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INTRODUCTION

Remote sensing can be termed a mature disci-
pline, in the sense that the underlying physical
principles are well understood, and applications
are beginning to appear in operational contexts
spanning a diverse array of applications. In addi-
tion, the supporting technology has evolved to
the extent that image acquisition, field work, and
digital analysis are today much more sophisti-
cated than in the early days of analog imaging,
computer mainframe-based processing, and qual-
itative analysis. However, with the wide range of
remotely sensed data that is now available, the
rapid and continued advances in the power and
storage capacity of modern desktop computers,
and the sophistication of the many software pack-
ages available, remote sensing is far from a static
field. Indeed, the last decade has seen the develop-
ment of commercial fine resolution remote sensing
from space (Toutin, in this volume), the expo-
nential growth of lidar (also known as airborne
laser scanning) (Hyyppä et al., in this volume),
and the increasing sophistication and automation
of image processing, to name just a few examples.
This rapid evolution of remote sensing technol-
ogy suggests that there is a need for a periodic
and relatively comprehensive review of the field of
remote sensing. This book is an attempt to address
that need.

In this introductory chapter we lay the ground-
work for a theme that is common throughout many
of the chapters in this book, namely, the tradeoffs
and issues that should be considered in select-
ing data for a specific problem. For example, in
Chapter 25 Wulder et al. consider data selection
within the context of vegetation characterization,
and in Chapter 31, Crews and Walsh review data
selection from the perspective of social scien-
tists. This introductory chapter provides a broad
perspective on this important topic.
Ironically, selecting data is today more chal-

lenging than in the past, a consequence of the
wide range of data currently available. In the
past, few remotely sensed data sets were available,
and consequently the properties of the available
data tended to determine the nature of the prob-
lems that could be addressed. Thus, an important
part of early remote sensing research using the
Earth Resources Technology Satellite (ERTS, later
renamed Landsat) was simply to ask the question,
“What can we do with these new data?” Today, we
have a vast array of data to select from in remote
sensing, and so a new problem has emerged – how
do we optimize the data characteristics that we use,
so that the data will most effectively address a par-
ticular application or research problem? It should
thus be clear that the definition of an optimal data
set is entirely dependent on the aims of the project
for which the data are intended.
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Adding to the complexity of choosing data
attributes are three related issues. Firstly, there
are fundamental physical and engineering trade-
offs that limit the nature and detail of the data that
can be collected using an imaging system (Kerekes,
in this volume; Figure 1.1). These constraints help
explain the design choices made in satellite-borne
sensors, and likewise need to be considered by
those planning their own custom acquisitions of
aerial imagery (Stow, in this volume).
A second issue that makes selecting the appro-

priate data for a project complex is that, just as too
little data will likely reduce quality of the analysis,
data with too much detail may also have a negative
effect (Latty et al. 1985). It is intuitive that toomuch
spatial detail can be burdensome for a computer-
based analysis, and the same principle applies to

other components of imagine information, includ-
ing the spectral, radiometric and temporal scales of
the data. For example, Hughes (1968) showed that
an excessive number of spectral bands can lead to
lower classification accuracy, an observation that
is known as the Hughes phenomenon (Swain and
Davis 1978).
The last issue, perhaps the most important of the

three, is the need to match the scale of the analysis
to the scale of the phenomena under investigation
(Wiens 1989). Inferences drawn from an analysis at
one spatial scale are not necessarily valid at another
scale, an issue known in ecology as cross-level
ecological fallacy (Robinson 1950, Alker 1969).
In geography, the dependence of observed patterns
on how data are aggregated is known as the mod-
ifiable areal unit problem (MAUP, Openshaw and

Figure 1.1 Given a limited bandwidth for image acquisition, storage and communication,
trade-offs have to be made regarding the spatial, spectral and temporal scale of the imagery
that can be acquired. Radiometric scale (not shown) is also important. Figure reproduced from
T. Key, T. Warner, J. McGraw, and M. A. Fajvan, 2001. A comparison of multispectral and
multitemporal imagery for tree species classification. Remote Sensing of Environment
75: 100–112.
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Taylor 1979, Openshaw 1983, 1984). The MAUP
has two components (Jelinsky and Wu 1996):

• The scale problem, which focuses on how results
may vary as the size of the aggregation units
(pixels, in the typical remote sensing analysis)
varies.

• The zoning (or aggregation) problem, which
focuses on how the results may vary as the shape,
orientation and position of the units vary, even as
the number of aggregation units is held constant.

In remote sensing, attention has usually focused
on the MAUP scale problem, and less attention has
been applied to the zoning problem (for an excep-
tion, see Jelinsky and Wu 1996), because most
pixels are assumed to represent a similar, approx-
imately square shape. However, NOAAAdvanced
Very High Resolution Radiometer (AVHRR)
Global Area Coverage (GAC) data is produced
by aggregating a linear-oriented subset of finer
scale Local Area Coverage pixels (Justice and
Tucker, in this volume), thus potentially open-
ing the GAC data to zoning problems. Clearly,
both scale and zoning MAUP problems are poten-
tially present when ancillary vector-derived data
are used in a remote sensing analysis (Merchant
and Narumalani, in this volume).
Woodcock and Strahler (1987) provide a useful

remote sensing conceptual framework that catego-
rizes images based on the size of the pixels relative
to objects in the scene. Thus an H-resolution image
has pixels small enough to resolve objects or phe-
nomena of interest in the scene. In contrast, in
an L-resolution image, the pixels are too large
to resolve the individual objects. However, most
scenes have objects at a variety of scales, and there-
fore it may be more useful to refer to H- and
L-resolution image elements, both of which are
likely to be present in any one image (Ferro and
Warner 2002).
Central to the ideas presented so far is the con-

cept of scale (Quattrochi and Goodchild 1997,
Walsh et al. 1997, 2003, Marceau and Hay 1999,
Spiker and Warner 2007). Landscape ecology rec-
ognizes scale as having two attributes: grain and
extent (Turner et al. 2001). Although there are
numerous definitions of these terms, for our pur-
poseswewill define grain as the finest level ofmea-
surement, the degree of detail, or the sampling unit.
An example of grain is the instantaneous field of
view (IFOV) of the sensor, which in turn is related
to the ground sampling distance or ground resolu-
tion element, depending on the context. (Although
pixel size is not as precise a term, for simplicity we
will use it to represent the concept of ground sam-
pling distance in this chapter.)Extent canbe defined
as the range over which measurements are made,

for example, the area represented in an imaged
scene. Grain and extent tend to be inversely related,
simply because the total amount of data that can be
collected is usually constrained.
Even though the examples given here draw on

image spatial properties, the term scale is often also
applied to the three other attributes of image data
already referred to, namely the spectral, radiomet-
ric and temporal properties. Although scale is a
common thread in this chapter, it is important to
note that it is not the only attribute that is important
in selecting data to address a particular problem.
The remainder of this chapter is organized in

seven major sections. Following this general intro-
duction, we discuss factors that influence the opti-
mal characteristics of each of the four major types
of image properties: spatial, spectral, radiometric
and temporal. We then present some examples of
the interactions and tradeoffs between the indi-
vidual types of major image properties, before
considering some broader, more general issues.
In the concluding sections, we look to the future
to discuss challenges and opportunities on the
horizon.

SELECTING IMAGES WITH OPTIMAL
SPATIAL PROPERTIES

Scale and image spatial properties

The concept of scale is particularly useful for dis-
cussing image spatial properties (Cao and Lam
1997, Marceau and Hay 1999). For example, the
section in this book on satellite-borne sensors is
partly organized along the lines of pixel size. Thus,
we have chapters on fine (Toutin, in this vol-
ume), moderate (Goward et al., in this volume),
and coarse spatial resolution (Justice and Tucker,
in this volume) sensors. However, the challenges
that the authors of these chapters faced, both in
arriving at these terms, and in using them con-
sistently, suggests that meaning of scale varies
greatly depending on the focus of the analysis,
and perhaps also the historical context of the time.
Thus, despite its name, the Advanced Very High
Resolution Radiometer (AVHRR), with 1.1 km
pixels, is grouped in this book with coarse res-
olution sensors. The Landsat Enhanced Thematic
Mapper Plus (ETM+),whichwe treat as amoderate
resolution sensor, has also been termed a fine spa-
tial resolution sensor by some. Adding complexity
is the fact that many satellite-borne sensors have
bands of differing spatial resolution. For example
ASTER acquires data in three bands with 15 m
pixels, six bands with 30 m pixels, and five bands
with 90 m pixels. It is apparent that spatial reso-
lution of modern satellite sensors fall along a con-
tinuum, and therefore attempts to label sensors by
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Table 1.1 Image spatial resolution
categories

Pixel Spatial Example satellite-borne

size (m) resolution sensors

<1 very fine WorldView

1–10 Fine IKONOS

10–100 Moderate ASTER, AWIFS, ETM+, MSS, SPOT

100–1000 Coarse MODIS, MERIS

>1000 Very coarse AVHRR, GOES, METEOSAT

simple spatial resolution descriptors is inherently
arbitrary. Nevertheless, to minimize confusion, we
have attempted throughout this book to standard-
ize as far as possible on the terms summarized in
Table 1.1.
Although often used interchangeably, spatial

resolution and pixel size are not strictly speaking
equivalent. This is because pixel size refers to the
sampling frequency, and not the ground resolution
element or sampling area. Thus, for example, the
Landsat MultiSpectral Scanner (MSS) oversam-
pled data along the scan line, producing pixels
that are smaller than the ground resolution ele-
ment. In addition, spatial resolution is dependent
on the spectral radiometric properties of both the
object being resolved, and the background against
which it is being resolved. Generally, a higher spec-
tral radiometric contrast between an object and its
background will result in a higher apparent spatial
resolution. At the one extreme, an object with no
contrast against the background is not resolvable,
irrespective of its size. At the other extreme, it is
potentially possible to detect the presence of a sin-
gle, bright object that is much smaller than a pixel,
as long as the object is surrounded by amuch darker
background. However, for this latter example, it is
not normally possible to predict where in the pixel
that object occurs, so in that sense, the resolution
is ultimately limited by the pixel size. Neverthe-
less, because of mixed pixels, and the low contrast
of most Earth scenes, objects generally need to be
multiple times the size of a single pixel before they
are large enough to be discerned as distinct spatial
features.
A more precise way of specifying resolution is

the modulation transfer function (MTF). This is a
specification of how contrast in the scene is repre-
sented in (‘transferred to’) the image. To measure
MTF, a test signal of multiple bars of defined con-
trast, and varying spatial frequency (width of the
bars), is imaged, normally in a laboratory setting.
The contrast in the resulting image, at each of
the various spatial frequencies, is then measured
as a proportion of the original contrast. A similar
measure is the point spread function (PSF), which
characterizes how a point signal is blurred when
it is measured by the sensor (Huang et al. 2002).

Blurring results from the effects of the atmosphere,
the sensor optics and electronics, and image resam-
pling. Because of blurring, the information in a
pixel usually includes a component from neighbor-
ing pixels (Zhang et al. 2006). Huang et al. (2002)
have shown how modeling of the PSF can be used
to reduce this adjacency effect, and thus improve
the overall fidelity of the image.
In real images, quantifying spatial resolution

requires identification and exploitation of natu-
ral boundaries between features in the image.
Tarnavsky et al. (2004) used the full-width-half-
maximum (FWHM) of the line spread function
(LSF), derived from the study of the edges of
objects in the image, to compare the spatial fidelity
of scanned aerial film, and digital aerial images.
Image spatial extent and pixel size are generally

inversely related. Thus, spatial resolution generally
limits the potential extent of the scene. For exam-
ple, it is possible to collect a global set of near
cloud-free Landsat 7 ETM+ imagery, with 30 m
pixel size, on a seasonal basis (Goward et al., in
this volume). However,MODISwith 250m visible
and near infrared (NIR) pixels, can provide weekly
global composites of nearly cloud-free imagery
(Justice et al. 2002). In contrast, despite almost a
decade of data collection by multiple commercial
companies, there is as yet no fine spatial resolution
global data set.

Choosing an optimal spatial scale

What is the optimal spatial resolution for a partic-
ular project? As already mentioned, it is important
to clarify the interpretation objective of a project,
before this question can be addressed. If the aim
is to map the location of discrete objects, or the
overall spatial patterns in an image data set, then
methods that estimate optimal resolution based on
finding the pixel size with the maximum local vari-
ation have been shown to be very effective. For
example,Woodcock and Strahler (1987) related the
graph of local variation plotted against pixel size
to the average size of objects in an image. Vari-
ograms, which characterize the variability between
measurements as a function of distance between
those measurements (Jupp et al. 1989), have a par-
ticularly rich theoretical underpinning (Matheron
1971, Journel and Huijbregts 1978, Jupp et al.
1988). Variograms have been used to identify opti-
mal distances between field measurements and the
optimal pixel size (Hyppänen 1996, Atkinson and
Curran 1997). An alternative measure, lacunarity,
which is based on fractal theory, is useful for identi-
fyingmultiple scales in an image (Butson and King
2006).
If the aim is to map the size and spatial extent of

individual objects or regions, then it is important
to have a pixel size much smaller than the distance
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calculated for optimal sampling, as described
above. However, if the resolution becomes too fine,
unwanted spatial detail will likely be resolved in
the image, and, at least using conventional image
analysis techniques, classification accuracymay be
lower (Latty et al. 1985). On this basis, the optimal
resolution has been defined as the scale that min-
imizes variance within the classes to be mapped
(Marceau et al. 1994). An important consequence
of this definition is that the optimal scale is there-
fore likely to be class-dependent (Marceau et al.
1994).
Hengl (2006) provides a thorough overview of

the issues associated with choosing an optimal
scale. He recommends a scale that is a compromise
between the coarsest legible scale, which respects
the scale and properties of the dataset; and the finest
legible scale, which preserves at least 95% of the
object or scene variability (Hengl 2006). McCloy
andBøcher (2007) extendWoodcock andStrahler’s
(1987) local variance concept to show how a graph
of average local variance (AVL) can help pre-
dict a scale that minimizes within class variance,
and thus optimizes the accuracy of subsequent
classifications.

Image geometric properties

Another issue that should be considered in select-
ing data is the quality of the georeferencing to a
cartographic projection. High quality georeferenc-
ing is generally expensive. For an image acquired
from a nadir-viewing sensor, a simple polyno-
mial warp that does not include terrain correction
may be sufficient, and if local map control at a
sufficient scale is available, can be applied rou-
tinely. Topographically induced image distortion
increases with increasing angle away from nadir, as
does the distortion of the shape and size of the pixel.
Thus, with sensors that have a pointing capability,
the view angle is an important variable to consider
in selecting data. However, the increasing sophis-
tication and availability of automated photogram-
metric software makes it potentially possible for
non-specialists to generate high quality orthorecti-
fications, although the procedure remains relatively
complex.
The quality of the image geometric properties

is particularly important for multi-temporal analy-
sis. Even a 0.2 pixel misregistration can cause as
much as 10% error in the estimate of the change in
spectral values, depending on the heterogeneity of
the scene (Townshend et al. 1992). The quality of
georeferencing is also important for change detec-
tion derived from object-based classification. In
object-based classification, pixels are first grouped
into so-called image objects, which are then clas-
sified as a single unit (Jensen et al., in this vol-
ume). In a series of experiments on the effects of

misregistration on object-based change detection,
Wang andEllis (2005) found change detection error
increasedwith increased positional error, increased
landscape heterogeneity, andfiner changedetection
resolution (the local region over which change is
identified). The relationships between these vari-
ables were summarized using regression, and then
used to calculate an optimal change detection reso-
lution, based on a desired degree of accuracy (Wang
and Ellis 2005).

SELECTING IMAGES WITH OPTIMAL
SPECTRAL PROPERTIES

Scale and image spectral properties

When the concept of scale is applied to spectral
properties, spectral grain can be used to refer to
the wavelength interval, or width, of the spectral
bands.Multispectral sensors, with a coarse spectral
grain, have bands that span hundreds to thousands
of nm. The spectral extent can be used to describe
the spectral wavelength region encompassed by the
bands (e.g., many optical sensors operate in the vis-
ible and near-infrared spectral region), and the total
number of bands. The definition of hyperspectral
data, which usually emphasizes the number, width
and contiguity of the spectral bands (Schaepman,
in this volume), thus encompasses the concepts of
both spectral grain and extent.
The specific location andwidth of spectral bands

can be very important for subsequent analysis. For
example, Teillet et al. (1997) show that normal-
ized difference vegetation index (NDVI) values are
not necessarily comparable between satellites with
different spectral properties, even if the data are
atmospherically corrected and radiometrically cal-
ibrated. The width and location of the red band
used in the NDVI calculation is particularly impor-
tant, and should ideally be less than 50 nm wide
(Teillet et al. 1997). Thus the spectral grain of
Envisat Medium Resolution Imaging Spectrome-
ter (MERIS) appears to be more appropriate for
NDVI work than either the Landsat TM or SPOT
HRV sensors (Teillet et al. 1997).
The choice between using multispectral and

hyperspectral data has important ramifications for
the range of information extraction routines that
are appropriate for subsequent analysis. Multi-
spectral analysis techniques tend to use data from
within the scene to develop empirical models and
classifications.Obtaining sufficient reliablewithin-
scene training data can be a major challenge with
multispectral analyses. In addition, the spectral sep-
arability of the classes of interest may be limited
with multispectral data.
Hyperspectral analysis techniques often employ

methods that are not premised on requiring
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in-scene knowledge. For example, hyperspectral
methods may employ theoretical biophysical mod-
els, or draw on spectral libraries for classification
(Chen and Campagna, in this volume). Spectral
libraries consist of high quality spectra, usually
acquired under laboratory conditions, which are
assumed to represent material classes over wide
areas. A number of extensive mineralogical spec-
tral libraries are available in the public domain
(for example, Clark et al. 2003); more recently
an urban land cover library has been developed
(Herold et al. 2003). The availability of spectral
libraries for vegetation tends to be more limited,
because of the phenological and environmental
variation in vegetation properties limit the general-
ization that can be achieved. One of the difficulties
in exploiting library spectra is that scaling from
small laboratory samples and field spectrometer
measurements to pixels, is complex (Baccini et al.
2007).

Choosing the optimal spectral bands

In the early days of digital image processing of
remotely sensed data, limited computing power
made it attractive to select only the most useful
bands for classification. This constraint has largely
fallen away with the steady improvement in com-
puting power. Nevertheless band reduction is still
often desirable, especially as advances in sensor
technology enable data acquisition in more bands.
The Hughes phenomenon (Hughes 1968, Warner
and Nerry 2008), which has already been referred
to above, is assumed to result from the increased
number of parameters needed to characterize the
distributions of training samples as the number of
bands increases. The effect of the Hughes phe-
nomenon is most likely classifier-dependent, and
indeed, support vector machines are thought to
be less susceptible to this problem (Melgani and
Bruzzone 2004).
The simplest way of selecting bands is to use

knowledge of the spectral properties of interest.
For example, in a vegetation application one might
select bands from the visible, NIR, and short wave
infrared (SWIR) to sample spectral regions influ-
enced by vegetation pigments, leaf structure, and
moisture status, respectively (van Leeuwen, in this
volume). In geological applications, one might
use spectral libraries to identify the wavelengths
associated with important diagnostic absorption
features of the minerals and rocks of interest (Chen
and Campagna, in this volume).
Avariety of automated and statistical approaches

have been proposed for selecting optimal sub-
sets of image bands that carry the most informa-
tion (Serpico and Moser 2007). One assumption
common to many band selection methods is that
highly correlated bands are redundant (Wiersma

and Landgrebe 1980, Miao et al. 2007). Using the
statistical method of principle component analysis
(PCA) (Jensen 2005), the axes ofmultidimensional
data can be rotated so that an n-band original
data set is transformed to n new orthogonal and
uncorrelated bands. The new bands are normally
ordered according to the proportion of the origi-
nal variance each new band explains. This strategy
generally works very well, with the first few princi-
ple components carrying most of the information,
and the remaining, low variance components gen-
erally dominated by noise. PCA is one of the most
widely-used general image analysis techniques,
having applications that go well beyond data com-
pression and band selection. The minimum noise
fraction (MNF) transformation (Green et al. 1988),
typically applied to hyperspectral data, is a cas-
caded sequence of PCA transformations in which
the noise is isolated and removed.
Despite the robustness of PCA, it is important

to be aware that this method uses correlated vari-
ance as a surrogate measure for information. In
situations where the signal of interest is not cor-
related across bands, but is instead isolated in a
narrow spectral absorption feature, PCA will not
be so useful. In addition, although highly corre-
lated bands are likely somewhat redundant, they
may nevertheless contain non-redundant infor-
mation that can be very useful for separating
subtle spectral differences (Warner and Shank
1997).
An alternative to this focus on covariance is data

transformations and band selections that specifi-
cally enhance the spatial patterns in the resulting
images. The spatial analog to PCA is multivari-
ate spatial correlation (MSC) (Wartenberg 1985),
which can be used to transform and compress
image data (Warner 1999). Comparisons of the
autocorrelation of ratios of image bands have also
been used to select individual bands, and combi-
nations of bands (Warner and Shank 1997). This
autocorrelation-based method of selecting bands
has been found not only to increase classification
accuracy, but also to result in classifications that
have higher autocorrelation, and thus potentially
more clearly defined spatial patterns (Warner et al.
1999).

Data fusion

Data fusion has been defined as:

a formal framework in which [there] are expressed

means and tools for the alliance of data originating

from different sources. It aims at obtaining infor-

mation of greater quality; the exact definition of

‘greater quality’ will depend upon the application.

(Wald 1999: 1191)
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Pohl andVanGenderen (1998) note that data fusion
can take place at three different levels in the image
processing chain of analysis:

1 At the pixel level, by combining raw image bands
of different sources.

2 At the feature level, by segmenting the images to
identify image objects, and combining the different
images in the context of each image object.

3 At the decision level, where each image is first ana-
lyzed separately, and then the derived information
is combined.

The attributes of the data that are combined
through data fusion could potentially cover any
individual or combinations of the four attributes of
scale: spatial, spectral, radiometric, and temporal,
as well as a combination of imagery with ancil-
lary data (Pohl and Van Genderen 1998). In this
section, which focuses on image spectral proper-
ties, the discussion will be limited to attempts to
increase the information content of a data set by
combining images of disparate wavelengths at the
pixel level (Briem et al. 2002). Subsequently, in the
section on interactions between the different scale
components, pan-sharpening using multi-spatial
resolution data fusion will also be discussed.
The underlying rational for multi-wavelength

data fusion is that differentwavelength regionsmay
respond to different physical phenomena. Thus, for
example, a combined analysis of optical and syn-
thetic aperture radar imagery potentially can pro-
vide information about vegetation type, biomass,
structure, and water content (Hill et al. 2005).
Similarly, combining hyperspectral VNIR and

SWIR with multispectral thermal infrared (TIR)
data may allow the incorporation of temperature
or emittance variations in discrimination between
land cover units. For mineral mapping, SWIR
bands often provide an ability to discriminate
clays, whereas multispectral thermal bands are
valuable for separating silicate minerals (Chen and
Campagna, in this volume; Chen et al. 2007a).
However, the benefits of combining these disparate
wavelength regions varies greatly with classifica-
tion method used (Chen et al. 2007b), and for some
classifiers, the accuracy may actually decline when
disparate data are combined. This suggests that a
suitable approach for mineral discrimination may
sometimes be an expert system that adapts to the
spectral pattern of each pixel to draw on different
classifiers, using different wavelength intervals, to
classify each pixel independently.
The fusion of VNIR and SWIR data with multi-

spectral thermal data also holds promise for classi-
fication in the urban environment, especially for the
discrimination of different roof and road materials.
In a study of Strasbourg, France, it was found that

various combinations of four to six broad bands
from the visible, NIR and SWIR, together with
six multispectral TIR bands, resulted in higher
classification accuracy than with using 71 hyper-
spectral visible, NIR, and SWIRbands (Warner and
Nerry 2008). Unfortunately, there are currently no
planned medium or high spatial resolution thermal
satellite-based sensors, and therefore opportuni-
ties to exploit data fusion with TIR may remain
limited.

SELECTING IMAGES WITH OPTIMAL
RADIOMETRIC PROPERTIES

Scale and image radiometric properties

Radiometric resolution is arguably as important
as spatial, spectral, and temporal resolution, yet
does not seem to receive as much attention as
the other image attributes. When scale is applied
to radiometric properties, grain refers to the fine-
ness of the division between successive brightness
levels the sensor measures. Extent refers to the
range of brightness levels over which the sen-
sor can differentiate changes in radiance. A sen-
sor with a rather unusual radiometric extent is
the Operational Linescan System (OLS), which is
flown aboard the Defense Meteorological Satellite
Program (DSPM). The OLS is particularly sensi-
tive to a range of low light levels, which makes it
possible to detect illumination at night from street
lights (Henderson et al. 2003) and other sources of
illumination, such as fires and flares.
The number of bits over which the signal is

quantized can serve as an indicator of the radio-
metric grain. An eight-bit resolution (28, or 0–255
DN values) has been until recently a common
choice, partly because this data range corresponds
to the underlying structure of computer data stor-
age. Nevertheless, it is important to consider the
range of radiometric values actually filled (Malila
1985), as well as the noise in the data. Thus,
radiometric grain is perhaps more usefully char-
acterized as the minimum radiance change that can
be detected reliably. This change can be measured
in radiance units, or as the signal-to-noise ratio.The
latter measure is normally defined as the mean sig-
nal divided by the standard deviation of the noise.
Atkinson et al. (2007) have demonstrated the utility
of using land-cover-specific variograms to estimate
the signal-to-noise ratio based on the relative vari-
ance of both the signal and noise. This land-cover
specific measure of radiometric grain emphasizes
the importance of the scene context in interpreting
measures of noise.
Over time the radiometric range of data quantiza-

tion from available sensors has increased notably.
Tarnavsky et al. (2004) have shown that scanned
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color infrared aerial photographs have more noise
than Airborne Data Acquisition and Registration
(ADAR) 5500 multispectral images, which are
acquired using digital cameras. The original Land-
sat MSS sensor recorded just six bits of data,
although the data for the first three bands were
scaled non-linearly to provide an effective seven-
bit range (Goward et al., in this volume). In con-
trast, Landsat TM data is quantized over eight bits.
Malila (1985) used an analysis of entropy to show
the importance of this radiometric improvement in
increasing the information content compared to the
improvement in the number, width and location of
the spectral bands. On the other hand, Narayanan
et al. (2000) suggest that TM imagery can poten-
tially be compressed to as few as only four bits
per pixel, and still produce classifications that are
similar in accuracy to the original eight-bit data.
The commercial high resolution sensors of

IKONOS, Quickbird and OrbView are all quan-
tized with 11-bit data (Toutin, this volume). Nev-
ertheless, purchasers of these data sets are offered
degraded 8-bit versions of the data, perhaps reflect-
ing legacy software or limited hardware and soft-
ware available to some purchasers. Based on the
personal experience of the authors, one of the
advantages of the higher radiometric resolution of
the commercial sensors appears to be the increased
information content in dark areas of the images,
especially shadows.

Radiometric normalization and
calibration

Many image analysis procedures can be undertaken
with images in DN format. However, some change
detection techniques andmost biophysical transfor-
mations (e.g. vegetation indices) require normal-
ization or calibration to radiance units or equivalent
reflectance (Teillet et al. 1997, Song et al. 2001).
For example, conversion to reflectance is particu-
larly important for hyperspectral data, especially
if the imagery is to be classified using spectral
libraries (Chen and Campagna, this volume). In
comparing radiance and reflectance measurements
between sensors, and between field spectrome-
ters and remote imaging devices, it is particularly
important to define and consider the geometric
arrangement of the illuminating energy and the
observing sensor. Schaepman-Strub et al. (in this
volume) provide a comprehensive reviewof the ter-
minology and the relationships between different
types of spectral measurements.
Conversion to reflectance requires information

about the spectral sensitivity of the sensor, as
well as both solar illumination and atmospheric
transmission and scattering. The effect of topog-
raphy on illumination may be calculated if a suffi-
ciently detailed digital elevation model is available

(Warner and Chen 2001). However, the bidirec-
tional reflectance distribution function (BRDF), or
dependence of reflectance on the geometry on the
illumination and observation (Schaepman-Strub
et al., in this volume), varies between different
materials, and thus if a single BRDF model is
used to normalize topographic variations in an area
of varying land cover properties, the calculated
reflectances may have cover-dependent errors.

SELECTING IMAGES WITH OPTIMAL
TEMPORAL PROPERTIES

Scale and image temporal
properties

The application of the concept of scale to image
temporal properties is somewhat more complex
than in the spatial and spectral domains. Normally,
an image is acquired in a single, very short period
of time, which might be referred to as the temporal
scale extent. If only one image is considered, the
grain and extent are identical. On the other hand,
the concept of temporal scale is very useful for dis-
cussing multitemporal image archives, as well as
for characterizing change detection and time series
analyses. The temporal extent of an archive is quite
straightforward, and is the overall period of time
covered. However, the temporal grain can poten-
tially refer to two different attributes. In the case
of a series of individual images, the grain might
be the period between the image acquisition dates.
However, for coarse resolution data, single bands
are often generated on a pixel by pixel basis from
multiple sequential images, using algorithms that
minimize the effects of cloud. For such data, the
final image represents a multi-temporal compos-
ite, where each pixel has been individually selected
from the images acquired during the compositing
period (Holben 1986). Thus, at least for multi-
temporal composited data, grain could also refer
to the period of time over which the image data
have been integrated. For example, a composit-
ing period of a week or a month is often used to
generate some image data products (Justice et al.
2002).
Cloud-free multitemporal composites have been

found to be particularly useful for characteriz-
ing the annual pattern of ecosystem response to
annual weather patterns (Loveland et al. 1995).
For example, the date of onset of greenness, total
integrated greenness over time, and maximum
greenness, have been used to classify different
land cover classes. By extending such studies over
multiple years, apparent changes in climate have
been observed, including an earlier spring greenup
at high latitudes (Myneni et al. 1997, Delbart
et al. 2006). However, Schwartz et al. (2002) have
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cautioned that the integration of data over a week
or longer periods can result in uncertainty and bias
in the phenological trends identified.
For change detection studies, the temporal extent

of the available image archive constrains the period
over which change can be observed. Thus, the
Landsat TM and ETM+ sensors provide a particu-
larly important long term data set, with a temporal
extent of over 25 years (Goward et al., in this
volume). The temporal extent of change detection
studies can be extended back to 1972 by using
Landsat MSS imagery, and for some areas, to as
early as 1960, by using declassified CORONA
imagery, although the latter are mostly digitized
black and white film. However, for change detec-
tion studies, images from different sensors should
be used with caution, because it can be challenging
to differentiate between real changes in the scene,
and changes in the sensors.
The grain, or revisit period of the sensor, also

constrains the potential differentiation of events
within the period studied. However, the actual
availability of cloud free imagery is usually some
small fraction of what might be assumed based on
only the sensor revisit time.

Image acquisition frequency

Finding recent imagery tends to be an important
consideration for some applications. Procedures
for satellite data collection vary greatly between
the nadir viewing sensors, such as Landsat ETM+,
and pointable satellites, a category which includes
all fine resolution sensors, such as IKONOS and
WorldView. For nadir-viewing sensors, the oper-
ators usually attempt to acquire and archive all
images on a systematic basis, at least when the
satellite is within sight of a receiving station. Land-
sat ETM+ is unique in that the operators have a
policy of acquiring multiple global data sets on
a regular basis (Goward et al., in this volume).
For pointable satellites, image acquisition is prior-
itized based on requests from customers, who pay
a premium for tasking the satellite. Thus, archive
imagery is only available over limited areas, and
new acquisitions may be delayed depending on
the priorities of the operator. These same issues
tend to apply to other sensors that have only a
limited acquisition capability, such as ASTER and
HYPERION.
Obtaining images of the appropriate season is

also important. This is particularly true of vege-
tation studies, where the timing of phenological
events such as leaf out and senescence may be as
valuable as spectral information (Key et al. 2001).
Geostationary satellites, such as European

EuMetSat’s Meteosat Second Generation (MSG)
satellites and the planned US National Polar-
orbiting Operational Environmental Satellite

System (NPOESS) satellites, offer the greatest
potential for high frequency of coverage. For
example METOSAT-9 acquires full disk images
of Earth every 15 minutes, and in rapid scan-
ning mode, where only part of the Earth disk
is imaged, images can be acquired even more
frequently. The tradeoff with geostationary sen-
sors is the comparatively low spatial resolution,
for example 1–3 km pixels at the sub-satellite
point for the METEOSAT Spinning Enhanced
Visible and Infrared Imager (SEVIRI) instrument.
Nevertheless, this high temporal frequency of
acquisition opens the possibility for completely
new remote sensing applications associated with
highly dynamic phenomena, such as modeling
the growth and development of individual fires
(Umamaheshwaran et al. 2007).
Airborne sensors (Stow et al., in this volume)

can provide high spatial resolution as well as com-
plete user-control of acquisition timing, including
not just the date, but even time of day. In practice,
however, mobilization and operational costs may
limit the degree to which the user can achieve this
flexibility.

Acquisitions for time-critical events

Time-critical applications of remote sensing
include disaster response (Teeuw et al., in this vol-
ume) and precision agriculture (Nellis et al., in this
volume) support.When timing is critical, pointable
sensors clearly have advantage over nadir viewing
sensors in that they have a shorter potential revisit
period.
For disaster response, a rapid delivery of ana-

lyzed imagery requires a series of expedited
responses, starting with emergency tasking of the
satellite, pre-preprocessing by the satellite oper-
ator, and internet-based data delivery. Following
receipt of the data, the analyst may need to perform
additional georeferencing work before interpreta-
tion can be done. Because time is normally very
limited, relatively routine or simple methods are
necessary.
The fact that rapid response requires some

advance planning and organization is demonstrated
by the establishment of the International Charter
on Space and Major Disasters (International Char-
ter 2007, Harris, in this volume, Teeuw et al.,
in this volume). This agreement, initiated by the
French, European and Canadian space agencies in
2000, now includes the space agencies of six other
countries, and additional agreementswith commer-
cial satellite operators. The charter provides for
24-hour availability of a single point of contact
for requesting emergency remote sensing support.
In France, the organization Service Régional de
Traitement d’Image et de Télédétection (SERTIT)
has been contracted by the French space agency,
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CNES, to provide 24-hour availability of image
analysts (SERTIT 2005). SERTIT places its image
map products on a website, for free down-
load (http://sertit.u-strasbg.fr/documents/RMS_
page_garde/RMS_page_garde.htm).
Of course, data currency is a concern not just

in disaster response, but in all applications study-
ing dynamic phenomena. Satellite images typically
require preprocessing by the data provider prior to
being made available to the user. Additional bot-
tlenecks may occur in the distribution, although
internet access to the data can overcome this
problem.

INTERACTIONS BETWEEN DIFFERENT
COMPONENTS OF SCALE

So far, the discussion has been limited to each of
the different components of scale: spatial, spec-
tral, temporal, and radiometric. However, clearly,
these components are linked. For example, if image
acquisition is constrained by the rate at which data
are stored and transmitted, then increasing one
type of resolution (such as spectral resolution), will
necessarily require changes to other types of reso-
lution (such as spatial resolution) (Figure 1.1). The
Compact Airborne Spectral Imager (CASI), man-
ufactured by ITRES of Canada, is a good example
of an instrument that is designed to have maximum
flexibility within the constraints of data acquisi-
tion trade-offs. CASI is a programmable sensor, in
which the operator chooses the number, width, and
location of spectral bands prior to image acquisi-
tion. Because longer integration times are needed
as the number of bands imaged increases, there is an
inverse relationship between the number of bands
and the spatial resolution for this sensor (ITRES
2007).
Alternatively, it is possible in some instances to

overcome the spatial-spectral constraint described
above by employing pan sharpening, in which
data fusion is used to combine high spatial resolu-
tion, panchromatic (i.e., single band) images with
comparatively low spatial resolution, multispec-
tral images (Alparone et al. 2007). Pan sharpening
has become increasingly important since the SPOT
sensors popularized the concept of acquiring simul-
taneous high spatial resolution panchromatic data
to complement a lower spatial resolution multi-
spectral data set, and this design approach has
been followed for a number of subsequent sen-
sors, including ETM+ (Goward et al., in this
volume), IKONOS, and QuickBird (Toutin, in
this volume). The aim of pan sharpening is quite
simple: to incorporate the spatial detail from the
panchromatic image, and the spectral informa-
tion from the multispectral images. The chal-
lenge, however, is to ensure that the combined

data set maintains a spectral balance such that
when the images are displayed as a color com-
posite, the colors of the sharpened images are
similar to the original, low spatial resolution mul-
tispectral data set (Alparone et al. 2007). This
challenge is particularly great if the panchromatic
band is poorly correlated with the individual mul-
tispectral bands (Gross and Schott 1998, Price
1999).
Pohl and Van Genderen (1998) provide a com-

prehensive review of pan sharpening methods.
Alparone et al. (2007) empirically compared eight
different methods, and found that multiresolu-
tion analysis, incorporating for example wavelets
or Laplacian pyramids to characterize the spa-
tial dependence of DN values on scale, generally
outperformed component substitution, in which
some transformed component of the multispec-
tral data set, such as the first principal compo-
nent, is replaced by the panchromatic data. In
particular, the two methods found to have the
best results both take into account physical mod-
els of the image formation, namely the modu-
lation transfer function (Alparone et al. 2007).
Wang et al. (2005) use a theoretical framework,
which they term general image fusion, to com-
pare the different methods, and conclude that the
optimal method is multiresolution analysis-based
intensity modulation. Pan sharpening using spec-
tral mixture analysis also shows promise, espe-
cially for hyperspectral imagery (Gross and Schott
1998).
There are other complex interactions between

the different types of resolution. Malila (1985)
has found that, although the increased number and
range of spectral bands of TM compared to MSS
provide a great deal more information as indicated
by studies of entropy, if bothTMandMSShad been
quantized at just five bits, the information content
of the two sensors would have been approximately
equal.
Key et al. (2001) compared the value of mul-

tiple spectral bands with multiple image dates
for classifying individual deciduous trees species.
Their study showed that a single, optimally chosen,
multispectral image acquired during peak autumn
colors resulted in relatively high classification
accuracy. However, multiple dates of single band
imagery could provide a similar high accuracy.
This finding suggests that if the spatial resolution
of multispectral imagery is too coarse, panchro-
matic imagery, which typically has a higher spatial
resolution, may be substituted, if multiple dates
can be obtained (Key et al. 2001). For example,
the current highest spatial resolution from com-
mercial satellites is provided by the WorldView-1
sensor, launched in 2007. Worldview-1 provides
imagery with 0.5 m pixels, but only panchromatic
data, with no multispectral bands (DigitalGlobe
2007).
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OTHER ISSUES

Additional, broader issues should be considered in
selecting image data sets. Data cost, particularly for
the newcommercial sensors, can be high.However,
the commercial providers generally make a dis-
tinction between new acquisitions, which require
tasking the satellite, and existing images in the
companies’ archives, charging a premium for the
former. Commercial image licensing agreements
may constrain sharing the data with others, even
in the same organization. Thus purchasers should
consider the long-termuse of imagery, and consider
paying extra to have more flexible use of the data.
One of the major advantages of US government
data, including Landsat TM, ETM+, and Terra and
AquaMODIS data, is not only the very economical
price, but the absence of constraints on data shar-
ing (Harris, in this volume). Indeed, large internet
archives of US satellite imagery are available for
free downloading (Table 1.2).
A second major issue relates to data volume.

Large volumes of data can strain computer stor-
age and processing capacity. Although this issue is
far less significant today compared to when early
sensing systems such as the Landsat MSS were
launched, it is still important for projects that cover
relatively large geographic areas, or use multiple
dates of images.
In addition to improvements in computer hard-

ware, software has also advanced considerably
since the early 1970s. Early programs, typically
running on main-frame computers, often were
based on command-line program initiation. Today,
remote sensing packages typically have graphical
user-interfaces, and even semi-automated ‘wiz-
ards’ that help guide the less sophisticated users.
Furthermore, there are now specific programs
for advanced analysis such as for photogramme-
try and hyperspectral classification. On the other
hand, the development of software that integrates
remote sensing analysis and GIS analysis has been
more mixed (Merchant and Narumalani, in this
volume).

FUTURE CHALLENGES AND
OPPORTUNITIES

It is evident that the number and diversity of
satellite-borne sensors will only grow in future
years, especially as the commercial satellite sector
grows, and additional nations launch and operate
their own satellite programs. Thus, the challenges,
and opportunities, in selecting data to address spe-
cific problems, will also likely grow. Some specific
trends canbeobservedwith regards to image spatial
and spectral properties, as well as the availability
of relatively new types of image data.
With regards to spatial resolution, it appears for

themoment that∼0.5m is the smallest pixel size of
space-borne imagery that will be available to non-
government users, due to security issues. Thus, the
operating licenses for both Worldview-1 (Digital-
Globe 2007) and the plannedGEOEYE-1 (GeoEye
2007) limit the spatial resolution of imagery that is
sold to the general public to 0.5 m.
In terms of spectral properties, one likely

future development is finally to achieve opera-
tional hyperspectral imaging from space. For the
user, space-based hyperspectral imagery should
be more economical than contracting for airborne
hyperspectral data. An operational satellite-borne
hyperspectral system will also remove the geo-
graphical constraints of the narrow swath of the
experimental satellite-based Hyperion hyperspec-
tral sensor. Once these financial and geographi-
cal barriers are removed, hyperspectral analysis
may enter the mainstream, especially if there is
continued improvement in the ease of use of
hyperspectral software analysis tools. Neverthe-
less, limits on the signal-to-noise and spatial res-
olution for space-based hyperspectral sensors may
ensure that aerial hyperspectral imaging will con-
tinue to play an important role for some time
to come.
Another area of likely future importance, and

challenge to users, will be greater integration
of diverse wavelength regions and characteris-
tics, including hyperspectral VNIR and SWIR,

Table 1.2 Sources of free imagery

Facility Example data URL1

Global Land Cover Facility,

University of Maryland

TM, MSS, MODIS, ASTER http://glcf.umiacs.umd.edu

AmericaView Landsat http://glovis.texasview.org

USGS EROS Landsat http://edc.usgs.gov/products/satellite/landsat_ortho.html

USGS-NASA DataPool ASTER, MODIS http://lpdaac.usgs.gov/datapool/datapool.asp

Boston University Climate and

Vegetation Group

AVHRR, MODIS http://cliveg.bu.edu/modismisr/products/products.html

Boston University Land Cover

and Land Cover Dynamics

MODIS http://duckwater.bu.edu/lc/datasets.html

1URLs current as of January 2008.
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hyperspectral thermal, and multi-wavelength,
fully polarimetric radar. The integration of lidar
with multispectral and hyperspectral imagery
seems a particularly promising area (Bork and
Su 2007).
Relatively new types of data will also likely

become more available, although once again the
general exploitation of these data may be depen-
dent on the development of easy to use software.
Polarization information, currently used mainly
with microwave wavelengths, holds promise
for improved image analysis of optical wave-
lengths (Zallat et al. 2004). Multi-angular imaging,
already available from the Multiangle Imaging
SpectroRadiometer (MISR) experimental satellite,
allows characterization and exploitation of BRDF
information (Armston et al. 2007, Jovanovic et al.
2007). One particularly interesting application of
BRDF information is for mapping wetlands by
exploiting the distinctive and strong angular reflec-
tion signature of water compared to other sur-
face types. This approach has been shown to
be effective for discriminating inundated areas
with emergent vegetation, open water, and non-
inundated areas (Vanderbilt et al. 2002). One
strength of this approach is that as the pixel
size increases, the accuracy of unmixing the pro-
portions of these cover types tends to increase
(Vanderbilt et al. 2007), making the method par-
ticularly effective for global-scale hydrological
modeling.
In conclusion, remote sensing has advanced

greatly since the early 1970s and since the
beginnings of regular satellite Earth observations
with the ERTS/Landsat MSS sensor. The many
advances in remote sensing technology have them-
selves brought new challenges, as exemplified by
issues such as the Hughes Phenomenon (Hughes
1968). Although many of these challenges can be
addressed through innovative research, one area
outside the control of most individual scientists is
the general area of remote sensing policy (Harris,
in this volume). For example, despite the impor-
tance of data continuity in global change studies,
there unfortunately seems to be a lack of politi-
cal will, at least in the United States, to support
an aggressive, long term strategy to ensure data
continuity for moderate resolution imaging. This
problem has recently been highlighted by the diffi-
culties associatedwith the Landsat Data Continuity
Mission (Goward et al., in this volume). Despite
these difficulties, remote sensing offers a power-
ful, objective and consistent tool for studying the
earth, from local to global scales. The value of
remote sensing is demonstrated by the growing
number of research studies, and the increasing use
of remote sensing in operational environments. The
chapters that follow give insight into the many
facets and key issues of this rapidly developing
subject.
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