
MULTIPLE REGRESSIONWHAT IS MULTIPLE REGRESSION?

� :KDW�,V�0XOWLSOH�5HJUHVVLRQ"

In this chapter, we examine some of the basic characteristics of
multiple regression. The aim is to give you enough information to
begin to read and interpret results from multiple regression analy-
sis. In later chapters, we’ll revisit many of these questions and
answers in greater detail.

����� :KDW�,V�0XOWLSOH�5HJUHVVLRQ"

Multiple regression is a statistical method for studying the rela-
tionship between a single dependent variable and one or more inde-
pendent variables. It is unquestionably the most widely used statis-
tical technique in the social sciences. It is also widely used in the
biological and physical sciences.

����� :KDW�,V�0XOWLSOH�5HJUHVVLRQ�*RRG�)RU"

There are two major uses of multiple regression: prediction and
causal analysis. In a prediction study, the goal is to develop a
formula for making predictions about the dependent variable,
based on the observed values of the independent variables. For
example, an economist may want to predict next year’s gross na-
tional product (GNP) based on such variables as last year’s GNP,
current interest rates, current levels of unemployment, and other
variables. A criminologist may want to predict the likelihood that a
released convict will be arrested, based on his age, the number of
previous arrests, and the crime for which he was imprisoned.

In a causal analysis, the independent variables are regarded as
causes of the dependent variable. The aim of the study is to determine
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whether a particular independent variable really affects the depend-
ent variable, and to estimate the magnitude of that effect, if any. For
example, a criminologist may have data showing that prisoners who
participate in educational programs are less likely to be re-arrested
after they are released. She may perform a multiple regression to see
if this apparent relationship is real or if it could be explained away
by the fact that the prisoners who enroll in educational programs
tend to be those with less serious criminal histories.

These two uses of multiple regression are not mutually exclu-
sive. The criminologist whose main interest is in the effect of educa-
tional programs may also use the regression model to make predic-
tions about future arrests.

����� $UH�7KHUH�2WKHU�1DPHV�

IRU�0XOWLSOH�5HJUHVVLRQ"

A more complete name is ordinary least squares multiple linear
regression. Least squares is the method used to estimate the regression
equation. Ordinary serves to distinguish the simplest method of
least squares from more complicated methods such as weighted
least squares, generalized least squares, and two-stage least squares.
Multiple means that there are two or more independent variables.
Linear describes the kind of equation that is estimated by the multi-
ple regression method. You’ll often see various combinations of
these words, as in “linear regression” or “least squares regression”
or “OLS regression.” (OLS stands for ordinary least squares.)

The term regression is harder to explain. One of the early uses of
regression was by the English scientist Sir Francis Galton (1822-
1911), who was investigating the relationship between heights of
fathers and sons. Galton used a linear equation to describe that
relationship. He noticed, however, that very tall fathers tended to
have sons who were shorter than they were, whereas very short
fathers tended to have sons who were taller than they were. He
called this phenomenon “regression to the mean,” and somehow
that name stuck to the entire method.

You’ll also see other names for the variables used in a multiple
regression analysis. The dependent variable is sometimes called the
response variable or the outcome variable. The independent variables
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may be referred to as predictor variables, explanatory variables, regres-
sor variables, or covariates.

����� :K\�,V�0XOWLSOH�5HJUHVVLRQ�6R�3RSXODU"

Multiple regression does two things that are very desirable. For
prediction studies, multiple regression makes it possible to combine
many variables to produce optimal predictions of the dependent
variable. For causal analysis, it separates the effects of independent
variables on the dependent variable so that you can examine the
unique contribution of each variable. In later sections, we’ll look
closely at how these two goals are accomplished.

In the last 30 years, statisticians have introduced a number of
more sophisticated methods that achieve similar goals. These meth-
ods go by such names as logistic regression, Poisson regression,
structural equation models, and survival analysis. Despite the arri-
val of these alternatives, multiple regression has retained its popu-
larity, in part because it is easier to use and easier to understand.

����� :K\�,V�5HJUHVVLRQ�´ /LQHDUµ"

To say that regression is linear means that it is based on a linear
equation. In turn, a linear equation gets its name from the fact that
if you graph the equation, you get a straight line. This is easy to see
if there is a dependent variable and a single independent variable.
Suppose that the dependent variable is a person’s annual income,
in dollars, and the independent variable is how many years of
schooling that person has completed. Here’s an example of a linear
equation that predicts income, based on schooling:

INCOME = 8,000 + (1,000 × SCHOOLING).

If you draw a graph of this equation, you get the straight line shown
in Figure 1.1.

This simple equation makes it possible to predict a person’s
income if we know how many years of schooling the person has
completed. For example, if a person has 10 years of schooling, we
get a predicted income of $18,000:
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18,000 = 8,000 + (1,000 × 10).

Note that, according to the equation, a person with 0 years of school-
ing is predicted to earn $8,000. Also, each additional year of schooling
increases the predicted income by $1,000.

Is it possible to get reasonable predictions from such a simple
equation? Maybe and maybe not. A complete answer to this ques-
tion involves many complex issues, some of which we will consider
later. One issue is whether we could get better predictions with
different numbers besides 8,000 and 1,000. Perhaps 9,452 and 1,789
would do better. The method of least squares is designed to find
numbers that, in some sense, give us optimal predictions of the
dependent variable.

We can write the two-variable linear equation in more general
terms as

y = a + bx.

In this equation, y is the dependent variable and x is the independent
variable. In our example, y is income and x is years of schooling. The
letters a and b represent constant numbers. We call a the intercept and
b the slope. These names refer to features of the graph in Figure 1.1.
The intercept is the point on the vertical axis which “intercepts” the
line. In other words, it is the value of y when x is 0. In this example,
the intercept is 8,000. The slope tells us how big a change in y we get
from a 1-unit increase in x. In this example, y goes up by $1,000 for

Figure 1.1. Graph of Regression Equation for Income on Schooling
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each 1-year increase in schooling. Clearly, a larger slope corresponds
to a steeper line. If the slope is 0, on the other hand, the line is
perfectly flat. If the slope is negative, then an increase in x results in
a decrease in y.

����� :KDW�'RHV�D�/LQHDU�(TXDWLRQ�/RRN �
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In most applications of regression analysis, the linear equation
has more than one independent variable. For prediction purposes,
you can usually get better predictions if you base them on more than
one piece of information. For causal analysis, you want to be able to
look at the effect of one variable while controlling for other variables.
This is accomplished by putting the other variables in the regression
equation.

Suppose, for example, that we want to include age as a predictor
of income. This makes sense because most people’s incomes in-
crease with age, at least until they retire. A linear equation that
incorporates age might look like this:

INCOME = 6,000 + (800 × SCHOOLING) + (400 × AGE).

This equation tells us that income goes up by $400 for each additional
year of age; it also goes up by $800 for each additional year of
schooling. For a person who is 40 years old and has 14 years of
schooling, the predicted income is

33,200 = 6,000 + (800 × 14) + (400 × 40).

A more general way of writing an equation with two independent
variables is

y = a + b1x1 + b2x2.

In our example, x1 is schooling and x2 is age. We still call this a linear
equation, although it’s more difficult to draw a graph that looks like
a straight line. (It would have to be a 3-dimensional graph, and the
equation would be represented by a plane rather than a line.) The b’s
are called slope coefficients, but often we just call them coefficients or
slopes. The essence of a linear equation is this: We multiply each
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variable by some number (the slope for that variable). We add those
products together. Finally, we add another number (the intercept).

����� :K\�'RHV�0XOWLSOH�5HJUHVVLRQ

8VH�/LQHDU�(TXDWLRQV"

We have just described the relationship between income, school-
ing, and age by a linear equation. Is this sensible? Maybe the real
relationship is something highly nonlinear, like the following:

y = 




a1 + b1x1

a2 + b2x2





d

Such an equation is certainly possible. On the other hand, there is no
reason to think that this nonlinear equation is any better than the
linear equation. A useful general principle in science is that when you
don’t know the true form of a relationship, start with something
simple. A linear equation is perhaps the simplest way to describe a
relationship between two or more variables and still get reasonably
accurate predictions. The simplicity of a linear equation also makes
it much easier and faster to do the computations necessary to get
good estimates of the slope coefficients and the intercept.

Even if the true relationship is not linear, a linear equation will
often provide a good approximation. Furthermore, it’s easy to mod-
ify the linear equation to represent certain kinds of nonlinearity, as
we’ll see in Chapter 8. Consider the relationship between age and
income. Although income certainly increases with age, it probably
increases more rapidly at earlier ages and more slowly at later ages,
and it may eventually begin to decrease. We can represent this kind
of relationship by including both age and the square of age in the
equation:

INCOME = a + b1AGE + b2AGE2.

Figure 1.2 shows a graph of this equation for certain values of the
slopes and the intercept. Equations like this can easily be handled by
any computer program that does ordinary multiple regression. Highly
nonlinear equations—like the one shown earlier—require more spe-
cialized computer programs that are not so widely available.
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To do a regression analysis, you first need a set of cases (also
called units of analysis or observations). In the social sciences, the
cases are most often persons, but they could also be organizations,
countries, or other groups. In economics, the cases are sometimes
units of time, like years or quarters. For each case, you need meas-
urements on all the variables in the regression equation.

Table 1.1 is an example of a data set that could be used to do a
multiple regression predicting income from age and years of school-
ing. The data come from the General Social Survey, an annual survey
based on a national probability sample of U.S. adults (Davis and
Smith, 1997). Table 1.1 lists a small subset of these data, specifically,
all white males living in New England. The data are arranged so that
each row corresponds to a case (person) and each column corre-
sponds to a variable. For example, the first row describes a person
whose income was $48,000 who had 12 years of schooling and was
54 years old. Neither the cases nor the variables have to be in any
particular order. Virtually any regression program could read the
data in Table 1.1 exactly as they appear.

The 35 cases in Table 1.1 are sufficient to do the multiple regres-
sion but, as in any statistical analysis, the more cases the better. For
the computation to work at all, you must have at least as many cases
as variables (including the dependent variable). To do a decent job,

Figure 1.2. Income as a Nonlinear Function of Age
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TABLE 1.1 Data on Income, Schooling, and Age, 1983 General Social
Survey

Income            Schooling                      Age

48,000 12 54
26,000 12 28
26,000 7 56
48,000 14 47
13,000 14 23
34,000 12 60
18,000 11 36
24,000 16 34
81,000 16 61
21,000 12 38
 9,000 6 53
18,000 12 34
34,000 13 58
21,000 14 38
81,000 12 46
48,000 20 54
 6,000 7 76
21,000 14 35
21,000 12 34
 9,000 14 23
34,000 14 44
 7,000 9 31
24,000 8 56
34,000 16 37
34,000 17 40
 4,000 12 20
 5,000 9 65
13,000 14 53
 7,000 20 33
13,000 12 31
34,000 7 30
10,000 16 36
48,000 18 54
 6,000 12 19
 2,000 10 25
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you need far more than that. Most regression analysts would be
reluctant to do a regression with less than five cases per variable,
although there are exceptional situations when fewer cases might
be enough.

The most desirable data come from a probability sample from
some well-defined population, as is the case with the data in Table
1.1. In practice, people often use whatever cases happen to be
available. A medical researcher, for example, may use all the patients
admitted to a particular hospital in a 1-year period. An educational
researcher may use all the students enrolled in a particular school.
Although it is acceptable to use such “convenience samples,” you
must be very cautious in generalizing the results to other popula-
tions. What you find in one school or hospital may not apply to any
other. Convenience samples are also more likely to violate the as-
sumptions that justify multiple regression (see Chapter 6).

����� :KDW�.LQGV�RI�9DULDEOHV�

&DQ�%H�8VHG�LQ�0XOWLSOH�5HJUHVVLRQ"

For the data in Table 1.1, all the variables were quantitative
variables. Age, income, and years of schooling are all measured on
some well-defined scale. For each of these scales, it’s reasonable to
claim that an increase of a specified amount means the same thing
no matter where you start. Thus, an increase from $20,000 to $30,000
is, in some sense, equivalent to an increase from $30,000 to $40,000.
An increase from 25 to 30 years of age is comparable to an increase
from 30 to 35 years of age. Variables like this, called interval scales,
are entirely appropriate for regression analysis.

Many variables in the social sciences don’t have this property.
Suppose, for example, that a questionnaire includes the statement
“This country needs stronger gun control laws” and then asks
people whether they strongly agree, agree, disagree, or strongly
disagree. The researcher assigns the following scores:

1 = strongly disagree
2 = disagree
3 = agree
4 = strongly agree.

I think most people would accept the claim that higher scores
represent stronger agreement with the statement, but it’s not at all
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clear that the distance between 1 and 2 is the same as the distance
between 2 and 3, or between 3 and 4. Variables like this are called
ordinal scales. The numbers tell you the order on some dimension of
interest, but they don’t tell you the magnitude of the difference
between one value and another.

Strictly speaking, ordinal variables are inappropriate for multi-
ple regression because the linear equation, to be meaningful, re-
quires information on the magnitude of changes. In practice, how-
ever, ordinal variables are used quite often in regression analysis
because there aren’t good alternatives. If you use such variables, you
are implicitly assuming that an increase (or a decrease) of one unit
on the scale means the same no matter where you start. This might
be a reasonable approximation in many cases.

Then there are variables that don’t have any order at all. What
do you do with a variable like gender (male or female) or marital
status (never married, married, divorced, widowed)? Variables like
this are called nominal scales. If the variable has only two categories,
like gender, the solution is easy. Just assign a score of 1 to one of the
categories and a score of 0 to the other category. It doesn’t matter
which one you choose, as long as you remember which is which.
Such 1-0 variables are called dummy variables or indicator variables.
Later on we’ll discuss how to interpret the slope coefficients for
dummy variables. We’ll also see how the method of dummy vari-
ables can be extended to nominal variables with more than two
categories. Dummy variables are perfectly OK as independent vari-
ables in a multiple regression. Although it’s not fatal to use a dummy
variable as a dependent variable in a regression analysis, there are
much better methods available. The most popular alternative—
known as logit analysis or logistic regression—will be briefly dis-
cussed in Chapter 9.

������ :KDW�,V�2UGLQDU\�/HDVW�6TXDUHV"

Ordinary least squares is the method most often used to get
values for the regression coefficients (the slopes and the intercept).
The basic idea of least squares is pretty simple, although the com-
putations can get quite complicated if there are many independent
variables.
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If we knew the values of the regression coefficients, we could use
the linear equation to produce a predicted value of the dependent
variable for each case in the sample. We usually don’t know the true
values of the coefficients, but we can try out different guesses and
see which ones produce the “best” predicted values. Suppose, for
example, that we make some guesses for the data in Table 1.1. Let’s
guess a value of zero for the intercept, $1,000 for the slope for schooling,
and $500 for the slope for age. For the first case in the sample, aged 54
with 12 years of schooling, we get a predicted value of

0 + (1,000 × 12) + (500 × 54) = 39,000.

The observed income for this person is $48,000, so our prediction is
$9,000 too low. Still, it’s not bad for just guessing the coefficients. Now
let’s try the second person, who had 12 years of education and was
28 years old:

0 + (1,000 × 12) + (500 × 28) = 26,000.

Our predicted value is now identical to the observed value of $26,000.
For the third person, aged 56 with 7 years of schooling, we have

0 + (1,000 × 7) + (500 × 56) = 35,000.

This person’s observed income is $26,000, so our prediction is $9,000
too high.

We could continue generating predictions for each case in the
sample. For each case we could then calculate a prediction error:

Error = Observed Value – Predicted Value.

Some of these errors will be positive (observed higher than pre-
dicted), and some will be negative (observed less than predicted).
Some will be large and others will be small. Clearly, we would like
to find coefficients that make these errors as small as possible.

For data in the social sciences, it’s virtually impossible to find
coefficients that make all the errors equal to zero. In our example,
that would mean that we could perfectly predict every person’s
income just by knowing his or her age and years of schooling. Not
likely. We’ll have to settle for making the errors as small as we can.
The problem is that if we tried out different sets of coefficients, we
would find that errors for some people get larger while errors for
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other people get smaller. How do we balance one error against
another?

There’s no universally accepted answer to this question, but the
most widely used method is the least squares criterion. This crite-
rion says to

choose coefficients that make the sum of the squared prediction errors as small
as possible.

For the income example, the first error was $9,000, so its square is
81,000,000. The second error was $0 so its square is 0. The third error
was –$9,000 and its square is 81,000,000. Notice that squaring this
third error turns a negative quantity into a positive quantity. That
means that the least squares criterion doesn’t care about the direction
of the error, just the magnitude. On the other hand, the least squares
criterion hates big errors. It would much rather have a lot of small
errors than one big error.

If we continue in this way for all 35 cases, we find that the total
sum of squared errors for our initial guess of the coefficients is
12,296,499,985. This may seem like a very large number, but there’s
no way to evaluate it without comparing it to something else. The
important question is this: Can we find another set of coefficients
that gives us a smaller sum of squared errors?

One way to answer this question is by trial and error. We could
make a lot of different guesses for the coefficients and compute the
sum of squared errors for each set of guesses. Then we could pick
the one with the smallest sum. Unfortunately, the number of possi-
ble guesses is infinite, so this would not be a very efficient way to
get the optimal set of coefficients. Fortunately, the best set of coeffi-
cients can be obtained directly by some straightforward but tedious
calculations, best left to a computer. For the data in Table 1.1, the
linear equation that minimizes the sum of squared errors is

INCOME = –25,965 + (2,057 × SCHOOLING) + (600 × AGE).

For this set of coefficients, the sum of squared errors is 9,364,695,694,
which is 24% lower than the sum of squared errors for our original
guesses.

This equation says that each additional year of schooling in-
creases the predicted annual income by $2,057 and each additional
year of age increases the predicted income by $600. The intercept
(–$25,965) could be interpreted as the predicted income for a person
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who is 0 years old with 0 years of schooling. Of course, no one in
this sample has anywhere near these values for age and schooling.
In general, the intercept in a regression equation doesn’t have a very
useful interpretation, especially when values of 0 on the independent
variables are far from the values that are actually observed. Still, the
intercept is necessary to make the predictions come out right.

������ +RZ�&DQ�:H�-XGJH�
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Least squares regression always produces the “best” set of linear
predictions for a given set of data. But sometimes the best isn’t very
good. It would be nice to have some way of gauging just how good
the predictions are. The most common statistic for doing this is
something called the coefficient of determination. Most people know
this statistic by its symbol, R2, pronounced r-squared.

The basic idea behind R2 is to compare two quantities:

• The sum of squared errors produced by the least squares equation that you’re
evaluating and

• The sum of squared errors for a least squares equation with no independent
variables (just the intercept).

When an equation has no independent variables, the least squares
estimate for the intercept is just the mean (average) of the dependent
variable. That implies that our predicted value for every case is the
mean.

For our income example, we subtract the mean income ($25,200)
from each observed income, square the result, and sum over all 35
persons. This produces a sum of squared errors of 12,947,600,000.
Recall that the sum of squared errors from our equation with age
and schooling was 9,364,695,694. Now divide the smaller sum by
the larger sum and subtract the result from 1.0, which gives us an R2

of .28, or 28%. To write this in symbols, let SSE be the sum of squared
errors. The formula is

R2 = 1 − 
SSE (regression)
SSE(mean only)

We say, then, that using age and schooling to predict income yields a
28% reduction in the (sum of squared) prediction errors, compared
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with using only the mean. That’s not bad for data in the social
sciences. Alternatively, we can say that age and schooling “explain”
28% of the variation in income.

������ +RZ�'R�:H�-XGJH�+RZ�*RRG�

WKH�&RHIILFLHQW�(VWLPDWHV�$UH"

In any regression analysis, we typically want to know something
about the accuracy of the numbers we get when we calculate esti-
mates of the regression coefficients. In our income example, we got
a least squares coefficient estimate of $600 for the age variable. That
may be the best estimate we can get with the data, but it’s unlikely
to be exactly “right.” As in most applications of regression analysis,
there are three possible sources of error:

• Measurement error: Very few variables can be measured with perfect accuracy,
especially in the social sciences.

• Sampling error: In many cases, our data are only a sample from some larger
population, and the sample will never be exactly like the population.

• Uncontrolled variation: Age and schooling are surely not the only variables
that affect a person’s income, and these uncontrolled variables may “disturb”
the relationship between age and income.

To make any headway, we have to make some assumptions about
how these sources of error operate. Without going into details, the
basic assumption is that the errors occur in a random, unsystematic
fashion (see Chapter 6 for more about these assumptions). The result
is random variation in our coefficient estimates. We evaluate the
extent and importance of this random variation by calculating confi-
dence intervals or hypothesis tests.

Confidence intervals give us a range of possible values for the
coefficients. Although we may not be certain that the true value falls
in the calculated range, we can be reasonably confident. Hypothesis
tests are used to answer the question of whether or not the true
coefficient is zero. Again, we never get a definitive answer, but can
calculate the probability of being wrong. If you’ve already had a
statistics course, you’ll recall that the first step in getting confidence
intervals and hypothesis tests is usually the calculation of the stand-
ard error (a kind of standard deviation). If you haven’t had a
statistics course, what follows may seem a little obscure. Still, it’s
essential for interpreting results from a multiple regression analysis.
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Every computer program that does multiple regression will
automatically calculate and report a standard error for each regres-
sion coefficient. For our income example, the coefficient for age is
$600, and its standard error is $210. For the schooling coefficient
($2,057), the standard error is $849. To get a 95% confidence interval,
we follow the same procedure used to construct confidence intervals
around a mean: We add two standard errors to the coefficient, and
then we subtract two standard errors from the coefficient. (For these
data, a more precise multiplier is 2.037, but 2 is close enough unless
the sample is quite small.) For age, we have 600 + (2 × 210) = 1,020
and 600 – (2 × 210) = 180. We then say that we are 95% confident that
the true coefficient lies somewhere between $180 and $1,020. Similar
calculations for the schooling coefficient produce a 95% confidence
interval of $359 to $3,755.

In published research using regression analysis, you’re more
likely to see hypothesis tests than confidence intervals. Usually, the
kind of question people most want answered is “Does this particular
variable really affect the dependent variable?” If a variable has no
effect, then its true coefficient is zero. When you calculate a multiple
regression, you virtually never get a coefficient that’s exactly zero,
though you may find some that are very small. Small coefficients
could easily be produced by the three kinds of random error men-
tioned earlier, even when the true coefficient is zero. But how small
is very small, and how big does an estimated coefficient have to be
for us to conclude that the true coefficient is something other than
zero? That’s the job of hypothesis tests—to tell us whether nonzero
coefficients could have been produced by random error.

Actually, what the tests give us is not a simple yes or no answer
but a probability or p value. If the p value is small, it’s taken as
evidence that the coefficient is not zero. The test is calculated by first
dividing each coefficient by its standard error, producing something
called a t statistic. Then you consult a t table (or the computer does
this for you) to calculate the associated p value. Most multiple
regression programs do these calculations for you, but occasionally
you may find one that only reports the coefficient and its standard
error, in which case you’ll have to determine the p value yourself by
referring to a t table, which is displayed and explained in any
introductory statistics text.

For our income example, if you divide the coefficient for age by
its standard error (600/210), you get a t statistic of 2.86. This has an
associated p value of .007, which has the following interpretation: If
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the true coefficient for age is 0, the probability of estimating a
coefficient larger than 600 (or smaller than – 600) would be about
.007, or about one in 150. For schooling, the t statistic has a value of
2.42, with an associated p value of .02. Again, we can say that if the
true coefficient for schooling is zero, the probability of estimating a
coefficient this much different from zero is .02. In general, the
smaller the p value, the stronger the evidence that the coefficient is
not zero.

Are these p values small enough to conclude that the true coef-
ficients for age and schooling are something other than zero? There’s
no absolute rule about this: It depends on the situation, especially
on the cost of making an error of one sort or another. Because these
costs are difficult to quantify, social researchers usually don’t think
much about this. Instead, they rely on the customary standards of
.05 and .01. If the p value is less than .05, we say that the coefficient
is “significantly different from zero” and conclude that there is
evidence for a nonzero coefficient. If the p value is less than .01, we
say that the coefficient is “highly significant” and conclude that
there is strong evidence for a nonzero coefficient. Even though
there’s probably too much reliance on these rote standards, you
won’t go far wrong by using them.

������ +RZ�'RHV�0XOWLSOH�5HJUHVVLRQ�

´&RQWUROµ �IRU�9DULDEOHV"

It’s easy to see why multiple regression might be good for
making predictions: It’s explicitly designed to make errors of pre-
diction as small as possible (using the least squares criterion for
overall smallness). Earlier, I claimed that another major use of
multiple regression is to examine the effects of some independent
variables on the dependent variable while “controlling” for other
independent variables. In our income example, the coefficient for
years of schooling can be interpreted as the effect of schooling on
income while controlling for age or “holding age constant.” Simi-
larly, the coefficient for age can be interpreted as the effect of age on
income while controlling for years of schooling.

In what sense does multiple regression control for variables, and
how does it do it? This is a complex and subtle question, and I can
only hope to scratch the surface in this chapter. Many practicing
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researchers just accept it on faith that multiple regression controls for
variables. The issue is also somewhat controversial. There are some
statisticians who take the conservative position that only a random-
ized experiment can really control for extraneous variables, and that
multiple regression is, in most cases, only a poor approximation.

With that in mind, let’s first see how an experiment controls for
extraneous variables. Suppose, for example, that we want to evalu-
ate the effectiveness of a training course to raise SAT scores (the
dependent variable). We give the course to some people and with-
hold it from others. Then we compare how well they do on the test.
For this to be a valid experiment, we have to make sure that people
in the two groups are treated exactly the same, except for the
training course. For example, it wouldn’t be a fair comparison if
people who didn’t get the training took the SAT exam in a hot, noisy
room while those who got the training took their exams in a com-
fortable room.

All the conditions that affect performance must be equalized for
the two groups. Even if we were successful at doing that, there’s still
the problem that people in the two groups might be different. Maybe
those who got the training are smarter than those who didn’t. We
certainly can’t force people to be equally intelligent, but what we
can do is randomly assign people to one group or the other. For each
person recruited into the study, we could flip a coin to decide if they
should be in the treatment group or the control group. With random
assignment, the two groups will, on average, be the same on all
possible characteristics: age, sex, race, intelligence, ambition, anxi-
ety, and so on.

With observational (nonexperimental) studies, we don’t have
those options for ensuring that our comparison groups are compa-
rable. Suppose, for example, that we do a survey of 10,000 college
freshmen and we ask them for their SAT scores. We also ask them if
they ever took an SAT training course. At this point, the damage is
already done. Those who took SAT training may be very different
in other respects from those who did not. A simple comparison of
average SAT scores for those who did and did not take SAT training
could easily give us very misleading results.

The situation is not hopeless, however, because we can still do
statistical controls. For example, there is plenty of evidence that
people with a strong high school grade point average (GPA) do
better on the SAT than those with a lower high school GPA. If people
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with high GPAs were more likely to take SAT training, it could look
like people with the training did better even though the training
itself had no effect. If we know the students’ high school GPAs, we
can restrict our comparisons to those who have the same, or nearly
the same, GPA. Suppose, for example, that our sample contained
500 students with high school GPAs that were exactly 3.00, and that
100 of these students took an SAT training course. Then, if we
compare the SAT scores of these 100 students with the 400 students
who did not get SAT training, we could be reasonably confident that
our comparison was not contaminated by differences in high school
GPA.

We could do the same sort of statistical control for any other
variable. We know, for example, that males tend to do better than
females on the math component of the SAT. For a valid comparison
of SAT training versus no training, therefore, we should restrict our
sample to males only or females only.

Although this is a very useful method, it has several rather
obvious limitations. First, unless the sample is very large, it may be
difficult to find a substantial number of people who are identical, or
even very similar, on the control variable. It may not be too hard for
a variable like gender that has only two values, but it can be very
difficult for variables measured on a continuum, like GPA or in-
come. In our SAT study, for example, if we only had 500 cases to start
with, we might find only 10 people who had GPAs of exactly 3.00.
Of those 10, perhaps only 2 got SAT training. That’s hardly enough
cases to make a reliable comparison. Instead of requiring that people
have exactly the same GPAs, we could instead take all people who
have, say, between 3.0 and 3.5, but that reduces the effectiveness of
the control and could still allow for some contaminating effect of
GPA differences on SAT performance.

The second problem is an extension of the first. If we only control
for sex, the SAT scores could still be contaminated by differences in
GPA. If we only control for GPA, the results could be due to sex
differences. It’s not good enough to control one variable at a time.
We really need to control simultaneously for gender, GPA, socioeco-
nomic status, and everything else that might affect SAT perform-
ance. To do this statistically, we would need to find a group of people
who have the same gender, the same GPA, the same socioeconomic
status, and so on. Even if we had a sample of 1 million college
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freshmen, it would be hard to isolate any group that was exactly
alike on all these variables.

There is a third problem with this method of statistical control,
but one that can also be seen as an advantage. If we restrict our
sample to those with GPAs of 3.0, we might find only a trivial
difference between the average SAT scores of those who got training
and those who did not. If we look only at those with GPAs of 2.0,
we might find a substantial difference in the SAT performance of
those with and without training. Now maybe this simply reflects
reality. It’s quite plausible that SAT training might be more useful
for poorer students than for better students. On the other hand, it
could also be just random variation, in which case our interpretation
of the results has been needlessly complicated. If we divide the
sample into many different groups, with the people in each group
being approximately the same on the control variables, we may end
up with a very complicated pattern of results. Fortunately, this
problem has a simple solution: Within each group of people who are
nearly the same on the control variables, we compute the “effect” of
SAT training (the difference between the average SAT scores of those
who did and those who did not get training); then we average those
effects across the groups (possibly weighting by the size of the
group). Thus, if men show an average gain of 20 points from SAT
training and women show an average gain of 10 points from SAT
training, and if there are equal numbers of men and women, the
overall estimate for the effectiveness of training would be a 15 point
gain. Of course, you may not want to compute such an average if
you have reason to think that the effects are really different for men
and women.

What does this long-winded digression have to do with multiple
regression? Well, multiple regression can be seen as just an extension
of the basic logic of statistical control, but one that solves the three
problems discussed above. It enables us to control for variables like
GPA even though no two people in the sample have exactly the same
GPA. It allows for the simultaneous control of many variables even
though no two people are exactly alike on all the variables. And it
only gives us a single estimate for the “effect” of each variable,
which is analogous to the weighted average of effects in different
subgroups. Exactly how it does all these things is beyond the scope
of this chapter. See Chapter 5 for more details.
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Compared to the cruder methods of statistical control (finding
homogeneous subgroups and making comparisons within subgroups),
multiple regression has clear advantages. Those advantages are
purchased at some cost, however. To solve the three problems of the
crude methods, we have to make some assumptions about the form
of the relationship between the independent variables and the de-
pendent variable. Specifically, as we saw earlier in the chapter, we
have to assume that those relationships can be described, at least
approximately, by a linear equation. If that assumption is incorrect,
multiple regression could give us misleading results.

Multiple regression shares an additional problem with all meth-
ods of statistical control, a problem that is the major focus of those
who claim that multiple regression will never be a good substitute
for the randomized experiment. To statistically control for a vari-
able, you have to be able to measure that variable so that you can
explicitly build it into the data analysis, either by putting it in the
regression equation or by using it to form homogeneous subgroups.
Unfortunately, there’s no way that we can measure all the variables
that might conceivably affect the dependent variable. No matter
how many variables we include in a regression equation, someone
can always come along and say, “Yes, but you neglected to control
for variable X and I feel certain that your results would have been
different if you had done so.”

That’s not the case with randomization in an experimental set-
ting. Randomization controls for all characteristics of the experi-
mental subjects, regardless of whether those characteristics can be
measured. Thus, with randomization there’s no need to worry about
whether those in the treatment group are smarter, more popular,
more achievement oriented, or more alienated than those in the
control group (assuming, of course, that there are enough subjects
in the experiment to allow randomization to do its job effectively).

There’s a more subtle aspect to this problem of statistical control:
It’s not enough to be able to measure all the variables that we want
to control. We also have to measure them well. That means that if
two people get the same score on some variable, they should really
be the same on the underlying characteristic that we’re trying to
measure. If they’re not the same, then we’re not really holding that
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variable constant when we include it in a regression model or create
what we think are homogeneous subgroups. That may not be a
serious problem when we’re dealing with variables like gender or
age (based on official records), but there are lots of “fuzzy” variables
in the social sciences that we can measure only crudely, at best,
among them intelligence, depression, need for achievement, marital
conflict, and job satisfaction. Moreover, even those variables that we
can measure precisely are often only “proxies” for variables that are
much more subtle and difficult to measure. Thus, gender may be a
proxy for cumulative differences in socialization between men and
women.

Of course, the quality of measurement is always a matter of
degree. No variable is ever measured perfectly, but some variables
are measured much more accurately than others. As the quality of
the measurement gets worse, the effectiveness of statistical controls
deteriorates.

Does this mean, as some critics claim, that multiple regression is
worthless for drawing conclusions about causal relationships? I
think that’s much too strong a reaction to these problems. Random-
ized experiments have been around only for the last century, but
human beings have been making causal inferences from nonexperi-
mental data for as long as there have been human beings. Although
there have been plenty of mistaken conclusions, there have also been
lots of valid conclusions. Multiple regression (and other forms of
statistical control) can be seen as ways of improving on the informal
and intuitive kinds of causal reasoning that go on in everyday life.
There are simply too many areas in which randomized experiments
are infeasible or unethical for us to reject nonexperimental data as a
source of causal inference.

The most important component of any causal reasoning is the
process of ruling out alternative explanations. Multiple regression
is certainly very helpful in this process. Maybe it can’t rule out all
alternative explanations, but science—like life itself—is a matter of
incremental improvements (punctuated by occasional radical leaps
forward). When critics come up with a persuasive argument as to
why some particular relationship might be spurious, it then be-
comes the task of the researcher to measure that potentially con-
founding variable and include it in the regression model. There are
limits to the number of persuasive counterarguments that critics
come up with.
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 1. Multiple regression is used both for predicting outcomes and for
investigating the causes of outcomes.

 2. The most popular kind of regression is ordinary least squares,
but there are other, more complicated regression methods.

 3. Ordinary multiple regression is called linear because it can be
represented graphically by a straight line.

 4. A linear relationship between two variables is usually described
by two numbers, the slope and the intercept.

 5. Researchers typically assume that relationships are linear be-
cause it’s the simplest kind of relationship and there’s usually no
good reason to consider something more complicated.

 6. To do a regression, you need more cases than variables, ideally
lots more.

 7. Ordinal variables are not well represented by linear regression
equations.

 8. Ordinary least squares chooses the regression coefficients (slopes
and intercept) to minimize the sum of the squared prediction
errors.

 9. The R2 is the statistic most often used to measure how well the
dependent variable can be predicted from knowledge of the
independent variables.

10. To evaluate the least squares estimates of the regression coeffi-
cients, we usually rely on confidence intervals and hypothesis
tests.

11. Multiple regression allows us to statistically control for meas-
ured variables, but this control is never as good as a randomized
experiment.

4XHVWLRQV�WR�7KLQN �$ERXW

1. For a sample of 13 hospitals, a researcher measured 100 different
variables describing each hospital. How many of these variables
can be put in a regression equation?

2. Which is more important in describing the relationship between
two variables, the slope or the intercept?
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3. Suppose you want to use regression to describe the relationship
between people’s age and how many hours a week they watch
television. Which one should be the dependent variable and which
one the independent variable? Is the relationship likely to be
linear?

4. For a sample of 200 U.S. cities, a linear regression is estimated with
percentage of people unemployed as the dependent variable and
the percentage foreign born as the independent variable. The
regression slope is .20. How would you interpret this number?

5. A researcher in a college admissions department runs a regression
to predict college GPA based on information available on stu-
dents’ applications for admission (e.g., SAT scores, high school
GPA, number of advanced placement courses). The R2 for this
regression is .15. Do you think this regression model would be
useful for admission decisions?

6. Based on survey data, a psychologist runs a regression in which
the dependent variable is a measure of depression and inde-
pendent variables include marital status, employment status, in-
come, gender, and body mass index (weight/height2). He finds
that people with higher body mass index are significantly more
depressed, controlling for the other variables. Has he proven that
being overweight causes depression? Why or why not?
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