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It is not always possible to establish a qualitative comparison of models. If the predic-
tions overlap to some extent, or if the predictions vary depending on parameters, then
we need to resort to a quantitative comparison of the models. Even when a qualitative
test is possible, examining the quantitative predictions would still prove to be informa-
tive. It is not sufficient for a model to predict the correct qualitative ordering of per-
formance across two conditions. It is also necessary for a model to make quantitative
predictions that are more accurate than its competitors.

When the quantitative predictions of a model are to be evaluated, the test must be
performed on the basis of an optimal selection of parameters. Otherwise, one could reject
a perfectly good model simply because the researcher happened to select a poor set of
parameters to evaluate the model. This implies that the quantitative comparison of the two
models would depend completely on the researcher’s arbitrary selection of parameters.

The purpose of this chapter is to review some of the technical issues involved in esti-
mating parameters for cognitive models. First, we introduce a very simple experiment
and its (fictitious) results to provide a concrete example for this chapter. Second, we pre-
sent a correspondingly simple cognitive model for the example. In this section, we also
introduce the distinction between linear and nonlinear models. This distinction is impor-
tant because cognitive models usually fall into the latter class. Third, we introduce some
alternative methods for measuring the quantitative accuracy of a model, including sum
of squared errors and maximum-likelihood methods. Fourth, we review some properties
of the parameters obtained by these methods, which provide a rationale for selecting
an estimation method. Fifth, we discuss some of the technical details concerning the
parameter search methods and try to indicate the most appropriate conditions for using
each method. Finally, we present the results of using these methods on the cognitive
model applied to the experimental data of our example.



The primary purpose of this chapter is to review some of the technical
issues involved in estimating parameters for cognitive models. This

chapter does not address the important problem of quantitative model com-
parisons, which is a complex topic that is discussed in detail in later chap-
ters. First, we introduce a very simple experiment and its (fictitious) results
to provide a concrete example for this chapter. The example data and model
used in this chapter are based on a similar research that has been published
by Ruben and Wenzel (1996).

Retention Experiment

Stimuli and Procedure

Suppose 5 amnesic participants and 5 control participants are initially
trained on a category learning experiment in which they are trained to cate-
gorize mushrooms as edible or inedible. For the experiment, the stimuli are
more complex, being characterized by four dimensions, namely, length of
stem, width of rim, lightness, and texture. The participants are trained on
the two categories for 400 trials, and then they are tested on new transfer
stimuli. For the experiment analyzed in this chapter, the results are based on
a new set of 200 transfer test stimuli that are presented at each of 11 differ-
ent delay conditions: immediately after training, after 1 week, after 2 weeks,
and so on, and finally after 10 weeks.

Figure 3.1 shows the percentage correct categorization as a function of
delay, averaged over the 200 transfer stimuli, and averaged across the 5 par-
ticipants within each group. The points plotted in the figure represent the
(fictitious) data, and the lines connecting the points are predictions (dis-
cussed later). The amnesic group performed almost as well as the controls
after a single-week delay. But after the first week, the control participants
retained their memory for the categories longer than the amnesic group.

Retention Model

Now we will develop a simple model for this retention performance based
on the connectionist version of the exemplar model discussed in the previous
chapter. First, we need to introduce an assumption about the effect of delay
for the exemplar model. A simple hypothesis is that the connection weights
decay back toward zero with each delay period.

The exemplar model assumes that there exists a list of input nodes that
are activated by the stimulus presented on trial t, and the activations of these
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nodes are represented by the variables {x1(t), x2(t), . . . , xj(t), . . . , xJ(t)}. The
connection weight connecting an input node j to a response category k
immediately after training is denoted as wj,k. The connection weight that
remains after waiting a time period equal to d weeks is denoted as wj,k(d),
where d = 0, . . . , 10 weeks. Note that wj,k(0) = wj,k, which is just the con-
nection weight immediately after training. The decay hypothesis states that

wj,k(d + 1) = γ · wj,k(d), for d = 0, 1, . . . , 10.

For example, wj,k(1) = γ · wj,k(0) = γ1 · wj,k, and wj,k(2) = γ · wj,k(1) =
γ2 · wj,k, and wj,k(3) = γ · wj,k(2) = γ3 · wj,k; and inductively we have
wj,k(d) = γd · wj,k. The parameter γ is a decay rate that ranges between 0 and 1,
and faster decay or forgetting is produced by smaller values of the decay
parameter.

Next, consider how this delay affects the output activations after a delay.
The output activation for kth category evoked by the stimulus presented on
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trial t after a delay of d weeks is denoted as rk(t, d). Recall that the output
activation for each category equals the sum of the products of the input acti-
vations and connection weights. After a delay of d weeks, this equals

where rk(t) is the output activation immediately after training.
Finally, consider the probability of categorizing a stimulus into Category

A after a delay of d weeks, denoted as Pr[A|S(t), d]. This is given by the ratio
of the strengths of the output activations

(3.1)

Note that in the original formulation of the exemplar model presented in
Chapter 2, the output activations, rk(t), depend on the particular stimulus
presented on trial t. Here, we will make a simplifying assumption to mini-
mize the complexity of the model for this chapter. We will assume that all
the stimuli belonging to Category A produce approximately the same output
activations for Categories A and B, denoted as rC and rI for correct and
incorrect, respectively. Similarly, we will assume that all the stimuli belong-
ing to Category B produce approximately the same output activations for
Categories B and A, which also equal rC and rI for correct and incorrect,
respectively. Using this simplifying assumption, the probability of making a
correct categorization is only a function of the delay:

(3.2)

Equation 3.2 is a simple model of retention, which expresses the perfor-
mance measure on the left-hand side as a function of a single independent
variable, denoted as d, for the delay, on the right-hand side. In this form, the
model has four parameters {b, rC, rI, and γ}.

This simplifying assumption needs some justification. First, as we men-
tioned above, we want to focus on parameter estimation, and so we want to
keep the model as simple as possible for pedagogical reasons. Beyond that,

rkðt, dÞ=
X

j

wj, kðdÞ · xjðtÞ=
X

j

ðgd ·wj, kÞ · xjðtÞ

= gd ·
X

j

wj, k · xjðtÞ= gd · rkðt, 0Þ= gd · rkðtÞ,

PðdÞ= eb · rC · gd

eb · rC · gd + eb · rI · gd
:

Pr½AjSðtÞ, d�= eb · rAðtÞ · gd

eb · rAðtÞ · gd + eb · rBðtÞ · gd
:

46——Cognitive Modeling



simplifying assumptions help us see mathematical properties that are not
apparent in the more complex model. Also, if the simplifying assumption is
approximately correct, then we can make nearly the same predictions using
a much simpler equation, and this greatly facilitates later analyses.

Statistical Models

It is difficult to evaluate a model in an absolute sense. No model is per-
fect, so how can one say a model is good without comparing it with other
competitors? Therefore, we will compare this cognitive model with two
other purely statistical models—the saturated model and the null model,
which provide the upper and lower bounds for fit indices. These models are
not derived from any cognitive principles, but they are helpful for evaluating
the fit of the cognitive model.

The saturated model uses a new free parameter to predict the probabil-
ity correct at each delay condition. (It is called the saturated model because
it has the same number of free parameters as the number of data points.)
This model perfectly reproduces the observed proportions, because it sim-
ply makes a prediction for each condition that is equal to the observed rel-
ative frequency for that condition. Thus, the prediction for condition d is
simply: pd = (nCd /n), where nCd equals the frequency of correct choices, nId

equals the frequency of incorrect choices, and n = (nCd + nId) the total num-
ber of trials for condition d (n = 200 observations per condition for each
person in our example). The saturated model provides an upper bound for
measuring model fit. Obviously, this model has no explanatory power, but
it is useful in measuring how far the fit of the retention model is below the
upper bound.

The null model assumes that probability correct remains constant across
all conditions, that is, there is no true effect of the delay on performance.
Any deviation from constant performance is assumed to be sampling error.
This model has only one free parameter, which is estimated by the mean pro-
portion correct, averaged across all the 11 conditions: (Σpd /11). This mean
is used as the prediction for all the 11 conditions. The null model is the sim-
plest possible model, and it provides a lower bound for measuring model fit.
Obviously, this model is wrong, but it is useful for measuring how far the fit
of the retention model is above the lower bound.

The improvement in fit of the cognitive model over the null model indi-
cates the amount of the treatment effect that is predicted by the cognitive
model, and improvement of the saturated model over the cognitive model
indicates the amount of the treatment effect left unexplained by the cogni-
tive model.

Chapter 3 Nonlinear Parameter Estimation——47



Linear Versus Nonlinear Models

Estimating the parameters of the cognitive model is analogous to estimating
the regression coefficients of the linear model. The basic idea is to search for
the set of parameter values that produces the best fit to the data. However,
there is an important technical difference between estimating parameters for
the linear and cognitive models. The former is a special case of a statistical
class of models called the general linear class, whereas the latter is in the
nonlinear class.

A linear model can be recognized by its simple form: Each unknown
parameter is multiplied by a known number (the known score on a predic-
tor variable), and these products are summed to produce the prediction:
y′ = ∑βj · xj. The xs in the equation are treated as known numbers, and the
parameters βj are the unknown variables. The xs in this equation can be any-
thing: For example, setting x1 = d1 and x2 = d2, where d is the value of the
independent variable, still produces a linear model; so does setting x1 = sin d,
x2 = cos d. Estimating the parameters of a linear model can usually be done
with a single-step algorithm that is guaranteed to produce an optimal solu-
tion. Linear models satisfy a special condition: The average of the predic-
tions from two different sets of parameters equals the prediction produced
by the average of the two sets of parameters. Nonlinear models do not sat-
isfy this property. (This distinction between linear and nonlinear models is
presented in the appendix to this chapter.)

The retention model (Equation 3.2) is a nonlinear model, and this has
important implications for the estimation of parameters—there are no
known single-step solutions for estimating the parameters. Instead, an itera-
tive process (a sequence of steps where the next step in the process depends
on the earlier steps) must be used to search the parameter space for the opti-
mal solution, and there is no guarantee that the optimal solution will be
found. The later sections of this chapter treat these issues in more depth. But
first we need to address several other important issues.

Parameter Identification

Before we charge ahead and try to estimate the parameters of a model, we
need to check and make sure that it is indeed possible to obtain a unique
optimal solution. One condition that is usually necessary for the parameters
to be identifiable is that there are more data points than parameters. The dif-
ference between the number of data points and parameters is called the
degrees of freedom (denoted as df), and this should generally be greater than
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zero. However, this is only a necessary condition, and it is not a sufficient
condition for all the parameters to be identified.

Referring back to our retention model, we have four parameters {b, rC, rI, γ},
but it is not possible to estimate all these parameters with the present
experimental design. To understand this issue better, it will help to rewrite
Equation 3.2 in its alternative form:

(3.3)

Suppose we generated artificial data with the parameters b = 3 and
(rC – rI) = 2, so that the product in the exponent of Equation 3.3 equals −6γ d.
Then, suppose we try to fit the same artificial data, but we mistakenly set
b = 1 during the fitting process. Can we still exactly reproduce the artificial
data? The answer is yes, provided that we adjust (rC – rI) by multiplying the
original value by 3 so that it equals (rC – rI) = 2 · 3 = 6. Then, exactly the
same predictions are produced because the product in the exponent of
Equation 3.3 remains the same. More generally, we can set the parameter b
to any arbitrary nonzero value (e.g., b = 1) and then adjust the parameters
rC and rI into rC × b and rI × b to accommodate this arbitrary selection. Only
the product of b × (rC – rI) is needed. Therefore, we can eliminate the para-
meter b without any loss in predictive power of the model. Thus, the para-
meter b cannot be identified in this application, and we simply fix it to some
easily interpretable value such as b = 1.

A similar problem of identification occurs with the two parameters rC and
rI. Suppose, we generated the data setting rC = 10 and rI = 5. Then, suppose
we tried to exactly fit the same data after arbitrarily setting rI = 0. We could
adjust rC so that rC = (10 − 5) = 5 and exactly reproduce the same results.
Only the difference (rC – rI) is important, and so we can replace the two para-
meters with a single parameter r = (rC – rI), without any loss in generality.
We would then interpret this estimate of r as the original difference.

What about the parameter γ? Can this be set to some arbitrary value with-
out losing any generality? The answer is no because there is no way to adjust
any other parameter in the model to compensate for changes in this para-
meter. This parameter is an exponential function of the independent vari-
able, the delay d, and hence no other parameter can compensate for this
feature. Thus, the decay rate is an identifiable parameter.

In sum, our retention model has only two identifiable parameters, the ini-
tial connection strength parameter r and the decay rate parameter γ that need
to be estimated from the data, and so we have 11 − 2 = 9 df, where 11 comes

PðdÞ= eb · rC · gd

eb · rC · gd + eb · rI · gd
· e−b · rC · gd

e−b · rC · gd
= 1

1+ e−b · ðrC − rIÞ · gd
:
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from the number of data points from our 11 experimental conditions.
Therefore, we can rewrite the retention model in the reduced form without
any loss in generality:

(3.4)

Hereafter, this form of the retention model will be used in all the remain-
ing analyses.

There is one last comment that needs to be given about parameter identi-
fication. This issue depends on the design of the experiment. For some exper-
imental designs, a set of parameters may not be identified, but if we changed
the design, then they can be identified. For example, in the present experi-
mental design, the parameter b is not identified because it is not manipu-
lated. However, if we manipulated this parameter by some experimental
factor at K different levels, then this parameter is not identified for the first
level, but it is identified for the other K − 1 levels (i.e., this parameter is iden-
tified up to a ratio scale). For example, we could manipulate b across three
levels by emphasizing the speed versus the accuracy of the decisions (low-,
medium-, and high-speed stress). Then, this parameter would not be identi-
fied for the low-stress level, but it would be identified for the other two
levels. (A general mathematical method for determining parameter identifi-
cation is discussed in the appendix.)

Data Representation

Before we can estimate the parameters from the data, we need to be clear
about the data to be used in the estimation procedure. At first, this may seem
like a trivial step, but there are several important issues that must be decided.
Consider the example from this chapter, where we have data from 5 partic-
ipants within each group, and proportions from 11 delayed test conditions
for each participant, with 200 observations per proportion.

Aggregate Modeling

The first approach is the aggregate data-fitting approach. Using this
approach, we fit the choice proportions separately for each group, pooled
across participants within each group. In this case, the data set would consist
of the 11 choice proportions, per group, corresponding to the 11 delay
conditions, per group, as seen in Figure 3.1. One set of parameters would be

PðdÞ= 1

1+ e−r · gd
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estimated from the normal group, and a second set would be estimated from
the amnesic group. However, this approach implicitly assumes that there are
no important individual differences within each group. More technically, this
approach assumes that there is no variance in the model parameters within
each group. For example, this approach would require one to assume that all
individuals within a group have exactly the same decay rates, or that all indi-
viduals within a group have exactly the same initial association strengths.

Many cognitive researchers consider individual differences to be very
important and therefore reject the aggregate data approach (see Cohen,
Sanborn, & Shiffrin, in press; Estes & Maddox, 2005). If individual differ-
ences are strong, and usually they are, then fitting the model to the aggregate
data, averaged across individuals, can be very misleading. Consider the fol-
lowing well-known example from early learning theory. Early concept learn-
ing theorists were interested in comparing all-or-none learning models with
incremental strength learning models. At the individual level, the all-or-none
model produces a learning curve that starts at chance performance and
jumps suddenly to a solution that produces perfect performance. In contrast,
the incremental learning model produces a smooth and gradually increasing
learning curve for each individual. Now suppose we generate a fictitious
data set containing 100 simulated subjects from the all-or-none learning
model, but we allow large individual differences in the amount of training
required to find the correct solution to the problem. In this case, the true
model is known to be the all-or-none model, and all the individual learning
curves reveal a jump from chance to perfect performance, but the jump
occurs at a different point in training for each person. Next, suppose we
average the data across subjects. This average would generate a smooth and
gradually increasing learning curve for proportion correct, consistent with
the incremental learning model. Furthermore, if we compare the fits of the
two models, the incremental model could produce a superior fit, even
though we know for sure that it is the wrong model. The final section in this
chapter provides a concrete example of this problem.

Individual Modeling

The second approach is the individual data-fitting approach. Using this
approach, we fit the model to the 11 proportions from each individual sep-
arately, allowing separate parameters and even separate models to be best fit
for each person. This approach requires a large amount of data from each
individual. Figure 3.2 is an example of a (fictitious) data set from one of the
individuals taken from each group. Comparing this with the average data
shown in Figure 3.1, it is obvious that the individual data are noisier.
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One important advantage of the individual modeling approach is that it
allows one to determine which model best fits each person from a set of
competing cognitive models. In other words, this method allows for indi-
vidual differences in the best-fitting type of model, and the percentage of
individuals best fit by each cognitive model can be examined. Obviously,
another advantage of the individual modeling approach is that it allows
for any type of individual differences in parameters. Using this approach,
one can estimate the distribution of parameters separately for the amnesic
and control groups. Furthermore, one can compute the means of the para-
meters for each group as well as perform statistical tests on these means to
determine whether the differences between groups are statistically signifi-
cant. For example, after estimating the five sets of parameters for the nor-
mal and amnesic groups, we can compute the mean decay rate for each
group and test whether the mean decay rate is significantly different for the
two groups.
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Hierarchical Modeling

There is a third approach, called the hierarchical data-fitting approach
(see Lee, 2008; Rouder & Lu, 2005), which is a compromise between the
first two. The idea is to fit a single probability mixture model to all the data
from all the participants. The mixture model incorporates an extra, higher-
level set of assumptions regarding the distribution of the parameters across
individuals within each group. For example, to formulate a hierarchical ver-
sion of the retention model, we would need to postulate a bivariate density
function for each group that represents the distribution of the two model
parameters within each group. Thus, we do not estimate the parameters for
any individual, and instead we estimate the parameters of the bivariate den-
sity function of each group. This approach requires a large number of par-
ticipants to obtain accurate estimates of the mixture density.

The hierarchical modeling approach has an advantage over the aggregate
modeling approach because it allows for a distribution of parameters across
individual differences. It also has an advantage over the individual modeling
approach because it avoids fitting separate parameters to each person. If we
assume that the hypothesized mixture density for the distribution of para-
meters is true, then the hierarchical model provides more precise estimates
of the distribution of parameters as compared with the individual model fit-
ting approach. However, if the wrong mixture density function is assumed
for the distribution of parameters, then the hierarchical modeling approach
could produce poorer estimates of the distribution of parameters than the
individual modeling approach.

The hierarchical data-fitting approach is an attractive approach, but there
remain some important advantages for the individual modeling approach.
First, the latter does not require any extra assumptions about the distribu-
tion of parameters across individuals. Second, individual modeling allows
one to compare the fits of the competing models separately for each person.
A third advantage of the individual modeling approach is that it allows one
to examine correlations between model parameters and other individual dif-
ference assessments. For example, after fitting the retention model to each
participant from the amnesic group, one could examine the correlation
between the retention parameter and brain images produced by functional
MRI techniques.

Recommendations

In summary, the individual modeling approach is ideal for cognitive
experiments involving a small number of participants and a large amount of
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data per person. In this case, one can obtain precise estimates from each per-
son, and no assumptions must be made about the distribution of parameters
across individuals. The hierarchical approach is difficult to apply with a
small number of participants because it is difficult to estimate the density
function of the parameters from a small number of individuals. The hierar-
chical approach is ideal for studies with a large number of participants and
a small amount of data per person. In this case, the parameter estimates
obtained from the individual modeling approach are poorly estimated, and
the density function of the parameters for the hierarchical approach can be
estimated more precisely. Most cognitive modeling applications employ a
small number of participants across a large number of trials, and so most of
our examples will use the individual modeling approach. However, the last
chapter in this book presents an example of using the hierarchical approach.
The aggregate approach may be justified only when there is too little data
per person to use the individual modeling approach and the model is too
complex to use the hierarchical approach (Cohen et al., in press).

Objective Functions

There are various measures, or objective functions, that have been used to
assess the fit of predictions to data. Objective functions map parameters into
fit indices: For each combination of parameter values, the predictions are
computed, and the fit to the data is measured. We will review the three most
commonly used objective functions: the least-squares objective, the weighted
least-squares objective, and the likelihood objective.

We will initially consider fitting the results from the normal participant
shown in Figure 3.2. The data from this person are reproduced in Table 3.1.
For example, at delay d = 2, the observed proportion for this person is
p2 = .9204.

The first step for all these objectives is to generate the predicted probabil-
ities from a model for each delay condition using a specific set of parameter
values. To illustrate the process, we will initially evaluate the predictions of
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Delay 0 1 2 3 4 5 6 7 8 9 10

Observed .9538 .9107 .9204 .9029 .8515 .9197 .7970 .8228 .8191 .7277 .7276

Predicted .9526 .9168 .8721 .8229 .7736 .7277 .6871 .6523 .6232 .5993 .5798

Table 3.1 Results for the Control Participant Shown in Figure 3.2



the retention model (using Equation 3.4) generated by setting r = 3 and γ =
.80. These are not the optimal parameters, and they should be considered as
only an initial guess. We will show how to find the optimal parameters later.
Table 3.1 above also shows the predicted probabilities from Equation 3.4
with r = 3 and γ = .80. Considering the first delay condition, d = 0, the pre-
diction is P(0) = 1/{1 + exp[−3 · (.80)0]} = .9526, and the probability of an
incorrect response is 1 − (.9526) = .0474. Skipping up to the delay condition
d = 2, the predicted probability is P(2) = 1/{1 + exp[−3 · (.80)2]} = .8721, and
the incorrect probability is 1 − .8721 = .1279. Finally, moving down to the
final delay condition, d = 10, the predicted probability is P(10) = 1/{1 +
exp[3 · (.80)10]} = .5798, and the probability incorrect is 1 − .5798 = .4202.

Least-Squares Objective

Perhaps the most commonly used method for measuring fit is to sum the
squared deviations between the observed and predicted values. For example,
at delay d = 2, the observed proportion equals p2 = .9204, the prediction for
this condition was P(2) = .8721, and so the error is [p2 − P(2)] = (.9204 −
.8721) = .0483. Squaring this error produces [p2 − P(2)]2 = (.0483)2 = .0023.
This computation is performed on all 11 proportions to yield the sum of
squared errors (SSE):

SSE = ∑[pd − P(d)]2,

which in this case is SSE = 0.1695.
One problem with the SSE measure of fit is that it penalizes all errors the

same. However, some errors may be considered more serious than others,
depending on the precision of the estimated proportion pd = (nCd/n), where
nCd is the number correct and n is the total number of trials per condition.
Suppose that the retention model is the true model. Then, the variance of the
sample proportion is given by

where Q(d) = [1 − P(d)]. For example, σ2(0) = (.9526)(.0474)/200 = .00023
and σ2(10) = (.5798)(.4202)/200 = .00122. As can be seen from this formula,
the variance is a quadratic function of probability: This quadratic has an
inverted U-shaped form with a maximum at P(d) = .50 and a minimum at the
extremes of 1.0 and 0.0. Based on this sampling distribution, we expect smaller
estimation errors at short delay conditions, where the probability is closer

Var½pd�=s2ðdÞ= PðdÞ ·QðdÞ
n

,
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to 1.0, and we expect larger estimation errors at longer delay conditions, where
the probability is closer to .50. Thus, errors at the longer delays should be given
less weight because they are likely to be the result of estimation error. The least-
squares criterion gives all errors equal weight. As we shall discuss later, this
failure to take the variance of the estimation error into account causes the least-
squares method to be an inefficient method for estimating parameters.

Weighted Least-Squares Objective

The next criterion is closely related to the least-squares method. The
weighted least-squares method (denoted as WSSE) is computed from the
squared deviations between the predicted and observed data points, but
these deviations are weighted by the inverse of the variance of the prediction.

which in this case is WSSE = 158.4059. The WSSE statistic is mathematically
equivalent to the Pearson chi-square statistic:

where qd = (1 − pd) and Q(d) = [1 − P(d)]. The proof is simple if we exam-
ine each term being summed. First, we note that [qd − Q(d)]2 = {(1 − pd) −
[1 − P(d)]}2 = [pd − P(d)]2. Then, using a common denominator, we combine
the two terms within the Pearson chi-square statistic as follows:

Comparing the left- and the right-hand sides, we see that each term in the
Pearson chi-square sum is exactly equal to each term in the WSSE sum. Thus,
the two statistics are equivalent.

WSSE=
X ½pd −PðdÞ�

sd

� �2

=
X 1

s2
d

· ½pd −PðdÞ�2

n · QðdÞ½pd −PðdÞ�2 +PðdÞ½qd −QðdÞ�2
PðdÞ ·QðdÞ

= n · ½QðdÞ+PðdÞ� · ½pd −PðdÞ�2
PðdÞ ·QðdÞ

= n · 1 · ½pd −PðdÞ�2
PðdÞ ·QðdÞ = ½pd −PðdÞ�2

s2ðdÞ :

χ2 =n ·
X ½pd −PðdÞ�2

PðdÞ

 !
+ ½qd −QðdÞ�2

QðdÞ

 !
,
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Likelihood Objective

The last method computes the likelihood that a model would have gener-
ated the observed data, given a fixed set of parameter values. Once again, we
will illustrate this method using the retention model with the parameters set
equal to r = 3 and γ = .80.

To compute this likelihood, it is useful to list all the 2,200 trials in the exact
order of presentation. Part of these data is shown below in Table 3.2, which is
from the same data that were summarized in Table 3.1. The first column indi-
cates the trial number, the second column indicates the observed response on
each trial (in this case, whether the choice was correct or incorrect), the next
column indicates the experimental delay condition, and the last column shows
the predicted probability of being correct for that person on that trial.

To compute the likelihood, we need to make an important assumption.
We must assume that the response on any trial is statistically independent of
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Trial Choice Delay Prediction

1 C 0 .9526

2 I 0 .0474

3 C 0 .9526

4 C 0 .9526

5 C 0 .9526

. . .

310 C 2 .8721

320 C 2 .8721

330 I 2 .1279

340 I 2 .1279

. . .

2,190 C 10 .5798

2,200 I 10 .4202

Table 3.2 List of Data That Were Summarized in Table 3.1



the response on any other trial. A statistically independent sequence of
binary responses is called a Bernoulli process. This assumption is probably
false because of temporally extended factors such as fatigue, drifting atten-
tion, or response alternation tendencies; but it is often made for simplicity.
Violations of statistical independence can be checked by statistically testing
the autocorrelations at various lags, or testing the spectral density for devi-
ations from white noise. However, for the purposes of this chapter, we will
simply assume that the process is a Bernoulli process (in fact, it is true,
because the data were artificially generated that way). This assumption is
commonly made in cognitive modeling research, but caution about this
assumption must always be kept in mind.1 In a later chapter, we will relax
this assumption and allow for statistical dependencies across trials.

Assuming statistical independence across trials, the joint probability of
the responses across all trials is simply the product of the probabilities
from each trial. (A general form for the likelihood function is given in the
appendix to this chapter.) Referring to Table 3.2, the likelihood for the
retention model, denoted as LR, is computed by multiplying all the proba-
bilities under the predicted column:

LR = (.9526)(.0474)(.9526)(.9526)(.9526) . . . (.8721)
(.8721)(.1279)(.1279) . . . (.5798)(.4202).

As you might expect, this product turns out to be a very small number,
and so it is more convenient to work on the log scale by taking the natural
logarithm of the product, which is called the log likelihood. (Recall that the
log of a product equals the sum of the logs.) In this case, we obtain

ln(LR) = ln(.9526) + ln(.0474) + ln(.9526) + ln(.9526) + ln(.9526) + . . .
+ ln(.8721) + ln(.8721) + ln(.1274) + ln(.1274) + . . .
+ ln(.5798) + ln(.4202)
= −969.9514.

We can simplify this log-likelihood expression by counting the number of
correct responses for each condition, nCd, and counting the number of incor-
rect responses for each condition, nId. By combining all the terms contributed
by the correct responses for each condition and also combining all the terms
contributed by the incorrect responses to each condition, we obtain a much
shorter formula:

(3.5a)lnðLRÞ=
X

d=1,..., 11

nC, d · ln½PðdÞ�+ nI, d · ln½QðdÞ�=−969:9514:
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This is the standard formula for the log likelihood of a Bernoulli process,
and it is closely related to the formula for the binomial distribution.2

It is difficult to judge whether this likelihood produced by this model is
good or bad without having some idea about the maximum that can possi-
bly be obtained for any model and any set of parameters. Assuming statisti-
cally independent observations, this maximum can be determined by
evaluating the log likelihood of the saturated model. Recall that the satu-
rated model simply uses the observed relative frequencies as the prediction
for each delay condition:

ln(LS) = ∑ nC,d · ln[pd] + nId · ln[qd]. (3.5b)

Using the observed relative frequencies shown in Table 3.1 to compute
the log likelihood for the saturated model produces the result ln(LS) =
−879.9013. Note that the saturated model has higher log likelihood as com-
pared with that produced by the retention model. This must always be true.

When maximum likelihood is used to estimate parameters, the lack of fit
is usually measured by a statistic called G2. This is computed as follows.
First, the difference between the log likelihoods of the saturated model
and the retention model is computed: ln(LS) − ln(LR) = (−879.9013) −
(−969.9514) = 90.0501. This difference is called the log-likelihood ratio
because ln(LS/LR) = ln(LS) − ln(LR). The G2 statistic is defined as twice the
difference in the log-likelihood ratio:

G2 = 2[ln(LS) − ln(LR)], (3.6)

and in this case G2 = (2)(90.0501) = 180.1002. This measures the lack of fit
between the cognitive model and the saturated model. The parameters that
maximize the likelihood objective are equivalent to the parameters that min-
imize G2. Hereafter, when we refer to the maximum-likelihood objective, we
will actually be minimizing G2.

Relations Among Objectives

Here, we briefly point out some of the mathematical relationships among
the three objective functions that we have reviewed. First, consider least
squares and weighted least squares. If the variance does not change across
conditions so that the weight is constant, then the weighted least-squares
objective is equivalent to the least-squares objective. For example, linear
regression models usually assume homogeneous variance (constant variance
across conditions), and in that case the two objectives are identical. But as
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we noted earlier, choice probabilities do not satisfy the homogeneous vari-
ance assumption. Neither does choice response time—the variance of
response time for each condition tends to increase with the mean response
time for each condition. Thus, it is unsafe to assume homogenous variance
across conditions. (However, in the appendix, we present a method for
transforming the dependent variable so that a weighted least-squares prob-
lem can be solved using least-squares methods.)

Next, consider the relation between weighted least squares and maximum
likelihood. If we assume that the model is true, then the G2 statistic, which
is used with the maximum-likelihood objective, has the same asymptotic dis-
tribution as the WSSE statistic—both are asymptotically chi-square distrib-
uted (Rao, 1965). Furthermore, these two methods produce parameter
estimates that have the same asymptotic normal distribution (see the appen-
dix for more details about this point). Therefore, with large sample sizes,
these two objectives produce very similar results.

Finally, consider the relation between least squares and maximum like-
lihood. This relation depends on the performance measure. In the present
case, we are considering proportion correct as the performance measure,
which has a binomial distribution. However, if the performance measure
was normally distributed, and we assumed homogenous variance across
conditions, then G2 is linearly related to the sum of squared errors. Under
these special conditions, minimizing sum of squared error is equivalent to
maximizing the likelihood function (see the appendix).

Efficiency of Estimators

We have presented three methods for estimating parameters, and this nat-
urally leads one to a question: How do we choose an objective for estimat-
ing parameters? This is usually decided on the basis of the statistical
properties of the estimates produced by each method. There are two impor-
tant properties of estimators: consistency and efficiency. Suppose the model
we are fitting is the true model that actually generated the data. Then, the
parameter values that minimize lack of fit to the sample data are sample esti-
mates of the true parameters. A method for estimating parameters is consis-
tent if the parameter estimates that it produces converge (in distribution) to
the true values as the sample size for each condition increases to infinity. The
method is efficient if, among all the consistent estimators, it produces
estimates that have minimum variance. All three methods generally satisfy
the consistency property, so this does not lead to a basis for preference.
However, the methods differ with respect to the efficiency property. If
homogeneity of variance is not satisfied, then the least-squares method is not
efficient. This is an important reason for using either the weighted least
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squares or the maximum-likelihood objectives. Mathematically, it has been
proven that parameter estimates obtained from minimizing weighted least
squares or maximum likelihood are consistent and efficient (Rao, 1965).

Searching for Optimal Parameters

Recall that the retention model produced a G2 = 180.1002 using the specific
parameter values γ = .8 and r = 3. But this is not necessarily the best or worst
choice. In fact, if we set γ = .8 and r = 2 we obtain a much worse fit, G2 =
359.913; and we shall see later that the optimal parameters are obtained by
setting γ = .9042 and r = 2.9166, which produces a G2 = 15.8077. How we
found this will be discussed below.

Grid Search

To glean some idea about how computer search programs work, we will
analyze the search problem in a bit more detail. Consider forming a two-
dimensional grid by crossing 151 values for γ (.80, .51, .52, . . . , .95) with
201 values for r (2, 1.01, 1.02, . . . , 4.0) producing 151 · 201 = 30,351
points on the grid. Suppose we compute a G2 fit statistic for the data from
Table 3.2 at each of these points on the grid, and then plot the G2 values
above each point on the grid. This produces the response surface plot shown
in Figure 3.3. The left horizontal axis represents the 201 values of the asso-
ciation strength parameter r; the right horizontal axis represents the 151 val-
ues of the decay parameter γ; and the vertical axis represents the value of G2

above each grid point. The surface produced by this looks like a curved sheet
of paper. Our task is to find the grid point that lies at the bottom of this
curved sheet. If we start from one of the corners and move step by step in
the direction downhill, we will eventually reach the bottom where a move in
any direction takes us back uphill. This is the minimum point for which we
are looking, and in this case, it happens to be located at (γ = .9042,
r = 2.9166). This is called hill climbing (downhill).

The curves shown in the horizontal plane at the bottom of the response
surface are contour curves. Each contour curve indicates the set of grid
points that produce exactly the same G2 lack of fit. The outer contour curves
show the points that produce a large G2 or poor lack of fit, and the inner
contour curves that surround the minimum point produce small G2 or good
fit. Notice that the inner contour curve that surrounds the minimum is ellip-
tical with the major axis aligned with the negative correlation between the
strength and decay parameters. This shows that changes in the parameters
along this line produce only small changes in fit.
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The graphical analysis described above is not really practical in most
model-fitting applications. There are two reasons for this. One is that the
graphical analysis can only be used with one or two parameters and the
other is that most applications have more than two parameters. A grid
search can be used with any number of parameters to find a rough idea of
where the maximum is located, but this solution is usually too crude, and
more precise estimates are usually required. Grid searches are useful for find-
ing a starting point for a more precise analysis. Parameter optimization
for models with many parameters requires the use of sophisticated search
processes on a computer. Mathematical programming languages such as
MATLAB, Mathematica, GAUSS, or SAS provide programs for performing
search of parameters for nonlinear models.

Below we sketch the basic idea of a steepest-descent algorithm.

Steepest-Descent Search

Computer search programs are designed to find the parameters that pro-
duce the minimum of an objective function, G2 in our case. Some of these
programs use a form of steepest descent, which can be roughly described as
follows. We can start at any point, say, for example, the point (γ = .8, r = 4)
in the back corner of Figure 3.3. From here, we can consider moving a small
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step to a nearby grid point, say the point (γ = .801, r = 3.99). The line con-
necting these two points forms a direction. If we compute the change in the
G2 statistic produced by moving in this direction, we would find that it
produces a decrease in G2. But this may not be the direction producing the
maximum decrease. Alternatively, we could consider moving a small step to
another adjacent grid point such as (γ = .8, r = 3.99) or (γ = .801, r = 4), and
compute the change in G2 produced by this direction. By checking all the
possible small moves at adjacent grid points in every direction, we could find
the move that produces the largest decrease in G2, which is the direction of
steepest descent. The program takes a very small step in the direction of
steepest descent. After making this move to this new position, we have a new
set of parameters that are better than the starting values. This completes the
first iteration of the search process, and the whole procedure is repeated. For
the second iteration, we start from the current point after the first iteration,
find the direction of steepest-descent from this new point, and take a second
small step in the direction of the gradient at this point to produce the second
position after the second iteration. This process continues until we reach a
point where a move in any direction fails to decrease the objective, our G2

statistic. At this minimum point, the surface becomes perfectly flat, and all
directions lead uphill (which is at γ = .9042 and r = 2.9166 in this case).

Mathematically, the direction of steepest descent is found by computing
the gradient of the objective function at current point of search in the para-
meter space. The gradient is equal to the partial derivative of the objective
function with respect to each parameter. Steepest-descent search programs
move downhill in the direction of the gradient until the gradient reaches
zero. Steepest-descent programs do not require the user to supply the gradi-
ent; instead the program uses finite difference methods to estimate the gra-
dient automatically for the user. In the appendix to this chapter, we provide
more details about the steepest-descent search methods, as well as an exam-
ple program.

Constraints on Parameters

Often the parameter estimates for a cognitive model need to be con-
strained so that they fall within theoretical boundaries. For example, the
decay rate should range from 0 (complete forgetting) to 1 (no forgetting),
and the initial strength should be nonnegative. Sometimes, however, an
unconstrained search algorithm will explore parameter values that fall out-
side the boundaries. When this happens, it may be a signal that the model is
not fitting very well or the data are too noisy. In this case, it may be neces-
sary to force the parameter search to stay within the theoretical boundaries.
There are a couple of ways to do this.
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Constrained steepest-descent programs are designed to satisfy what are
known as the Kuhn Tucker conditions, which are necessary conditions
for optimality under nonlinear constraints. These programs incorporate the
information about the Kuhn Tucker conditions directly into a modification
of the objective function, called the Lagrangian function, and the search is
based on this modified objective. This method provides the most effective
way to deal with the parameter constraint problem.

Other search programs (described below) cannot incorporate information
about the Kuhn Tucker conditions into the search process. These alternative
search algorithms require another method for incorporating constraints.
Another way to do this is to reparameterize the model using new parameters
that have no constraints. For example, if we wish to impose the constraint
r > 0, we could define the initial strength as r = eu, and search for the para-
meter u instead of r; and if we wish to constrain the decay rate γ to range from
0 to 1, then we could define the decay rate as γ = 1/(1 + e−v), and estimate v
instead of γ. Using this method, the search program searches for the pair of
parameters (u, v), which are then used to compute the two cognitive para-
meters r and γ, and finally, the latter are inserted into the retention model to
make predictions. Although this method of imposing constraints works, it is
less than ideal because it adds extra complications to the search process.

Flat Minimum Problem

Several problems can occur with the parameter search process. If the
response surface is very flat, then the steepest-descent search process may
terminate prematurely because the changes in the objective function are too
small to detect improvements. Notice in Figure 3.3 that the surface is steep
along the line formed by connecting the left corner point (.95, 4) with the
front corner point (.95, 2). Changes in parameters along this line produce a
very large change in the lack-of-fit measure. But the surface is very flat along
the line connecting (.95, 2) to (.90, 3). In other words, near the minimum
point, decreasing the decay parameter γ can be compensated by increases
in the strength parameter r to produce almost the same fit. If we start at the
point where the function is the minimum, and move along this negatively
correlated line where the function is flat, then substantial changes in para-
meter values produce small changes in the lack of fit. This insensitivity of the
objective function to changes in parameter values causes instability in the
parameter estimates. More precisely, the curvature of the objective function
near minimum determines the variance of the parameter estimates. Flatness
near the minimum produces parameter estimates with large standard errors.
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Local Minima Problem

There is an important limitation with steepest-descent search algorithms
called the local minimum problem. Note that the objective function plotted
in Figure 3.3 has only one minimum. In fact, the surface can be well approx-
imated by a bowl-shaped quadratic function near the minimum. This is a
desirable situation but there is no guarantee that this will occur. Consider, for
example, the search for a maximum problem illustrated in Figure 3.4. In this
example, a grid of points for a single parameter is plotted on the horizontal
axis, and the objective function is plotted on the vertical axis. If the steepest-
ascent search program began its search on the far left side, then it would suc-
ceed in finding the global maximum, which is the desired point. However, if
the program started on the far right side, then it would get stuck at the local
maximum and never find the global maximum. The only way to avoid getting
stuck at the local maximum in this case is to try out several starting positions.

As the number of parameters increases, the possibility of more than one
local minimum increases and this becomes a serious problem. When several
local minima are possible, it is important to try out a grid of starting positions
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or a random sample of starting positions. If two different starting positions
produce different search results, then of course, you choose the search result
that yields the smallest value for our objective function. But this would also
serve as a warning that local minima are a problem.

For very difficult search problems, such as highly nonlinear problems
involving a large number of parameters, many local minima may be present,
and then it may be advantageous to use a stochastic search called simulated
annealing to avoid getting stuck in a local minimum (Ingber, 1993;
Kirkpatrick, Gelatt, & Vecchi, 1983). Briefly, the simulating annealing algo-
rithm works as follows. From a given starting position, the program ran-
domly selects a new position and evaluates this new position compared with
the old position. With probability p, the algorithm selects the superior of
these two points, and with probability (1 − p) it selects the inferior. This
procedure is repeated for many iterations; however, with each iteration the
value of p gradually increases. The rationale behind this method is the fol-
lowing. Early in the search, the procedure bounces up and down a lot so that
it can escape out of a local minimum; but later in the search, the procedure
converges toward the global minimum.

Discontinuities

Steepest-descent algorithms require computing the gradient, and this is
only feasible for objective functions that are smooth and continuous. When
discontinuities, such as breaks, jumps, or kinks, exist in the objective function,
then steepest-descent is no longer applicable, and some other non-derivative-
based search process must be employed.

The most commonly used direct search method is the Nelder-Mead sim-
plex algorithm (Nelder & Mead, 1965). To briefly describe this algorithm,
consider the problem of searching the parameter space for the best-fitting
two parameters of the retention model. The parameter space is represented
by the rectangular horizontal plane shown in Figure 3.3. Each point on this
plane represents a pair of parameters. This program starts by taking three
points in this parameter space (three pairs of parameters), forming a small
triangle (called the simplex), and evaluating these three points with respect
to the objective function. Then, a new fourth point is generated, either
within or nearby the edge of the triangle, from the original three points. For
example, the new point may be formed by averaging the three points, pro-
ducing a fourth point. Finally, the best three out of these four points is
retained, and the worst point is dropped. This procedure is repeated until no
new point can be generated that improves the objective function.
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Many cognitive models encounter this problem of discontinuity. In par-
ticular, this problem occurs whenever the predictions of the model involve
random elements. For example, a neural network model may use randomly
selected initial connection weights prior to category learning. If this were the
case, then the predictions from this neural network model would vary ran-
domly even when the model parameters are held constant. If the predictions
vary randomly, then so does the measure of fit. The result is that the objec-
tive function is no longer a simple function of the parameters. Even when
the model parameters are held constant, the objective function will change
abruptly due to the random elements. At one stage of the search process, one
point in the parameter space may produce a better fit than another, but at
the next stage, the order could reverse simply due to the random elements.
For these types of models, involving random elements, derivative-based search
methods cannot work, and a direct search algorithm is required.

Discrete-Valued Parameters

Some cognitive models involve integer- as well as continuous-valued para-
meters (e.g., the number of items that can be stored in a short-term store).
One way to deal with this type of problem is to use a steepest-descent algo-
rithm to minimize the continuously valued parameters for a specific value of
the integer parameter. Then, repeat this process for each value of the discrete
parameter producing a finite set of search results. Finally, select the discrete
parameter value that results in the minimum of all these searches. However,
if there are very many values of the discrete parameters to check, then this
method becomes too difficult to employ.

Under these conditions, it may be advantageous to use a genetic algorithm
to search for the optimal combination of discrete and continuous parameters.
Genetic algorithms were invented by John Holland (1975) and are based on
concepts from biological evolution. This method maintains a population of
candidates (called genes), where each candidate is a binary coded representa-
tion of a combination of parameter values. Then genetic principles of random
crossovers and mutations are used to generate new candidates, and evolution-
ary principles of fitness and selection are used for reproduction of candidates.

Results From Each of the Estimation Methods

What happens when we use different objective functions to estimate the
parameters for the same data shown in Table 3.1? Will we obtain the same
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parameter estimates? In general, the answer is no. To illustrate, we used a
modified steepest-descent algorithm to minimize SSE, WSSE, and G2 for the
data shown in Figure 3.2, separately for the normal participant (see Table 3.3a)
and the amnesic participant (see Table 3.3b). This table shows the solutions
for the best-fitting parameters produced by each method. As can be seen in
this table, although the results are not exactly the same, they turn out to be
very similar in this case. All three methods produce an estimate of the decay
rate that is faster for the amnesic participant as compared with the normal
participant. However, there is no guarantee that the results will always turn
out this similar.

The parameters that minimized the G2 criterion were found for all 5 par-
ticipants from each of the two groups, and the results, averaged across par-
ticipants, are shown in Table 3.4. Each cell shows the mean for each group,
and the standard deviation is shown in parentheses. Once again, we observe
a faster decay rate for the amnesic group. These data were artificially gen-
erated from the retention model using the following population parameters:
(γ = .90, r = 3.0) for the normal population and (γ = .80, r = 3.2) for the
amnesic population. Thus, the estimation procedure did a good job of recov-
ering the true parameter values in this example.

68——Cognitive Modeling

Decay, γ Strength, r Fit Index

SSE .8997 3.0046 SSE = 0.0095

WSSE .9040 2.8863 WSSE = 14.81

Likelihood .9042 2.9166 G2 = 15.8077

Table 3.3a Parameter Estimates Obtained From the Normal Person Shown in
Figure 3.2

Decay, γ Strength, r Fit Index

SSE 0.7902 3.3222 SSE = 0.0031

WSSE 0.7850 3.4042 WSSE = 5.4033

Likelihood 0.7820 3.4744 G2 = 5.6596

Table 3.3b Parameter Estimates Obtained From the Amnesic Person Shown in
Figure 3.2



Variance of the Parameter Estimates

The standard deviations shown in Table 3.4 represent the variation in the
estimated parameters across individuals within each group. There appears to
be more variation in the strength parameter as compared with the decay
parameter. It is important to note, however, that the variance of each para-
meter is influenced by two sources: One is variation caused by individual dif-
ferences in the parameter across people within the same group; but another
source is estimation error variance caused by noisy sample data.

In this example, the data were actually simulated with no variance in the
true parameters across individuals within a group—all 5 participants within
each group were generated using exactly the same parameter values.
Therefore, the variation in parameter estimates across individuals for this
artificial example is entirely attributed to estimation error. The standard
error for the strength parameter is larger than that for the decay parameter.

It is possible to compute the standard errors of the parameters for each
individual when steepest-descent algorithms are used with the weighted least
squares or likelihood objectives. At the completion of the parameter search
for the minimum, the steepest-descent algorithms can compute a matrix
called the inverse Hessian matrix (see the appendix to this chapter for more
details about this matrix). For large sample sizes, the element located in the
ith diagonal position of this matrix provides an estimate of the variance of
the ith parameter, and the square root of this element gives the standard
error of this parameter. For example, the retention model has two parame-
ters, and so the inverse Hessian is a 2 × 2 matrix with two diagonal elements.
The first diagonal element provides an estimate of the variance of the decay
rate, and the second diagonal element provides an estimate of the variance
of the initial strength. In particular, for the normal participant shown in
Table 3.1, the inverse Hessian matrix is

:0001 −:0008
−:0008 :0160

� �
:
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Group Mean Decay Mean Strength Mean G2

Normal (N = 5) .9022 (.0135) 2.9373 (.1898) 10.8018 (5.0029)

Amnesic (N = 5) .8062 (.0171) 3.1550 (.2145) 7.5540 (2.1606)

Table 3.4 Means and Standard Deviations Averaged Across Participants Within
Each Group



Therefore, an estimate of the standard error for this person on the decay
rate equals (.0001).5 = .01, and an estimate of the standard error for the ini-
tial strength is (.0160).5 = .1265. These results reflect the sample estimates of
the standard deviations (based on the estimate from 5 participants) shown
in Table 3.4.

The off-diagonal elements of the inverse Hessian matrix are also infor-
mative. These indicate the covariance between a pair of parameters. For
example, using the data from the normal participant shown in Table 3.1, the
estimate of the covariance between the parameters equals −.0008, and the
corresponding correlation is (−.0008)/(.01)(.1265) = −.8187, which is highly
negative. This negative covariance reflects the parameter trade-off that we
observed near the minimum in Figure 3.3.

For large sample sizes, when the weighted least squares or the likelihood
objectives are used, the parameters are asymptotically normally distributed.
Therefore, one can compute 95% confidence interval estimates of the para-
meters using a z table. Consider, for example, the data from the amnesic par-
ticipant shown in Table 3.3b. The estimate of the decay rate for this person
shown in Table 3.3b is .782. Using the methods discussed above, we find
that the standard error of this estimate equals .1818. Finally, the 95% con-
fidence interval is .782 ± (1.96)(.1818), which produces the interval [.4257,
1.1383]. The upper bound is too high, because it does not make sense to
have decay rates greater than 1. A Bayesian method (see Chapter 6) that builds
in this prior probability would produce a better estimate in this case.

Model Evaluation

Chi-Square Lack-of-Fit Test

Both the weighted least squares and the maximum-likelihood methods
provide a statistical test of deviations between the cognitive model and the
saturated model. If the sample size is sufficiently large, then both statistics,
χ2 and G2, are approximately chi-square distributed. If we wish to test the
null hypothesis of no difference between the cognitive model and the satu-
rated model, then we can refer the computed χ2 or G2 statistic to a standard
chi-square table with df equal to the number of data points minus the num-
ber of parameters in the cognitive model. If the statistic exceeds the table
value at a specified significance level, then the null hypothesis can be
rejected, which means that there are some significant deviations in fit of the
model to the data.

The sample size was n = 200 per condition for each person, which is fairly
large, and so these chi-square tests are reasonable in this case. The degrees
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of freedom for this problem is df = 11 – 2 = 9 (11 data points minus 2 para-
meters), and the table chi-square at the .05 significance level is 16.92.
Comparing this with the WSSE and G2 statistics shown in Table 3.3, we fail
to reject the null hypothesis. In other words, we conclude that there are no
statistically significant deviations from the model predictions. (This is the
correct decision in this case, because the data were in fact artificially gener-
ated from the model.)

These statistical tests of lack of fit are of limited scientific use for the fol-
lowing reasons. First, we know a priori that our cognitive model is imper-
fect, and so we are bound to have deviations between it and the real
cognitive system generating the empirical data. Second, statistical tests of
lack of fit are only valid for large sample sizes, and as the sample size gets
large, the power to reject the incorrect null hypothesis increases toward 1.0,
even on the basis of small deviations. Therefore, with a sufficiently large
sample size, we are almost guaranteed to reject the null hypothesis as a
result of deviations that are certain to exist between the model and the true
generating process. In short, failure to reject the null hypothesis only tells
us that the sample size is too small to detect the imperfections that must
exist, and rejection of the null hypothesis only tells us that the model is
imperfect, which we knew from the beginning.

R2 Index of Model Fit

It is difficult to judge whether the SSE statistic is good or bad, so we need
to compare it with that produced by the saturated and null models. The sum
of squared errors produced by the saturated model is obviously zero,
because it exactly reproduces the observed choice proportions. The sum of
squared errors produced by the null model is equal to the sum of squared
deviations around the mean (denoted as TSS). An index of fit, called R2, is
defined as

R2 = 1 − (SSE/TSS) = TSS/TSS – SSE/TSS = (TSS − SSE)/TSS = SSP/TSS,

where SSE is the sum of squared errors produced by the cognitive model,
and SSP is the sum of squares predicted by the model. Thus, R2 is the ratio
of the predicted sum of squares to the total sum of squares, that is, the pro-
portion predicted by the model. If R2 = 0, the cognitive model is no better
than the null model, and if R2 = 1, the cognitive model is equal to the satu-
rated model.3

The mean for the normal participant (the data shown in Table 3.1), equals
0.8503, which produces a TSS = 0.0615; the SSE for this individual (shown
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in Table 3.3a) is SSE = 0.0095. Therefore, R2 = 1 − (.0095/.0615) = .8455,
which is a mediocre fit. For the amnesic participant, the R2 = 1 – (.0031/.0615) =
.9841, which is much better. Note that SSE is a measure of badness of fit,
whereas R2 is a measure of goodness of fit. These two indices are linearly
related to each other, so whatever parameters happen to minimize SSE will
also maximize R2.

Aggregate Versus Individual Modeling

To illustrate some of the problems that can be encountered by fitting aver-
age rather than individual data, two sets of predictions were generated from
the retention model. One set was generated by setting γ = .80 and r = 3.00
(with no sampling error), which we will call the Person A data set; a second
set was generated by setting γ = .40 and r = 3.20 (with no sampling error),
which we will call the Person B data set. A third data set was constructed
from the first two by averaging the corresponding values of the first two data
sets, which we will call the Average Person data set. All three data sets are
graphed in Figure 3.5 below, with Person A as the top curve, Person B as the
bottom curve, and the Average Person is the middle curve.

The retention model was fit to all three data sets, solving for γ and r that
minimized the SSE criterion.4 The retention model perfectly fits the Person
A data set with R2 = 1.0; it also perfectly fits the Person B data set with
R2 = 1.0. This is exactly what we expect because this model generated these
data. However, it did not generate the Average Person data set, and it
cannot perfectly fit these data. In this third case, we find R2 = .9756. This
failure to fit the Average Person data is a direct consequence of the nonlin-
earity of the model.

Suppose we try fitting another model, called the power function model,
to these same three data sets:

P(d) = r · (d + 1)γ.

This model also has two parameters, γ and r, that must be estimated from
each data set. The power function model was fit to all three data sets, solv-
ing for γ and r that minimized the SSE criterion. The power function model
cannot perfectly fit the Person A data set, and we find R2 = .8938 for this
case. It cannot perfectly fit the Person B data set either, and we find
R2 = .9335 for this case. Both these results are expected because the two indi-
vidual data sets were not generated by the power function—they were
generated by the retention model. However, when we fit the power function
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to the Average Person data set, we find R2 = .9924, almost a perfect fit, and
clearly superior to the retention model.

In this example, the retention model is the true model, and the power
model is the false model, for the two individual data sets. When we compare
the true model with the false model using the average data, the false model
fits better. But if we compare the models using the individual data sets, the
true model fits better in both cases. This example was based on earlier analy-
ses of this problem by Myung, Kim, and Pitt (2000). This illustrates how
aggregating data can mislead researchers, and it points out the importance
of comparing models at the individual level of analysis.

Conclusion

Often a researcher wishes to compare the quantitative predictions between
two cognitive models. In this case, it is necessary to obtain optimal estimates
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of the parameters from both models to give each model the best chance of
predicting the data. We don’t want to reject a model simply because we arbi-
trarily chose poor parameters. Furthermore, the parameter estimates them-
selves can be of great interest to the researcher, because they provide
measures of important underlying cognitive processes. For example, in a
memory retention model, we may be interested in estimating the difference
in the decay rate parameter for amnesic and control subjects. We cannot
extract this decay rate by simply looking at the raw data. Instead, we need
to estimate the decay rate using the cognitive model. Cognitive models are
usually nonlinear and this makes the parameter estimation process more
complex than it is for linear models such as a regression model. However,
with the availability of nonlinear search programs commonly available in
mathematical programming languages, this process is becoming easier and
more practical.

Appendix

This appendix provides more technical details about several of the topics
concerning nonlinear parameter estimation. First, we present more general
statements of both the least squares and the likelihood objectives. Then, we
describe two of the most commonly used steepest-descent types of algorithms:
the quasi–Newton-Raphson algorithm and the modified Gauss-Newton
algorithm.

Generalized Least Squares

Weighted and unweighted least-squares methods require one to write the
cognitive model as a nonlinear function, here denoted as M, that maps the
independent variables and the parameters into a set of predictions. Define Y
as a column vector of observations, X is a matrix of known independent
variables, θθ is a vector of parameters, and E is a column vector of errors.
Mathematically, the cognitive model is represented by the following nonlin-
ear model:

Y = M(X, θθ) + E,

where Var[E] = ΣΣ is the variance-covariance matrix of the errors.
Parameters that minimize the least-squares criterion, SSE = ETE, are effi-

cient if we assume that ΣΣ = σ2I. When this assumption is not valid, we need
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to find parameters that minimize WSSE = ETΣΣ–1E to obtain efficient esti-
mates. However, any weighted least-squares minimization problem can be
linearly transformed into a least-squares minimization problem as follows.

First, we express the variance-covariance matrix of E in terms of its eigen-
vectors and eigenvalues: ΣΣ = VΛΛVT = VΛΛ1/2ΛΛ1/2VT, where V is the orthonor-
mal matrix of eigenvectors of ΣΣ, ΛΛ is the diagonal matrix of eigenvalues of
ΣΣ, and ΛΛ1/2 contains the square roots of the eigenvalues. The inverse also can
be expressed in terms of eigenvectors and eigenvalues as

ΣΣ–1 = VΛΛ–1VT = (VΛΛ–1/2)(ΛΛ–1/2VT),

where ΛΛ–1/2 is the inverse of ΛΛ1/2. Then, the weighted sums of squares can be
rewritten as

WSSE = ETΣΣ–1E = ETVΛΛ–1VTE = (ETVΛΛ–1/2)(ΛΛ–1/2VTE) = (E*)TE*,

where E* = (ΛΛ–1/2VT)E. Note that the variance-covariance matrix of E* is

Var[E*] = (ΛΛ–1/2VT)Var[E](VΛΛ–1/2) = ΛΛ–1/2VT · VΛΛ1/2ΛΛ1/2VT · VΛΛ–1/2 = I,

and so E* satisfies the assumption required for least squares to produce effi-
cient estimates. Now, we replace the original model with a new model:

Y* = (ΛΛ–1/2VT)Y = (ΛΛ–1/2VT)M(X, θθ) + (ΛΛ–1/2VT)E
= M*(X, θθ) + E*, (A3.1)

where Y* = (ΛΛ–1/2VT)Y and M*(X, θθ) = (ΛΛ–1/2VT)M(X, θθ). In essence, we esti-
mate the parameters that minimize the sum of squared error for the new
model Y* = M*(X, θθ) + E*. Finding the parameter vector θθ that minimizes
SSE = (E*)TE* also minimizes WSSE = ETΣΣ–1E. Later, if we wish to recover
the predictions on the original scale, we apply the inverse transformation

(VΛΛ1/2)M*(X, θθ) = (VΛΛ1/2)(ΛΛ–1/2VT)M(X, θθ) = M(X, θθ).

In summary, we can always transform a weighted least-squares problem
into a least-squares problem using the transformation shown above. The para-
meters obtained by minimizing the SSE of the transformed dependent variable
will be exactly the same as the parameters obtained by minimizing the WSSE
of the original dependent variable. Furthermore, these parameters will have the
same asymptotic distribution as the maximum-likelihood estimates.
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The Generalized Likelihood Function

Suppose we observe a sequence of N ordered observations from an indi-
vidual denoted as (y1, y2, . . . , yt, . . . , yN), where each yt has a discrete dis-
tribution.5 In general, this sequence may be generated by any type of
statistically dependent stochastic process. In this chapter, each observation
indicated the choice made on each trial; but more generally, this could be
any discrete measure, such as confidence ratings. The joint probability of
these N observations is given by

Pr[y1 ∩ y2 ∩ . . . ∩ yt ∩ . . . ∩ yN] 
= Pr[y1] · Pr[y2|y1] · Pr[y3|y1 ∩ y2] · . . . (A3.2)
· Pr[yN|y1 ∩ y2 ∩ . . . ∩ yN−1].

For convenience, define Pr[yt|t − 1 ] = Pr[yt|y1 ∩ y2 ∩ . . . ∩ yt−1] as the
probability of observing the observation yt given all the preceding observa-
tions. Then, the log-likelihood statistic is defined as the natural log of
Equation A3.1:

ln(L) = ∑ln(Pr[yt|t − 1]). (A3.3)

If we assume statistical independence, then Pr[yt|t − 1] = Pr[yt], and the
stochastic process reduces to what is called an independent process. The
product rule for computing the likelihood is only valid for an independent
process, which is a very specialized case of the more general likelihood func-
tion (see Anderson, 1971).

The G2 statistic for comparing the cognitive model with the saturated
model is defined as twice the difference in log likelihoods of the two models:

G2 = 2[ln(LS) − ln(LR)]. (A3.4)

The G2 statistic is the primary measure used to compare two models when
using the maximum-likelihood method. When we search for parameters that
maximize the likelihood function, or minimize the G2 function, then these
parameters are called maximum-likelihood estimates.

Newton-Raphson Search

This search method is applicable to any of the three objective functions
that are presented in this chapter (Fletcher, 1987). For generality, define F as
the objective function, where we could set F = SSE, or F = WSSE, or F = G2.
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Define θθ as a column vector containing all the parameters of the cognitive
model. For example, in the previous chapter, θθ = [γ r]T, which is a 2 × 1 vec-
tor containing the decay rate and initial strength parameters. We insert θθ
into the cognitive model to generate predictions, and then the objective func-
tion F evaluates these predictions. Mathematically, F is a function that maps
θθ into a real-valued measure of fit. Our goal is to try to find an iterative
scheme that changes the parameter vector at each step from θθ to (θθ + δδ) to
produce a reduction in the objective function from F(θθ) to F(θθ + δδ).

Originally, Isaac Newton invented a procedure based on the following
idea. First, we approximate the objective function by a second-order Taylor
series expansion:

This quadratic approximation to the objective function is accurate as long
as the change, δδ, is small in magnitude. This expression has two terms involv-
ing δδ. The first term contains the first-order partial derivative of F(θθ) with

respect to the parameter vector, denoted with , which is

the gradient, and this provides the direction of steepest ascent (the negative of
the gradient provides the direction of steepest descent). The second term con-
tains the second-order partial derivative of F(θθ) with respect to the parameter

vector, denoted as with , which is called the Hessian  

matrix, and its importance will be discussed later. Using this new notation, we
can rewrite the Taylor series expansion as

F(θθ + δδ) = F(θθ) + δδT · ∇ + (1/2)δδT · H · δδ + residual.

Now we try to find the direction vector δδ that minimizes this approxima-
tion (ignoring the residual). To do this, we take the first derivative of the
approximation with respect to the direction vector δδ, and set it equal to zero,
which yields

(∂/∂δδ)[F(θθ) + δδT · ∇ + (1/2)δδT · H · δδ] = ∇ + H · δδ = 0.

Solving the last equation for δδ, we obtain

δδ = H−1 · (−∇),

H= ∂2FðθÞ
∂θ · ∂θT Hij = ∂2FðθÞ

∂θi∂θj

r= ∂FðθÞ
∂θ

ri = ∂FðθÞ
∂θi

Fðθ+ δÞ= FðθÞ+ δT · ∂FðθÞ
∂θ

+ 1

2
· δT · ∂2FðθÞ

∂θ · ∂θT
· δ+ residual:
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which provides the direction for minimizing our approximation to the objec-
tive function. But stepping from δδ to (θθ + δδ) minimizes the approximation,
and not the original objective function. Therefore, we need to repeat this
procedure. With each repetition, our approximation gets better, and we get
closer to the minimum of the true objective function. Thus, we obtain a new
estimate on iteration θθ(n), from the old estimate, θθ(n − 1), by the following
updating rule:

θθ(n) = θθ(n − 1) + s · δδ = θθ(n − 1) + s · H−1 · (−∇), (A3.5)

where s is called the step size for the change. Another line search rou-
tine is used to find the step size s, which makes the improvement in the
direction δδ as large as possible. The whole process starts with the selec-
tion of an initial guess θθ(0), which may come from a grid search. The
iterations continue until the magnitude of the direction for change |δ|
falls below some criterion. Equation A3.4 is called the Newton-Raphson
search procedure.

The Hessian matrix H, evaluated at the minimum, is very important for
evaluating the precision of the parameter estimates of the cognitive model.
The programs used to implement the quasi-Newton methods have options
for computing and displaying this matrix and its inverse.

First of all, the rank of the Hessian matrix can be used to determine
whether or not the parameters of the model are identified. If Hessian
matrix is full rank, then the parameters are identified, and if it is less than
full rank, then they are not identified. Note that if the Hessian matrix is
not full rank, then the inverse does not exist, and one cannot use the quasi-
Newton search methods. Consequently, if the parameters are not identi-
fied, the some parameters need to be eliminated or redefined to achieve
identification.

Second, the diagonal elements of the inverse of the Hessian matrix pro-
vide information about the precision of the parameter estimates. If it is
assumed that the cognitive model is the true model that generated the data,
then the following theorem holds for the weighted least-squares and likeli-
hood objectives: The parameter estimates are asymptotically normally 
distributed, with a mean equal to the true parameter values, and with a vari-
ance-covariance matrix equal to the inverse of the Hessian matrix. Thus, the
diagonal elements of H−1 are used to estimate the variances of the parame-
ters, and the off-diagonal elements are used to estimate the covariances
between parameter estimates. To be more concrete, define hii* as the diago-
nal element of H−1 in the ith row, then we estimate the standard error of θi

by 
ffiffiffiffiffi
h�ii

q
:
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Application to Linear Models

It is informative to apply these ideas to the standard linear model. Define
Y as a vector of observations, X is a matrix of known independent variables,
θθ is a vector of parameters, and E is a vector of errors. The linear model is

Y = M(X, θθ) + E = X · θθ + E.

Linear models satisfy the following important property:

M(X, aθθ1 + bθθ2) = X(aθθ1 + bθθ2) = aXθθ1 + bXθθ2

= aM(X, θθ1) + bM(X, θθ2).
(A3.6)

Nonlinear models fail to satisfy this property.
If we make the standard homogeneous variance assumption, then the vari-

ance-covariance matrix for these errors is simply Var[E] = σ2I. In this case, the
log likelihood can be expressed as (see Rao, 1965; or Wasserman, 2000)

Maximizing this likelihood for θθ is equivalent to minimizing the sum of
squared error:

F = 1–σ2 (Y − Xθθ)T(Y − Xθθ) = 1—–
2σ2

(YTY − 2θθTXTY + θθTXTXθθ).

Thus, for linear models, the sum of squared error function is exactly a
quadratic function.

The gradient is equal to

∇ = (1/2σ2)(−XTY + XTXθθ) = (−1/σ2)XT(Y − Xθθ).

The minimum of the objective function lies at the point where the gradi-
ent is zero:

−XTY + XTXθθ = 0 � XTY = XTXθθ,

producing the set of normal equations for the linear model. In this case, the
optimal parameters can be found by solving the normal equations in a sin-
gle step:

θθ = (XTX)−1(XTY). (A3.7)

lnðLÞ=− SSE

2s2
+ N

2

� �
· ½lnð2pÞ+ lnðs2Þ�

� �
:
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The Hessian of F and its inverse are equal to

H = 1–σ2
XTX and H−1 = σ2(XTX)−1.

The latter expression is the familiar formula for the variance-covariance
matrix of the parameters for a linear model. The maximum-likelihood esti-
mate of σ2 is SSE/N. Substituting these estimates into the log likelihood
yields the maximum log likelihood:

and

Quasi-Newton Methods

In many cases, it is computationally intensive to determine the inverse of
the Hessian matrix, H−1, for each iteration. To speed up the computations,
procedures have been developed that build up an approximation to this
inverse in an iterative fashion. These procedures start by setting H = I, the
identity matrix, and in this case δδ is simply proportional to the gradient. This
initial value for the inverse reduces the computations, but searching for the
minimum using only the gradient is very slow. Thus, after each step, the 
H−1 matrix is updated to more closely approximate its true value, and using
this estimate of the inverse improves the speed of the search and convergence
to minimum. This revision of the algorithm is called the Broyden-Fletcher-
Powell modification of the Newton-Raphson method. This is the most com-
monly used gradient search approach, and it is available in mathematical
programming languages such as MATLAB, Mathematica, GAUSS, or SAS.

Gauss-Newton Search Methods

This search method is only applicable to least-squares or weighted least-
squares objectives (Gallant, 1986). Given that we can always transform a
WSSE problem into a SSE problem, we will only present the least-squares
version of the Gauss-Newton search algorithm.

The Gauss-Newton approach differs from the Newton-Raphson
approach in the following way. The Newton-Raphson approach uses a 
second-order Taylor series to approximate the objective function F, whereas
the Gauss-Newton approach relies on a first-order approximation to the
nonlinear function M that generates the model predictions. Once again, the

G2 =N · ln
SSE

N

� �
+ ln 2pð Þ+ 1

� �
:

lnðLÞ=− N

2

� �
· ln

SSE

N

� �
+ ln 2pð Þ+ 1

� �
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general idea is to find an iterative procedure to change from θθ to (θθ + δδ), so
then we reduce the objective function from SSE(θθ) to SSE(θθ + δδ).

This method begins by approximating the nonlinear model by a first-
order Taylor series expansion:

The term involving δδ, denoted as J = (∂/∂θθ)M(X, θθ) with Jij = (∂/∂θθj) Mi(X, θθ), 
is called the Jacobian matrix. This approximation to M will be accurate for
small |δ|. Given a previous evaluation of the model at the parameter vector
θθ, we can approximate the predictions at a new parameter vector (θθ + δδ) by
using the above approximation:

Y = M(X, θθ) + J · δδ + E

� Y − M(X, θθ) = J · δδ + E,

where E is a vector of residuals. Now we wish to find the direction of change
δδ that minimizes SSE = ETE in the above equation. Note that the last equa-
tion is a linear equation with respect to δδ. The solution for minimizing SSE
with linear equations was presented earlier as Equation A3.7. To adapt the
earlier solution to this problem, we treat Z == Y − M(X, θθ) as the new trans-
formed dependent variable, and we treat the Jacobian matrix J as the matrix
of independent variables. Then, we obtain the least-squares solution:

δδ = (JTJ)−1(JTZ).

This is the solution for the direction to change the parameter, and the new
parameter vector is chosen to be a step in this direction:

θθ(n) = θθ(n − 1) + s · δδ = θθ(n − 1) + s · (JTJ)−1(JTZ). (A3.8)

The step size, s, is chosen to produce the largest possible reduction in SSE
in the direction given by δδ.

The Gauss-Newton method is related to the Newton-Raphson method.
The first term JTJ is asymptotically equal to the Hessian matrix, and the sec-
ond term JTZ is the negative of the gradient for the SSE objective function:

−∇ = −(∂/∂θθT)SSE = −(∂/∂θθT)ETE
= −(∂/∂θθT)[Y − M(X, θθ)]T[Y − M(X, θθ)] = 2JTZ.

M X, θ+ δð Þ=M X, θð Þ+ ∂M X, θð Þ
∂θT

δ+ residual:

Chapter 3 Nonlinear Parameter Estimation——81



Modified Gauss-Newton Method

If the initial starting position is far from the minimum, then the standard
Gauss-Newton search encounters difficulty. In this case, it is better to start
with a simple gradient search and gradually shift to the Gauss-Newton direc-
tion after the approximation starts to improve. This is called the Levenberg-
Marquardt modification of the Gauss-Newton method. The modification is
accomplished by adjusting the direction of search in the following manner:

δδ = (JTJ + λλnI)
−1(JTZ).

The coefficient λλn determines the influence of JTJ. Initially, this coefficient
is set to a large value so that JTJ has little influence, and most of the weight
is placed on the gradient. Later in the iterations, this coefficient is set to a
small value so that JTJ has more influence on the direction. The modified
Gauss-Newton method is closely related to the method of ridge regression
sometimes used to obtain more robust estimates from linear models.

Example Program

Although the technical aspects of nonlinear parameter estimation can
become quite complex, easy-to-use programs are available to perform this
task from mathematical programming languages such as MATLAB,
Mathematica, GAUSS, or SAS. The example program described below is a
MATLAB program for estimating the parameters of the retention model pre-
sented in Chapter 3. The program has two parts: a “main” program and a
function called “Fitr” (see Figure A3.1).
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% main fitting program
global P;
load P; % load data
oldopts = optimset(‘fminunc’);
options =optimset(oldopts,’Display,’’iter’);
% initial values
a = .8; r = 3; X0 = [a r]
‘’Initial Results’
G = Fitr(X0)
‘Final Results’
[X G] = fminunc(‘Fitr,’ X0,0ptions)

function G = Fitr(X)
global P
a = X(1); r = X(2); % param’s
n = 200; % sample size
na = n*P; nb = n*(1-P);
t = (0:10)’; % time delays
p = 1./(1+exp(-r.*(a.^t))); % predictions
GR = na’*log(p) + nb’*log(1-p);
GC = na’*log(P) + nb’*log(1-P);
G = 2*(GC – GR); % G - Square

Figure A3.1 Example Parameter Estimation Program



The “main” program first loads the data stored in a vector called P. The
“options” line defines some parameters that control the display of the fitting
program. The “initial values” line defines the starting values for the iterative
search process, and “initial results” line is used to compute and display the fits
of these initial parameters. The “final results” line calls the MATLAB program
that is used to search for the best-fitting parameters. In this case, we are using
an unconstrained, modified Newton-Raphson method. The input arguments
to this program include the user-defined name of the program used to compute
the fit of the model, the initial parameters, and the options for the display.

The function called “Fitr” is a user-supplied function that has only one
input argument and one output argument. The input argument is a vector
containing the parameters to be used to fit the data. The output argument is
the value of the objective function. The “global” statement is used to access
the data vector P, which was read into the main program. The next few lines
redefine the names of the parameters using more convenient names, define
the sample sizes, and define the time delays. The MATLAB notation (0:10)
creates a vector of integers ranging from 0 to 10. The “prediction” line com-
putes the 11 predictions from the model for the entire vector of 11 time
delays (the dot that appears before each mathematical operation is used to
instruct the program to perform operations elementwise, that is, separately
on each element in the vector). The next pair of lines computes the log like-
lihoods for the cognitive retention model and for the saturated model, and
the last line computes the G2 lack-of-fit index.

Notes

1. There is an entire literature on time series analysis of the autocorrelations,
and these autocorrelations may reveal important hidden cognitive processes (see
Gilden, 2001).

2. The log likelihood for the binomial distribution also includes the log of the
constant [nA!/(nA!·nB!)], which is contributed by the number of sequences for obtain-
ing nA corrects out of n trials. However, this constant has no bearing on any subse-
quent analyses, and it can be ignored. In particular, it cancels out the expression for
G2 in Equation 3.7, which is introduced later. 

3. For nonlinear models, it is possible for R2 to be less than zero, that is, worse
than the null model.

4. The sum of squared error criterion was used because there is no sampling
error in these data sets, and the other two criteria are not defined in this ideal case.

5. For continuously distributed observations, such as response times, we would
only need to change our definitions from probability masses to probability densities,
and the rest would remain the same.
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