome measure for the persons in the treatment
condition and the mean for those in the control condition. In particular, we con-
clude that there is an effect if an appropriate statistical test indicates a statistically
significant difference between the treatment and control means.
Our goal in this chapter is to help researchers “tune” experimental design to

maximize sensitivity. However, before we can offer a close examination of the prac-
tical issues related to design sensitivity, we need to present a refined framework for
describing and assessing the desired result—a high probability of detecting a given
magnitude of effect if it exists. This brings us to the topic of statistical power, the
concept that will provide the idiom for this discussion of design sensitivity.

The Statistical Power Framework

In the final analysis, applied experimental research comes down to just that: analy-
sis (data analysis, that is). After all the planning, implementation, and data collec-
tion, the researcher is left with a set of numbers on which the crucial tests of
statistical significance are conducted. There are four possible scenarios for this test-
ing. There either is or is not a real treatment versus control difference that would be
apparent if we had complete data for the entire population from which our sample
was drawn (but we don’t). And, for each of these situations, the statistical test on the
sample data either is or is not significant. The various combinations can be depicted
in a 2 × 2 table along with the associated probabilities, as shown in Table 2.1.
Finding statistical significance when, in fact, there is no effect is known as Type I

error; the Greek letter α is used to represent the probability of that happening.
Failure to find statistical significance when, in fact, there is an effect is known as Type
II error; the Greek letter β is used to represent that probability. Most important,
statistical power is the probability (1 − β) that statistical significance will be attained
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Table 2.1 The Possibilities of Error in Statistical Significance Testing of Treatment
(T) Versus Control (C) Group Differences

Conclusion From Statistical
Test on Sample Data

Significant difference
(reject null hypothesis)

No significant difference
(fail to reject null
hypothesis)

T and C Differ

Correct conclusion
Probability = 1 − β (power)

Type II error
Probability = β

T and C Do Not Differ

Type I error
Probability = α

Correct conclusion
Probability = 1 − α

Population Circumstances
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given that there really is an intervention effect. This is the probability that must be
maximized for a research design to be sensitive to actual intervention effects.
Note that α and β in Table 2.1 are statements of conditional probabilities. They are

of the following form: If the null hypothesis is true (false), then the probability of an
erroneous statistical conclusion is α (β). When the null hypothesis is true, the prob-
ability of a statistical conclusion error is held to 5% by the convention of setting α =
.05. When the null hypothesis is false (i.e., there is a real effect), however, the proba-
bility of error is β, and β can be quite large. If we want to design experimental research
in which statistical significance is found when the intervention has a real effect, then
we must design for a low β error, that is, for high statistical power (1 – β).
An important question at this juncture concerns what criterion level of statisti-

cal power the researcher should strive for—that is, what level of risk for Type II
error is acceptable? By convention, researchers generally set α = .05 as the maxi-
mum acceptable probability of a Type I error. There is no analogous convention for
beta. Cohen (1977, 1988) suggested β = .20 as a reasonable value for general use
(more specifically, he suggested that power, equal to 1 – β, be at least .80). This sug-
gestion represents a judgment that Type I error is four times as serious as Type II
error. This position may not be defensible for many areas of applied research where
a null statistical result for a genuinely effective intervention may represent a great
loss of valuable practical knowledge.
A more reasoned approach would be to analyze explicitly the cost-risk issues that

apply to the particular research circumstances at hand (more on this later). At the
first level of analysis, the researcher might compare the relative seriousness of Type
I and Type II errors. If they are judged to be equally serious, the risk of each should
be kept comparable; that is, alpha should equal beta. Alternatively, if one is judged
to be more serious than the other, it should be held to a stricter standard even at the
expense of relaxing the other. If a convention must be adopted, it may be wise to
assume that, for intervention research of potential practical value, Type II error is at
least as important as Type I error. In this case, we would set β = .05, as is usually done
for α, and thus attempt to design research with power (1 – β) equal to .95.

Determinants of Statistical Power

There are four factors that determine statistical power: sample size, alpha level,
statistical test, and effect size.

Sample Size. Statistical significance testing is concerned with sampling error, the
expectable discrepancies between sample values and the corresponding population
value for a given sample statistic such as a difference between means. Because sam-
pling error is smaller for large samples, it is less likely to obscure real differences
between means and statistical power is greater.

Alpha Level. The level set for alpha influences the likelihood of statistical signifi-
cance—larger alphamakes significance easier to attain than does smaller alpha.When
the null hypothesis is false, therefore, statistical power increases as alpha increases.
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Statistical Test. Because investigation of statistical significance is made within the
framework of a particular statistical test, the test itself is one of the factors deter-
mining statistical power.

Effect Size. If there is a real difference between the treatment and control conditions,
the size of that difference will influence the likelihood of attaining statistical signif-
icance. The larger the effect, the more probable is statistical significance and the
greater the statistical power. For a given dependent measure, effect size can be
thought of simply as the difference between the means of the treatment versus con-
trol populations. In this form, however, its magnitude is partly a function of how the
dependent measure is scaled. For most purposes, therefore, it is preferable to use an
effect size formulation that standardizes differences between means by dividing by
the standard deviation to adjust for arbitrary units of measurement. The effect size
(ES) for a given difference between means, therefore, can be represented as follows:

where µt and µc are the respective means for the treatment and control popula-
tions and σ is their common standard deviation. This version of the effect size
index was popularized by Cohen (1977, 1988) for purposes of statistical power
analysis and is widely used in meta-analysis to represent the magnitude of inter-
vention effects (Lipsey & Wilson, 2000). By convention, effect sizes are computed
so that positive values indicate a “better” outcome for the treatment group than
for the control group, and negative values indicate a “better” outcome for the
control group.
For all but very esoteric applications, the most practical way actually to estimate

the numerical values for statistical power is to use precomputed tables or a com-
puter program. Particularly complete and usable reference works of statistical
power tables have been published by Cohen (1977, 1988). Other general reference
works along similar lines include those of Kraemer and Thiemann (1987), Lipsey
(1990), and Murphy and Myors (2004). Among the computer programs available
for conducting statistical power calculations are Power and Precision (from Biostat),
nQuery Advisor (from Statistical Solutions), and SamplePower (from SPSS). In
addition, there are open access power calculators on many statistical Web sites. The
reader should turn to sources such as these for information on determining statis-
tical power beyond the few illustrative cases presented in this chapter.
Figure 2.1 presents a statistical power chart for one of the more common situa-

tions. This chart assumes (a) that the statistical test used is a t test, one-way ANOVA,
or other parametric test in this same family (more on this later) and (b) that the
conventional α = .05 level is used as the criterion for statistical significance. Given
these circumstances, the chart shows the relationships among power (1 – β), effect
size (ES), and sample size (n for each group) plotted on sideways log-log paper,
which makes it easier to read values for the upper power levels and the lower

ES =
µt − µc

σ
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sample sizes. This chart shows, for instance, that if we have an experiment with
40 participants in each of the treatment and control groups (80 total), the power to
detect an effect size of .80 (.8 standard deviations difference between the treatment
and control group means) is about .94 (i.e., given a population ES = .80 and group
n = 40, statistical significance would be expected 94% of the time at the α = .05 level
with a t test or one-way ANOVA).

Optimizing Statistical Power

To maximize the sensitivity of experimental research for detecting intervention
effects using conventional criteria of statistical significance, the researcher must
maximize statistical power. In the remainder of this chapter, we examine each of the
determinants of statistical power and discuss how it can be manipulated to enhance
power. The objective of this discussion is to provide the researcher with the con-
ceptual tools to design experimental research with the greatest possible sensitivity
to intervention effects given the resources available. Moreover, in those cases where
an appropriately high level of statistical power cannot be attained, these same con-
cepts can be used to analyze the limitations of the research design and guard against
misinterpretation.
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Figure 2.1 Power Chart for α = .05, Two-Tailed, or α = .025, One-Tailed
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Sample Size

The relationship between sample size and statistical power is so close that many
textbooks discuss power only in terms of determining the sample size necessary to
attain a desired power level. A look at Figure 2.1 makes clear why sample size war-
rants so much attention.Virtually any desired level of power for detecting any given
effect size can be attained by making the samples large enough.
The difficulty that the relationship between sample size and statistical power

poses for intervention research is that the availability of participants is often lim-
ited. Although a researcher can increase power considerably by parading a larger
number of participants through the study, there must be individuals ready to march
before this becomes a practical strategy. In practical intervention situations, rela-
tively few persons may be appropriate for the intervention or, if there are enough
appropriate persons, there may be limits on the facilities for treating them. If facil-
ities are adequate, there may be few who volunteer or whom program personnel are
willing to assign; or, if assigned, few may sustain their participation until the study
is complete. The challenge for the intervention researcher, therefore, is often one of
keeping power at an adequate level with modest sample sizes. If modest sample
sizes in fact generally provided adequate power, this particular challenge would not
be very demanding. Unfortunately, they do not.
Suppose, for instance, that we decide that ES = .20 is the minimal effect size

that we would want our intervention study to be able to detect reliably. An ES of
.20 is equivalent to a 22% improvement in the success rate for the treatment
group (more on this later). It is also the level representing the first quintile in the
effect size distribution derived from meta-analyses of psychological, behavioral,
and education intervention research (Lipsey & Wilson, 1993). Absent other con-
siderations, therefore, ES = .20 is a reasonable minimal effect size to ask research
to detect—it is not so large that it requires heroic assumptions to think it might
actually be produced by an intervention and not so small that it would clearly lack
practical significance.
If we calculate the sample size needed to yield a power level of .95 (β = α = .05),

we find that the treatment and control group must each have a minimum of
about 650 participants for a total of about 1,300 in both groups (see Figure 2.1).
The sample sizes in social intervention research are typically much smaller
than that, often less than 100 in each group. If we want to attain a power level for
ES = .20 that makes Type II error as small as the conventional limit on Type I
error through sample size alone, then we must increase the number of partici-
pants quite substantially over the average in present practice. Even attaining the
more modest .80 power level suggested as a minimum by Cohen (1988) would
require a sample size of about 400 per treatment group, larger than many studies
can obtain.
Increased sample size is thus an effective way to boost statistical power and

should be employed whenever feasible, but its costs and limited availability of par-
ticipants may restrict the researcher’s ability to use this approach. It is important,
therefore, that the researcher be aware of other routes to increasing statistical
power. The remainder of this chapter discusses some of these alternate routes.
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Alpha Level

Alpha is conventionally set at .05 for statistical significance testing and, on the sur-
face, may seem to be the one straightforward and unproblematic element of statisti-
cal power for the intervention researcher. That impression is misleading. An α of .05
corresponds to a .95 probability of a correct statistical conclusion only when the null
hypothesis is true. However, a relatively conservative alpha makes statistical signifi-
cance harder to attain when the null hypothesis is false and, therefore, decreases the
statistical power. Conversely, relaxing the alpha level required for statistical signifi-
cance increases power. The problem is that this reduction in the probability of a Type
II error comes at the expense of an increased probability of a Type I error. This means
that the researcher cannot simply raise alpha until adequate power is attained but,
rather,must find some appropriate balance between alpha and beta. Both Type I error
(α) and Type II error (β) generally have important implications in the investigation
of intervention effects. Type I error can mean that an ineffective or innocuous inter-
vention is judged beneficial or, possibly, harmful, whereas Type II error can permit a
truly effective intervention (or a truly harmful one) to go undiscovered. Though little
has been written in recent years about how to think about this balancing act, useful
perspectives can be found in Brown (1983), Cascio and Zedeck (1983), Nagel and
Neef (1977), and Schneider and Darcy (1984). In summary form, the advice of these
authors is to consider the following points in setting error risk levels.

Prior Probability. Because the null hypothesis is either true or false, only one type of
inferential error is possible in a given study—Type I for a true null hypothesis and
Type II for a false null hypothesis. The problem, of course, is that we do not know
if the null hypothesis is true or false and, thus, do not know which type of error is
relevant to our situation. However, when there is evidence that makes one alternative
more likely, the associated error should be given more importance. If, for example,
prior research tends to show an intervention effect, the researcher should be especially
concerned about protection against Type II error and should set beta accordingly.

Directionality of Significance Testing. A significance test of a one-tailed hypothesis
(e.g., that the treatment group mean is superior to the control group) conducted at
a given α level has higher power (smaller beta) than a two-tailed test at the same
alpha (e.g., that the treatment group is either superior or inferior to control). In
applied intervention research, concern often centers on one direction of effects, for
instance, whether a new intervention is better than an existing one. In these situa-
tions, it may be reasonable to argue that one-tailed tests are justified and that using
two-tailed tests amounts to inappropriate restriction of the alpha level. Such an
argument implies that a negative intervention effect, should it occur, is of no inter-
est, however—a rather strong claim for many kinds of intervention.

Relative Costs and Benefits. Perhaps the most important aspect of error risk in inter-
vention research has to do with the consequences of an error. Rarely will the costs of
each type of error be the same, nor will the benefits of each type of correct inference.
Sometimes, intervention effects and their absence can be interpreted directly in
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terms of dollars saved or spent, lives saved or lost, and the like. In such cases, the
optimal relationship between alpha and beta error risk should be worked out
according to their relative costs and benefits. When the consequences of Type I and
Type II errors cannot be specified in such definite terms, the researcher may still be
able to rely on some judgment about the relative seriousness of the risks. Such judg-
ment might be obtained by asking those familiar with the intervention circum-
stances to rate the error risk and the degree of certainty that they feel is minimal for
the conclusions of the research. This questioning, for instance, may reveal that
knowledgeable persons believe, on average, that a 95% probability of detecting a
meaningful effect is minimal and that Type II error is three times as serious as Type
I error. This indicates that β should be set at .05 and α at .15. Nagel and Neef (1977)
provided a useful decision theory approach to this judgment process that has the
advantage of requiring relatively simple judgments from those whose views are
relevant to the research context.
If some rational analysis of the consequences of error is not feasible, it may be

necessary to resort to a convention (such as α = .05) as a default alternative. For
practical intervention research, the situation is generally one in which both types of
errors are serious. Under these circumstances, the most straightforward approach is
to set alpha risk and beta risk equal unless there is a clear reason to do otherwise. If
we hold to the usual convention that α should be .05, then we should design research
so that β will also be .05. If such high standards are not practical, then both alpha
and beta could be relaxed to some less stringent level—for example, .10 or even .20.
To provide some framework for consideration of the design issues related to the

criterion levels of alpha and beta set by the researcher, Table 2.2 shows the required
sample size per group for the basic two-group experimental design at various effect
sizes under various equal levels of alpha (two-tailed) and beta. It is noteworthy that
maintaining relatively low levels of alpha and beta risk (e.g., .05 or below) requires
either rather large effect sizes or rather large sample sizes. Moreover, relaxing alpha
levels does not generally yield dramatic increases in statistical power for the most
difficult to detect effect sizes. Manipulation of other aspects of the power function,
such as those described later, will usually be more productive for the researcher
seeking to detect potentially modest effects with modest samples sizes.

Statistical Test

Consider the prototypical experimental design in which one treatment group is
compared with one control group. The basic statistical tests for analyzing this
design are the familiar t test and one-way analysis of variance (ANOVA). These tests
use an “error term” based on the within-group variability in the sample data to
assess the likelihood that the mean difference between the groups could result from
sampling error. To the extent that within-group variability can be eliminated, min-
imized, or somehow offset, intervention research will be more powerful—that is,
more sensitive to true effects if they are present.
Two aspects of the statistical test are paramount in this regard. First, for a given set

of treatment versus control group data, different tests may have different formulations
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of the sampling error estimate and the critical test values needed for significance.
For instance, nonparametric tests—those that use only rank order or categorical
information from dependent variable scores—generally have less inherent power
than do parametric tests, which use scores representing degrees of the variable
along some continuum.
The second andmost important aspect of a statistical test that is relevant to power

is the way it partitions sampling error and which components of that error variance
are used in the significance test. It is often the case in intervention research that some
of the variability on a given dependent measure is associated with participant char-
acteristics that are not likely to change as a result of intervention. If certain factors
extraneous to the intervention effect of interest contribute to the population vari-
ability on the dependent measure, the variability associated with those factors can be
removed from the estimate of sampling error against which differences between treat-
ment and control means are tested with corresponding increases in power.
A simple example might best illustrate the issue. Suppose that men and women,

on average, differ in the amount of weight they can lift. Suppose further that we
want to assess the effects of an exercise regimen that is expected to increase muscu-
lar strength. Forming treatment and control groups by simple random sampling of
the undifferentiated population would mean that part of the within-group vari-
ability that is presumed to reflect the luck of the draw (sampling error) would be
the natural differences between men and women. This source of variability may
well be judged irrelevant to an assessment of the intervention effect—the interven-
tion may rightfully be judged effective if it increases the strength of women relative
to the natural variability in women’s strength and that of men relative to the nat-
ural variability in men’s strength. The corresponding sampling procedure is not
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Table 2.2 Approximate Sample Size for Each Group Needed to Attain Various
Equal Levels of Alpha and Beta for a Range of Effect Sizes

Level of Alpha and Beta (α = β)

Effect Size .20 .10 .05 .01

.10 900 1,715 2,600 4,810

.20 225 430 650 1,200

.30 100 190 290 535

.40 60 110 165 300

.50 35 70 105 195

.60 25 50 75 135

.70 20 35 55 100

.80 15 30 45 75

.90 10 25 35 60

1.00 10 20 30 50
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simple random sampling but stratified random sampling, drawing women and
men separately so that the experimental sample contains identified subgroups of
women and men. The estimate of sampling error in this case comes from the
within-group variance—within experimental condition within gender—and omits
the between-gender variance, which has now been identified as having a source
other than the luck of the draw.
All statistical significance tests assess effects relative to an estimate of sampling

error but they may make different assumptions about the nature of the sampling
and, hence, the magnitude of the sampling error. The challenge to the intervention
researcher is to identify the measurable extraneous factors that contribute to pop-
ulation variability and then use (or assume) a sampling strategy and corresponding
statistical test that assesses intervention effects against an appropriate estimate of
sampling error. Where there are important extraneous factors that correlate with
the dependent variable (and there almost always are), using a statistical significance
test that partitions them out of the error term can greatly increase statistical power.
With this in mind, we review below some of the more useful of the variance con-
trol statistical designs with regard to their influence on power.

Analysis of Covariance

One of the most useful of the variance control designs for intervention
research is the one-way analysis of covariance (ANCOVA). Functionally, the
ANCOVA is like the simple one-way ANOVA, except that the dependent variable
variance that is correlated with a covariate variable (or linear combination of
covariate variables) is removed from the error term used for significance testing.
For example, a researcher with a reading achievement test as a dependent variable
may wish to remove the component of performance associated with IQ before
comparing the treatment and control groups. IQ differences may well be viewed
as nuisance variance that is correlated with reading scores but is not especially rel-
evant to the impact of the program on those scores. That is, irrespective of a
student’s IQ score, we would still expect an effective reading program to boost the
reading score.
It is convenient to think of the influence of variance control statistical designs on

statistical power as a matter of adjusting the effect size in the power relationship.
Recall that ES, as it is used in statistical power determination, is defined as (µt – µc)/σ
where σ is the pooled within-groups standard deviation. For assessing the power of
variance control designs, we adjust this ES to create a new value that is the one that
is operative for statistical power determination. For the ANCOVA statistical design,
the operative ES for power determination is as follows:

where ESac is the effect size formulation for the one-way ANCOVA; µt and µc are
the means for the treatment and control populations, respectively; σ is the common

ESac =
µt − µc

σ
√

1 − r 2
dc

,
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standard deviation; and rdc is the correlation between the dependent variable and the
covariate. As this formula shows, the operative effect size for power determination
using ANCOVA is inflated by a factor of 1/√1 − r2, which multiples ES by 1.15 when
r = .50, and 2.29 when r = .90. Thus, when the correlation of the covariate(s) with the
dependent variable is substantial, the effect of ANCOVA on statistical power can be
equivalent to more than doubling the operative effect size. Examination on Figure 2.1
reveals that such an increase in the operative effect size can greatly enhance power at
any given sample size.
An especially useful application of ANCOVA in intervention research is when

both pretest and posttest values on the dependent measure are available. In many
cases of experimental research, preexisting individual differences on the character-
istic that intervention is intended to change will not constitute an appropriate stan-
dard for judging intervention effects. Of more relevance will be the size of the
intervention effect relative to the dispersion of scores for respondents that began at
the same initial or baseline level on that characteristic. In such situations, a pretest
measure is an obvious candidate for use as a covariate in ANCOVA. Because
pretest-posttest correlations are generally high, often approaching the test-retest
reliability of the measure, the pretest as a covariate can dramatically increase the
operative effect size in statistical power. Indeed, ANCOVA with the pretest as the
covariate is so powerful and so readily attainable in most instances of intervention
research that it should be taken as the standard to be used routinely unless there are
good reasons to the contrary.

ANOVA With a Blocking Factor

In the blocked ANOVA design, participants are first categorized into blocks, that
is, groups of participants who are similar to each other on some characteristic
related to the dependent variable. For example, to use gender as a blocking variable,
one would first divide participants into males and females, then assign some males
to the treatment group and the rest to the control group and, separately, assign
some females to treatment and the rest to control.
In the blocked design, the overall variance on the dependent measure can be

viewed as the sum of two components: the within-blocks variance and the between-
blocks variance. Enhanced statistical power is gained in this design because it
removes the contribution of the between-blocks variance from the error term
against which effects are tested. As in the ANCOVA case, this influence on power
can be represented in terms of an adjusted effect size. If we let PVb equal the pro-
portion of the total dependent variable variance associated with the difference
between blocks, the operative ES for this case is as follows:

where ESab is the effect size formulation for the blocked one-way ANOVA, σ is the
pooled within-groups standard deviation (as in the unadjusted ES), and PVb is

ESab =
µt − µc

σ
√

1 − PV b

,
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σ2
b/σ2 with σ2

b the between-blocks variance and σ2 the common variance of the
treatment and control populations.
The researcher, therefore, can estimate PVb, the between-blocks variance, as a

proportion of the common (or pooled) variance within experimental groups and
use it to adjust the effect size estimate in such a way as to yield the operative effect
size associated with the statistical power of this design. If, for instance, the blocking
factor accounts for as much as half of the common variance, the operative ES
increases by more than 40%, with a correspondingly large increase in power.

Power Advantages of Variance Control Designs

The variance control statistical designs described above all have the effect of
reducing the denominator of the effect size index and, hence, increasing the opera-
tive effect size that determines statistical power. Depending on the amount of vari-
ance controlled in these designs, the multiplier effect on the effect size can be quite
considerable. Table 2.3 summarizes that multiplier effect for different proportions
of the within-groups variance associated with the control variable. Although the
effects are modest when the control variable accounts for a small proportion of the
dependent variable variance, they are quite considerable for higher proportions.
For instance, when the control variable accounts for as much as 75% of the vari-
ance, the operative effect size is double what it would be without the control vari-
able. Reference back to Figure 2.1, the statistical power chart, will reveal that
a doubling of the effect size has a major effect on statistical power. Careful use of
variance control designs, therefore, is one of the most important tactics that the
intervention researcher can use to increase statistical power without requiring addi-
tional participants in the samples.

Effect Size

The effect size parameter in statistical power can be thought of as a signal-to-
noise ratio. The signal is the difference between treatment and control population
means on the dependent measure (the ES numerator, µt − µc). The noise is the
within-groups variability on that dependent measure (the ES denominator, σ).
Effect size and, hence, statistical power is large when the signal-to-noise ratio is
high—that is, when the ES numerator is large relative to the ES denominator. In the
preceding section, we saw that variance control statistical designs increase statisti-
cal power by removing some portion of nuisance variance from the ES denomina-
tor and making the operative ES for statistical power purposes proportionately
larger. Here, we will look at some other approaches to increasing the signal-to-noise
ratio represented by the effect size.

Dependent Measures

The dependent measures in intervention research yield the set of numerical val-
ues on which statistical significance testing is performed. Each such measure chosen
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for a study constitutes a sort of listening station for certain effects expected to result
from the intervention. If the listening station is in the wrong place or is unrespon-
sive to effects when they are actually present, nothing will be heard. To optimize the
signal-to-noise ratio represented in the effect size, the ideal measure for interven-
tion effects is one that is maximally responsive to any change that the intervention
brings about (making a largeESnumerator) andminimally responsive to anything else
(making a small ES denominator). In particular, three aspects of outcome mea-
surement have direct consequences for the magnitude of the effect size parameter
and, therefore, statistical power: (a) validity for measuring change, (b) reliability,
and (c) discrimination of individual differences among respondents.
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Table 2.3 Multiplier by Which ES Increases When a Covariate or Blocking
Variable Is Used to Reduce Within-Groups Variance

Proportion of Variance Associated
With Control Variablea Multiplier for ES Increase

.05 1.03

.10 1.05

.15 1.08

.20 1.12

.25 1.15

.30 1.20

.35 1.24

.40 1.29

.45 1.35

.50 1.41

.55 1.49

.60 1.58

.65 1.69

.70 1.83

.75 2.00

.80 2.24

.85 2.58

.90 3.16

.95 4.47

.99 10.00

a. r2 for ANCOVA, PVb for blocked ANOVA.
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Validity for Change. For a measure to respond to the signal, that is, to intervention
effects, it must, of course, be a valid measure of the characteristic that the interven-
tion is expected to change. But validity alone is not sufficient to make a measure
responsive to intervention effects.What is required is validity for change.Ameasure
can be a valid indicator of a characteristic but still not be a valid indicator of change
on that characteristic. Validity for change means that the measure shows an observ-
able difference when there is, in fact, a change on the characteristic measured that is
of sufficient magnitude to be interesting in the context of application.
There are various ways in which a measure can lack validity for change. For one,

it may be scaled in units that are too gross to detect the change. A measure of mor-
tality (death rate), for instance, is a valid indicator of health status but is insensitive
to variations in how sick people are. Graduated measures, those that range over
some continuum, are generally more sensitive to change than categorical measures,
because the latter record changes only between categories, not within them. The
number of readmissions to a mental hospital, for example, constitutes a continuum
that can differentiate one readmission from many. This continuum is often repre-
sented categorically as “readmitted” versus “not readmitted,” however, with a con-
sequent loss of sensitivity to change and statistical power.
Another way in which a measure may lack validity for measuring change is by

having a floor or ceiling that limits downward or upward response. A high school-
level mathematics achievement test might be quite unresponsive to improve-
ments in Albert Einstein’s understanding of mathematics—he would most likely
score at the top of the scale with or without such improvements. Also, a measure
may be specifically designed to cancel out certain types of change, as when scores
on IQ tests are scaled by age norms to adjust away age differences in ability to
answer the items correctly.
In short, measures that are valid for change will respond when intervention alters

the characteristic of interest and, therefore, will differentiate a treatment group from
a control group. The stronger this differentiation, the greater the contrast between
the group means will be and, correspondingly, the larger the effect size.

Reliability. Turning now to the noise in the signal detection analogy, we must con-
sider variance in the dependent measure scores that may obscure any signal due
to intervention effects. Random error variance—that is, unreliability in themeasure—
is obviously such a noise. Unreliability represents fluctuations in the measure that
are unrelated to the characteristic being measured, including intervention effects on
that characteristic. Measures with lower measurement error will yield less variation
in the distribution of scores for participants within experimental groups. Because
within-groups variance is the basis for the denominator of the ES ratio, less mea-
surement error makes that denominator smaller and the overall ES larger.
Somemeasurement error is intrinsic—it follows from the properties of the mea-

sure. Self-administered questionnaires, for instance, are influenced by fluctuations
in respondents’ attention, motivation, comprehension, and so forth. Some mea-
surement error is procedural—it results from inconsistent or inappropriate appli-
cation of the measure. Raters who must report on an observed characteristic,
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for instance, may not be trained to use the same standards for their judgment, or
the conditions of observation may vary for different study participants in ways that
influence their ratings.
Also included in measurement error is systematic but irrelevant variation—

response of the measure to characteristics other than the one of interest. When
these other characteristics vary differently than the one being measured, they intro-
duce noise into a measure. For example, frequency of arrest, which may be used to
assess the effects of intervention for juvenile delinquency, indexes police behavior
(e.g., patrol and arrest practices) as well as the criminal behavior of the juveniles. If
the irrelevant characteristic to which the measure is also responding can be identi-
fied and separately measured, its influence can be removed by including it as a
covariate in an ANCOVA, as discussed above. For instance, if we knew the police
precinct in which each arrest was made, we could include that information as con-
trol variables (dummy coding each precinct as involved vs. not involved in a given
arrest) that would eliminate variation in police behavior across precincts from the
effect size for a delinquency intervention.

Discrimination of Individual Differences. Another source of systematic but often
irrelevant variation that is especially important in intervention effectiveness research
has to do with relatively stable individual differences on the characteristic mea-
sured. When a measure is able to discriminate strongly among respondents, the
variance of its distribution of scores is increased. This variation does not represent
error, as respondents may truly differ, but it nonetheless contributes to the noise
variance that can obscure intervention effects. In a reading improvement program,
for example, the primary interest is whether each participant shows improvement
in reading level, irrespective of his or her initial reading level, reading aptitude, and
so forth. If the measure selected is responsive to such other differences, the vari-
ability may be so great as to overshadow any gains from the program.
Where psychological and educational effects of intervention are at issue, an

important distinction is between “psychometric” measures, designed primarily to
discriminate individual differences, and “edumetric” measures, designed primarily
to detect change (Carver, 1974). Psychometric measures are those developed using
techniques that spread out the scores of respondents; IQ tests, aptitude tests, per-
sonality tests, and other such standardized tests would generally be psychometric
measures. By comparison, edumetric measures are those developed through the
sampling of some defined content domain that represents the new responses par-
ticipants are expected to acquire as a result of intervention. Mastery tests, such as
those an elementary school teacher would give students to determine whether they
have learned to do long division, are examples of edumetric tests.
Because they are keyed specifically to the sets of responses expected to result

from intervention, edumetric tests, or measures constructed along similar lines, are
more sensitive than psychometric tests to the changes induced by intervention and
less sensitive to preexisting individual differences. To the extent that any measure
reflects less heterogeneity among participants, within-group variability on that
measure is smaller. That, in turn, results in a smaller denominator for the ES ratio
and a corresponding increase in statistical power.
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The Independent Variable

The independent variable in intervention research is defined by the contrast
between the experimental conditions (e.g., treatment and control) to which partic-
ipants are exposed. When more contrast is designed into the study, the effect size
can be correspondingly larger if the intervention is effective.

Dose Response. Experimental design is based on the premise that intervention levels
can be made to vary and that different levels might result in different responses.
Generally speaking, the “stronger” the intervention, the larger the response should
be. One way to attain a large effect size, therefore, is to design intervention research
with the strongest possible dose of the intervention represented in the treatment
condition. In testing a new math curriculum, for instance, the researcher might
want the teachers to be very well-trained to deliver it and to spend a significant
amount of class time doing so. If the intervention is effective, the larger effect size
resulting from a stronger dose will increase statistical power for detecting the effect.
Optimizing the strength of the intervention operationalized in research requires

some basis for judging what might constitute the optimal configuration for pro-
ducing the expected effects. There may be insufficient research directly on the inter-
vention under study (else why do the research), but there may be other sources of
information that can be used to configure the intervention so that it is sufficiently
strong to potentially show detectable effects. One source, for example, is the expe-
rience and intuition of practitioners in the domain where the intervention, or vari-
ants, is applied.

Variable Delivery of the Intervention. The integrity or fidelity of an intervention is
the degree to which it is delivered as planned and, in particular, the degree to which
it is delivered in a uniform manner in the right amounts to the right participants at
the right time. At one end of the continuum, we might consider the case of inter-
vention research conducted under tightly controlled clinical or laboratory condi-
tions in which delivery can be regulated very closely. Under these conditions, we
would expect a high degree of intervention integrity, that is, delivery of a constant,
appropriate dose to each participant.
Intervention research, however, cannot always be conducted under such care-

fully regulated circumstances. It must often be done in the field with volunteer par-
ticipants whose compliance with the intervention regimen is difficult to ensure.
Moreover, the interventions of interest are often not those for which dosage is eas-
ily determined and monitored, nor are they necessarily delivered uniformly. The
result is that the participants in a treatment group may receive widely different
amounts and even kinds of intervention (e.g., different mixes of components). If
participants’ responses to intervention vary with its amount and kind, then it
follows that variation in the intervention will generate additional variation in the
outcome measures.
When treatment and control groups are compared in a statistical analysis, all

that usually registers as an intervention effect is the difference between the treat-
ment group’s mean score and the control group’s mean score on the dependent
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variable. If there is variation around those means, it goes into the within-groups
variance of the effect size denominator, making the overall ES smaller. Maintaining
a uniform application of treatment and control conditions is the best way to pre-
vent this problem.One useful safeguard is for the researcher to actually measure the
amount of intervention received by each participant in the treatment and control
conditions (presumably little or none in the control). This technique yields infor-
mation about how much variability there actually was and generates a covariate
that may permit statistical adjustment of any unwanted variability.

Control Group Contrast.Not all aspects of the relationship between the independent
variable and the effect size have to do primarily with the intervention. The choice
of a control condition also plays an important role. The contrast between the treat-
ment and control means can be heightened or diminished by the choice of a con-
trol that is more or less different from the treatment condition in its expected
effects on the dependent measure.
Generally, the sharpest contrast can be expected when what the control group

receives involves no aspects of the intervention or any other attention—that is, a
“no treatment” control. For some situations, however, this type of control may be
unrepresentative of participants’ experiences in nonexperimental conditions or
may be unethical. This occurs particularly for interventions that address problems
that do not normally go unattended—severe illness, for example. In such situations,
other forms of control groups are often used. The “treatment as usual” control
group, for instance, receives the usual services in comparison to a treatment group
that receives innovative services. Or a placebo control might be used in which the
control group receives attention similar to that received by the treatment group but
without the specific active ingredient that is presumed to be the basis of the inter-
vention’s efficacy. Finally, the intervention of interest may simply be compared with
some alternative intervention, for example, traditional psychotherapy compared
with behavior modification as treatment for anxiety.
The types of control conditions described above are listed in approximate order

according to the magnitude of the contrast they would generally be expected to
show when compared with an effective intervention. The researcher’s choice of a
control group, therefore, will influence the size of the potential contrast and hence
of the potential effect size that appears in a study. Selection of the control group
likely to show the greatest contrast from among those appropriate to the research
issues can thus have an important bearing on the statistical power of the design.

Statistical Power for Multilevel Designs

For the experimental designs discussed in the previous sections, we have assumed
that the units on which the dependent variables were measured are the same units
that were randomly assigned to treatment and control conditions. In social science
intervention studies, those units are typically individual people. Research designs
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for some intervention situations, however, involve assignment of clusters of units to
experimental conditions or delivery of treatment at the cluster level, but measurement
of the outcomes on the individual units within those clusters. Such designs are
especially common in education research where classrooms or entire schools may
be assigned to treatment and control conditions with student grades or achieve-
ment test scores as the dependent variable. Similarly, patients whose outcomes are
of interest might be clustered within hospitals assigned to treatment and control
conditions, energy use might be examined for apartments clustered within housing
projects assigned to receive a weatherization program or not, and so forth. Even
when individuals are randomly assigned to conditions, if the treatment and control
conditions are implemented on clusters, for example, classrooms, there are still
multiple levels in the design. These types of designs may also have other levels or
groupings in between the units of measurement and the units of randomization.
For example, students (whose achievement scores are the outcomes of interest)
might be clustered within classrooms that are clustered within schools that are clus-
tered within school districts that are assigned to intervention and control condi-
tions. For simplicity, the discussion here will be limited to two-level models, but the
general principles can be extended to designs with more than two levels.
These cluster or multilevel designs have distinct characteristics that affect statis-

tical power. One way to think about them is in terms of the sample size for the
experiment—a critical factor for power discussed earlier. Is the pertinent sample
size the number of clusters assigned to the experimental conditions or is it the number
of units within all those clusters on which the outcomes are measured? The answer,
and the main source of complexity for power analysis, is that it could be either or
something in between. The operative sample size is the number of statistically inde-
pendent units represented in the study. Participants within a cluster (e.g., students
within a classroom) are likely to have dependent measure scores that are more sim-
ilar to each other than to participants in different clusters either because of the nat-
ural sorting processes that have put them in that cluster or because of similar
influences that they share as members of it. If so, their scores are not statistically
independent—there is some degree of predictability from one to another within a
classroom. When there is statistical dependence among the scores within clusters,
the operative sample size is no longer the number of units measured but, instead,
shrinks toward the number of clusters assigned, which is always a smaller number
(Snijders & Bosker, 1999).
Statistical analysis for multilevel designs and, correspondingly, statistical power

considerations must, therefore, take into account the within- and between-cluster
variance structure of the data. If there is relative homogeneity within clusters and
heterogeneity between clusters, the results will be quite different than if it is the other
way around. Specialized statistical programs are available for analyzing multilevel
data, for example, HLM (Raudenbush, Bryk, & Congdon, 2004), MLwiN (Rasbash,
Steele, Browne, & Prosser, 2004), and, more generally, mixed models analysis rou-
tines in the major computer programs such as SPSS, SAS, and Stata. In the sections
that follow, we identify the distinctive issues associated with statistical power in multi-
level designs and describe ways in which it can be optimized and estimated.
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Determinants of Statistical
Power for Multilevel Designs

Basically, the same four factors that influence power in single-level designs
apply to multilevel designs—sample size, alpha level, the statistical test (especially
whether variance controls are included), and effect size. The alpha level at which the
intervention effect is tested and the effect size are defined virtually the same way in
multilevel designs as in single-level ones and function the same way in power analy-
sis. It should be particularly noted that despite the greater complexity of the struc-
ture of the variance within treatment and control groups in multilevel designs, the
effect size parameter remains the same. It is still defined as the difference between
the mean score on the dependent variable for all the individuals in the treatment
group and the mean for all the individuals in the control group divided by the com-
mon standard deviation of all the scores within the treatment and control groups.
In a multilevel design, the variance represented in that standard deviation could,
in turn, be decomposed into between- and within-cluster components or built up
from them. It is, nonetheless, the same treatment or control population variance
(estimated from sample values) irrespective of whether the participants providing
scores have been sampled individually or clusterwise.
The statistical analysis on the other hand will be different—it will involve a multi-

level statistical model that represents participant scores at the lowest level and the
clusters that were randomized at the highest level. One important implication of
this multilevel structure is that variance control techniques, such as use of selected
covariates, can be applied at both the participant and cluster levels of the analysis.
Similarly, sample size applies at both levels and involves the number of clusters
assigned to experimental conditions and the number of participants within clusters
who provide scores on the dependent measures.
One additional factor distinctive to multilevel designs also plays an important

role in statistical power: the intracluster correlation (ICC; Hox, 2002; Raudenbush
& Bryk, 2002; Snijders & Bosker, 1999). The ICC is a measure of the proportion of
the total variance of the dependent variable scores that occurs between clusters. It
can be represented as follows:

where the numerator is the variance between the clusters and the denominator is
the total variance in the model (between-cluster plus within-cluster variance).
If none of the variability in the data is accounted for by between-cluster differ-

ences, then the ICC will be 0 and the effective sample size for the study will simply
be the total number of participants in the study. If, on the other hand, all the vari-
ability is accounted for by between-cluster differences, then the ICC will be 1 and
the effective N for the study will be the number of clusters. In practice, the ICC will
be somewhere between these two extremes, and the effective N of the study will be
somewhere in between the number of participants and the number of clusters.

ρ =
σ2

between

σ2
between + σ2

within

,

62 APPROACHES TO APPLIED RESEARCH

02-Bickman-45636:02-Bickman-45636 7/28/2008 7:36 PM Page 62



Figure 2.2 contains a graph that depicts the effect of the magnitude of the ICC on
the power to detect an effect size of .40 at α = .05 with 50 clusters total (evenly
divided between treatment and control) and 15 participants per cluster. As the
figure shows, even small increases in the ICC can substantially reduce the power.
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Figure 2.2 The Relationship Between ICC and Power to Detect an Effect Size of
.40, With 50 Clusters Total, 15 Participants per Cluster, and α = .05
(graph generated using optimal design software)

Clearly, the ICC is crucial for determining statistical power when planning a
study. Unfortunately, the researcher has no control over what the ICC will be for a
particular study. Thus, when estimating the statistical power of a planned study, the
researcher should consider the ICC values that have been reported for similar
research designs. For example, the ICCs for the educational achievement outcomes
of students clustered within classroom or schools typically range from approxi-
mately .15 to .25 (Hedges & Hedberg, 2006).
Unlike the ICC, the number of clusters and the number of participants within

each cluster are usually within the researcher’s control, at least to the extent that
resources allow.Unfortunately, in multilevel analyses the total number of participants
(which are usually more plentiful) has less of an effect on power than the number of
clusters (which are often available only in limited numbers). This is in contrast to
single-level designs in which the sample size at the participant level plays a large role
in determining power. See Figure 2.3 for a graph depicting the relationship between
sample size at the participant level and power to detect an effect size of .40 at α = .05
for a study with 50 clusters total and an ICC of .20.Once clusters have around 15 par-
ticipants each, adding additional participants yields only modest gains in power.
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Figure 2.4 depicts the relationship between the number of clusters and the
power to detect an effect size of .40 at α = .05 for a study with 15 participants per
cluster and an ICC of .20. As that graph shows, a power of .80 to detect this effect
size is only achieved when the total number of clusters is above 50, and it requires
82 clusters for .95 power. In many research contexts, collecting data from so many
clusters may be impractical and other techniques for attaining adequate power
must be employed.

Optimizing Power in a Multilevel Design

The techniques for maximizing statistical power in single-level analyses also
apply, with appropriate adaptations, to multilevel analyses. Power can be increased
by relaxing the alpha level or increasing the sample size (in this case, mainly the
number of clusters). Also, adding covariates to the analysis is an effective way to
increase power. In multilevel analysis, covariates measured at either the participant
level or the cluster level (or both) can be used. Cluster-level covariates are often
easier to obtain because each individual participant need not be measured and may
be as helpful for increasing power as participant-level covariates (Bloom, 2005;
Murray & Blitstein, 2003). As in single-level analysis, one of the best covariates,
when available, is the pretest score on the same measure as the outcome variable or
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generated using optimal design software)
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a closely related one. Including a pretest covariate can reduce the number of clus-
ters required to achieve adequate power anywhere from one half to one tenth and
cluster-level pretest scores (the mean for each cluster) may be just as useful as
participant-level pretest scores (Bloom, Richburg-Hayes, & Black, 2005).
Figure 2.5 illustrates the change in power associated with adding a cluster-level

covariate that accounts for varying proportions of the between-cluster variance on the
outcome variable.Without a covariate, 52 clusters (26 each in the treatment and con-
trol groups) with 15 participants per cluster and an ICC of .20 are required to detect
an effect size of .40 at α = .05 with .80 power. With the addition of a cluster-level
covariate that accounts for 66% of the between-cluster variance (i.e., correlates about
.81), the same power is attained with half as many clusters (26 total). Accounting for
that proportion of between-cluster variance would require a strong covariate (or set of
covariates), but not so strong as to be unrealistic for many research situations.

Planning a Multilevel Study With Adequate Power

Estimating the power of a multilevel study requires taking into account the min-
imummeaningful effect size that the researcher would like to detect, the alpha level
for the statistical test, the number of clusters, the number of participants within
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each cluster, the ICC associated with those clusters, and any covariates or blocking
factors involved in the design. Given all these considerations, it is not surprising
that computing power estimates is rather complicated (see Raudenbush, 1997;
Snijders & Bosker, 1993, for examples of computational techniques). Fortunately,
there is software available that facilitates these computations. One of the best doc-
umented and easiest to use is Optimal Design, based on the calculations outlined
in Raudenbush and Liu (2000) (available without cost at the time this chapter was
written at http://sitemaker.umich.edu/group-based/optimal_design_software).
Optimal Design was used to generate the graphs in Figures 2.2, 2.3, 2.4, and 2.5.
Power Analysis in Two-Level designs (PINT), developed by Snijders and his col-
leagues and using the formulas derived in Snijders and Bosker (1993), is another
package that provides similar power calculations, but is currently more limited in
the research designs that it can accommodate (PINT is available at the time this
chapter was written at http://stat.gamma.rug.nl/snijders).

Design Strategy to Enhance Power

Perhaps the most important point to be gleaned from the above discussion about
statistical power is that nearly all the factors that influence it can be manipulated to
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increase power. A research design that is sensitive to intervention effects, therefore,
is achieved through the integration of decisions about all these factors in a way that
is appropriate and practical for the particular research circumstances. This requires
awareness of statistical power issues during the planning phase of a study, incorpo-
ration of procedures to enhance power in the design, and an analysis and interpre-
tation of study results that reflects statistical power considerations.
The general strategy for optimizing power in intervention research necessarily

begins with a decision about the minimum effect size that the research should be
designed to detect reliably (Bloom, 1995). This minimum detectable effect should
be set as a threshold value such that below that level, intervention effects are con-
sidered too small to be important, but above that level, they are potentially mean-
ingful and thus should be detected by the research. It is at this point that the
researcher must consider the various issues related to the effect sizes, such as what
treatment versus control contrast will be represented in that effect size. This
requires decisions about the “dosage” for the intervention, the nature of the control
group (no treatment, placebo, service as usual, and so on), and the character of the
dependent variable(s) (e.g., psychometric vs. edumetric).
Given decisions on these points, the researcher must then decide what numeri-

cal value of the effect size under the planned research circumstances represents a
meaningful minimum to be detected. This usually involves a complex judgment
regarding the practical meaning of effects within the particular intervention con-
text. The next section provides some suggestions for framing this issue. For now,
suppose that a threshold value has been set: Say that ES = .20 is judged the smallest
effect size that the research should reliably detect. The next question is how reliably
the researcher wishes to be able to detect that value—that is, what level of statisti-
cal power is desired. If the desired power is .80, for instance, statistically significant
results would be found 80% of the time an effect of .20 was actually present in the
populations sampled for the research, and null results would occur 20% of the time
despite the population effect. If greater reliability is desired, a higher level of power
must be set. Setting the desired power level, of course, is equivalent to setting the
beta level for risk of Type II error. Alpha level for Type I error should also be set at
this time, using some rational approach to weighing the risks of Type I versus Type
II error, as discussed earlier.
With a threshold effect size value and a desired power level in hand, the

researcher is ready to address the question of how to actually attain that power level
in the research design. At this juncture it is wise to consider what variance control
statistics might be used. These can generally be applied at low cost and with only a
little extra effort to collect data on appropriate covariate variables or implement
blocking. Using the formulas and discussion provided above in the subsection on
the statistical test, the researcher can estimate the operative effect size with a vari-
ance control design and determine how much larger it will be than the original
threshold value. With an ANCOVA design using the pretest as a covariate, for
instance, the pretest-posttest correlationmight be expected to be at least .80, increas-
ing the operative effect size from the original .20 to a value of .33 (see Table 2.3).
Analogous assessments of covariates can be made for multilevel designs by using
appropriate statistical power software.
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With an operative effect size and a desired power level now established, the
researcher is ready to turn to the question of the size of the sample in each experi-
mental group. This is simply a matter of looking up the appropriate value using
a statistical power chart or computer program. If the result is a sample size the
researcher can achieve, then all is well.
If the required sample size is larger than can be attained, however, it is back to

the drawing board for the researcher. The options at this point are limited. First, of
course, the researcher may revisit previous decisions and further tune the design—
for example, enhancing the treatment versus control contrast, improving the sensi-
tivity of the dependent measure, or applying a stronger variance control design. If
this is not possible or not sufficient, all that remains is the possibility of relaxing one
or more of the parameters of the study. Alpha or beta levels, or both, might be
relaxed, for instance. Because this increases the risk of a false statistical conclusion,
and because alpha levels particularly are governed by strong conventions, this must
obviously be done with caution. Alternatively, the threshold effect size that the
research can reliably detect may be increased. This amounts to reducing the likeli-
hood that effects already assumed to be potentially meaningful will be detected.
Despite best efforts, the researcher may have to proceed with an underpowered

design. Such a design may be useful for detecting relatively large effects but may have
little chance of detecting smaller, but still meaningful, effects. Under these circum-
stances, the researcher should take responsibility for communicating the limitations
of the research along with its results. To do otherwise encourages misinterpretation
of statistically null results as findings of “no effect” when there may be a reasonable
probability of an actual effect that the research was simply incapable of detecting.
As is apparent in the above discussion, designing research sensitive to interven-

tion effects depends heavily on an advance specification of the magnitude of statis-
tical effect that represents the threshold for what is important or meaningful in the
intervention context. In the next section, we discuss some of the ways in which
researchers can approach this judgment.

What Effect Size Is Worth Detecting?

Various frameworks can be constructed to support reasonable judgment about the
minimal effect size that an intervention study should be designed to detect. That
judgment, in turn, will permit the researcher to consider statistical power in a sys-
tematic manner during the design phase of the research. Also, given a framework
for judgment about effect size, the researcher can more readily interpret the statis-
tical results of intervention research after it is completed. Below, we review three
frameworks for judging effect size: the actuarial approach, the statistical translation
approach, and the criterion group contrast approach.

The Actuarial Approach

If enough research exists similar to that of interest, the researcher can use the results
of those other studies to create an actuarial base for effect sizes. The distribution of
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such effect size estimates can then be used as a basis for judging the likelihood that
the research being planned will produce effects of a specified size. For example, a
study could reliably detect 80% of the likely effects if it is designed to have sufficient
power for the effect size at the 20th percentile of the distribution of effect sizes
found in similar studies.
Other than the problem of finding sufficient research literature to draw on, the

major difficulty with the actuarial approach is the need to extract effect size esti-
mates from studies that typically do not report their results in those terms. This,
however, is exactly the problem faced in meta-analysis when a researcher attempts
to obtain effect size estimates for each of a defined set of studies and do higher-
order analysis on them. Books and articles on meta-analysis techniques contain
detailed information about how to estimate effect sizes from the statistics provided
in study reports (see, e.g., Lipsey & Wilson, 2000).
A researcher can obtain a very general picture of the range and magnitude of

effect size estimates in intervention research by examining any meta-analyses that
have been conducted on similar interventions. Lipsey and Wilson (1993) reported
the distribution of effect sizes frommore than 300 meta-analyses of research on psy-
chological, behavioral, and educational research. That distribution had a median
effect size of .44, with the 20th percentile at .24 and the 80th percentile at .68. These
values might be compared with the rule of thumb for effect size suggested by Cohen
(1977, 1988), who reported that across a wide range of social science research, ES =
.20 could be judged as a “small” effect, .50 as “medium,” and .80 as “large.”

The Statistical Translation Approach

Expressing effect sizes in standard deviation units has the advantage of staying
close to the terms used in statistical significance testing and, thus, facilitating sta-
tistical power analysis. However, that formulation has the disadvantage that in
many intervention domains there is little basis for intuition about the practical
meaning of a standard deviation’s worth of difference between experimental
groups. One approach to this situation is to translate the effect size index from stan-
dard deviation units to some alternate form that is easier to assess.
Perhaps the easiest translation is simply to express the effect size in the units of

the dependent measure of interest. The ES index, recall, is the difference between
the means of the treatment and control groups divided by the pooled standard
deviation. Previous research, norms for standardized tests, or pilot research is often
capable of providing a reasonable value for the relevant standard deviation. With
that value in hand, the researcher can convert to the metric of the specific variable
any level of ES he or she is considering. For example, if the dependent variable is a
standardized reading achievement test for which the norms indicate a standard
deviation of 15 points, the researcher can think of ES = .50 as 7.5 points on that test.
In context, it may be easier to judge the practical magnitude of 7.5 points on a
familiar test than .50 standard deviations.
Sometimes, what we want to know about the magnitude of an effect is best

expressed in terms of the proportion of people who attained a given level of ben-
efit as a result of intervention. One attractive way to depict effect size, therefore,
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is in terms of the proportion of the treatment group, in comparison to the con-
trol group, elevated over some “success” threshold by the intervention. This
requires, of course, that the researcher be able to set some reasonable criterion
for success on the dependent variable, but even a relatively arbitrary threshold
can be used to illustrate the magnitude of the difference between treatment and
control groups.
One general approach to expressing effect size in success rate terms is to set the

mean of the control group distribution as the success threshold value. With sym-
metrical normal distributions, 50% of the control group will be below that point
and 50% will be above. These proportions can be compared with those of the treat-
ment group distribution below and above the same point for any given difference
between the two distributions in standard deviation units. Figure 2.6 depicts the
relationship for an effect size of ES = .50. In this case, 70% of the treatment group
is above the mean of the control group, or, in failure rate terms, only 30% of the
treated group is below the control group mean. There are various ways to construct
indices of the overlap between distributions to represent effect size. This particular
one corresponds to Cohen’s (1977, p. 31) U3 measure.
A variation on the percentage overlap index has been offered by Rosenthal and

Rubin (1982), who used it to construct something that they call a “binominal effect
size display” (BESD). They suggest that the success threshold be presumed to be at
the grand median for the conjoint control and treatment distribution (line M in
Figure 2.6). Though use of the grand median as a success threshold is somewhat
arbitrary, it confers a particular advantage on the BESD.With normal distributions,
the difference between the “success” proportions of the treatment and control
groups has a simple relationship to the effect size expressed in correlational terms.
In particular, when we express effect size as a correlation (r), the value of that cor-
relation corresponds to the difference between the proportions of the respective
distributions that are above the grand median success threshold. Effect size in stan-
dard deviation units can easily be converted into the equivalent correlation using
the following formula:

For example, if the correlation between the independent variable and the depen-
dent variable is .24, then the difference between the success proportions of the
groups is .24, evenly divided around the .50 point, that is, .50 ± .12, or 38% success
in the control group, 62% in the treatment group. More generally, the distribution
with the lower mean will have .50 − (r/2) of its cases above the grand median suc-
cess threshold, and the distribution with the greater mean will have .50 + (r/2) of
its cases above that threshold. For convenience, Table 2.4 presents the BESD terms
for a range of ES and r values as well as Cohen’s U3 index described above.
The most striking thing about the BESD and the U3 representations of the

effect size is the different impression that they give of the potential practical
significance of a given effect from that of the standard deviation expression. For

r =
ES√

ES2 + 4
.
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example, an effect size of one fifth of a standard deviation (ES = .20) corresponds
to a BESD success rate differential of .10—that is, 10 percentage points between
the treatment and control group success rates (55% vs. 45%). A success increase
of 10 percentage points on a control group baseline of 45% represents a 22% improve-
ment in the success rate (10/45). Viewed in these terms, the same intervention
effect that may appear rather trivial in standard deviation units now looks poten-
tially meaningful.
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TreatmentControl

M

µc

ES = .50

50% of control distribution

30% of treatment distribution

50% of control distribution

70% of treatment distribution

Figure 2.6 Depiction of the Percentage of the Treatment Distribution Above the
Success Threshold Set at the Mean of the Control Distribution

Table 2.4 Effect Size Equivalents for ES, r, U3, and BESD

BESD C Versus T BESD C Versus T
U3: % of T

ES r Above Xc Success Rates Differential

.10 .05 54 .47 .52 .05

.20 .10 58 .45 .55 .10

.30 .15 62 .42 .57 .15

.40 .20 66 .40 .60 .20

.50 .24 69 .38 .62 .24

.60 .29 73 .35 .64 .29

.70 .33 76 .33 .66 .33

.80 .37 79 .31 .68 .37

.90 .41 82 .29 .70 .41

1.00 .45 84 .27 .72 .45
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The Criterion Contrast Approach

Although actuarial and statistical translation approaches to assessing effect size
may be useful for many purposes, they are somewhat removed from the specific
context of any given intervention study. Often, the best answer to the question of
what effect size has practical significance is one that is closely tied to the particular
problems, populations, and measures relevant to the intervention under investiga-
tion. For example, if we could identify and measure a naturally occurring effect in
the intervention context whose practical significance was easily recognized, it could
be used as a criterion value or benchmark against which any expected or obtained
intervention effect could be compared.What is required in the criterion group con-
trast approach is that some such comparison be identified and represented as a sta-
tistical effect size on the dependent measure relevant to the intervention research.
The criterion group contrast approach is best explained by an example.

Consider a community mental health center in which prospective patients receive
a routine diagnostic intake interview and are sorted into those judged to need, say,
inpatient therapy versus outpatient therapy. This practice embodies a distinction
between more serious and less serious cases and the “size” of the difference between
the severity of the symptoms for these two groups that would be well understood
at the practical level by those involved in community mental health settings. If we
administer a functional status measure that is of interest as an outcome variable for
both these groups, we could represent the difference between them as an effect
size—that is, the difference between their means on that measure divided by the
pooled standard deviations. Though this effect size does not represent the effect of
intervention, we can nonetheless think of it in comparison with an intervention
effect. That is, how successful would we judge a treatment to be that, when applied
to clients as severe as the inpatient group, left them with scores similar to those of
the outpatient group? Such an effect may well be judged to be of practical signifi-
cance and would have recognized meaning in the treatment context. Real or antic-
ipated intervention effects can thus be compared with this criterion contrast value
as a way of judging their practical significance.
Reasonable criterion comparisons are often surprisingly easy to find in applied

settings. All one needs to create a criterion contrast are, first, two groups whose dif-
ference on the variable of interest is easily recognized and, second, the result of
measurement on that variable. It is also desirable to use groups that resemble,
as much as possible, those samples likely to be used in any actual intervention
research. Some of the possibilities for criterion contrasts that frequently occur in
practical settings include the following:

• Eligible versus ineligible applicants for service where eligibility is deter-
mined primarily on the basis of judged need or severity. For example, a contrast
on economic status might compare those who do not qualify for food stamps with
those who do.

• Sorting of intervention recipients into different service or diagnostic cate-
gories based on the severity of the problems to be treated. For example, a contrast
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on literacy might compare those adult education students enrolled in remedial
reading classes with those enrolled in other kinds of classes.

• Categories of termination status after intervention. For example, a contrast on
functional statusmeasures might compare those patients judged by physical therapists
to have had successful outcomes with those judged to have had unsuccessful outcomes.

• Comparison of “normal” individuals with those who have the target problem.
For example, a contrast on delinquent behavior could compare the frequency of
self-reported delinquency for a sample of males arrested by the police with that of
similar-age males from a general high school sample.

• Maturational differences and/or those occurring with usual service. For
example, a contrast on mathematics achievement might compare the achievement
test scores of third graders with those of fifth graders.

Conclusion

Attaining adequate statistical power in intervention research is not an easy matter.
The basic dilemma is that high power requires a large effect size, a large sample size,
or both. Despite their potential practical significance, however, the interventions of
interest all too often produce modest statistical effects, and the samples on which
they can be studied are often of limited size. Intervention researchers need to learn
to live responsibly with this problem. The most important elements of a coping
strategy are recognizing the predicament and attempting to overcome it in every
possible way during the design phase of a study. The keys to designing sensitive
intervention research are an understanding of the factors that influence statistical
power and the adroit application of that understanding to the planning and imple-
mentation of each study undertaken. As an aid to recall and application, Table 2.5
lists the factors discussed in this chapter that play a role in the statistical power of
experimental research along with some others of an analogous sort.
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Table 2.5 Factors That Work to Increase Statistical Power in Treatment
Effectiveness Research

Independent variable

Strong treatment, high dosage in the treatment condition

Untreated or low-dosage control condition for high contrast with treatment

Treatment integrity; uniform application of treatment to recipients

Control group integrity; uniform control conditions for recipients

Study participants

Large sample size (or number of clusters in the case of multilevel research) in each
experimental condition

(Continued)
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Discussion Questions

1. In your area of research, which type of error (Type I or Type II) typically
carries more serious consequences? Why?

2. In your field, would it ever be sensible to perform a one-tailed significance
test? Why or why not?

3. In your field, what are some typical constructs that would be of interest as
outcomes, and how are those constructs usually measured? What are the pros and
cons of these measures in terms of validity for measuring change, reliability, and
discrimination of individual differences?

4. In your research, what are some extraneous factors that are likely to be
correlated with your dependent variables? Which of these are measurable so that
they might be included as covariates in a statistical analysis?

5. What are some ways that you might measure implementation of an inter-
vention in your field of research? Is it likely that interventions in your field are deliv-
ered uniformly to all participants?

6. Is the use of “no treatment” control groups (groups that receive no form of
intervention) typically possible in your field? Why or why not?
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Table 2.5 (Continued)

Deploying limited participants into few rather than many experimental groups

Little initial heterogeneity on the dependent variable

Measurement or variance control of participant heterogeneity

Differential participant response accounted for statistically (interactions)

Dependent variables

Validity for measuring characteristic expected to change

Validity, sensitivity for change on characteristic measured

Fine-grained units of measurement rather than coarse or categorical

No floor or ceiling effects in the range of expected response

Mastery or criterion-oriented rather than individual differences measures

Inherent reliability in measure, unresponsiveness to irrelevant factors

Consistency in measurement procedures

Aggregation of unreliable measures

Timing of measurement to coincide with peak response to treatment

Statistical analysis

Larger alpha for significance testing

Significance tests for graduated scores, not ordinal or categorical

Statistical variance control; blocking, ANCOVA, interactions
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7. In your field, are interventions typically delivered to individual participants,
or to groups of participants such as classrooms, neighborhoods, etc.? If interven-
tions are delivered to groups, do researchers normally use analytical techniques that
take this into account?

8. If you were designing a study in which an intervention was to be delivered
to groups (clusters) of participants, would you be better off, in terms of statistical
power, collecting data on a large number of individuals within each cluster or on a
smaller number of individuals in a larger number of clusters?

9. Imagine you conduct a study testing an intervention that is designed to
increase the intelligence of children. You have access to a very large number of
children and, thus, have adequate power to detect an effect size of .03. At the end of
the intervention, the average IQ score of children in your control group is 100.0, and
the average IQ score of children in your intervention group is 100.5. This difference
in IQ scores is statistically significant. What do you conclude from your study?

Exercises

1. Look up four or five recent studies with treatment/control comparisons in
your area of research and calculate the effect sizes they report. What is the average
effect size, and what is the range of effect sizes? If you were designing a similar study,
what is the minimum effect size that you would consider meaningful to detect?

2. Using the power chart in Figure 2.1, determine the power to detect an effect
size of .70 with 20 participants per group, given a two-tailed α of .05. How many
participants per group would you need to attain .90 power to detect the same
effect size?

3. You are designing a study examining gains on a standardized test of aca-
demic achievement and your research leads you to believe that you can expect an
effect size of .30 (assume the intervention group mean will be 105, the control
group mean 100, and the shared standard deviation 15). Unfortunately, constraints
on your resources require a design that is able to detect a minimum effect size of
.60. If you were to add a covariate to your model to increase power, how strongly
must that covariate be correlated with academic achievement to give you adequate
power, given your design constraints?
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