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The Special Nature of

Spatial Data

R o b e r t H a i n i n g

This chapter describes some of the special
or distinguishing features of spatial data
opening the way to methodological issues
that will be treated in more depth in later
chapters. The use of the term ‘special’
should not be taken to imply that no other
types of data possess these features. Spatial
data analysis is a sub-branch of the more
general field of quantitative data analysis
and has sometimes suffered from not paying
sufficient attention to that fact. Many of the
data properties that will be encountered are
found in other types of (non-spatial) data but
when found in spatial data, may possess a
particular structure or properties may arise in
particular combinations.

The chapter will first define what is meant
by spatial data and then identify properties.
It will be helpful, in order to put structure on
this discussion, to distinguish ‘fundamental’
properties of spatial data from properties
that are due to the chosen representation of

geographical space and from properties that
are a consequence of measurement processes
by which data are collected for the purpose
of storage in the spatial data matrix (SDM).
The SDM is what the analyst works with.
We conclude by considering the implications
of these properties for the methodology of
spatial data analysis.

Geographic Information Science (GISc)
is the generic label that is frequently used,
particularly by geographers, to define the
area of science that involves the analysis
of spatially referenced data – that is data
where each case has some form of locational
co-ordinate attached to it. Data is the lynch
pin in the process of “doing science” and
it is essential that methodologies for spatial
data analysis are tuned to the properties of
spatial data.

The science undertaken with spatial data
is usually ‘observational’ rather than ‘experi-
mental’. This is important. Much spatial data
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are not collected under controlled situations.
We often cannot choose the values of
independent variables in order to generate a
satisfactory experimental design. There is no
replication (in order, for example, to assess
the effects of measurement error) and the
analyst must take the world as he or she
finds it. There may be further problems in
specifying what the appropriate locational
co-ordinate is when studying certain types
of processes and outcomes. All this has
implications for the quality of spatial data and
for the methodologies that can be employed.
We worry not only about the quality of our
data but exactly what it is we are observing
in any given situation. A consequence of this
is that much of the data collected may be
used to build a model of the situation under
study which can then be used to estimate
parameters and test hypotheses. We shall
see that some of the fundamental properties
of spatial data raise major problems in
this regard.

2.1. SPATIAL DATA AND THEIR
PROPERTIES

A spatial datum comprises a triple of
measurements. One or more attributes (X)
are measured at a set of locations (i) at time t,
where t may be a point or interval of time.
So, if k attributes are measured at n locations
at time t, we can present the spatial data in
the form:

{xj (i; t) ; j = 1, . . ., k; i = 1, . . ., n}. (2.1)

Equation (2.1) expresses in shorthand much
of the content of the SDM. The record of
when the observation was taken (t) may be
suppressed if analysis is concerned with only
a single time period but may be retained
if there are to be a series of comparative
studies through time or if different attributes
were recorded at different times and the
analyst needs to be aware of this. Such

data may come from a variety of different
sources including national censuses; public
or private agency records (e.g., national
health service, police force areas, consumer
surveys); and satellite imagery; environmen-
tal surveys; and primary surveys. The data
may be collected from a census or from
a sampling process. For the purposes of
analysis data from different sources may be
required. Studies in environmental epidemi-
ology utilise health, demographic, socio-
economic and environmental data. These
data may come with differing degrees of
quality and may not all be collected on
the same areal framework (Brindley et al.,
2005).

To understand the properties of spatial
data we need to understand the relationship
between equation (2.1) and the ‘real world’
from which the data are taken. In order to
undertake data analysis the complexity of the
real world must be captured in finite form
through the processes of conceptualization
and representation (Goodchild, 1989; Guptill
and Morrison, 1995; Longley et al., 2001).
We shall focus here only on the issues
associated with capturing spatial variation,
but the reader should note that there are
conceptualization and representation issues
associated with the way attributes and time
are captured as well.

The first step in this process, which
ultimately leads to the construction of the
SDM, involves conceptualizing the geogra-
phy of the real world. There are two views
of the geographical world in GISc – the
field and the object views. The field view
conceptualizes space as covered by surfaces
with the attribute varying continuously across
the space. This is particularly appropriate for
many types of environmental and physical
attributes. The object view conceptualizes
space as populated by well-defined indivisi-
ble objects, a view that is particularly appro-
priate for many types of social, economic and
other types of data that refer to populations.
Objects are conceptualized as points, lines or
polygons.

These two views constitute models of
the real world. In order to reduce a field
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to a finite number of bits of data then
the surface may be represented using a
finite number of sample points at which
the attribute is recorded or it may be
represented using a raster grid. Pixels are laid
down independently of the underlying field
and its surface variation. Alternatively, the
surface may be represented by polygons that
partition the space into areas with uniform
characteristics (e.g., vegetation zones). How
well any field is captured by these different
representations will depend on the density of
the points or the size of the raster in relation to
surface variability. There is a large theoretical
and empirical literature on the efficiencies
of different spatial sampling designs – for
example the properties of random, systematic
and stratified random sampling given the
nature of variation in the surface to be
sampled (see, e.g., Cressie, 1991; Ripley,
1981). The process of discretizing in this
way involves a loss of information on surface
variability.

This loss of detail on variability also arises
when selecting a representation based on
the object view. A city may comprise many
households (points) but for confidentiality
reasons information about households is
aggregated into spatially defined groups
(polygons) – output areas in the case of
the 2001 UK census, enumeration districts
prior to 2001 (Martin, 1998). Again aggre-
gation into polygons involves a loss of
information. There may be a further loss of
information in capturing the polygon itself
in the database. It may be captured using
a representative point (such as its centroid)
and its spatial relationship to other polygons
captured using a neighbourhood weights
matrix.

The conceptualization of a geographic
space as a field or as an object is
largely dictated by the attribute. However,
representation – the process by which
information about the geography of the
real world is made finite using geomet-
ric constructs – involves making choices
(Martin, 1999). These choices include the
size and configuration of polygons, the
location and density of sample points.

2.1.1. Fundamental properties

Fundamental properties are inherent to the
nature of attributes as they are distributed
across the earth’s surface. There is a fun-
damental continuity (structure) to attributes
in space that derives from the underlying
processes that shape the human and phys-
ical geographical world. We shall discuss
examples of these processes in section 2.2.2.
The geographical world would be a strange
place if levels of attributes changed suddenly
and randomly as we moved from one point
in space to another close by. Continuity is
also a fundamental property of attributes
observed in time. If we know the level
of an attribute at one position in space
(time) we can make an informed estimate
of its level at adjacent locations (points
in time). The information that is carried
in a piece of data about an attribute at
a given location provides information on
what the level of the attribute is at nearby
locations. However as distance increases then
the similarity of attribute values weakens and
in the GISc literature this is often referred
to as Tobler’s First Law of Geography
(‘…near things are more related than distant
things’). Although Tobler’s First Law is
clearly an oversimplification, and in relation
to some types of spatial variation just
plain wrong, it is nonetheless a useful
aphorism.

Testing for spatial autocorrelation was
one of the high-profile research agendas in
geography during the quantitative revolution.
Geographers adapted spatial autocorrelation
statistics based on the join-count statistic,
the cross product statistic and the squared
difference statistic that had been developed
for quantifying spatial structure on regular
areal frameworks (grids). These statistics
were developed to test for statistically
significant spatial autocorrelation on irregular
areal frameworks (Cliff and Ord, 1973). The
null hypothesis (no spatial autocorrelation)
was assessed against a non-specific alter-
native hypothesis (spatial autocorrelation is
present). We shall see how this argument was
developed in later years with the introduction
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and use by geographers of models for spatial
variation.

In the earth sciences, dealing principally
with point data from surfaces, the quan-
tification of structure was based on the
use of the empirical semi-variogram which
uses a squared difference statistic (Isaaks
and Srivastava, 1989). The advantage of
the latter route was that it led naturally to
model specification and model fitting using
theoretical semi-variograms. Of course these
quantitative measures and tests of hypothesis
depend on the scale of analysis. That is, they
depend on the size of the polygons in terms
of which data are reported, the inter-point
distance between samples on a continuous
surface. Thus the chosen representation has
an important influence on the quantification
of this fundamental property and hence
its presence within any spatial dataset. If
samples are taken at sufficient distances apart
the level of spatial autocorrelation is likely to
be much reduced relative to the case where
samples are taken close together.

Autocorrelation statistics are also used
to capture temporal structure in attribute
values but there are important differences
with the spatial situation. Time has a natural
uni-directional flow (from past to present)
whereas space has no such order. The two
dimensional nature of space means that
dependency structures might vary not just
with distance but direction too giving rise
to anisotropic dependency structures with
structure along the north–south axis differing
from the east–west axis. The presence of
spatial autocorrelation, that attribute values
are not statistically independent, has funda-
mental implications for the conduct of spatial
analysis.

Spatial autocorrelation, in statistical terms,
is a second order property of an attribute
distributed in geographic space. In addition
there may be a mean or first-order component
of variation represented by a linear, quadratic,
cubic (etc.) trend. We can think of these
as two different scales of spatial variation
although the distinction may be hard to make
and quantify in practice. As Cressie (1991)
remarks: ‘What is one person’s (spatial)

covariance may be another persons mean
structure’ (p. 25). It has often been remarked
that spatial variation is heterogeneous. This
type of decomposition (plus a white noise
element to capture highly localized hetero-
geneity) is one way of formally capturing that
heterogeneity using what are termed ‘global’
models. Another approach is to only analyze
spatial subsets, that is allow model structure
to vary locally.

2.1.2. Properties due to the
chosen representation

We have already noted that the extent to
which our data retains fundamental properties
depends on the chosen representation. We
now turn to look at other properties that
stem directly or indirectly from the chosen
representation.

Representing spatial variation using poly-
gons is employed in many branches of
science that handle spatially referenced
data. Two of the generic consequences of
working with data aggregates are: intra-
areal unit heterogeneity and inter-areal unit
heteroscedasticity.

Whether the data refer to a continu-
ously varying phenomenon (field view) or
aggregations of individuals like households
(object view) the effect of bundling data into
spatial aggregates has the effect of smoothing
variation. In the case of environmental data
and the use of pixels then the degree of
smoothing will clearly depend on the size of
the pixels. The larger the pixels the greater
the degree of smoothing. A non-intrinsic
partition, where the polygons are defined in
terms of attribute variability with the aim
of maximizing within unit homogeneity and
maximizing between-unit heterogeneity will
not produce this effect to the same extent.
This second process shares common ground
with the process of regionalization – to which
it is sometimes compared.

Intra-unit heterogeneity is a particular
problem for many types of social science
data particularly in those cases where area
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boundaries are chosen arbitrarily as was the
case with the UK census for example prior
to 2001. Attributes reported for an area may
represent percentages or means of attribute
values associated with the individuals (people
or households) that have been aggregated and
the analyst may have no information on the
variability around the mean. If an ecological
or contextual attribute is calculated for an
area (social capital say, or area deprivation)
again the calculation is conditional on the
chosen representation and the scale of the
partition.

One of the conclusions that might be drawn
from this is that it is better to have small areal
aggregates rather than large ones. Assuming
spatial structure, a reasonable supposition
given the discussion in section 2.1.1, then
smaller areas should be more homogeneous
than larger areas and their mean values
should be more representative of their area’s
population. But such spatial precision comes
at the cost of statistical precision. Data errors
or small random fluctuations in numbers
of events (household burglaries; disease
outcomes) will have a big effect on the
calculation of rates when populations are
small. Take the case of a standardized
mortality ratio. If the expected count is
small, for example 2.0, then the ratio itself
(observed count divided by the expected
count) rises or falls by 0.5 with each
addition or subtraction of a single case. This
will have implications for determining the
statistical significance of counts – whether
there are significantly more cases than would
be expected on the basis of chance alone. It
will also have implications for determining
the statistical significance of differences in
counts between areas which in turn raises
problems for the detection of significant
crime hotspots or disease clusters.

In summary, there is a trade-off that is
linked to the number of individual elements
in a polygon. A polygon containing few
individuals will tend to be more homo-
geneous but statistical quantities, such as
rates and ratios, tend to be unreliable in
the sense that small errors and random

fluctuations can impact severely on the
calculated values. Polygons containing many
individuals will generate robust rates and
ratios but often conceal much higher levels
of internal heterogeneity.

In practice an area is sometimes partitioned
into polygons of varying size and this can
yield a secondary effect on data properties.
A rate calculated for a polygon where
the denominator attribute is small has a
larger variance than a rate computed for a
polygon where the denominator attribute is
large. Moreover there is a mean-variance
dependence in the rate statistics. Take the
case where the denominator is the number of
households (n(i)). Rates are observed counts
of some attribute (number of burglaries) in
polygon i(O(i)) divided by the number of
households. It follows from the binomial
model for O(i) that:

E [O(i)/n(i)] = (1/n (i)) E [O(i)] = p (i) ;

Var [O(i)/n (i)] = (1/n (i))2 Var [O(i)]

= p(i)(1 − p(i))/n(i)
(2.2)

where E[…] and Var[…] denote mean and
variance and p(i) is the probability that
any individual in area i (e.g., number of
households) has the characteristic (e.g., been
burgled) that is being counted. The mean
and the variance in equation (2.2) are
clearly not independent. It also follows from
equation (2.2) that the standard error of the
estimate of the rate p(i) which is:

[ p(i) (1 − p(i)) /n(i)]1/2

is inversely related to the number of
households. It follows that any real spatial
variation in rates could be confounded by
variation in n(i) (the number of households)
or alternatively spatial variation in rates could
be an artifact of any spatial structure in
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n(i) (see Gelman and Price, 1999 who give
examples from disease mapping in the USA).

Standardized ratios provide an estimate of
the true but unknown area-specific relative
risk of the selected disease under the
assumption of an independent Poisson model
for the observed counts. It follows from the
properties of the Poisson distribution that
the standard error of the standardized ratio
is O(i)1/2/E(i). Using a normal approxima-
tion for the sampling distribution of the
standardized ratio, SR(i), approximate 95%
confidence intervals can be computed:

SR (i) ± 1.96
[
O(i)1/2/E(i)

]
.

However there are problems here when mak-
ing comparisons. The standard error tends
to be large for areas with small populations
and small for areas with large populations
because of the effect of population size on
E(i). So extreme ratios tend to be associated
with small populations but ratios that are
significantly different from 1.0 tend to be
associated with areas with large populations
(Mollie, 1996).

These examples are intended to illustrate
the way in which data properties can
be induced by the chosen representation.
In certain circumstances the geographical
structure of the representation (for example
the geography of which areas have large
and which have small denominator values)
could induce a geographical structure on the
statistics which when mapped could then give
rise to a misleading impression about trends
or patterns in the data.

2.1.3. Properties due to
measurement processes

The final step in the creation of the
SDM involves obtaining measurements on
the attributes of interest given the chosen
representation.

Data quality can be assessed in terms of
four characteristics: accuracy, completeness,
consistency and resolution. As noted above,
a spatial datum comprises a triple of
measurements: the attributes, location and
time. Thus the quality of each of these
three measurements needs to be assessed
against the four characteristics. What is of
interest here, however, is how measurement
problems might introduce certain proper-
ties into the data (Guptill and Morrison,
1995).

A common assumption in error analysis
is that attribute errors are independent. This
is likely to hold less often in the case
of spatial data. Location error may lead
to overcounts in one area and undercounts
in adjacent areas because the source of
the overcount is the set of nearby areas
that have lost cases as a result of the
location error. So, count errors in adjacent
areas may be negatively correlated (Haining,
2003, pp. 67–70). Location error can be
introduced into a spatial data set as a result
of having to put data, collected on different
spatial frameworks, onto a common spatial
framework. Areal interpolation methods are
used but these are based on assumptions
about how attributes are distributed within
areal units and these assumptions often
cannot be tested. The consequence is that
further levels and patterns of error are
introduced into the database (Cockings et al.,
1997).

In the case of remotely sensed data,
the values recorded for any pixel are not
in one-to-one relationship with an area of
land on the ground because of the effects
of light scattering. The form of this error
depends on the type and age of the hardware
and natural conditions such as sun angle,
geographic location and season. The point
spread function quantifies how adjacent pixel
values record overlapping segments of the
ground so that the errors in adjacent pixel
values will be positively correlated (Forster,
1980). The form of the error is analogous
to a weak spatial filter passed over the
surface so that the structure of surface
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variation, in relation to the size of the pixel
unit, will influence the spatial structure of
error correlation. Linear error structures also
arise in remotely sensed data (Short, 1999).
Finally, we note that the effects of error
propagation may further complicate error
properties when arithmetic or cartographic
operations are carried out on the data
and source errors are compounded and
transformed via these operations (Haining
and Arbia, 1993).

Data incompleteness may induce false
patterns in spatial data. Data incompleteness
refers to the situation where there are missing
data points or values or where there are under
or overcounts arising from the reporting
process. ‘Spatially uniform’ data incomplete-
ness raises problems for analysis but spatial
variation in the level of data incompleteness
with, for example, undercounting 6 more
serious in some parts of the study area than
others can seriously affect comparative work
and the interpretation of spatial variation.
Missing or inaccurately located cases in a
point pattern of events may result in failure
to detect a local cluster of cases (Kulldorff,
1998).

Incompleteness in cancer data leads to
forms of under or overcounting which give
rise to spatial variation that is an artifact
of how the data were collected. In the
case of official crime statistics geographical
differences between large counties in Eng-
land may be due to differences in police
investigative and reporting practices. On
the intra-urban scale, burglaries in suburban
areas will, on the whole, be well reported
for insurance purposes, but in some inner
city areas there may be under reporting
either because there is no ‘incentive’ or
because of fear of reprisals. The Census
provides essential denominator data for
computing small area rates. However refusals
to cooperate can lead to undercounting and
the 1991 Census in the UK was thought
to have undercounted the population by as
much as 2% because of fears that its data
would be used to enforce the new local
‘poll tax’. Inner city areas show higher levels
of undercounting than suburban areas where

populations are easier to track. Finally, since
there are 10 year gaps between successive
censuses, population in- and out-flows in
many areas may be such as to preserve the
essential socio-economic and demographic
characteristics of the areas. On the other hand
some areas of a city, especially inner-city
areas, may experience population mobility
and redevelopment which result in marked
shifts that have implications for the reliability
of the data in the years following the
Census.

Finally, in the case of some imagery, some
areas of the image may be obscured because
of cloud cover. A distinction should be drawn
between data that are ‘missing at random’
from data that are missing because of some
reason linked to the nature of the population
or the area. Weather stations temporarily
out of action because of equipment failure
produce data missing at random. On the other
hand mountainous areas will tend to suffer
from cloud cover more than adjacent plains
and there will be systematic differences in
land use between such areas. This distinction
has implications for how successfully miss-
ing values can be estimated and whether the
results of data analysis will be biased because
some component of spatial variation is
unobservable.

Figure 2.1 provides a summary of the
points raised in this section.

2.2. IMPLICATIONS OF DATA
PROPERTIES FOR THE ANALYSIS
OF SPATIAL DATA

In this section we turn to a consideration of
the implications of the properties of spatial
data for the conduct of spatial analysis. Again
we shall simply introduce ideas which will
be taken up in more detail in later chapters.
We divide this section into situations where
spatial properties can be exploited to help
solve problems and situations where spatial
properties introduce complications for the
conduct of data analysis.
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Figure 2.1 Processes involved in constructing the spatial data matrix and the data
properties that are present or introduced at each stage.

2.2.1. Taking advantage of spatial
data properties to tackle problems

Consider the following problems:

• Samples of attribute values have been taken
across an area. The analyst would like to
construct a map to describe surface variation
using the information contained in the sample.
Perhaps instead the analyst just wishes to
estimate the surface at a point, or set of points,
where no sample has been taken and estimate
the prediction error.

• A spatial database has been assembled but
the database contains data that are ‘missing at
random’ in the sense that there are no underlying
reasons (such as suppression or confidentiality)
why the particular values are missing. The analyst
wants to estimate these missing values.

In both these cases we might expect to
exploit some formalized version of the notion
that data points near together in space carry
information about each other. Both of these
examples constitute a form of the spatial
interpolation problem and solutions such as
kriging exploit the spatial structure inherent
in the surface as well as the configuration
of the sample points to provide an estimate
of surface values together with an estimate
of the prediction error (Isaak and Srivastava,

1989). It is intuitive that any solution that
did not use the information contained in the
location co-ordinates of sample data values
would be considered an inefficient solution.

Consider another group of problems:

• Aggregated data are obtained on race
(black/white) and voting behaviour (did vote/did
not vote). Counts in the 2 × 2 table are known
but the real interest lies in the voting behaviour
at the constituency level.

• Unemployment estimates have been obtained
from a survey for each of a number of small
areas in a region. The small area estimators
are unbiased but, because of small sample
sizes have low precision. Conversely the region
wide estimator has high precision, but as an
estimate for any of the small area levels of
unemployment is biased. A similar situation
arises when estimating relative risk levels across
the small areas of a larger region using the
standardized mortality ratio.

In both these cases there is again an oppor-
tunity to exploit some formalized version of
the notion that data points nearby in space
carry information about each other. One
solution is to ‘borrow information’or ‘borrow
strength’ so that the low precision of small
area estimates are raised by using data from
nearby areas (Mollie, 1996; King, 1997).
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These nearby areas provide additional data
(helping to improve precision) and because
they are nearby should reflect an underlying
situation that is close to the small area in
question so will not introduce a serious level
of bias.

2.2.2. Where spatial data
properties introduce complications
for data analysis

Spatial analysis is often called upon to
address scientific questions relating to out-
comes (numbers of cases of a disease, dis-
tribution of house prices, regional economic
growth rates) that are a consequence of
processes that by their nature are spatial.
Haining (2003) identifies four generic groups
of spatial processes. A diffusion process is
one where some attribute is taken up by
a population so that at any point in time
some individuals have the attribute (e.g., an
infectious disease) and some do not. If the
diffusion process operates in ways that are
constrained by distance then there is likely
to be spatial structure in the geography of
those who do and those who do not have
the attribute in question. An exchange and
transfer or mixing process is one where
places become similar in attribute values
(per capita income; employment) as a result
of flows of goods or services that bind
their economic fortunes together or where
patterns of movement and mixing perhaps at
different scales introduce a measure of spatial
homogeneity into structures. A third type of
spatial process is an interaction process in
which outcomes at one location (e.g., the
price of a commodity) are observed and as
a result of the competition effect influence
outcomes (prices) at another location. Finally,
there is a dispersal process in which
individuals spread across space (such as the
dispersal of seeds around a parent plant)
so that counts reflect the geography of the
dispersal mechanism.

These generic spatial processes – processes
that operate in geographic space – generate

data where spatial structure emerges as a fun-
damental property of the data. Process shapes
or at least influences attribute variation and
the resulting data that are collected possess
dependency structures that reflect the way the
process plays out across geographic space.

Not all processes of interest are ‘spatial’
in the sense described above. Many of the
processes of interest to geographers play
out across geographic space in response to
the place-based characteristics of areas (the
particular mix of attributes they possess)
and the spatial relationships between those
areas. Outcomes in places (whether for
example economic, social, epidemiological
or criminological) are not necessarily merely
the consequence of the properties of those
places – as places – but may also be the
consequence of relational and contextual
influences. The distance between places;
the difference between adjacent places in
terms of relevant attributes; the overall
configuration of places across a region, are
all facets of relation and context that may
impact on outcomes and modify the role of
‘place’ in influencing outcomes. Two places
may be identical in terms of their place-
based characteristics but differ significantly
in terms of their relational and contextual
attributes with neighbouring areas and these
differences may explain why (for exam-
ple) two similarly affluent neighbourhoods
experience quite different levels of assault
and robbery; why two similarly deprived
neighbourhoods experience quite different
levels of health outcomes.

We now examine briefly how these fea-
tures of how attribute values are generated
impact on the choice of methodology for
the purpose of data analysis. We distinguish
between exploratory spatial data analysis and
model based forms of analysis that allow
hypothesis testing and parameter estimation.

Exploratory spatial data analysis
Exploratory data analysis (EDA) comprises a
collection of visual and numerically resistant
techniques for summarizing data properties,
detecting patterns in data, identifying unusual
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or interesting features in data including pos-
sible data errors and formulating hypotheses.
Exploratory spatial data analysis (ESDA)
undertakes these activities with respect to
spatial data so that cases can be located on
a map and the spatial relationships between
cases assumes importance because they carry
information that is likely to be relevant to
the analysis (Cressie, 1984; Haining et al.,
1998; Fotheringham and Charlton, 1994). It
is important to be able to answer questions
such as: ‘where does that subset of cases on
the scatterplot or that subset of cases on the
boxplot, occur on the map?’ ‘What are the
spatial patterns and spatial associations in this
geographically defined subset of the map?’ In
the case of regression modelling do the large
positive residuals, for example, cluster in one
area of the map?

ESDA and the software that supports
ESDA needs to be able to handle the spatial
index and be able to handle the special
queries that arise because of the spatial refer-
encing of the data. Thus the map becomes an
essential visualization tool (Dorling, 1992).
The linkage between a map window and other
graphics windows, so that cases can be simul-
taneously highlighted in more than one win-
dow, becomes an essential part of the conduct
of ESDA (Andrienko and Andrienko, 1999;
Monmonier, 1989).

Visualizing spatial data raises particular
problems, in part because of some of the
properties discussed in earlier parts of this
chapter. We highlight two here. First, it has
been noted that data values, particularly rates
and ratios, may not be strictly comparable
because standard errors are population size
dependent. So if areas vary substantially
in terms of population counts (used as
the denominators for a rate) then extreme
values and even patterns detected by visual
inspection might be associated with that
effect rather than real differences between
areas. Second, areas that partition a region
might be very different in physical size.
This may mean that the viewer of a map
has their attention drawn to certain areas of
the cartographic display (those areas with
physically large spatial units) whilst other

areas are ignored. This may be particularly
important if in fact it is the small areas
that have the larger populations so that it
is their rates and ratios (rather than the
rates and ratios associated with the physically
larger but less densely populated areas) that
are the more robust. One solution to this
problem is to use cartograms so that areas
are transformed in physical extent to reflect
some underlying attribute such as population
size (Dorling, 1994). This comes at a cost
because the individual areas in the resulting
cartogram may be hard for the analyst to
place. There may be a need for a second,
conventional, map linked to the cartogram,
so the analyst can highlight areas on the
cartogram and see where they are on the
conventional map.

Conventional visualization technology is
often based on the assumption that all
data values are of equal status so that
the viewer can extract information from
visual displays without worrying about the
statistical comparability of the data values
that are displayed. This assumption may
break down when dealing with spatially
aggregated data (Haining, 2003).

Model fitting and hypothesis testing
If n data values are spatially autocorrelated
then one of the consequences of this for the
application of standard statistical inference
procedures is that the information content
of the data set is less than would be the
case if the n values were independent. This
means that the degrees of freedom available
for testing hypotheses is not a simple function
of n. We shall take the example of testing for
significant bivariate correlation between two
variables to illustrate this point.

Suppose n pairs of observations,
{(x(i), y(i))}i are drawn from a bivariate
normal distribution. Pearson’s product
moment correlation coefficient (r) is the
statistic used to measure the association
between X and Y . If the observations on the
two variables are independent (there is no
spatial autocorrelation in either X or Y ), then
if the null hypothesis is of no association
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between X and Y then a test statistic
is given by:

(n − 2)1/2 |r|
(

1 − r2
)−1/2

(2.3)

which is t distributed with (n − 2) degrees of
freedom.

These distributional results do not hold if
X and Y are spatially correlated. The problem
is that when spatial autocorrelation is present
the variance of the sampling distribution of r,
which is a function of the number of pairs
of observations n, is underestimated by the
conventional formula which treats the pairs
of observations as if they were independent.
The effect of spatial autocorrelation on tests
of significance have been extensively studied
(for reviews see Haining, 1990, 2003) and
shown to be very severe when both X and Y
have high levels of spatial autocorrelation.

Clifford and Richardson (1985) obtain an
adjusted value for n(n′) which they call the
‘effective sample size’. This value, n′, can
be interpreted as measuring the equivalent
number of independent observations so that
the solution to the problem lies in choosing
the conventional null distribution based on n′
rather than n. An approximate expression for
this quantity is:

n′ = 1 + n2 (
trace

(
RxRy

))−1 (2.4)

where Rx and Ry are the estimated spatial
correlation matrices for X and Y respectively.
(For a discussion of estimators see Haining,
1990, pp.118–120.) The null hypothesis of no
association between X and Y is rejected if:

(
n′ − 2

)1/2 |r|
(

1 − r2
)−1/2

(2.5)

exceeds the critical value of the t distribution
with (n′ − 2) degrees of freedom.

This illustrates a general problem. Since
the n observations are positively spatially

autocorrelated, the information content of the
sample is over-estimated if n is used – it
needs to be deflated. The sampling variance
of statistics are underestimated leading the
analyst to reject the null hypothesis when
no such conclusion is warranted at the
chosen significance level. For the effects
of spatial dependency on the analysis
of contingency tables see, for example,
Upton and Fingleton (1989) and Cerioli
(1997).

To make further progress in understanding
the importance of spatial data properties and
the complications they introduce we need
to introduce models for spatial variation –
or data generators for spatial variation.
Such models are important. By specifying a
model to represent the variation in the data
(including the spatial variation), the analyst
is able to construct tests of hypothesis with
greater statistical power than is possible if
testing is against a non-specific alternative.
There are a number of possible formal
models for spatial variation of which the
simultaneous spatial autoregressive (SAR),
the conditional spatial autoregressive (CAR)
and the moving average (MA) models are
probably the best known. We will briefly
look at the first two but the interested
reader will need to follow up the liter-
ature to gain a fuller understanding of
these models and their properties (Whittle,
1954; Besag, 1974, 1975, 1978; Ripley,
1981; Cressie, 1991; Haining, 1978, 1990,
2003).

A multivariate normal CAR model which
satisfies the first order (spatial) Markov
property and thus might be thought of as the
simplest departure from spatial independence
can be written as follows (Besag, 1974;
Cressie, 1991, p. 407):

E
[
X(i) = x(i)

∣∣ {X( j) = x( j)
}

j∈N(i)

]

= µ +
∑

j∈N(i)

τ w(i, j) [X( j) − µ] ,

i = 1, . . ., n (2.6)
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and:

Var
[
X(i) = x(i)

∣∣ {X( j) = x( j)
}

j∈N(i)

]
= σ 2,

i = 1, . . ., n

where E[… | .] and Var[… | .] denote con-
ditional expectation and variance respec-
tively, µ is a first-order parameter and τ

is the spatial interaction parameter. The
Markov property means observations are
conditionally independent given the values
at neighbouring sites. {w(i, j)} denotes the
neighbourhood structure of the system of
areas and w(i, j) = 1 if i and j are neigh-
bours ( j ∈ N(i)) and w(i, i) = 0 for all i.
W is the n × n matrix of {w(i, j)} and is
sometimes called the connectivity matrix. It
is a requirement that τ lies between (1/ωmin)
and (1/ωmax) where ωmin and ωmax are the
smallest and largest eigenvalues of W. For
a fuller introduction to the Markov property
for spatial data including how to construct
higher-order spatial Markov models see, for
example, Haining (2003, pp. 297–299). This
approach allows the construction of a hier-
archy of models of increasing complexity.
As noted in Haining (2003), however, the
Markov property does not have the natural
appeal it has in the case of time series,
because space has no natural ordering. So
the neighbourhood structure can often seem
rather arbitrary especially in the case of the
non-regular areal frameworks used to report
Census and other social and economic data.

If the analyst of regional data does not
attach importance to satisfying a Markov
property another option is available called
the SAR model specification. A form of this
model was first introduced into statistics by
Whittle (1954). Let e be independent normal
IN(0, σ 2I) where I is the identity matrix
and e(i) is the variable associated with site
i(i = 1, . . ., n). Define the expression:

X (i) = µ +
∑

j∈N(i)

ρw (i, j) [X( j) − µ]

+ e(i), i = 1, . . ., n. (2.7)

where ρ is a parameter. The bounds on ρ are
set by the largest and smallest eigenvalues
of W just as in the case of the CAR model.
This is the model most often seen in the
spatial analysis and regional science literature
although the reason for its hegemony is far
from clear and seems to be largely based
on a combination of historical accident (in
the sense that time series modelling preceded
spatial data modelling and methods were
transferred across) and subsequent ‘lock-in’.

These models can be embedded into,
for example, regression models either as
additional covariates (as in the case of equa-
tion (2.7)) or as models for the error structure
where the errors (in practice the residuals)
are tested and found to show evidence of
spatial autocorrelation (Anselin, 1988; Ord,
1975). It is well known that fitting regression
models by ordinary least squares when errors
are spatially (positively) autocorrelated gives
rise to some damaging consequences. First,
although we shall obtain consistent estimates
of the regression parameters (there may be
some small sample bias), the sampling vari-
ance of these estimates may be inflated com-
pared with methods that take account of the
spatial autocorrelation in the errors. Second,
if the usual least squares formula for the sam-
pling variances of these regression estimates
is applied, the variances will be seriously
underestimated. The formulae are no longer
valid and conventional F and t tests of
hypothesis are also not valid. We shall take a
very simple example to illustrate these points,
where the parameter to be estimated and tests
of hypothesis relate to a constant mean µ.

Suppose n independent observations {x(i)}
are drawn from a N (µ, σ 2) distribution. The
sample mean, x̄, is an unbiased estimator for
µ, and the variance of the sample mean is:

Var (x̄) = σ 2/n. (2.8)

If σ 2 is unknown then it is estimated by:

s2 = (1/ (n − 1))
∑

i=1, ..., n

(x(i) − x̄)2 (2.9)
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so that:

Var (x̄) = (1/n (n − 1))
∑

i=1, ..., n

(x(i) − x̄)2 .

(2.10)

If the n observations are not independent
then although the sample mean is still
unbiased as an estimator of µ, assuming each
x(i) has the same variance (σ 2), the variance
of the sample mean is (see for example
Haining, 1988, p. 575):

Var (x̄) = σ 2/n +
(

2/n2
)

×
∑

i

∑
j(i<j)

Cov (x(i), x( j))

(2.11)

where Cov(x(i), x( j)) denotes the spatial
autocovariance between x(i) and x( j). So, if
there is positive spatial dependence and σ 2

is known then σ 2/n underestimates the true
sampling variance of the sample mean. If σ 2

is unknown and is estimated by equation (2.9)
then if there is positive spatial dependence
the expected value of s2 is (see, for example,
Haining, 1988, p. 579):

E
[
s2

]
= σ 2 − [(2/n(n − 1))

×
∑

i

∑
j(i< j)

Cov (x(i), x( j))]

(2.12)

so that equation (2.9) is a downward biased
estimate of σ 2. This further compounds the
underestimation of the sampling variance.

Modified methods to take account
of spatial dependence are often based
on the following argument (see, for
example, Haining, 1988). Assume the data
xT = (x(1), . . ., x(n)), where T denotes the
transpose, are drawn from a multivariate
normal spatial model with mean vector

given by µ1 and n by n variance–covariance
matrix � = σ 2V given, say, by one of the
models described above. (In the case of the
CAR model (2.6), V = (I − τW)−1.) The
log likelihood for the data is:

− (n/2) ln 2πσ 2 − (1/2) ln |V| −
(

1/2σ 2
)

× (x − µ1)T V−1 (x − µ1) (2.13)

where 1 is a column vector of 1’s and |V|
denotes the determinant of V. For simplicity
we assume V is known. The maximum
likelihood estimator of µ is:

µ̃ =
(

1TV−11
)−1 (

1TV−1x
)
. (2.14)

The estimator (2.14) is the best linear
unbiased estimator (BLUE) of µ. Note that
in the case of independence V = I (the
identity matrix with 1’s down the diagonal
and zeros elsewhere) and equation (2.14)
reduces to the sample mean. In the case
V �= I two modifications to the sample
mean are occurring. First, the denominator
for positive spatial dependence will be less
than n. Second, the presence of V−1 in the
numerator of equation (2.14) downweights
the contribution of any attribute x(i) which is
highly correlated with other attribute values
{x( j)} – that is, where x(i) is part of a cluster
of observations.

The variance of µ̃ is:

Var[µ̃] = σ 2(1TV−11)−1 (2.15)

which reduces to σ 2/n if V = I.
Since the sample mean is an unbiased

estimator of µ, one modification is to replace
equation (2.8) with equation (2.15). The term
(1T V−1 1) is proportional to Fisher’s infor-
mation measure (Haining, 1988, p. 586). It
identifies the information about µ contained
in an observation. Now equation (2.9) is not
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the maximum likelihood estimator for σ 2.
This is given by:

σ̃ 2 = n−1(x − µ1)T V−1(x − µ1). (2.16)

A further refinement is to replace equa-
tion (2.9) with equation (2.16) substituting
the sample mean for µ in equation (2.16)
where V−1 plays a role equivalent to the
second term in the right-hand side of
equation (2.11).

The general results given by
equations (2.11) and (2.12) are why
adjustments to conventional methods are
needed. The evidence suggests that it is the
effect of the second term on the right-hand
side of equation (2.11) that is the more
serious, at least in the usual situation
of positive spatial dependence, and that
one way to deal with this is to adjust n
in equation (2.8) thereby increasing the
sampling variance of the sample mean. The
size of the adjustment to n will be sensitive
to the estimates of the spatial autocorrelation
in the data or, if a spatial model is fitted to
the data, the choice of model. The problem is
further complicated if, as is usually the case,
V is not known and so must be estimated
from the data.

Before leaving the normal model it is
important to note that aggregated spatial
data may violate another of the statistical
assumptions of least squares regression. It
was remarked in section 2.1 how rates and
ratios based on areas with very different
population counts will have different stan-
dard errors. It follows that the assumption of
homoscedasticity (or constant error variance)
is likely to be violated when developing
models to explain how rates or ratios
vary over a region. Data transformations or
weighted least squares estimators are used
to address these problems (Haining, 1990,
pp. 49–50) but such adjustments may need
to be implemented whilst also addressing
the problems created by residual spatial
autocorrelation (Haining, 1991). In addition
to the problems created by failure to satisfy

statistical assumptions, spatial data often
create ‘data-related’ problems in regression
modelling (Haining, 1990, pp. 332–333). For
example, the fit of a trend surface model
can be influenced by the configuration of
the sample data points on the surface where,
as a result of the particular distribution,
certain values have high leverage (Unwin and
Wrigley, 1987); the particular shape of the
study region may also influence the trend
surface model fit (Haining, 1990, p. 372).
These and other issues are reviewed in
Haining (1990, pp. 40–50).

We conclude this section by remarking
on the implications of intra-area and inter-
area spatial dependency and intra-area het-
erogeneity when modelling a discrete valued
response variable such as the count of the
number of cases of a disease across a region
using the Poisson model. Spatial dependency
and heterogeneity are important causes of
overdispersion. For example consider a local
diffusion process in which individuals are
more likely to be infected if they are close
to someone already infected. The result is
that counts of the number of cases will
reveal Poisson overdispersion because there
will be areas with large counts (due to the
local infection process) and areas with zero
counts where the process has not yet started.
These considerations require the analyst both
to carry out tests for overdispersion and
where necessary take appropriate action.
The effects of overdispersion in generalized
linear modelling are rather similar to those
described for the normal model when spatial
autocorrelation is detected. If overdispersion
is present, ignoring it tends to have little
impact on point estimates of the regression
parameters (the maximum likelihood estima-
tor is consistent, although some small sample
bias might be present). However, standard
error estimates for regression parameters are
underestimated. Type I errors associated with
the model are underestimated which is par-
ticularly problematic in relation to predictors
that are close to the significance threshold.
If the objective is to build a parsimonious
model, the presence of overdispersion may
result in an analyst constructing a model
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more complicated than necessary, and that
overestimates the variance explained.

Ways of tackling this problem may depend
on the reasons for the overdispersion.
A conventional approach is through the
use of a variance inflation factor (Dobson,
1999). Where the cause is inter-area spa-
tial autocorrelation then a discrete valued
‘auto-model’ may be used which is analogous
to equation (2.6) (see Besag, 1974). More
recently attention has focused on the use
of spatial random effects models using
CAR models fitted using WinBUGS (Law
et al., 2006). These models allow for
overdispersion through the random effects
term. This is an area of current research
in spatial modelling since the development
of good modelling tools for discrete valued
response variables has rather taken a back
seat whilst attention for many years has
focused – perhaps disproportionately – on the
normal model (Law and Haining, 2004).

2.3. DRAWING INFERENCES

One of the main purposes of undertaking spa-
tial statistical analysis is to make population
inferences on the basis of the data collected.
In concluding this chapter we consider some
of the inference pitfalls associated with the
analysis of spatial data.

What is the population about which
inferences are made in an observational
science? If data are point samples from a
continuous surface then the population might
be the surface itself. Of course the realized
surface may be thought of as only one
of many possible realizations (the rest not
having been observed). However, with or
without the concept of a ‘superpopulation’
of surfaces, making inferences from point
samples to the (realized) surface population
does represent a legitimate target. This
argument is less convincing when the data
represent a complete census – for example the
data refer to areas and a complete (or nearly
complete) enumeration has been carried
out. What is the population about which

inferences are being made now? A frequent
answer to this is that the underlying process
is stochastic (chance is an inherent part of the
process) so that inferences are directed at the
process (its parameters and covariates) rather
than the map. The problem with this is that
we have access to only one realization of the
process and in order to give our inferences
some broader validity other assumptions need
to be invoked such as that this realization
is representative of the underlying process.
There may be no way to test such an
assumption.

The modifiable areal units problem
(MAUP) reminds us that results obtained
from analyzing aggregate data are dependent
on the particular scale of the partition, and,
at the given scale, the particular boundaries
used. In general statistical relationships
between attributes are stronger the larger
the spatial aggregates because variances
are reduced. Boundary shifts can influence
whether or not disease clusters or crime hot
spots are detected at any scale because if
boundaries happen to cut through the middle
of a cluster this may dilute the effect over
two or more areas.

The analysis of aggregated data is par-
ticularly problematic and not just because
of the MAUP. It is important to remember
that conclusions drawn from aggregate data
can only be transferred to the individual
level under certain conditions. The ecological
fallacy is the uncritical transfer of findings
at the group level to the individual level. As
the famous example cites, the suicide rate
in Germany in the 17th century may have
been larger in areas with higher percentages
of Catholics but that does not mean Catholics
were more prone to commit suicide than
Protestants. Quite the reverse as individual
level data revealed. Aggregation bias raises
serious problems for epidemiological studies
based on aggregate data and is one reason
why it is considered the weakest of the
different methodologies for assessing dose–
response relationships – even though this
may be the only realistic way of obtaining
reasonably sound measures of exposure to an
environmental risk factor. The problem is that
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it is not difficult to construct examples where
there are complete sign reversals when going
from the ecological to the individual level
study (Richardson, 1992).

The converse of the ecological fallacy
is the atomistic (or individualistic) fallacy
which assumes relationships identified at the
individual level apply at the group level.
There may be group level or contextual
effects that need to be taken into account –
as for example in the study of youth
offending, where the risk of becoming an
offender may not depend only on personal
and household level risk factors but also
neighbourhood and peer group effects. This
then raises the problem of defining what the
‘neighbourhood’ is.

Figure 2.2 provides a summary of the
points raised in sections 2.2 and 2.3.

2.4. CONCLUSIONS

Spatial data possess a number of distinctive
properties that derive from the fundamental
nature of geographic space and the way pro-
cesses unfold in geographic space, the way
that spatial variation is represented for the
purpose of storage in a finite digital database

and the way spatial data are collected and
attributes measured. Many of these properties
were recognized early in geography’s ‘quan-
titative revolution’ most notably the lack of
independence in data values collected close
together in space. Geographers then and since
have made important contributions to the
development of relevant statistical theory and
practice.

Geographers continue to develop new
methods for describing spatial variation and
new methods for modelling processes that
operate across geographical space. At present
there are two strong traditions which provide
focuses for research. On the one hand there
are methodologies based on ‘whole map’ or
global statistics that seek to capture data
properties through models that are fitted to
all the data. On the other hand there are
methodologies based on ‘local’ statistics that
process geographically defined subsets of the
data and do not seek to impose a single
statistic or model on the whole data set
(Anselin, 1995, 1996; Getis and Ord, 1996;
Fotheringham and Brunsdon, 2000). They
represent different ways of responding to the
need to develop methodologies to meet the
analytical challenges posed by the special
nature of spatial data.

Figure 2.2 Spatial data properties and how they impact at different stages of analysis.
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