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SECTION 1: INTRODUCTION AND THEORETICAL BACKGROUND

Introduction

Inferential statistics consist of statistical methods that are used to test
hypotheses that relate to relationships between variables. For example, you
might hypothesize that individuals with greater levels of education tend to have
higher incomes. While we can use descriptive statistics such as line plots as out-
lined in the previous chapter to illustrate the relationship between these two
variables, we need to use inferential statistics to more rigorously demonstrate
whether or not there is a relationship between these two variables.

With all inferential statistics, which particular statistical test you use will
depend on the nature of your data as well as the nature of your hypothesis. In
this chapter, Pearson’s correlation coefficient (also known as Pearson’s r), the
chi-square test, the t-test, and the ANOVA will be covered. Pearson’s correlation
coefficient (r) is used to demonstrate whether two variables are correlated or
related to each other. When using Pearson’s correlation coefficient, the two vari-
ables in question must be continuous, not categorical. So it can be used, for
example, to test the relationship between years of education and income, as
these are both continuous variables, but not race and highest degree com-
pleted, as these are categorical variables. The chi-square statistic is used to
show whether or not there is a relationship between two categorical variables.
For example, you can use the chi-square statistic to show the relationship
between the highest degree completed (e.g., coded as none, high school
diploma, bachelors, etc.) and political affiliation (coded as Republican or
Democrat). The t-test is used to test whether there is a difference between two
groups on a continuous dependent variable. For example, you would select the
t-test when testing whether there is a difference in income between males and
females. The ANOVA is very similar to the t-test, but it is used to test differences
between three or more groups. For example, you would use an ANOVA to test
whether there is a difference in income between blacks, whites, and Hispanics.
The ANOVA is actually a generalized form of the t-test, and when conducting
comparisons on two groups, an ANOVA will give you identical results to a t-test.

Pearson’s r: Theory

The purpose of the correlation coefficient is to determine whether there
is a significant relationship (i.e., correlation) between two variables. The
most commonly used correlation coefficient is the one published by Karl
Pearson in 1895, having been developed earlier by Sir Francis Galton. It goes
under several names, including Pearson’s r, the product-moment correlation
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Years of Education (x) Income (in Thousands of $) (y)

8 12
12 15
8 8

14 20
12 18
16 45
20 65
24 85
24 100
24 90

As you may have noticed, I tried to create a positive relationship
between years of education and income—I am hoping that this will result in
a strong positive correlation coefficient that will be significant.

coefficient, and Pearson’s correlation coefficient. I will typically refer to it as
Pearson’s r for the sake of brevity.

Pearson’s r is used to illustrate the relationship between two continuous vari-
ables, such as years of education completed and income. The correlation between
any two variables using Pearson’s r will always be between –1 and +1. A correlation
coefficient of 0 means that there is no relationship, either positive or negative,
between these two variables. A correlation coefficient of +1 means that there is a
perfect positive correlation, or relationship, between these two variables. In the
case of +1, as one variable increases, the second variable increases in exactly the
same level or proportion. Likewise, as one variable decreases, the second variable
would decrease in exactly the same level or proportion. A correlation coefficient of
–1 means that there is a perfect negative correlation, or relationship, between two
variables. In this case, as one variable increases, the second variable decreases in
exactly the same level or proportion. Also, as one variable decreases, the other
would increase in exactly the same level or proportion.

You most likely will never see a correlation between two variables of –1 or
+1 in the social sciences as while two variables may be very highly related, the
chance of error or random variation is too great to have a perfect correlation. A
positive correlation means that generally, as one variable increases, the other will
increase, and as one variable decreases, the other will decrease. Also, a negative
correlation means that in general, if one variable increases, the other will
decrease, and as one variable decreases, the other will increase. Very important
here is the notion of significance, which I introduced you to in Chapter 1. When
determining Pearson’s r, or other correlation coefficients, it is important to be
aware of whether your correlation is in fact significant or not at the .05 level.

Let’s now compute the Pearson’s r for some data. The table below con-
sists of data made up for this example.
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The equation for Pearson’s r is as follows:

This equation requires us to first calculate the sum of the product of all
our data pairs, the means of both variables, and the sum of the squared val-
ues of both variables.

So first,

∑xy = (8 × 12) + (12 × 15) + (8 × 8) + (14 × 20) + (12 × 18) + (16 × 45)
+ (20 × 65) + (24 × 85) + (24 × 100) + (24 × 90)

= 96 + 180 + 64 + 280 + 216 + 720 + 1,300 + 2,040 + 2,400 + 2,160

= 9,456

∑x2 = 82 + 122 + L + 242 = 2,996

∑y2 = 122 + 152 + L + 902 = 32,732

N = Number of cases or data pairs = 10.
Now, plugging these values into our equation, we get the following:

I will use this same example in the sections on IBM SPSS and Stata—in
those sections, you will be able to see that the result for Pearson’s r using
either of these programs is identical to the value we have calculated by hand.

Now, we can see that our correlation, .9743, is very high as it is very close
to +1, the maximum possible value for Pearson’s r. But we still need to cal-
culate the p value in order to determine whether this correlation is statisti-
cally significant or not.

r ¼
P

xyÿN�x�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2 ÿN�x2ð Þ P y2 ÿN�y2ð Þ

p

¼ 9456ÿ 10ð16:2Þð45:8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2996ÿ 10ð16:22Þð Þ 32732ÿ 10ð45:82Þð Þ

p

¼ 9456ÿ 7419:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2996ÿ 2624:4ð Þ 32732ÿ 20976:4ð Þ

p ¼ 2036:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4368380:96
p ¼ 0:9743

r ¼
P

xyÿN�x�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2 ÿN�x2ð Þ P y2 ÿN�y2ð Þ

p

�y ¼ 12þ 15þ 8þ 20þ 18þ 45þ 65þ 85þ 100þ 90

10
¼ 458

10
¼ 45:8

�x ¼ 8þ 12þ 8þ 14þ 12þ 16þ 20þ 24þ 24þ 24

10
¼ 162

10
¼ 16:2
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To determine this, we will first calculate a t ratio using the following
equation:

Now, plugging our values into the equation, we get the following:

Also, we will need to know our degrees of freedom (df). This is equal to
the number of pairs of data minus 2:

df = N – 2 = 10 – 2 = 8

Next, we will need to consult a t table to compare our calculated t value
with the critical t value in order to determine statistical significance. Looking
at a t table, we can see that for 8 degrees of freedom, the critical t value for a
p level of .05 (two-tailed) is 2.306. As our calculated t value is greater than the
critical t value at the .05 level, we can say that the correlation between edu-
cation and income is significant at the .05 level. Again referring to our table,
we can see that our correlation is even significant at the .001 level, as the crit-
ical t value in this case is 5.041, which is still lower than our calculated t value.
This means that the probability that the correlation between education and
income is simply due to error or chance is less than 0.1%. In this example, I
have used the two-tailed critical t value, which is more conservative than a
one-tailed test and is generally preferred. If you are not making a directional
hypothesis (examples of a directional hypothesis: those with greater levels of
education will have higher incomes or males have higher incomes than
females), then you would use a two-tailed test, as it does not make any spec-
ification regarding direction. For example, a two-tailed test would be used if
you’re simply hypothesizing that there will be a correlation between level of
education and income, but not specifying the direction of the correlation.
However, if you were making a directional hypothesis, for example that those
with more education are more likely to have higher incomes, the one-tailed
test could be used. However, when the direction between your two variables
corresponds to the direction stated in your hypothesis, the one-tailed test is
less conservative than the two-tailed test and so tends to be used less often.

In the next section, the concept of R-squared will be discussed. The
R-squared value represents the proportion of variance in the dependent vari-
able (the variable you are trying to predict or explain) that is explained by the
independent variable(s) (the variables that you are using to explain or predict

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N ÿ 2
p
ffiffiffiffiffiffiffiffiffiffiffiffi
1ÿ r2
p ¼ :9743

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10ÿ 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ÿ :97432
p ¼ :9743

ffiffiffi
8
p

ffiffiffiffiffiffiffiffiffiffiffi
:0507
p ¼ 2:7557

:2251
¼ 12:2386

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N ÿ 2
p
ffiffiffiffiffiffiffiffiffiffiffiffi
1ÿ r2
p
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the dependent variable). In this example, it would make sense that we would
use years of education to predict the respondent’s income and not vice versa.
What’s interesting is that we simply need to square the value we arrived at
after calculating Pearson’s r to attain the R-squared. Thus,

R2 = r2 = .97432 = .9493

Later on, in the Stata section, I will replicate this result. We can interpret
this by stating that level of education explains 94.93% of the variance in
income. Here, I simply moved the decimal point two places to the right to
arrive at this value.

Finally, it is important to state again that Pearson’s r is only used for continu-
ous variables. To determine the correlation between variables that are ordered and
categorical or dichotomous, there are a number of special options, including
Kendall’s tau, Spearman’s rank correlation coefficient or Spearman’s rho, the
polyserial correlation, the polychoric correlation, phi, the tetrachoric correla-
tion, and others. Many of these tests require specialized software programs or cer-
tain specific add-ons to IBM SPSS or Stata. These additional measures of correlation
are described in more detail in Appendix C, Section 4, Part F.

Chi-Square: Theory

The chi-square statistic is used to show whether or not there is a rela-
tionship between two categorical variables. It can also be used to test
whether or not a number of outcomes are occurring in equal frequencies or
not, or conform to a known distribution. For example, when rolling a die,
there are six possible outcomes. After rolling a die hundreds of times, you
could tabulate the number of times each outcome occurred and use the chi-
square statistic to test whether these outcomes were occurring in basically
equal frequencies or not (e.g., to test whether the die is weighted). The chi-
square statistic was also developed by Karl Pearson.

This is the chi-square equation:

Here,

χ2 = the chi-square statistic

Oi = the observed frequency

Ei = the expected frequency

i = the number of the cell (cell 1, cell 2, etc.)

χ2 ¼
Xn

i¼1

Oi ÿ Eið Þ2
Ei



Political Affiliation

Degree Republican Democrat

None 23 45
HS 17 42
BA 28 35
MA 32 32
Above MA 42 28

And we would have 10 cells all together.
Now, let’s use these two examples to calculate the chi-square statistic.

Say we roll a die 600 times and get the following results:

Outcome Frequency

1 95
2 72
3 103
4 105
5 97
6 128

Here, we want to calculate the chi-square statistic to see whether these
outcomes are occurring at basically the same frequencies or not. Now, if
you remember from previous chapters, simply because the numbers are
not exactly the same does not necessarily mean that certain outcomes are
occurring more frequently than others in the statistical sense. To find out
whether this is true, we need to run a statistical test and find the probabil-
ity value (p value). To calculate the chi-square value for this particular
example, we need to simply plug these numbers into the equation, as
shown below. One hundred is chosen as the expected value for all cells, as
it would be expected that you would get an equal number of each outcome
(100 1s, 100 2s, etc.).

Here, the summation is simple. We simply calculate the square of the dif-
ference between the observed and expected frequency and divide that by the
expected frequency for each cell. Then, we simply sum all these quotients
together. The concept of a “cell” is also easy to understand. If we are testing
whether a number of outcomes are occurring in equal frequencies or not,
such as in the example of the die, we would count each outcome as a cell. If
we were testing a relationship between two variables, say between degree
and political affiliation, the data would look like this:
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Probability Level

Degrees of Freedom .05 .01 .001

1 3.84 6.64 10.83
2 5.99 9.21 13.82
3 7.82 11.34 16.27
4 9.49 13.28 18.47
5 11.07 15.09 20.52

…

So when looking at this table, we will move down to 5 degrees of
freedom, and look at the first column specified by the .05 probability
level. Here, we can see that the critical chi-square value for our example
is 11.07. We calculated a chi-square value of 16.36. Since the chi-square
value that we calculated is greater than the critical chi-square value for

So 16.36 is our chi-square statistic for this example, but we still do not
know whether or not this value is significant (i.e., if the probability level is
below .05 or not). To do this next step, you need to calculate the degrees
of freedom. In this example, and in all examples in which we are simply
looking at the frequencies of the different responses for single variable,
degrees of freedom simply equals the number of different responses minus
one. So we get,

Degrees of freedom = Number of
response categories – 1 = 6 – 1 = 5

Now that we know both the chi-square value and the degrees of free-
dom, we simply need to look at a chi-square table to find the critical chi-
square value for our degrees of freedom using the .05 probability level.

χ2 ¼
Xn

i¼1

Oi ÿ Eið Þ2
Ei

¼ 95ÿ 100ð Þ2
100

þ 72ÿ 100ð Þ2
100

þ 103ÿ 100ð Þ2
100

þ 105ÿ 100ð Þ2
100

þ 97ÿ 100ð Þ2
100

þ 128ÿ 100ð Þ2
100

¼ 25

100
þ 784

100
þ 9

100
þ 25

100
þ 9

100
þ 784

100
¼ 16:36
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Political Affiliation

Degree Republican Democrat Total

None 23 45 68
HS 17 42 59

BA 28 35 63

MA 32 32 64
Above MA 42 28 70

Total 142 182 324

So to calculate the chi-square statistic for this example, we need to do
the following.

First, we need to calculate the expected values. In the example with
the die, we do not need to formally calculate expected values, since there
were six possible outcomes with equal probabilities. We simply divided
600 (the number of times we rolled the die, or the number of cases) by
the number of possible outcomes (6) to get 100, the expected value for
each possible outcome.

the .05 probability level, our results are statistically significant. This
means that the die appears to be not being rolled fairly, that some out-
comes occur more frequently than others, and that this difference is sta-
tistically significant at the .05 level. Looking again at our chi-square
table, we can see that our calculated value is also greater than the criti-
cal chi-square value at the .01 probability level at 5 degrees of freedom.
This means that our results are also significant at the more stringent .01
probability level (meaning that there is a less than 1% chance that these
differences between outcomes are not actually significantly different
and are instead due to error or chance).

Next, we will calculate the chi-square statistic using the example
of political affiliation and the highest degree completed. Here, the
equation for the chi-square statistic remains the same. However,
degrees of freedom are calculated differently than before. In the case
where there are two variables, degrees of freedom are calculated
using this equation:

Degrees of freedom = (Rows – 1)(Columns – 1)

Here is a reproduction of the table from the previous page:
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When calculating the chi-square statistic between two variables, we use
the following equation to determine the expected value for each cell:

For example, this is how you would calculate the expected value for the
first cell in the top left corner (individuals with no degree who are Republican):

So after calculating the expected value for each cell, we would plug all
our numbers into the equation for the chi-square statistic:

Now, we need to calculate the degrees of freedom. In cases where we are
calculating the chi-square statistic between two variables, this is the equation
that we use:

Degrees of freedom = (Rows – 1)(Columns – 1)

So in our example, this would be our degrees of freedom:

So now we know that our chi-square value is 17.20 and our degrees of free-
dom is 4. Looking at our chi-square table, we see that the critical chi-square
value for 4 degrees of freedom at the .05 probability level is 9.49. Since our cal-
culated chi-square value is greater than the critical chi-square value, our results
are significant at the .05 probability level. We can also see that our results are

df ¼ 5ÿ 1ð Þ 2ÿ 1ð Þ ¼ 4

χ2 ¼
Xn

i¼1

Oi ÿ Eið Þ2
Ei

¼ 23ÿ 29:80ð Þ2
29:80

þ 17ÿ 25:86ð Þ2
25:86

þ 28ÿ 27:61ð Þ2
27:61

þ 32ÿ 28:05ð Þ2
28:05

þ 42ÿ 30:68ð Þ2
30:68

þ 45ÿ 38:20ð Þ2
38:20

þ 42ÿ 33:14ð Þ2
33:14

þ 35ÿ 35:39ð Þ2
35:39

þ 32ÿ 35:95ð Þ2
35:95

þ 27ÿ 39:32ð Þ2
39:32

¼ 46:24

29:80
þ 78:50

25:86
þ 0:15

27:61
þ 15:60

28:05
þ 128:14

30:68
þ 46:24

38:20

þ 78:50

33:14
þ 0:15

35:39
þ 15:60

35:95
þ 151:78

39:32
¼ 17:20

Ei ¼
Row totalð Þ Column totalð Þ

Grand total
¼ 68ð Þ 142ð Þ

324
¼ 9656

324
¼ 29:80

Ei ¼
Row totalð Þ Column totalð Þ

Grand total
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also significant at the .01 probability level, but not at the .001 probability level.
Therefore, there is a statistically significant relationship between highest degree
completed and political affiliation using either .05 or .01 as our standard.

t-Test: Theory

As mentioned in the introduction to this chapter, t-tests are used when
you want to test the difference between two groups on some continuous
variable. A good example here would be the difference in yearly income
between males and females. t-tests can also be used when testing the same
group of people at two different times; for example, testing whether there
was a significant increase or decrease in the test scores of the same group of
students at two different times.

The equation for the t-test depends on whether we are doing an inde-
pendent samples t-test (comparing two different groups) or a dependent
samples t-test, also called a paired t-test (comparing the same group at two
different periods of time, or two different groups that have been “matched”
on some important variable). There is also a one-sample t-test that is used
to compare a group of scores with a known population mean. Furthermore,
there are separate equations for the independent samples t-test depending
on whether or not our two groups have equal sample sizes.

This is the equation for a one-sample t-test:

where

t = the t statistic

x– = the mean of the sample

µ = the comparison mean

s = the sample standard deviation

n = the sample size

A t-test would be preferred to a z-test in situations where the sample size
is less than 30, and the population standard deviation is unknown. If either the
sample is greater than 30, OR the population standard deviation is known, you
would prefer the z-test, which is covered in Appendix C, Section 4, Part A.

Say we had a sample of 10 individuals who had all taken an exam. If we
wanted to test whether their scores, all together, are significantly different
from the score of 100, we could use a one-sample t-test. First, we would

t ¼ �xÿ µ

s=
ffiffi
n
p
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calculate the mean of the sample and the sample standard deviation, both of
which were covered in the previous chapter. Say that the mean of scores for
these 10 individuals is 107.8, and the standard deviation is 5.35. To calculate
the t statistic, we would simply plug these values into the equation:

In this example, we have selected 100 as the value for the comparison
mean as we want to test whether the scores in our sample significantly differ
from 100. If we wanted to, we could test whether the scores were signifi-
cantly different from another value, such as 110, by simply plugging this
value in for the comparison mean.

Next, we need to calculate the degrees of freedom. Here, the degrees of
freedom is simply the sample size minus one. Therefore,

Degrees of freedom = n – 1 = 10 – 1 = 9

Now, we will refer to a t table to determine the critical t value for 9
degrees of freedom at the .05 level of significance. Looking at a t table, this
value is 2.26 (two-tailed t-test). Since our calculated t value of 4.61 is greater
than the critical t value of 2.26, we can say that the scores of our sample of
10 individuals differ significantly from the score of 100. This effect is statis-
tically significant at the .05 probability level. The t value for 9 degrees of
freedom at the .01 level of significance is 3.25, while the t value for 9
degrees of freedom at the .001 level of significance is 4.78 (both two-
tailed). Since our calculated t statistic of 4.61 is greater than the critical t
value for the .01 level of significance, we can say that our result is statisti-
cally significant at the .01 probability level. As mentioned previously, when
writing up results, you will mention only the most strict level of significance
that you’re able to obtain, whether .05, .01, or .001. In this case, we would
mention only the .01 probability level in our results. For example, we could
say the following: Our sample’s mean of 107.8 was significantly different
from 100 (t = 4.61, df = 9, p < .01).

This is the equation for the independent samples t-test when you have
unequal sample sizes:

t ¼ X1 ÿX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS1þSS2
n1þn2ÿ2

h i
1
n1
þ 1

n2

h ir ¼ X1 ÿX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

x21 ÿ
P

x1ð Þ2
n1

þ
P

x22 ÿ
P

x2ð Þ2
n2

n1þn2ÿ2

2
4

3
5 1

n1
þ 1

n2

h i
vuuut

t ¼ �xÿ µ

s=
ffiffi
n
p ¼ 107:8ÿ 100

5:35
� ffiffiffiffiffi

10
p ¼ 4:61
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Group

Case 1 2

1 78 87
2 82 92
3 87 86
4 65 95
5 75 73
6 82
7 71

First we would calculate the means of each group. The mean (average)
of Group 1 is 77.14, and the mean for Group 2 is 86.60.

Next, we calculate the sum of squares (SS) for each group. As you can see
from the above equation,

So for Group 1,

SS1 ¼
X

x2
1 ÿ

P
x1ð Þ2
n1

¼ 782 þ 822 þ 872 þ 652 þ 752 þ 822 þ 712
ÿ �

ÿ 78þ 82þ 87þ 65þ 75þ 82þ 71ð Þ2
7

¼ 41992ÿ 5402

7
¼ 334:86

SS ¼
X

x2 ÿ
P

xð Þ2
n

Here,

X 1 and X 2 are the means of the two different groups

n1 = n of Group 1

n2 = n of Group 2

SS = sum of squares

Say we had two classes, one with five students and the other with seven
students.

These were their scores:
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And, for Group 2,

Finally, plugging all these values into the t-test equation, we get the
following:

Now, to see whether this is significant or not, we need to do the same
thing as we did after calculating the chi-square statistic: Compare this value to
the critical t value from a t table. First, we need to get the degrees of freedom.

For an independent, or between-subjects, t-test,

which means, in our example, we have 10 degrees of freedom.
Here is a truncated t table:

SS2 ¼
X

x2
2 ÿ

P
x2ð Þ2
n2

¼ 872 þ 922 þ 862 þ 952 þ 732
ÿ �

ÿ 87þ 92þ 86þ 95þ 73ð Þ2
5

¼ 37783ÿ 4332

5
¼ 285:20

df ¼ n1 þ n2 ÿ 2

t ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS1 þ SS2
n1 þ n2ÿ2

h i
1
n1
þ 1

n2

h ir ¼ 77:14ÿ 86:60ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
334:86þ 285:20

7þ 5ÿ 2

h i
1
7þ 1

5

� �r

¼ ÿ9:46ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
620:06
10

ÿ �
12
35

ÿ �q ¼ ÿ9:46ffiffiffiffiffiffiffiffiffiffiffi
21:26
p ¼ ÿ0:44

Two-Tailed t-Test: p Level

df .05 .01 .001

1 12.706 63.657 636.619
2 4.303 9.925 31.598
3 3.182 5.841 12.924
4 2.776 4.604 8.610
5 2.571 4.032 6.869
6 2.447 3.707 5.959
7 2.365 3.499 5.408
8 2.306 3.355 5.041
9 2.262 3.250 4.781
10 2.228 3.169 4.587
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And the top of this table I mention that these critical t scores are for
the two-tailed t-test. The two-tailed t-test is used when you are not hypoth-
esizing a direction in the relationship between your two groups and the
dependent variable. For example, if you’re testing the relationship between
gender and religious attendance, and do not have a hypothesis, you would
use the critical t scores from a two-tailed t-test table or column. The one-
tailed t-test can be used if you are hypothesizing a directional relationship,
for example, if you are hypothesizing that males will have higher incomes
than females or that females will have greater religious attendance than
males. However, the two-tailed t-test is a more stringent test and tends to
be preferred over the one-tailed t-test, regardless of whether or not you
have a directional hypothesis. This is true not only in regard to t-tests
specifically but in general.

So in this example, we calculated a t score of -0.44. Before making the
comparison with our critical t score table, we can first take the absolute value
of this, which is 0.44 (i.e., simply make this number positive if it is a negative
number). Now, for the .05 probability level with 10 degrees of freedom, we
see from our table that the critical t score is 2.228 for a two-tailed test. Since
our calculated t score is lower than the critical t score, our results are not sig-
nificant at the .05 probability level. So the differences in the means of the
scores that we saw between the two groups cannot be statistically attributed
to any meaningful difference between these two groups. Here, if we wanted
to report this result, we could simply say the following: The differences in
test scores between our two groups were not statistically significant at the .05
probability level.

When we are performing an independent samples t-test (between sub-
jects) for two groups having equal sample sizes (n), our equation can be sim-
plified like this:

where n is the sample size of either group.

t ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS1 þ SS2
n1 þ n2ÿ2

h i
1
n1
þ 1

n2

h ir ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS1 þ SS2
2nÿ 2

� �
2
n

� �q ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSS1 þ SS2Þ

2n2 ÿ 2n

q

¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSS1 þ SS2Þ
2ðn2 ÿ nÞ

q ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS1 þ SS2
n2 ÿ n

q
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First we would find the sum of squares for each group:

The more complex equation gives us the following:

And using the simplified equation, we get:

t ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffi

SS1þSS2
n2ÿn

q ¼ 51:6ÿ 90:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
357:2þ153:2

52ÿ5

q ¼ ÿ39ffiffiffiffiffiffiffiffi
510:4
20

q ¼ ÿ39ffiffiffiffiffiffiffiffiffiffiffi
25:52
p ¼ ÿ7:72

SS1 ¼
X

x2
1 ÿ

P
x1ð Þ2
n1

¼ 632 þ 572 þ 482 þ 522 þ 382
ÿ �

ÿ 63þ 57þ 48þ 52þ 38ð Þ2
5

¼ 13670ÿ 2582

5
¼ 357:20

t ¼
�X1 ÿ �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS1 þ SS2
n1 þ n2 ÿ 2

h i
1
n1
þ 1

n2

h ir ¼ 51:6ÿ 90:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
357:2þ 153:2
5þ 5ÿ 2

h i
1
5þ 1

5

� �r

¼ ÿ39ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
510:4
8

ÿ �
2
5

ÿ �q ¼ ÿ39ffiffiffiffiffiffiffiffiffiffiffi
25:52
p ¼ ÿ7:72

SS2 ¼
X

x2
2 ÿ

P
x2ð Þ2
n2

¼ 882 þ 952 þ 842 þ 992 þ 872
ÿ �

ÿ 88þ 95þ 84þ 99þ 87ð Þ2
5

¼ 41195ÿ 4532

5
¼ 153:20

Group

Case 1 2

1 63 88
2 57 95
3 48 84
4 52 99
5 38 87

Mean 51.6 90.6
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For example, say we have the following two groups of scores:



So it works.
Also,

In this example, we have 8 degrees of freedom, which gives us a criti-
cal t score of 2.306 for a two-tailed t-test at the .05 probability level. The
absolute value of our calculated t score is 7.72, meaning that the differ-
ences between these two groups is significant at the .05 probability level.
Furthermore, looking at our critical t score table, we can see that these dif-
ferences are even significant at the .001 probability level, meaning that
there is less than a 0.1% chance that these differences in scores are simply
due to error or chance. Here, we could say the following: The difference in
scores between our two groups was statistically significant (t = -7.72, df = 8,
p < .001).

To calculate a t score for a dependent or within-subjects t-test, we need
to use the following equation:

Here,

n = sample size

D = difference in scores for the respondent between Time 1 and Time 2,
or between the matched pair

Say we had a class of five students, and they took the SAT (Scholastic
Aptitude Test) before and after an extensive training course, and these were
their scores:

df ¼ n1 þ n2 ÿ 2 ¼ 10ÿ 2 ¼ 8

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nÿ 1

n
P

D2

P
Dð Þ2

� �
ÿ 1

vuuut

Case Score at Time 1 Score at Time 2

1 1250 1375
2 1170 1450
3 890 1250
4 1350 1495
5 750 1220
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Plugging these values into our equation, we get the following:

For dependent samples t-tests,

where n = the number of matched cases or pairs.
So for this example, we have 4 degrees of freedom. Using the .05 prob-

ability level, our critical t score is 2.776 for a two-tailed t-test. Since our cal-
culated t score of 4.24 is greater than the critical t score of 2.776, the
differences in scores from Time 1 to Time 2 are significant at the .05 proba-
bility level (i.e., the increase in scores was statistically significant at the .05
level). However, our calculated t score is not greater than the critical t value
at the .01 probability level, 4.604. Here, we could say the following: The
increase in SAT scores for our sample of five individuals from Time 1 to Time
2 was statistically significant (t = 4.24, df = 4, p < .05).

ANOVA: Theory

The ANOVA, which stands for analysis of variance, is like a generalized ver-
sion of the t-test that can be used to test the difference in a continuous depen-
dent variable between three or more groups or to test the level of a
continuous dependent variable in a single group of respondents who were

df ¼ nÿ 1

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nÿ 1

n
P

D2

P
Dð Þ2

� �
ÿ 1

vuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5ÿ 1

5× 465550
13802

� �
ÿ 1

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
2327750
1904400

ÿ �
ÿ 1

s

¼
ffiffiffiffiffiffiffiffiffi
4

0:22

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
17:99
p

¼ 4:24

Case Score at Time 1 Score at Time 2 Difference
Difference
Squared

1 1250 1375 −125 15625
2 1170 1450 −280 78400

3 890 1250 −360 129600

4 1350 1495 −145 21025

5 750 1220 −470 220900

Sum — — −1380 465550

First, we would need to calculate the difference and the difference
squared for each pair of scores:
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tested at three or more points in time. The t-test was published by William
Sealy Gosset in 1908 under the pen name Student, which is why the t-test is
sometimes referred to as the Student’s t-test. The ANOVA was developed sev-
eral decades later by Sir Ronald Fisher, which is why the ANOVA is sometimes
called Fisher’s ANOVA.

While the t-test relies on the t statistic, the ANOVA uses what is called the
F statistic or F-test. When comparing two groups, either the t-test or the
ANOVA may be used as they will both give you the same results. For example,
below are the results from Stata for both the t-test and an ANOVA on years of
education by gender for cases from the year 2004. You can see that the prob-
ability levels for both analyses are the same.

. ttest educ if year==2004, by(sex)

Two-sample t test with equal variances

------------------------------------------------------------------------------
Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

---------+--------------------------------------------------------------------
1 | 1279    13.81939    .0842611    3.013439    13.65408     13.9847
2 | 1531      13.597    .0710005    2.778106    13.45773    13.73626

---------+--------------------------------------------------------------------
combined |    2810    13.69822    .0545035    2.889202    13.59135    13.80509
---------+--------------------------------------------------------------------

diff |            .2223947    .1093871                .0079075    .4368819
------------------------------------------------------------------------------

diff = mean(1) - mean(2)                         t =   2.0331
Ho: diff = 0                                     degrees of freedom =     2808

Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
Pr(T < t) = 0.9789         Pr(|T| > |t|) = 0.0421 Pr(T > t) = 0.0211

. oneway educ sex if year==2004

Analysis of Variance
Source              SS         df      MS            F     Prob > F

------------------------------------------------------------------------
Between groups      34.4657999      1   34.4657999      4.13     0.0421
Within groups      23413.6253   2808   8.33818565

------------------------------------------------------------------------
Total           23448.0911   2809   8.34748704

Bartlett’s test for equal variances:  chi2(1) =   9.2396  Prob>chi2 = 0.002

Calculating an ANOVA is slightly more complicated than calculating a t-test.
Say we gave a survey to 10 whites, 10 blacks, and 10 Hispanics asking about
their highest year of education completed, and we got the following data:
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Whites Blacks Hispanics

14 12 14
12 14 16
16 12 10
20 12 10
12 12 14
12 10 12
16 8 12
16 10 12
14 12 8
20 20 8

First, we will calculate the following values for each group:

∑x: a sum of all the scores of that group

X : the mean of that group’s scores

∑(x2): a sum of the square of the group’s scores

Next, we will calculate these values for the entire set of cases:

∑(∑x): summing the three values for ∑x that we computed previously

∑[∑(x2)]: summing the three values for ∑(x2) that we computed previously

For example, we would get these values for whites:

Doing the same computations for the other two groups would give you
the following values:

X
x2
ÿ �

¼ 142 þ 122 þ 162 þ 202 þ 122 þ 122 þ 162 þ 162 þ 142 þ 202 ¼ 2392

�x ¼ 152

10
¼ 15:2

X
x ¼ 14þ 12þ 16þ 20þ 12þ 12þ 16þ 16þ 14þ 20 ¼ 152

Stat. Whites Blacks Hispanics

∑x 152.0 122.0 116.0

x– 15.2 12.2 11.6

∑(x2) 2392.0 1580.0 1408.0
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Then,

Now, we need to calculate three different sum of squares values: the sum
of squares total, the sum of squares between, and the sum of squares within.
Then, we will compute the mean squares for between groups and within
groups. Finally, we will compute the F statistic by dividing the mean squares
between by the mean squares within.

So to begin,

As a check,

Next,

MS between ¼ SS between

df between
¼ 74:4

nðgroupsÞ ÿ 1
¼ 74:4

3ÿ 1
¼ 74:4

2
¼ 37:2

X X
x

� �
¼ 152þ 122þ 116 ¼ 390

SSwithin ¼ SS total forGroup 1þ SS total forGroup 2

þ SS total forGroup 3

¼
X

x2
ÿ �

ÿ
P

xð Þ2
N

 !
þ

X
x2
ÿ �

ÿ
P

xð Þ2
N

 !

þ
X

x2
ÿ �

ÿ
P

xð Þ2
N

 !

¼ 2392 ÿ 1522

10

� �
þ 1580 ÿ 1222

10

� �
þ 1408ÿ 1162

10

� �

¼ 81:6þ 91:6þ 62:4 ¼ 235:6

SSwithin ¼ SS totalÿ SS between ¼ 310ÿ 74:4 ¼ 235:6

SS between ¼
X P

xð Þ2
n
ÿ
P P

xð Þ½ �2
N

¼ 1522

10
þ 1222

10
þ 1162

10

� �

ÿ 3902

30

� �
¼ 5144:4ÿ 5070 ¼ 74:4

SS total ¼
X X

x2
ÿ �� �

ÿ
P P

xð Þ½ �2
N

¼ 5380ÿ 3902

30

¼ 5380ÿ 152100

30
¼ 5380ÿ 5070 ¼ 310

X X
x2
ÿ �� �

¼ 2392þ 1580þ 1408 ¼ 5380
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Finally,

Done.
Now, we need to consult an F table containing critical F values to see

whether our results are significant or not. In our example, we had 2
degrees of freedom in the numerator (MS between) and 27 degrees of
freedom in the denominator (MS within). Looking at an F table, this would
give us a critical F value of approximately 3.38 at the .05 probability level.
As you can see, our results were significant at the .05 probability level as
our calculated F value, 4.263, was greater than the critical F value for the
.05 probability level, 3.38. Here, we could say the following: There is a sig-
nificant difference in the level of education between whites, blacks, and
Hispanics (F(2, 27) = 4.26, p < .05). The first value for our degrees of free-
dom, 2, is equal to the number of groups minus one. The second value,
27, is equal to the total sample size or number of respondents, 30, minus
the number of groups, 3.

If you wanted to combine all these steps into one, you would get the fol-
lowing equation for the F statistic:

There are several versions of the ANOVA that will be covered in the SPSS
and Stata sections of this chapter. The first, which was just presented, is
called a one-way ANOVA. A one-way ANOVA is used when you have only one
categorical independent or predictor variable. A factorial ANOVA is used
when you have two or more categorical independent or predictor variables.
Finally, a repeated measures ANOVA is used when you are looking at scores
on a dependent variable across two or more points in time.

F ¼ MS between

MSwithin
¼

SS between
df between

SSwithin
df within

¼
SS between
df between

SS totalÿSS between
df within

¼

P P
xð Þ2

n ÿ
P P

xð Þ½ �2
N

nðgroupsÞÿ1

0
@

1
A

P P
x2ð Þð Þÿ

P P
xð Þ½ �2

N

� �
ÿ
P P

xð Þ2
n ÿ

P P
xð Þ½ �2

N

� �

NÿnðgroupsÞ

0
BB@

1
CCA

MSwithin ¼ SSwithin

df within
¼ 235:6

N ÿ nðgroupsÞ ¼
235:6

30ÿ 3
¼ 235:6

27
¼ 8:726

F ¼ MS between

MSwithin
¼ 37:2

8:726
¼ 4:263
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SECTION 2: IBM SPSS

Pearson’s r: IBM SPSS

In this section, I will use the example from the previous
section on Pearson’s r, which determined the correlation
coefficient between years of education and income. First, we
will create two new variables in IBM SPSS, one called educ and
another called inc, like the following:

Next, we will enter the data, reproduced below, into IBM
SPSS:

Years of Education Income (in Thousands of $)

8 12
12 15

8 8
14 20
12 18
16 45
20 65
24 85
24 100
24 90

When you are finished, the Data View of IBM
SPSS should look like this:
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Next, make the following menu selection:

This will reveal the following dialog box:
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Next, we will move our two variables over to the Variables box, like so:
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We can leave all the other options as they are. Finally, clicking the OK but-
ton will give us the following results:
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As you can see, these results match what we determined by hand in
the previous section. IBM SPSS has calculated the correlation coefficient
between years of education and income to be 0.974 with a p level of less
than .001 (as indicated by the “.000” under “Sig. (2-tailed)”). Here, we
could say the following: There is a statistically significant positive corre-
lation between years of education and income (r = .97, p < .001). As a
note, whenever IBM SPSS gives your p level (“Sig.”) as “.000,” this means
it is actually less than .001 but not equal to 0. For example, here, it might
have been .0002 or .00005. SPSS basically just “rounds down” to zero in
these cases.

The corresponding syntax is presented below:

CORRELATIONS
/VARIABLES=educ inc
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.



This will bring up the following dialog box:

CHAPTER 4 PEARSON’S R, CHI-SQUARE, T-TEST, AND ANOVA 145

Chi-Square: IBM SPSS

Calculating the chi-square statistic in IBM SPSS is very quick and easy,
and it is obviously preferred to calculating it by hand. In our examples here,
we will look at the relationship between highest degree completed and polit-
ical affiliation, using actual data from the General Social Survey (GSS).

First, navigate to the following menu selection:



All you need to do here is to check the Chi-square box. Clicking
Continue and OK will result in the following output:
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Here, I have selected a recoded version of partyid (political party affilia-
tion) under Row, and degree (highest degree completed) under Column. In
case you are following along yourself, I recoded respondents who answered 0
through 2 (strong Democrat, not very strong Democrat, or independent close
to Democrat) as “1,” those who responded 3 (independent) as “2,” and those
responded 4 through 6 (independent close to Republican, not very strong
Republican, strong Republican) as “3.” Those who responded 7 (other party or
refused), or were missing (8 or 9), I recoded as missing.

Next, you will want to click on Statistics. This will bring up the following
dialog box:
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The calculated chi-square value in this example was 834.007. We had 8
degrees of freedom ((3 – 1) × (5 – 1)). IBM SPSS tells us that this was signif-
icant at the .001 probability level. Here, we could say the following: There
was a statistically significant relationship between highest degree completed
and political party affiliation (χ2 = 834.0, df = 8, p < .001).

This is the corresponding syntax for this example:

DATASET ACTIVATE DataSet2.
CROSSTABS
/TABLES=PARTYIDR BY DEGREE
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/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ
/CELLS=COUNT
/COUNT ROUND CELL.

And if you wanted to omit the crosstabulation table, you would use this
syntax:

CROSSTABS
/TABLES=PARTYIDR BY DEGREE
/FORMAT=NOTABLES
/STATISTICS=CHISQ
/COUNT ROUND CELL.

t-Test: IBM SPSS

To run an independent samples t-test within IBM SPSS, we will choose
the following menu selection:



As you can see, I have taken the liberty of adding the respondents’ yearly
income, realrinc, into the Test Variable(s) box, and adding female (a con-
structed dummy variable, where female = 1 and male = 0) into the
Grouping Variable box. Right now, inside the parentheses next to the sex
variable, there are two question marks. Before we can run the t-test within
IBM SPSS, we click on the Define Groups button. Clicking on the button will
reveal this dialog box:
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This will open the following dialog box:



Now, you can see that our two groups are defined correctly:

Clicking OK will result in the following output:
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Here, we specify the values for the two different groups (males and
females). Since females are coded 1 and males are coded 0, I simply specified
Group 1 as equal to 1 (females), and Group 2 as equal to 0 (males), like this:



CHAPTER 4 PEARSON’S R, CHI-SQUARE, T-TEST, AND ANOVA 151

First, we see that Levene’s test for equality of variances was significant at the
.05 probability level. This means that the variances between groups are signifi-
cantly different, and therefore when looking up the t values and significance, we
should use the second row labeled “Equal variances not assumed.” Here, we see
that we obtained a t score of –50.752 with 22324.9 degrees of freedom, which was
significant at the .001 probability level. In IBM SPSS, if the probability level or level
of significance is ever listed as “.000,” this means that it is less than .001—this is an
IBM SPSS bug. The results also show us the mean for the two different groups:
the mean income for males is approximately $26,983 per year, while the mean
income for females is approximately $14,811 per year. These results could be
stated as follows: Males were found to have a significantly higher income as com-
pared with female respondents (t = –50.75, df = 22324.90, p < .001). Keep in mind
that this analysis includes all data, starting in the year 1972. If we include only cases
from the year 2004, we get the following results:



Simply input the same data values if you want to follow along in IBM
SPSS. Next, you will navigate to the following menu selection:
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And this is the corresponding syntax:

T-TEST GROUPS=female(1 0)
/MISSING=ANALYSIS
/VARIABLES=realrinc
/CRITERIA=CI(.95).

Now, let’s use IBM SPSS to run a dependent samples t-test. Because the
GSS does not contain any variables that would be appropriate to use in a
dependent samples t-test, I simply created a new file within IBM SPSS and
created two new variables: test1 and test2. Then, I typed in the following data
as an example:



Next, the following dialog box will appear:

In this dialog box, I’ve simply selected the variables test1 and test2 and
moved them to the Paired Variables box on the right, like this:
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IBM SPSS calculated the t score in this example to be –4.237. With
9 degrees of freedom, our results are significant at the .002 probability level
(2-tailed). When writing up these results, you would simply say that it was
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After clicking OK, we get the following output:



significant at the p < .01 level: you will only use .05, .01, or .001 as standards.
For example, you could report this result in the following way: Scores on
Test 2 were found to be significantly higher as compared with scores on
Test 1 (t = –4.24, df = 9, p < .01).

This is the corresponding syntax:

T-TEST PAIRS=test1 WITH test2 (PAIRED)
/CRITERIA=CI(.9500)
/MISSING=ANALYSIS.

One-Way ANOVA: IBM SPSS

Let’s try running an ANOVA on differences in years of education based
on race, similar to the race example that was presented in the theoretical sec-
tion. In this example, race is coded as three categories: blacks, whites, and
those of other race. These data are derived from the GSS, a large national sur-
vey of American adults.

First, navigate to the following menu selection:

This will open the following dialog box:
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Next, you’ll want to click on the Post Hoc button. This dialog box will pop up:
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Here, I will simply add the dependent variable educ, representing the
highest year of education completed, in the Dependent List and race into the
Factor box, like this:
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In this window, I will simply select two post hoc tests, the LSD (least sig-
nificant difference) and the Games-Howell post hoc tests:



If you do not run a post hoc test, you will not know
between which specific groups there is a statistically signifi-
cant difference. For example, even if the F test for the
ANOVA is significant, we will not know whether all three
groups differ from each other significantly in their scores, if
there is only a significant difference between whites and
blacks, and so on. To ascertain between which specific
groups there is a significant difference, we need to run a
post hoc analysis in addition to the ANOVA. If you do addi-
tional reading into the different post hoc analyses that are
available when conducting an ANOVA, you will find that
they differ in particular ways, especially in terms of how
conservative they are. Some are also more appropriate for
particular types of situations: for example, when your
ANOVA includes a small number of groups or a large num-
ber of groups.

The LSD post hoc test is less conservative, while the
Games-Howell post hoc test is more conservative. As you
can see, SPSS includes two categories, a large set of tests
under “Equal Variances Assumed,” and a smaller set under
“Equal Variances Not Assumed.” In our example, if the vari-
ance in years of education is significantly different between
whites, blacks, and members of other races, we should
choose one of the four post hoc tests under “Equal
Variances Not Assumed.” We can test whether the variances
are significantly different in the following way: first, click
Continue to close out this dialog box. Next, click Options.
This reveals the dialog box to the left.

Here, I will select Homogeneity of variance test, which
will test whether the variance of level of education is signif-
icantly different across race. I have also selected
Descriptive, which will give the mean years of education for
whites, blacks, and members of other races separately.

After clicking Continue and OK, you will see the following results:
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In the first table, labeled “Descriptives,” we see the mean of years of edu-
cation for whites, blacks, members of other races, and all groups combined.
While the differences are not huge, it does appear that whites and members of
other races tend to have more education as compared with blacks.

The second table, labeled “Test of Homogeneity of Variances,” reports
Levene’s test for the equality of variances. Our probability level, which is cir-
cled, was found to be less than .05, which means that the variances in the
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level of education are significantly different across race. This also means that
we will select as a post hoc test an option that does not assume equal vari-
ances. In this example, I selected the Games-Howell post hoc test, which
does not assume equal variances.

Before moving to the results of the post hoc test, let’s first discuss the
results of the ANOVA itself. We see that the F statistic was calculated by IBM
SPSS to be 349.095, with 2 degrees of freedom between groups and 46366
degrees of freedom within groups. This was significant at the p < .001 level.
As the F test in this ANOVA was found to be significant, this means that level
of education differs significantly based on race. However, to ascertain
between which groups specifically there is a significant difference in educa-
tion, we need to look at the results of our post hoc test. In regard to the
degrees of freedom, which will be reported when writing up the results of an
ANOVA, the between-groups degrees of freedom, calculated here to be 2, is
simply the total number of groups minus one. In this example, we had three
categories of race, so the between-groups degrees of freedom is simply 3
minus 1. The within-groups degrees of freedom is calculated as the total sam-
ple size minus the number of groups. The total sample size for this ANOVA,
reported in the final row of the “Descriptives” table under N, was 46369. As
we had three groups, the within-groups degrees of freedom is simply 46369
minus 3.

Finally, let’s look at the results of our post hoc analysis, which are dis-
played under the “Post Hoc Tests” table. As you may notice, the results of our
two post hoc analyses are quite similar, despite the fact that the LSD test
assumes the equality of variances, while the Games-Howell test does not.
This is not rare, as different tests commonly result in similar or identical
results.

However, let’s focus on the results of the Games-Howell test, as we
found that the variances of level of education based on race significantly
vary. Here, two results that were significant at the .05 probability level,
denoted by asterisks, were found. First, whites were found to have signifi-
cantly higher levels of education as compared with blacks. Specifically,
whites were found, on average, to have 1.112 greater years of education as
compared with blacks. Looking under the Sig. column, we can see that this
was significant at the p < .001 level. As you may notice, the results of each
comparison are actually reported twice in this table. Moving down two
rows, the opposite comparison, blacks as compared with whites, is dis-
played. If you preferred, you could instead report this result, stating that
blacks were found, on average, to have 1.112 fewer years of education as
compared with whites. Just make sure to choose only one of these two
results to report so you are not in effect reporting the same result twice.
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Finally, we can see in the final row of the table that members of other races
were found, on average, to have 1.260 greater years of education as com-
pared with blacks. Looking under the Sig. column, we can see that this was
significant at the p < .001 level. Our results highlight the importance of
running a post hoc test whenever we are conducting an ANOVA on more
than two groups: While a significant difference was found between whites
and blacks and between members of other races and blacks, no significant
difference was found between whites and members of other races in
regard to years of education.

Our results can be stated in the following way: A significant difference in
years of education between whites, blacks, and members of other races was
found, F(2, 46366) = 349.10, p < .001. Specifically, a Games-Howell post hoc
test found the mean level of education for both whites and members of other
races to be significantly greater than that of blacks, p < .001.

Factorial ANOVA: IBM SPSS

While one-way ANOVAs only include one categorical independent or
predictor variable, factorial ANOVAs include more than one. In the exam-
ple presented in the previous section, a one-way ANOVA was used as there
was only one independent or predictor variable, race of the respondent. In
this example, I will incorporate both race of the respondent as well as the
respondent’s gender in a factorial ANOVA that includes the respondent’s
income as the dependent variable. This example will also use data from
the GSS.

To begin, first make the following menu selection:



While this selection allows us to run a number of different tests, in this
example, it will be used to run a factorial ANOVA. Next, I will move income,
realrinc, into the Dependent Variable box and will move race and sex into
the Fixed Factor(s) box, which is used for categorical independent variables.
When completed, the dialog box will look as shown below.
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Next, the following dialog box will appear:



Here, I will move one of our independent variables, race, into the “Post
Hoc Tests for” box:
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Next, click Post Hoc. This will open the following dialog box:



Next, click Continue. Then, click Options to reveal the following dialog
box:
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As there are only two categories for sex, male and female, a post hoc test
is not necessary. As in the previous example, I will select both the LSD as well
as the Games-Howell post hoc tests. The LSD post hoc test is less conserva-
tive, while the Games-Howell post hoc test is more conservative. More con-
servative tests are sometimes preferred, as you are less likely to get a “false
positive,” or a significant result, in situations where there actually is no real
difference. As explained in the previous section, most post hoc tests assume
that the variances in the dependent variable are not significantly different
across categories of the independent variables. As we do not yet know
whether this is the case, I will select one test from each category. After mak-
ing these selections, our dialog box will look like the following:



Here, we will simply select “Homo-
geneity tests” to test whether the vari-
ance in income is significantly different
across race and sex. This is important in
determining which post hoc test we will
use and report in this analysis. I’ll also
select “Descriptive statistics,” which will
give us the mean score on respondent’s
income by race and sex. After making the
selections, our dialog box will look like
the following:

Finally, click Continue and OK to run
the analysis.

As the results of this analysis are rather
lengthy, I’ll go through them step by step
as opposed to presenting the entire set of
results all at once. The first two tables are
presented on the following page.
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The first table, titled “Between-Subjects Factors,” gives us the sample
size, or number of respondents, for each category of our independent vari-
ables. For example, in the first row, we see that there are 22,507 white respon-
dents included in this analysis. In the final row of this table, we see that there
are 13,301 female respondents included in the analysis.

The second table, titled “Descriptive Statistics,” gives us the mean for
every possible combination of our independent variables. For example, in the
first row, we see that the mean income for white males included in this analy-
sis is $28176.87. If we wanted to find the mean income for females of other
races, we simply find the Other category for race, which is the third one
down, and then find female, which is the second row. Here, we see that the
mean income for females of other races is $14927.64.

Next, I will present the tables for Levene’s test of the equality of variances
and the table presenting the main results of the ANOVA.
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The first table here gives us the results of Levene’s test of the equality of
variances. This result was found to be significant at the p < .001 level, which
means that the variance in income significantly varies across the categories of
our independent variables and also means that we will select a post hoc test
that does not assume equal variances.

The second table, titled “Tests of Between-Subjects Effects,” presents
the main results of the ANOVA. The first row, titled Corrected Model, gives
us the results of the F test for the overall model. Here, the calculated F sta-
tistic was 573.719 and was significant at the p < .001 level. The three other
results that are circled in this table give us the effects of race on income,
sex on income, and the interaction between race and sex on income. First,
the F statistic for race was 117.926. This was significant at the p < .001
level, which means that respondent’s income was found to significantly
vary based on race. Next, the F statistic for sex was 383.954. This result was
also significant at the p < .001 level, meaning that respondent’s income
significantly varies based on sex. Finally, the interaction between race and
sex, denoted as race * sex, had a calculated F statistic of 55.086 and was
also significant at the p < .001 level. This means that the effect of race on
income significantly varies by sex. Alternatively, you could state that the
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effect of sex on income varies significantly by race. For example, this would
be the case if race were an important predictor of income for males but not
for females. Likewise, this would be the case if males have higher incomes
than females for whites but if females had higher incomes than males for
blacks. In essence, the significant interaction effect in this example means
that the effect of one of the independent variables on the dependent vari-
able varies significantly depending on the level of the second independent
variable. Interaction effects can clearly be trickier to deal with and can take
some additional time to fully understand. The degrees of freedom, which
you will report, come from the df column in the table just presented. For
example, the F test for the full model would be reported as the following:
F(5, 27157) = 573.72. The first value, 5, comes from the first row, while the
second value, 27157, comes from the Error row. As you can see in the
results write-up presented at the end of this section, this second value will
always be equal to the value presented in the Error row.

Finally, I’ll present the table which included the results of the post hoc
tests we conducted.



As mentioned previously, a post hoc test for sex was not necessary as
there are only two groups, males and females. The results of the ANOVA, pre-
sented previously, found that respondent’s income varied significantly based
on sex. Looking at the “Descriptive Statistics” table, presented previously, we
see that the average income for males is $26983.16, while the average income
for females is $14811.22. Using this information, we can state that the aver-
age income for males is significantly higher than that of females.

Now, to look at the results presented in this table. First, as the variance
in income was found to significantly differ across categories of our indepen-
dent variables, we will focus only on the second post hoc test presented in
this table, the Games-Howell post hoc test, as it does not assume equal vari-
ances, while the LSD test does. As you may notice, the results for these two
tests are similar. However, we should focus on and report the results from
the Games-Howell test as it does not assume equal variances. In this post hoc
test, three significant comparisons were found, which means that there are
significant differences in income between all three of our racial categories. As
mentioned in the previous section, all comparisons are made twice, so all
results are repeated. For example, the white versus black comparison had a
mean difference of 6170.21, while the black versus white comparison had a
mean difference of –6170.21. In essence, this is the same result, simply
flipped, so when looking at this table, we can simply focus on positive mean
differences, which are circled.

The first circled mean difference, which looks at the mean difference
between whites and blacks, is 6170.21. This means that the average income
for whites is $6170.21 greater than the average income for blacks. This result
was significant at the p < .001 level. Next, the difference in income between
whites and those of other race was found to be significant at the p < .001
level. Here, the mean income for whites was, on average, $2522.61 greater
than that of members of other races. Finally, the difference in income
between members of other races and blacks was found to be significant at the
p < .001 level. In this case, the mean income for members of other races was,
on average, $3647.60 greater than the average income for blacks.

Our results can be stated in the following way: A factorial ANOVA found
a significant difference in income based on both race and gender, F(5, 27157) =
573.72, p < .001. Specifically, males were found to have significantly higher
incomes than females, F(1, 27157) = 383.95, p < .001. Also, income was
found to vary significantly based on race, F(2, 27157) = 117.93, p < .001. A
Games-Howell post hoc test found that income for whites was significantly
higher than that of blacks and those of other race, while the mean income for
members of other races was significantly greater than the average income for
blacks. Finally, a significant interaction between race and gender was found,
F(2, 27157) = 55.09, p < .001.
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Repeated Measures ANOVA: IBM SPSS

Repeated measures ANOVAs are used when your dependent variable con-
sists of a measure that was recorded or measured at several points in time. For
example, if you had a set of two or more exam grades for a set of respondents,
these data, along with one or more independent predictor variables, could be
analyzed using a repeated measures ANOVA. This is the example that I’ll be

using in this section. A repeated
measures ANOVA could also be
used in other situations, for
example, if you had a measure
for respondents that was taken
before and after some medical
treatment. Using a repeated
measures ANOVA, you can also
include predictor variables such
as sex and age.

To run a repeated mea-
sures ANOVA, first make the
following menu selection:

This will open the following dialog box:
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The data that I am using in this example consist of three exam scores in
a sample of 37 students. The dependent variable consists of the three exam
scores, while I will include year in college, categorized as Freshman,
Sophomore, Junior, and Senior, as the independent variable. In the dialog
box just presented, I will rename the Within-Subject Factor Name as simply
time. Next, I will specify it as having three levels, as we have three separate
exam scores. Finally, I will click Add under Number of Levels. When finished,
the dialog box will look as follows:

Next, we can click Define. This will reveal the following dialog box:



Here, we will begin by selecting the three exam scores, named Exam_1,
Exam_2, and Exam_3 and move them to the Within-Subjects Variables
(time) box. After this step, the dialog box will look as follows:
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Next, we will specify our independent predictor variable, year at college.
Any categorical predictor variables included in the repeated measures
ANOVA will be included in the Between-Subjects Factor(s) box. In this exam-
ple, we only have year at college as a categorical predictor variable, which is
named level in this data set. After selecting this variable and moving it into
the appropriate box, our dialog box will look as follows:

Next, let’s click on the Post Hoc option, so we can specify post hoc tests
for this ANOVA. This will allow us to see whether there are differences in
exam scores between each category of year at college. For example, it will tell
us whether Seniors have higher exam scores compared with Freshman. A
post hoc test is needed here as the ANOVA will only tell you whether there
are significant differences overall. The initial dialog box that you’ll see when
you first select this option is presented here:
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Next, we will simply select our level variable and move it to the right.
Then, we will select the post hoc tests desired. Here, I will select both the
LSD post hoc test as well as the Games-Howell post hoc test. The LSD post
hoc test is less conservative while the Games-Howell post hoc test is more
conservative. With more conservative tests, you are less likely to find a sig-
nificant result, while their stricter standards mean that you’re less likely to
find a “false positive,” or a result that is reported to be significant by SPSS,
which in actuality is not. The LSD test incorporates the assumption that the
variance in your dependent variable is approximately equal across the differ-
ent categories of your independent variable, while the Games-Howell test
does not. In this example, it would be assumed that variances in test scores
are relatively the same regardless of the respondent’s year of college. We will
be testing this assumption which will determine which of these two post hoc
tests we end up using in our analysis. After making our selections, our dialog
box will appear as follows:
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Next, click Continue. Then click Options. This opens the following dialog box:



Here, I will select Descriptive statistics and Homogeneity tests. The
Descriptive statistics option will give us the mean of exam scores by year at
college, while the Homogeneity tests option will test the assumption of
equal variances. After making these selections, your dialog box should look
as follows:
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Finally, we can click Continue and OK to run the analysis.
Instead of presenting the results all at once, I will go through the tables

a few at a time as running a repeated measures ANOVA in SPSS results in a
large set of tables. The first three tables of the output are presented here:



CHAPTER 4 PEARSON’S R, CHI-SQUARE, T-TEST, AND ANOVA 177

The first table, “Within-Subjects Factors,” simply presents the different
measures of the dependent variable that we had specified. Here, you can see
that we have simply specified the three different exam scores as the dependent
variable in this repeated measures ANOVA. Next, the “Between-Subjects
Factors” table presents the number of respondents for each category of our



independent variable. The third table, titled “Descriptive Statistics,” presents
mean scores for each exam separately by year at college. For example, the first
row presents the mean score on Exam 1 for freshmen, which is 70.00. The final
row presents the mean score on Exam 3 for all respondents, which is 75.68.

Here are the next two tables of the output:
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The first table presented here, titled “Box’s Test of Equality of Covariance
Matrices” includes a calculation of Box’s M statistic and its significance. The
statistic is used to test the assumptions of the multivariate model, which will
be explained shortly. If the significance of the statistic is less than .05, it
means that the assumptions of the multivariate model have been violated,
and therefore, the multivariate model should not be used. Here, you can see
that the probability level is less than .001, which means that the assumptions
of the multivariate model have been violated.

The next table, titled “Multivariate Tests,” presents the results of the
repeated measures ANOVA. In short, “multivariate” means that you are incor-
porating more than one predictor variable, while “univariate” means that you
are incorporating only one predictor. In this example, both level (year at col-
lege) and time are included, making this a multivariate model. You can see
that for each variable or interaction effect included, SPSS gives you four dif-
ferent versions of the F test. Wilks’s Lambda is very commonly used, so I’ll
focus on that version here. As mentioned in the previous paragraph, as the
assumptions of the multivariate model have been violated, you would prefer
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not to focus on the multivariate model. However, I will explain the results for
your understanding. We can see that the Wilks’s Lambda F test calculated an
F statistic for time of 1.941 with a p value of .160. This means that in this mul-
tivariate model, test scores were not found to significantly vary based on
time. In regard to the time * level interaction effect, the calculated F statistic
using the Wilks’s Lambda F test was .615 with a p level of .717. This means
that in this multivariate model, the effect of year at college on test scores did
not vary significantly based on time. Alternatively, you could state that the
effect of time on test scores did not vary significantly based on year at college.

The next two tables are presented here:

The first table, titled “Mauchly’s Test of Sphericity” presents a test of the
assumptions of the univariate model, the results of which are presented in
the second table. The probability level, which is circled, is below .05, which
means that the assumption of sphericity has been violated. However, this
does not prevent us from using the results of the univariate model. The final
three columns of the table present three corrections to the calculated F sta-
tistic. The Huynh-Feldt correction is somewhat less conservative than the
others and is what I will focus on here.



The second table, titled “Tests of Within-Subjects Effects,” presents the
effect of time on test scores. As discussed in the previous paragraph, the
Huynh-Feldt correction will be used here. The effect of time on test scores
was not found to be significant, having an F value of 2.658 with a probability
level of .090. The interaction between time and year at college (level) was
also not found to be significant, having an F value of .491 with a probability
level of .776. I will skip the next table of the output, titled “Tests of Within-
Subjects Contrasts,” as it is not commonly used.

The next two tables are presented here:
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The first table, titled “Levene’s Test of Equality of Error Variances,” tests
the assumption that the variances in test scores are equal across the cate-
gories of the independent variable, which is year at college in this example.
This is important for the post hoc test that will be presented shortly, as a
number of post hoc tests assume that these variances are equal. As you can
see, the probability levels, which are circled, are not significant at the .05
level, which means that this assumption has not been violated and that we
can use post hoc tests that assume the equality of variances.

The second table, titled “Tests of Between-Subjects Effects,” tests the
effect of our independent variable, level or year at college, on exam scores.
As you can see, this effect approaches significance with an F value of 2.841
and a probability level of .053.

The final table, presenting the results of our post hoc tests, is presented here:
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As mentioned earlier, Levene’s test of the equality of variances found that
the assumption that the variances are equal was not violated. This means that
we can use a post hoc test that assumes equal variances. The LSD post hoc
test, presented in this table, assumes equal variances and will be used in this
analysis. As mentioned earlier in this chapter, as every possible group com-
parison is included in the table of the post hoc test results, all comparisons
will appear twice. For example, the “Junior versus Freshman” comparison,
with a mean difference of 15.92 (circled), is also presented in the first row of
the table as the “Freshman versus Junior” comparison, with a mean differ-
ence of –15.92. A good way to make sure that you do not report the same



comparison twice is to simply focus only on significant comparisons that
have a positive mean difference.

The first significant comparison was that of Junior and Freshman. Juniors
were found to have test scores that were, on average, 15.92 points higher than
that of Freshman. This effect was found to be significant, having a probability
level of below .05. The second significant comparison, also circled, was
between Junior and Sophomore. Juniors were found to have test scores that
were, on average, 10.55 points higher than that of Sophomore. This effect was
found to be significant, also having a probability level of below .05.

Our results can be stated in the following way:
A repeated measures ANOVA was conducted on a series of three exam

grades with year at college (Freshman, Sophomore, Junior, and Senior) as the
independent predictor. The multivariate model will not be used as Box’s M test
found significant variability in the observed covariance matrices of the depen-
dent variables across groups. Mauchly’s test of sphericity was found to be sig-
nificant at the .05 alpha level; hence, the Huynh-Feldt adjustment will be used
in the univariate model. Neither the effects of time nor the interaction between
time and year at college were found to significantly predict exam grades.
However, the effect of year at college approached significance, F(3, 33) = 2.84,
p = .053.

An LSD post hoc test was used to analyze the differences in exam grades
based on year at college. Significant differences in exam scores were found
between Junior and Freshman and between Junior and Sophomore. Juniors
were found to have test scores that were, on average, 15.92 points higher than
that of Freshman, p < .05. Juniors were also found to have test scores that
were, on average, 10.55 points higher than that of Sophomores, p < .05.

ANOVA Syntax Summary

One-Way ANOVA

ONEWAY educ BY race
/STATISTICS DESCRIPTIVES HOMOGENEITY
/MISSING ANALYSIS
/POSTHOC=LSD GH ALPHA(.05).

The general format being as follows:

ONEWAY [Dependent variable] BY [Independent
variable]
/STATISTICS [Options]
/MISSING ANALYSIS
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/POSTHOC=[Post hoc tests] ALPHA([Alpha or
probability level]).

Factorial ANOVA

UNIANOVA realrinc BY race sex
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=race(LSD GH)
/PRINT=HOMOGENEITY DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=race sex race*sex.

The general format being as follows:

UNIANOVA [Dependent variable] BY [List of
independent variables]

/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=[Independent variables to include in
the post hoc test]([Post hoc tests])
/PRINT=[Options]
/CRITERIA=ALPHA([Alpha or probability level])
/DESIGN=[Design of model].

Repeated Measures ANOVA

GLM Exam_1 Exam_2 Exam_3 BY Level
/WSFACTOR=time 3 Polynomial
/METHOD=SSTYPE(3)
/POSTHOC=Level(LSD GH)
/PRINT=DESCRIPTIVE HOMOGENEITY
/CRITERIA=ALPHA(.05)
/WSDESIGN=time
/DESIGN=Level.

The general format being as follows:

GLM [Dependent measures] BY [Independent
variable]

/WSFACTOR=[Repeated measures “factor” name (can
specify any name)] [Number of times the
measure is repeated] Polynomial



/METHOD=SSTYPE(3)
/POSTHOC=[Independent variables to include in

the post hoc test] ([Post hoc tests])
/PRINT=[Options]
/CRITERIA=ALPHA([Alpha or probability level])
/WSDESIGN=[Repeated measures “factor” name]
/DESIGN=[Design of model].

SECTION 3: STATA

Pearson’s r: Stata

Calculating Pearson’s r in Stata is quite simple. In this section, I will use
the same data as were presented in the first section on Pearson’s r. First, I
will create two new variables, one for income and one for education, by
entering the following commands:

gen inc=.
gen educ=.

Next, I will enter the data displayed in the table below using the data edi-
tor by entering the command ed, which stands for edit.
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Years of Education (x) Income (in Thousands of $) (y)

8 12
12 15

8 8
14 20
12 18
16 45
20 65
24 85
24 100
24 90
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When you have finished entering data, your data
editor should look like this:

After closing the editor, we can make the follow-
ing menu selection:
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As you can see, I have listed the income and edu-
cation variables under the Variables entry. Also, I have
selected the Print significance level for each entry
option so that the p level is included in our results.
Clicking OK will give us this result:

Comparing this result from the one we obtained
in the initial section on Pearson’s r, we can see that
the calculated correlation coefficient is identical.

Secondly, we have generated the syntax that is used to determine the corre-
lation coefficient between two variables in Stata:

pwcorr inc educ, sig

Specifying the sig option tells Stata to include the significance level of the
correlation coefficient in the results. Here, our p level is listed as “0.0000,”
which simply means that our true p level is less than .0001. Stata incorrectly

This will open the following dialog box:
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rounded our p level down to zero, while it can never be zero in actuality.
Here, we could say the following: There is a statistically significant positive
correlation between years of education and income (r = .97, p < .001).

Chi-Square: Stata

To calculate a chi-square statistic in Stata, first navigate to the following
menu selection:

This will open the following dialog box:



188 PRACTICAL STATISTICS

Using the same example from the IBM SPSS section, I have selected
degree under Row variable and the recoded partyid variable, which I have
renamed partyidr, under Column variable. Clicking OK will give you the fol-
lowing output:

As you can see, both IBM SPSS and Stata calculated a Pearson chi-
square value of 834.007 in this particular example. As you may notice,
Stata puts the degrees of freedom on the last line right next to chi2, in
parentheses. As you may remember, in this example, the degrees of free-
dom was 8. Stata also calculates the probability level as being less than
.001. Here, we could say the following: There was a statistically significant
relationship between highest degree completed and political party affilia-
tion (χ2 = 834.01, df = 8, p < .001).

Finally, this is the corresponding Stata syntax for this particular example:

tabulate degree partyidr, chi2

t-Test: Stata

To run an independent samples t-test within Stata, we must first test whether
our dependent variable has equal variances across groups. We will do this using
Levene’s test for the equality of variances as was reported in the previous section
on running t-tests within IBM SPSS. In this example, we are testing differences in
respondents’ income based on sex. To test whether the variances in scores are
equal across sex, we will use the following syntax command:

robvar realrinc, by(sex)

Typing this command into the command window and hitting enter
would give you the following results:



Look at the first line, under “w0.” As
you can see, the calculated F statistic for
Levene’s test for the equality of vari-
ances here in Stata is identical to the
score calculated previously in IBM SPSS.
Also, looking at the Pr > F = entry for
w0, you notice that this test is significant
at the .05 level.

Next, we will run the actual t-test.
First, choose the following menu
selection:
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This will load the following dialog box:
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As you can see, I have specified sex under Group variable name (which
will always contain the variable that you have two groups of) and realrinc
under Variable name (the dependent, continuous variable). Because we
know that the variances between groups are significantly different, I have also
specified Unequal variances in this dialog box. Clicking OK will give us the
following output:

We can see that the calculated t score is 50.7516 with 22324.9 degrees of
freedom. For the probability level, we can look at the second entry at the bot-
tom. Here, we can see that our results are significant at the p < .0001 prob-
ability level under the “Pr(|T| > |t|)” entry, which represents the p level for
the two-tailed t-test. Stata’s output also gives us the means of the two differ-
ent groups, along with the number of observations and several other statis-
tics. These results could be stated as follows: Males were found to have a
significantly higher income as compared with female respondents (t = 50.75,
df = 22324.9, p < .001).

This is the corresponding syntax:

ttest realrinc, by(sex) unequal

And this syntax would be used if you assumed equal variances:

ttest realrinc, by(sex)

Now, let’s use Stata to run a paired samples or dependent t-test. I will use
the same example as used in the previous IBM SPSS example in which we had
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This will reveal the following dialog box:

10 respondents who took an exam at two different periods of time. I will also
use the identical values that were used previously. First, navigate to the fol-
lowing menu selection:
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Here, I have simply specified test1 and test2
as the two variables to be included in this
paired t-test. These are the data I am using in
this example:

Clicking OK will give us the following output:
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Here, we see that for this paired samples t-test, Stata has calculated a t
value of –4.2365 with 9 degrees of freedom. By again looking at the middle
entry at the bottom of the output, which is used for a two-tailed t-test, we see
that this is significant at the .0022 probability level. You could report this
result in the following way: “Scores on Test 2 were found to be significantly
different from scores on Test 1 (t = –4.24, df = 9, p < .01). Specifically, the
mean of Test 2 scores was 10.7 points higher than the mean of Test 1 scores.”
This second sentence is constructed using the values under the Mean col-
umn as well as the value under the diff row, which represents the difference
between our two variables (test1 and test2).

Finally, the equivalent syntax is simply this:

ttest test1 == test2

One-Way ANOVA: Stata

To run an ANOVA within Stata, first navigate to the following menu
selection:

This will bring up the following dialog box:



Using the same example as used previously, I have specified educ as the
Response variable and race as the Factor variable. I also specified that the
Sidak post hoc analysis (here referred to as “Multiple-comparison tests”) be run.
As you can see, Stata is much more limited than SPSS in regard to the number
of post hoc tests it supports. Clicking OK will give you the following results:
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As you can see, Stata has calculated the F statistic to be 349.10 with the
degrees of freedom of 2 and 46,366, significant at the p < .001 probability
level. In the Sidak post hoc table shown below the ANOVA results, we see that
only Groups 1 and 2 and Groups 2 and 3 are significantly different from each
other at the .05 probability level, just as we found within IBM SPSS. We can
tell this from the significance levels. Here, there are only two comparisons in
which the probability level is below .05: the comparison between Groups 1
and 2 (whites and blacks, respectively) and between Groups 2 and 3 (blacks
and those of other race, respectively). Our results can be stated in the fol-
lowing way:

A significant difference in the level of education between whites, blacks,
and those of other races was found (F(2, 46366) = 349.10, p < .001).
Specifically, a Sidak post hoc test found the mean income for whites to
be significantly different from that of blacks, with whites having greater
incomes, on average, than blacks. Also, the mean income for blacks was
found to significantly differ from those of other races, with members of
other races having higher incomes as compared with blacks.

Our value of –1.11 at the top of the table represents the mean of blacks’
education (coded 2) minus the mean of whites’ education (coded 1), where
education was coded in years. This value of –1.11 means that the mean of
years of education for blacks is less than that of whites, as it is negative. The
value of 1.2596 in the lower right-hand cell of the table represents the mean
of education for those of other race (coded 3) minus the mean of blacks’
education (coded 2). The values will always represent the mean for the row
(in this case, 3) minus the mean for the column (in this case, 2).

We could check this using the following syntax:

. tabstat educ, by(race)

Summary for variables: educ
by categories of: race 

race |      mean
---------+----------

1 | 12.75507
2 | 11.64261
3 | 12.90221

---------+----------
Total |  12.60765

--------------------



Here, we see that the mean years of education for blacks, coded 2, is less
than that of whites, coded 1.

This is the corresponding syntax for the ANOVA:

oneway educ race, sidak

Factorial ANOVA: Stata

While one-way ANOVAs only include one categorical independent or pre-
dictor variable, factorial ANOVAs include more than one. In the example pre-
sented in the previous section, a one-way ANOVA was used as there was only
one independent or predictor variable, race of the respondent. In this exam-
ple, I will incorporate both race of the respondent as well as the respondent’s
gender in a factorial ANOVA that includes the respondent’s income as the
dependent variable. This example will also use data from the GSS.

To begin, first make the following menu selection:
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This will open the following dialog box:

As you can see, I have specified the variable realrinc, a measure of the
respondent’s annual income, as the dependent variable. I have also specified
the model to include two independent variables, the respondents’ race and
sex. Also, I have included as a term race#sex, which is the interaction
between these two variables. It is possible that the effect of race on income
varies by gender or likewise that the effect of gender on income varies by
race. The inclusion of this interaction effect will test whether this is the case.
After clicking OK, you will see the following results:



As you can see under the “Model” row, this ANOVA had a calculated F sta-
tistic of 573.72, with a probability level of less than .001. The effect of race, sex,
and the interaction between race and sex were all found to be significant. First,
the effect of race on income was found to be significant, having an F statistic
of 117.93 with a p level of less than .001. Next, the effect of sex on income was
also found to be significant, having an F statistic of 383.95 with a p level of less
than .001. Finally, the interaction between race and sex was found to be sig-
nificant, having an F statistic of 55.09 with a p level of less than .001. This
means that the effect of race on income significantly varies by sex.
Alternatively, you could state that the effect of sex on income varies signifi-
cantly by race. For example, this would be the case if race was an important
predictor of income for males but not for females. Likewise, this would be the
case if males have higher incomes than females for whites but if females had
higher incomes than males for blacks. In essence, the significant interaction
effect in this example means that the effect of one of the independent vari-
ables on the dependent variable varies significantly depending on the level of
the second independent variable. Interaction effects can clearly be trickier to
deal with and can take some additional time to fully understand.

The degrees of freedom, which you will report, come from the df column
in the table just presented. For example, the F test for the full model would be
reported as F(5, 27157) = 573.72. The first value, 5, comes from the first
“Model” row, while the second value, 27157, comes from the “Residual” row.

Our results can be stated in the following way: A factorial ANOVA found
a significant difference in income based on both race and gender, F(5, 27157) =
573.72, p < .001. Specifically, males were found to have significantly higher
incomes than females, F(1, 27157) = 383.95, p < .001. Also, income was
found to vary significantly based on race, F(2, 27157) = 117.93, p < .001.
Finally, a significant interaction between race and gender was found, F(2,
27157) = 55.09, p < .001.

Repeated Measures ANOVA: Stata

Repeated measures ANOVAs are used when your dependent variable con-
sists of a measure that was recorded or measured at several points in time. For
example, if you had a set of two or more exam grades for a set of respondents,
these data, along with one or more independent predictor variables, could be
analyzed using a repeated measures ANOVA. This is the example that I’ll be
using in this section. A repeated measures ANOVA could also be used in other
situations; for example, if you had a measure for respondents that was taken
before and after some medical treatment. Using a repeated measures ANOVA,
you can also include predictor variables such as sex and age.

To run a repeated measures ANOVA in Stata, we will first need to
“reshape” the data. Currently, the data are in this format:
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Where each respondent has three rows, one for each exam score. To do
this, we need to first create a new variable to identify respondents by num-
ber, such as case. Here, I have simply used “1” for the first respondent and
have continued from there:

where each respondent has his or her own single row. We need to get the
data into this format:



In Stata, you can simply use the command:

gen case=.

And then enter the values for case by typing ed.
Next, use the following syntax command:

reshape long exam_, i(case) j(exnum)

This transforms the data into the necessary “long” format using the
exam variable. The variable case will identify the respondent, and exnum
will identify the exam number. The new exam variable will be simply exam_.

This will transform the data into the necessary format:

200 PRACTICAL STATISTICS



Next, to run a repeated measures ANOVA, make the following menu
selection:
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As you can see, I have specified the new exam grade variable, exam_,
as the dependent variable in this model. I have included year (year at col-
lege), exnum (exam number), and case (respondent number) as inde-

pendent variables in this
model. I have also included
exnum#year, which is the
interaction between exam
number and year at college.
This tests whether the
effect of time (exam num-
ber) on exam scores varies
significantly by year at col-
lege. Also, I have specified
that exnum is the repeated
measures variable. Next,
I will click on the Adv.
model tab:
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This will open the following dialog box:
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Here, I will need to specify case, the respondent number, as the
between-subjects error term. Clicking OK results in the following output:

Here, the model was found to be significant, having an F statistic of 1.94,
with p < .01. Year at college was found to be a significant predictor of exam
scores, having an F statistic of 3.10, with p < .05. Next, the exam number was
not found to have a significant effect on exam scores. The interaction
between exam number and year at college was also not found to be signifi-
cant at the p < .05 level.

The syntax command, shown in the output, is as follows:

anova exam_ year exnum case exnum#year,
repeated(exnum) bse(case)



SECTION 4: SUMMARY

This chapter covered Pearson’s r, chi-square, the t-test, and the ANOVA.
Pearson’s r, a correlation coefficient, is used to determine the strength and
direction of the relationship between two continuous variables. Chi-square is
used to show whether or not there is a relationship between two categorical
variables. It can also be used to test whether or not a number of outcomes
are occurring in equal frequencies or not, or conform to a certain distribu-
tion. Both the t-test and the ANOVA are used to test differences in scores
between groups. While the t-test can only be used to test the differences
between two groups on some continuous variable, the ANOVA can be used
to test the differences between two or more groups on a continuous variable.
When conducting an ANOVA on more than two groups, it is necessary to
select a post hoc comparison test in order to determine between which spe-
cific groups there is a significant difference. A one-way ANOVA includes only
one independent, predictor variable, while factorial ANOVAs include two or
more. Also, repeated measures ANOVAs are used to look at a dependent vari-
able that is measured at multiple points in time. The next chapter will cover
linear regression, which is a particular form of regression that is used when
your dependent variable is continuous. Regression is a powerful statistical
tool as it allows you to determine the effect of one independent variable on
your dependent variable while holding any number of other independent
variables constant. Starting with the following chapter, we will begin con-
structing and analyzing models that include more than one independent
variable, moving on from bivariate (two variables) statistics and beginning
our journey into what is called multivariate statistics.

RESOURCES

You can find more information about IBM SPSS and how to purchase it
by navigating to the following Web site: www.spss.com/software/statistics/

You can find more information about Stata and how to purchase it by
navigating to the following Web site: www.stata.com

This book’s Web site can be found at the following location: www.sage
pub.com/kremelstudy
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