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GRAPH-THEORETIC AND
STATISTICAL MODELS

3.1 INTRODUCTION

I n this chapter, we consider several graph-theoretic and probabilistic models
for a social network, which we do under different assumptions related

to two basic parameters stated earlier in Chapter 1—namely, the number of
vertices (n) and the number of arcs (m). We will take a social network to be a
digraph. Models analogous to some of these can also be considered for graphs
and weighted digraphs, although we will not discuss them in detail.

At the outset, we mention that when we talk of models in this chapter,
we do not imply that any of them is a typical realistic representation of the
situation in real life. We are not trying to build or present such models. Rather,
the models we present can be used as a sort of null model with which one
can standardize some of the parameters or statistics in the underlying social
networks.

Each model generally stipulates in some way the set of all possible
digraphs of which the observed digraph is an element. A statistical model,
moreover, assigns a probability distribution, depending on some parameters,
over the class of all possible digraphs. For some purposes, one may use a prob-
ability model that does not completely specify the probability of each possible
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54 MODELS FOR SOCIAL NETWORKS WITH STATISTICAL APPLICATIONS

digraph. By a graph-theoretic model, we simply mean a model that uses some
digraph parameters and is not probabilistic.

The general procedure we adopt for obtaining a standardized measure of
any characteristic of a social network is as follows. We start with an initial
simple real valued measure X , which is a function of the observed network, for
the characteristic under consideration. We then choose an appropriate model
and standardize X as follows.

If the model is statistical, we take P(X ≤ x) to be the standardized mea-
sure, where x is the value of X for the particular network observed. This
measure lies between 0 and 1 and can be converted to a percentage by mul-
tiplying by 100. In case the distribution of X is not known, one can still use
(x − E(X))/σ (X) as a measure and can get some idea about the tail probabil-
ity from Chebychev’s inequality.

If the model is graphical, we find the minimum xmin and the maximum
xmax of the values X takes. Then we scale the observed value x in its range and
take

x − xmin

xmax− xmin
(3.1)

as the standardized measure. The situation is sometimes complicated by the
fact that not all (integer) values between xmin and xmax are attained by X .
Then, perhaps one can choose one of the following alternatives: (1) use the
above measure regardless of whether X takes all values between xmin and xmax

and (2) use the probabilistic measure assuming that the distribution of X gives
equal probabilities to each of the values taken by X .

Thus, under each of the graphical models, we want to find the range (or at
least the minimum and the maximum values) of the crude measure X . Under
each of the probabilistic models, we want to find the distribution of X , either
exactly or at least approximately, and, if this is not possible, then the mean and
the variance of X . We consider the following variables X , some of which will
be used in the next chapter to construct measures of various characteristics of
a social network:

• the number of arcs;

• the out-degree and the in-degree of a vertex;

• the maximum out-degree and the maximum in-degree in the digraph;

• the numbers of sources, sinks, and isolates;
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• the number of symmetric pairs;

• the diameter;

• the radius;

• the number of reachable pairs;

• the number of pairs reachable in k steps (k= 2 or 3);

• the numbers p and q of strong and weak components, p− q;

• the number of arcs within strong components;

• the number h of arcs between strong components;

• the number of arcs uv such that d(v, u)≤ 2; and

• the clique number.

Under the probabilistic models, we will also look at the following, where
G denotes a random digraph.

• P(G is symmetric),

• P(G is asymmetric),

• P(G is complete asymmetric),

• P(G is a tree),

• P(G is acyclic),

• P(G is strongly connected), and

• P(G is weakly connected).

To avoid trivialities, we will assume that n≥ 2 in all the models considered
below, although we allow m to be 0. Also note that the probability distribution
of the sources, sinks, and isolates has received special attention as these imme-
diately reveal some important features of social structures. This is discussed
later in Chapter 5.

It is perhaps worth mentioning that, in applying these to actual social
networks, one has to modify some of the above variables X for various reasons.
First, X may not precisely measure the characteristic it is intended to measure
(often the latter has different versions or nuances, all of which cannot be
captured by a single variable). Then, the value of X itself may be very difficult
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digraph. By a graph-theoretic model, we simply mean a model that uses some
digraph parameters and is not probabilistic.

The general procedure we adopt for obtaining a standardized measure of
any characteristic of a social network is as follows. We start with an initial
simple real valued measure X , which is a function of the observed network, for
the characteristic under consideration. We then choose an appropriate model
and standardize X as follows.

If the model is statistical, we take P(X ≤ x) to be the standardized mea-
sure, where x is the value of X for the particular network observed. This
measure lies between 0 and 1 and can be converted to a percentage by mul-
tiplying by 100. In case the distribution of X is not known, one can still use
(x − E(X))/σ (X) as a measure and can get some idea about the tail probabil-
ity from Chebychev’s inequality.

If the model is graphical, we find the minimum xmin and the maximum
xmax of the values X takes. Then we scale the observed value x in its range and
take

x − xmin

xmax− xmin
(3.1)

as the standardized measure. The situation is sometimes complicated by the
fact that not all (integer) values between xmin and xmax are attained by X .
Then, perhaps one can choose one of the following alternatives: (1) use the
above measure regardless of whether X takes all values between xmin and xmax

and (2) use the probabilistic measure assuming that the distribution of X gives
equal probabilities to each of the values taken by X .

Thus, under each of the graphical models, we want to find the range (or at
least the minimum and the maximum values) of the crude measure X . Under
each of the probabilistic models, we want to find the distribution of X , either
exactly or at least approximately, and, if this is not possible, then the mean and
the variance of X . We consider the following variables X , some of which will
be used in the next chapter to construct measures of various characteristics of
a social network:

• the number of arcs;

• the out-degree and the in-degree of a vertex;

• the maximum out-degree and the maximum in-degree in the digraph;

• the numbers of sources, sinks, and isolates;
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• the number of symmetric pairs;

• the diameter;

• the radius;

• the number of reachable pairs;

• the number of pairs reachable in k steps (k= 2 or 3);

• the numbers p and q of strong and weak components, p− q;

• the number of arcs within strong components;

• the number h of arcs between strong components;

• the number of arcs uv such that d(v, u)≤ 2; and

• the clique number.

Under the probabilistic models, we will also look at the following, where
G denotes a random digraph.

• P(G is symmetric),

• P(G is asymmetric),

• P(G is complete asymmetric),

• P(G is a tree),

• P(G is acyclic),

• P(G is strongly connected), and

• P(G is weakly connected).

To avoid trivialities, we will assume that n≥ 2 in all the models considered
below, although we allow m to be 0. Also note that the probability distribution
of the sources, sinks, and isolates has received special attention as these imme-
diately reveal some important features of social structures. This is discussed
later in Chapter 5.

It is perhaps worth mentioning that, in applying these to actual social
networks, one has to modify some of the above variables X for various reasons.
First, X may not precisely measure the characteristic it is intended to measure
(often the latter has different versions or nuances, all of which cannot be
captured by a single variable). Then, the value of X itself may be very difficult
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to find even for the observed network, not to mention the distribution of X ,
especially if the number of vertices is large, although sometimes, using various
computational and theoretical techniques, it may be possible to compute the
value for reasonably sized networks. For many of the variables, the exact
range or even the values of xmin and xmax and the distribution or even the
mean and variance of X are not known exactly, and only occasionally some
theoretical approximations or bounds are known. Sometimes it may be possible
to use iterative methods or simulation to get approximations, and one has to be
satisfied with them. Finally, many of the definitions or properties of graph-
theoretic variables are too stringent to be of use in real-life situations, and one
has to either modify the variable or use some sort of cutoff to decide whether
one can consider a network to have the particular property.

It may not be out of context to also mention that discussions on specific
graph parameters such as sinks, sources, and isolates may be overemphasized
in the later parts of this chapter. These terms have natural sociological inter-
pretations, as discussed in Chapter 5. The theoretical study of such parame-
ters requires probabilistic arguments, and we thought it proper to derive some
results and present them hereinafter along with the description of other more
useful parameters such as out-degree, in-degree, and reciprocity.

The basic assumptions underlying different models that will be considered
in this chapter are summarized in the following table. We have conceptualized
four categories of models (I–IV), penetrating step-by-step according to four
different levels of available information related to the formation of the social
network. Minimally, since the level of information available is that of only
the size of a network (i.e., the number of actors (n)), we begin with n
as given. Therefore, the possible digraphs are all digraphs with vertex set
v1, v2, ... . . . , vn with no additional assumptions. Models I.1 to I.3 fall under
this category. At the next level, the quantum of interaction among the n actors
(i.e., total number of ties of interaction or arcs (m)) is also assumed to be
known. Models II.1 to II.2 fall in this category. Information available on the
out-degrees of the actors—that is, (d1, d2, ... . . . , dn)—gives us the third level
of modeling, and III.1 to III.3 deal with this aspect. Models IV.1 to IV.2
deal with the situation when both the out-degree and in-degree sequences are
known. For each of the four categories, we have considered graph-theoretic
(deterministic) and statistical (probabilistic) versions along with appropriate
special cases, if any. The remaining models (V–VII) are known probabilistic
models that can be related to those stated in Categories II and III above.
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Model assumptions

Model no. Assumptions

I.1 None

I.2 All digraphs are equally likely

I.3 P(viv j is an arc)= p for i = j ,
distinct pairs being independent

II.1 The number of edges is m

II.2 The number of edges is m and
all possible digraphs are equally likely

III.1 d+(vi )= di for i = 1, 2, . . . , n

III.2 d+(vi )= di for i = 1, 2, . . . , n and
all possible digraphs are equally likely

III.3 |N (vi )| = di , N (vi )⊆ Pi for i = 1, 2, . . . , n and
all possible digraphs are equally likely

IV.1 d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n

IV.2 d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n and
all possible digraphs are equally likely

V P(v jvi ∈ A|viv j ∈ A)= P(v jvi ∈ A)+ τ P(v jvi /∈ A) and
P(viv j ∈ A)= di/(n− 1) whenever i = j

VI P((0, 0))= exp(λi j );
P((1, 0))= exp(λi j + θ +αi +β j );
P((0, 1))= exp(λi j + θ +α j +βi );
P((1, 1))= exp(λi j + 2θ +αi +β j +α j +βi + ρ);

for an ordered pair of vertices (i, j) in a digraph G
with the scores for dyadic movements expressed by
22= 4 combinations of 0s and 1s;

αi = 0 and


βi = 0

VII P(G)= const. exp(θm+ ρs+
αi di +


βi ei )

for any digraph G;
αi = 0 and


βi = 0

3.2 MODELS FIXING THE TOTAL NUMBER OF VERTICES

Model I.1

This is the simplest graphical model one can consider and takes the vertex
set V ={v1, v2, . . . , vn} comprising n vertices as fixed and assumes that all the
2n(n−1) digraphs on V are actually possible.

Clearly, the range of the number m of arcs is {0, 1, . . . , n(n− 1)}.
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to find even for the observed network, not to mention the distribution of X ,
especially if the number of vertices is large, although sometimes, using various
computational and theoretical techniques, it may be possible to compute the
value for reasonably sized networks. For many of the variables, the exact
range or even the values of xmin and xmax and the distribution or even the
mean and variance of X are not known exactly, and only occasionally some
theoretical approximations or bounds are known. Sometimes it may be possible
to use iterative methods or simulation to get approximations, and one has to be
satisfied with them. Finally, many of the definitions or properties of graph-
theoretic variables are too stringent to be of use in real-life situations, and one
has to either modify the variable or use some sort of cutoff to decide whether
one can consider a network to have the particular property.

It may not be out of context to also mention that discussions on specific
graph parameters such as sinks, sources, and isolates may be overemphasized
in the later parts of this chapter. These terms have natural sociological inter-
pretations, as discussed in Chapter 5. The theoretical study of such parame-
ters requires probabilistic arguments, and we thought it proper to derive some
results and present them hereinafter along with the description of other more
useful parameters such as out-degree, in-degree, and reciprocity.

The basic assumptions underlying different models that will be considered
in this chapter are summarized in the following table. We have conceptualized
four categories of models (I–IV), penetrating step-by-step according to four
different levels of available information related to the formation of the social
network. Minimally, since the level of information available is that of only
the size of a network (i.e., the number of actors (n)), we begin with n
as given. Therefore, the possible digraphs are all digraphs with vertex set
v1, v2, ... . . . , vn with no additional assumptions. Models I.1 to I.3 fall under
this category. At the next level, the quantum of interaction among the n actors
(i.e., total number of ties of interaction or arcs (m)) is also assumed to be
known. Models II.1 to II.2 fall in this category. Information available on the
out-degrees of the actors—that is, (d1, d2, ... . . . , dn)—gives us the third level
of modeling, and III.1 to III.3 deal with this aspect. Models IV.1 to IV.2
deal with the situation when both the out-degree and in-degree sequences are
known. For each of the four categories, we have considered graph-theoretic
(deterministic) and statistical (probabilistic) versions along with appropriate
special cases, if any. The remaining models (V–VII) are known probabilistic
models that can be related to those stated in Categories II and III above.
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Model assumptions

Model no. Assumptions

I.1 None

I.2 All digraphs are equally likely

I.3 P(viv j is an arc)= p for i = j ,
distinct pairs being independent

II.1 The number of edges is m

II.2 The number of edges is m and
all possible digraphs are equally likely

III.1 d+(vi )= di for i = 1, 2, . . . , n

III.2 d+(vi )= di for i = 1, 2, . . . , n and
all possible digraphs are equally likely

III.3 |N (vi )| = di , N (vi )⊆ Pi for i = 1, 2, . . . , n and
all possible digraphs are equally likely

IV.1 d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n

IV.2 d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n and
all possible digraphs are equally likely

V P(v jvi ∈ A|viv j ∈ A)= P(v jvi ∈ A)+ τ P(v jvi /∈ A) and
P(viv j ∈ A)= di/(n− 1) whenever i = j

VI P((0, 0))= exp(λi j );
P((1, 0))= exp(λi j + θ +αi +β j );
P((0, 1))= exp(λi j + θ +α j +βi );
P((1, 1))= exp(λi j + 2θ +αi +β j +α j +βi + ρ);

for an ordered pair of vertices (i, j) in a digraph G
with the scores for dyadic movements expressed by
22= 4 combinations of 0s and 1s;

αi = 0 and


βi = 0

VII P(G)= const. exp(θm+ ρs+
αi di +


βi ei )

for any digraph G;
αi = 0 and


βi = 0

3.2 MODELS FIXING THE TOTAL NUMBER OF VERTICES

Model I.1

This is the simplest graphical model one can consider and takes the vertex
set V ={v1, v2, . . . , vn} comprising n vertices as fixed and assumes that all the
2n(n−1) digraphs on V are actually possible.

Clearly, the range of the number m of arcs is {0, 1, . . . , n(n− 1)}.
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The range of the out-degree di (as well as the in-degree ei ) of the i th
vertex is {0, 1, . . . , n− 1} for each i . The range of dmax, defined as max(d1,

d2, . . . , dn), as well as that of emax, defined as max(e1, e2, . . . , en), is also
{0, 1, . . . , n− 1}.

The range of the number of sources (as well as the number of sinks)
is {0, 1, . . . , n}. However, the range of the number of isolates is {0, 1, . . . ,

n− 2, n} (note that if n− 1 of the vertices are isolates, the remaining vertex is
automatically an isolate).

The range of the number s of symmetric pairs is {0, 1, . . . , n(n− 1)/2}.
The range of the diameter is {1, 2, . . . , n− 1,∞}. (To get a digraph with

diameter k <∞, take a complete symmetric digraph on n− k+ 1 vertices and
attach a symmetric path on k vertices at some vertex.) The range of the radius is
{1, 2, . . . , n− 1,∞}. (To get a digraph with radius k <∞, take a directed path
on k+ 1 vertices and join the first vertex to the remaining n− k− 1 vertices;
then, the first vertex of the path is a center, and the radius is k.)

Next we study R, the number of reachable pairs of distinct vertices. (Note
that we are leaving out pairs of the type (u, u), even though u is reachable from
u in a trivial sense.) Clearly, the minimum and maximum values of R are 0 and
n(n− 1), but the range Sn of R is not continuous. It can be shown by induction
on n that Sn ⊆ Tn , where

Tn ={0, 1, . . . , n2− 3n+ 4} ∪ {n2− 2n+ 1, n2− n}. (3.2)

We give Sn below for n up to 15 for ready reference.

S1 = {0}⊆ T1,

S2 = {0, 1, 2}= T2,

S3 = {0, 1, 2, 3, 4, 6}= T3,

S4 = {0, 1, . . . , 9, 12}= T4,

S5 = {0, 1, . . . , 14, 16, 20}= T5,

S6 = {0, 1, . . . , 22, 25, 30}= T6,

S7 = {0, 1, . . . , 28, 30, 31, 32, 36, 42}= T7−{29},
S8 = {0, 1, . . . , 44, 49, 56}= T8,

S9 = {0, 1, . . . , 52, 54, 56, 57, 58, 64, 72}= T9−{53, 55},
S10 = {0, 1, . . . , 67, 69, 72, 73, 74, 81, 90}= T10−{68, 70, 71},
S11 = {0, 1, . . . , 84, 86, 90, 91, 92, 100, 110}= T11−{85, 87, 88, 89},
S12 = {0, 1, . . . , 97, 99, . . . , 103, 105, 110, 111, 112, 121, 132},
S13 = {0, 1, . . . , 117, 120, . . . , 124, 126, 132, 133, 134, 144, 156},
S14 = {0, 1, . . . , 139, 142, . . . , 147, 149, 156, 157, 158, 169, 182},
S15 = {0, 1, . . . , 163, 166, 168, . . . , 172, 174, 182, 183, 184, 196, 210}.
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Moreover, Rao (2002) has shown that for n≤ 208,

x ∈ Sn if and only if x − k(n− 1)∈ Sn−k for some k with 1≤ k ≤ n− 1, (3.3)

using which Sn can be determined for n≤ 208. He also showed that if
f (n) is defined by {0, 1, . . . , f (n)}⊆ Sn and f (n)+ 1 /∈ Sn , then f (n)≥
(n−n0.57)(n− 1) and that this bound is fairly good. It has also been found
empirically that the number of elements in Sn is close to (n−n0.45)(n− 1)

at least for n≤ 208.
Until now, we considered the number of pairs reachable in an arbitrary

number of steps. Let R(k)(G) denote the number of pairs (u, v) of distinct ver-
tices in G such that v is reachable in k or fewer steps from u, and let S(k)

n be
the range of R(k)(G) as G varies over all networks on n vertices. Rao (2002)
has shown that S(2)

n = Sn for n= 1, 2, 3 and S(2)
n ={0, 1, . . . , n(n− 1)} when-

ever n≥ 4; S(3)
n = Sn for n= 1, 2, 3, 4 and S(3)

n ={0, 1, . . . , n(n− 1)} when-
ever n≥ 5. He has also shown that for every k ≥ 2, S(k)

n ={0, 1, . . . , n(n− 1)}
provided, n≥ k+(k+ 1)0.57+ 2.

The range is {1, 2, . . . , n} for the number of strong components, the num-
ber of weak components, and the clique number.

It is easy to see that the range of the difference p− q between the num-
ber of strong components p and the number of weak components q is also
{0, 1, . . . , n− 1}. The range of the number h of arcs between strong com-
ponents is {0, 1, . . . ,

�n
2

}. This is because such arcs cannot be reciprocated.
The range of the minimum number P of paths, formed with arcs joining
different strong components of G and covering the vertex set, is clearly
{1, 2, . . . , n}.

Model I.2

Model I.2 is a probabilistic version of Model I.1, and takes the vertex set
as fixed (e.g., V ={v1, v2, . . . , vn}) and assumes that all the 2n(n−1) possible
digraphs on V are equally likely.

Let Xi j be the random variable taking value 1 if viv j is an arc and 0
otherwise. Then under the present model, P(Xi j = 1)= 1/2 since there are
2n(n−1)−1 digraphs with viv j as an arc. Also, it is easy to see that the n(n− 1)

random variables Xi j (1≤ i = j ≤ n) are mutually independent. Thus, the
model is equivalent to viv j , which is an arc with probability 1/2, and the
ordered pairs are all mutually independent. Hence, a random digraph G under
the model can be generated by making viv j an arc with probability 1/2 for each
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The range of the out-degree di (as well as the in-degree ei ) of the i th
vertex is {0, 1, . . . , n− 1} for each i . The range of dmax, defined as max(d1,

d2, . . . , dn), as well as that of emax, defined as max(e1, e2, . . . , en), is also
{0, 1, . . . , n− 1}.

The range of the number of sources (as well as the number of sinks)
is {0, 1, . . . , n}. However, the range of the number of isolates is {0, 1, . . . ,

n− 2, n} (note that if n− 1 of the vertices are isolates, the remaining vertex is
automatically an isolate).

The range of the number s of symmetric pairs is {0, 1, . . . , n(n− 1)/2}.
The range of the diameter is {1, 2, . . . , n− 1,∞}. (To get a digraph with

diameter k <∞, take a complete symmetric digraph on n− k+ 1 vertices and
attach a symmetric path on k vertices at some vertex.) The range of the radius is
{1, 2, . . . , n− 1,∞}. (To get a digraph with radius k <∞, take a directed path
on k+ 1 vertices and join the first vertex to the remaining n− k− 1 vertices;
then, the first vertex of the path is a center, and the radius is k.)

Next we study R, the number of reachable pairs of distinct vertices. (Note
that we are leaving out pairs of the type (u, u), even though u is reachable from
u in a trivial sense.) Clearly, the minimum and maximum values of R are 0 and
n(n− 1), but the range Sn of R is not continuous. It can be shown by induction
on n that Sn ⊆ Tn , where

Tn ={0, 1, . . . , n2− 3n+ 4} ∪ {n2− 2n+ 1, n2− n}. (3.2)

We give Sn below for n up to 15 for ready reference.

S1 = {0}⊆ T1,

S2 = {0, 1, 2}= T2,

S3 = {0, 1, 2, 3, 4, 6}= T3,

S4 = {0, 1, . . . , 9, 12}= T4,

S5 = {0, 1, . . . , 14, 16, 20}= T5,

S6 = {0, 1, . . . , 22, 25, 30}= T6,

S7 = {0, 1, . . . , 28, 30, 31, 32, 36, 42}= T7−{29},
S8 = {0, 1, . . . , 44, 49, 56}= T8,

S9 = {0, 1, . . . , 52, 54, 56, 57, 58, 64, 72}= T9−{53, 55},
S10 = {0, 1, . . . , 67, 69, 72, 73, 74, 81, 90}= T10−{68, 70, 71},
S11 = {0, 1, . . . , 84, 86, 90, 91, 92, 100, 110}= T11−{85, 87, 88, 89},
S12 = {0, 1, . . . , 97, 99, . . . , 103, 105, 110, 111, 112, 121, 132},
S13 = {0, 1, . . . , 117, 120, . . . , 124, 126, 132, 133, 134, 144, 156},
S14 = {0, 1, . . . , 139, 142, . . . , 147, 149, 156, 157, 158, 169, 182},
S15 = {0, 1, . . . , 163, 166, 168, . . . , 172, 174, 182, 183, 184, 196, 210}.
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Moreover, Rao (2002) has shown that for n≤ 208,

x ∈ Sn if and only if x − k(n− 1)∈ Sn−k for some k with 1≤ k ≤ n− 1, (3.3)

using which Sn can be determined for n≤ 208. He also showed that if
f (n) is defined by {0, 1, . . . , f (n)}⊆ Sn and f (n)+ 1 /∈ Sn , then f (n)≥
(n−n0.57)(n− 1) and that this bound is fairly good. It has also been found
empirically that the number of elements in Sn is close to (n−n0.45)(n− 1)

at least for n≤ 208.
Until now, we considered the number of pairs reachable in an arbitrary

number of steps. Let R(k)(G) denote the number of pairs (u, v) of distinct ver-
tices in G such that v is reachable in k or fewer steps from u, and let S(k)

n be
the range of R(k)(G) as G varies over all networks on n vertices. Rao (2002)
has shown that S(2)

n = Sn for n= 1, 2, 3 and S(2)
n ={0, 1, . . . , n(n− 1)} when-

ever n≥ 4; S(3)
n = Sn for n= 1, 2, 3, 4 and S(3)

n ={0, 1, . . . , n(n− 1)} when-
ever n≥ 5. He has also shown that for every k ≥ 2, S(k)

n ={0, 1, . . . , n(n− 1)}
provided, n≥ k+(k+ 1)0.57+ 2.

The range is {1, 2, . . . , n} for the number of strong components, the num-
ber of weak components, and the clique number.

It is easy to see that the range of the difference p− q between the num-
ber of strong components p and the number of weak components q is also
{0, 1, . . . , n− 1}. The range of the number h of arcs between strong com-
ponents is {0, 1, . . . ,

�n
2

}. This is because such arcs cannot be reciprocated.
The range of the minimum number P of paths, formed with arcs joining
different strong components of G and covering the vertex set, is clearly
{1, 2, . . . , n}.

Model I.2

Model I.2 is a probabilistic version of Model I.1, and takes the vertex set
as fixed (e.g., V ={v1, v2, . . . , vn}) and assumes that all the 2n(n−1) possible
digraphs on V are equally likely.

Let Xi j be the random variable taking value 1 if viv j is an arc and 0
otherwise. Then under the present model, P(Xi j = 1)= 1/2 since there are
2n(n−1)−1 digraphs with viv j as an arc. Also, it is easy to see that the n(n− 1)

random variables Xi j (1≤ i = j ≤ n) are mutually independent. Thus, the
model is equivalent to viv j , which is an arc with probability 1/2, and the
ordered pairs are all mutually independent. Hence, a random digraph G under
the model can be generated by making viv j an arc with probability 1/2 for each
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ordered pair (i, j), with distinct ordered pairs being independent. Repeating
this, one can generate any given number of random digraphs and estimate the
distribution of any statistic under the model by simulation.

It is easy to see that under the present model, the number of arcs m has
the binomial distribution B(n(n− 1), 1/2) since m is the sum of the n(n− 1)

independent Bernoulli random variables Xi j . The notation B(..) will be used
for a binomial distribution without any further explanation.

Since the out-degree di of vi is


j =i Xi j , it follows that di has
the binomial distribution B(n− 1, 1/2). Hence, E(di )= (n− 1)/2 and
V (di )= (n− 1)/4. Since the di s are independent, the distribution of
dmax : =max(d1, d2, . . . , dn) can be computed easily, although one cannot
give a closed formula for it. Note that P(dmax≤ k)= (P(d1≤ k))n . It is easy
to see that the in-degree ei of vi also has the distribution B(n− 1, 1/2), and
dmax and emax have the same distribution.

To give an example, let n= 3. Then each di takes values 0, 1, and 2 with
probabilities 1/4, 1/2, and 1/4. Hence, we have P(dmax= 0)= (1/4)3= 1/64.
Also, P(dmax≤ 1)= (3/4)3= 27/64, so P(dmax= 1)= 13/32 and P(dmax=
2)= 37/64. When n= 4, it can be checked that dmax takes values 0, 1, 2,
and 3 with probabilities 1/4,096, 255/4,096, 2,145/4,096, and 1,695/4,096,
respectively.

The probability that vi is a source is 1/2n−1. Also, different vi s being
sources are independent events, so the number of sources has the distribution
B(n, 1/2n−1). It follows similarly that the probability that vi is a sink is also
1/2n−1, and the number of sinks has the distribution B(n, 1/2n−1).

The probability that vi is an isolated vertex is 1/22n−2. But the events
in which different vertices are isolates are not independent. For example, if
any n− 1 vertices are isolates, it follows that the remaining vertex is also
an isolate. So, to find the distribution of the number of isolates, we use the
following formulae (see Feller, 1968). The probability that exactly k of the
events A1, A2, . . . , An occurs is

Sk −


k+ 1
k


Sk+1+


k+ 2

k


Sk+2−+ · · ·+ (−1)n−k


n
k


Sn, (3.4)

and the probability that at least k of A1, A2, . . . , An occurs is

Sk −


k
k− 1


Sk+1+


k+ 1
k− 1


Sk+2−+ · · ·+ (−1)n−k


n− 1
k− 1


Sn, (3.5)
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where Sk denotes


P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ), with the sum being taken over
all i1, i2, . . . , ik such that 1≤ i1 < i2 < · · ·< ik ≤ n. Clearly, now the probabil-
ity that k given vertices are isolates is

1
2k(k−1)+2k(n−k)

= 1
2k(2n−k−1)

.

Hence, taking Ai to be the event that the i th vertex is an isolate, we see that
the probability that there are exactly k isolates is


n
k


1

2k(2n−k−1)
−


k+ 1

k


n

k+ 1


1

2(k+1)(2n−k−2)
+


k+ 2

k



+


n
k+ 2


1

2(k+2)(2n−k−3)
−+ · · ·+ (−1)n−k


n
k


1

2n(n−1)
. (3.6)

The probability that there are at least k isolates can be found by using (3.2).
Taking the events that different vertices are isolates to be nearly indepen-
dent, we see that the distribution of the number of isolates is approximately
B(n, 1/22n−2). However, this is not of much importance as the probability that
there is no isolate is more than 0.999 for all n≥ 10.

By definition, the probability that G is any particular digraph (including
the null digraph and the complete symmetric digraph) is 1/2n(n−1).

The probability that G is symmetric is 1/2n(n−1)/2 since, for G to be
symmetric, either none or both of viv j and v jvi should be arcs for each
unordered pair {i, j} with i = j .

The probability that G is asymmetric and the probability that G is complete
are both (3/4)n(n−1)/2 since, for G to be asymmetric, at most one of viv j and
v jvi should be an arc, and for G to be complete, at least one of viv j and v jvi

should be an arc, for each unordered pair {i, j}, with i = j .
The number of symmetric pairs s(G) has the distribution B(n(n− 1)/2,

1/4) since s(G) is the sum of the n(n− 1)/2 independent Bernoulli variables
Yi j , where Yi j = Xi j X ji for any unordered pair {i, j} with i = j .

It is much more difficult to deal with probabilities of events depending
on the distance between vertices because d(vi , v j ) depends not only on what
happens at vi and v j but also on what happens in other parts of the digraph.

For example, to find the probability that G is strongly connected, we
have to find the number f (n) of strongly connected digraphs on the vertex
set {v1, v2, . . . , vn}. A method for computing this number f (n) for any n is
known (see Harary, 1988). (The problem is usually referred to as enumeration
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ordered pair (i, j), with distinct ordered pairs being independent. Repeating
this, one can generate any given number of random digraphs and estimate the
distribution of any statistic under the model by simulation.

It is easy to see that under the present model, the number of arcs m has
the binomial distribution B(n(n− 1), 1/2) since m is the sum of the n(n− 1)

independent Bernoulli random variables Xi j . The notation B(..) will be used
for a binomial distribution without any further explanation.

Since the out-degree di of vi is


j =i Xi j , it follows that di has
the binomial distribution B(n− 1, 1/2). Hence, E(di )= (n− 1)/2 and
V (di )= (n− 1)/4. Since the di s are independent, the distribution of
dmax : =max(d1, d2, . . . , dn) can be computed easily, although one cannot
give a closed formula for it. Note that P(dmax≤ k)= (P(d1≤ k))n . It is easy
to see that the in-degree ei of vi also has the distribution B(n− 1, 1/2), and
dmax and emax have the same distribution.

To give an example, let n= 3. Then each di takes values 0, 1, and 2 with
probabilities 1/4, 1/2, and 1/4. Hence, we have P(dmax= 0)= (1/4)3= 1/64.
Also, P(dmax≤ 1)= (3/4)3= 27/64, so P(dmax= 1)= 13/32 and P(dmax=
2)= 37/64. When n= 4, it can be checked that dmax takes values 0, 1, 2,
and 3 with probabilities 1/4,096, 255/4,096, 2,145/4,096, and 1,695/4,096,
respectively.

The probability that vi is a source is 1/2n−1. Also, different vi s being
sources are independent events, so the number of sources has the distribution
B(n, 1/2n−1). It follows similarly that the probability that vi is a sink is also
1/2n−1, and the number of sinks has the distribution B(n, 1/2n−1).

The probability that vi is an isolated vertex is 1/22n−2. But the events
in which different vertices are isolates are not independent. For example, if
any n− 1 vertices are isolates, it follows that the remaining vertex is also
an isolate. So, to find the distribution of the number of isolates, we use the
following formulae (see Feller, 1968). The probability that exactly k of the
events A1, A2, . . . , An occurs is

Sk −


k+ 1
k


Sk+1+


k+ 2

k


Sk+2−+ · · ·+ (−1)n−k


n
k


Sn, (3.4)

and the probability that at least k of A1, A2, . . . , An occurs is

Sk −


k
k− 1


Sk+1+


k+ 1
k− 1


Sk+2−+ · · ·+ (−1)n−k


n− 1
k− 1


Sn, (3.5)
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where Sk denotes


P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ), with the sum being taken over
all i1, i2, . . . , ik such that 1≤ i1 < i2 < · · ·< ik ≤ n. Clearly, now the probabil-
ity that k given vertices are isolates is

1
2k(k−1)+2k(n−k)

= 1
2k(2n−k−1)

.

Hence, taking Ai to be the event that the i th vertex is an isolate, we see that
the probability that there are exactly k isolates is


n
k


1

2k(2n−k−1)
−


k+ 1

k


n

k+ 1


1

2(k+1)(2n−k−2)
+


k+ 2

k



+


n
k+ 2


1

2(k+2)(2n−k−3)
−+ · · ·+ (−1)n−k


n
k


1

2n(n−1)
. (3.6)

The probability that there are at least k isolates can be found by using (3.2).
Taking the events that different vertices are isolates to be nearly indepen-
dent, we see that the distribution of the number of isolates is approximately
B(n, 1/22n−2). However, this is not of much importance as the probability that
there is no isolate is more than 0.999 for all n≥ 10.

By definition, the probability that G is any particular digraph (including
the null digraph and the complete symmetric digraph) is 1/2n(n−1).

The probability that G is symmetric is 1/2n(n−1)/2 since, for G to be
symmetric, either none or both of viv j and v jvi should be arcs for each
unordered pair {i, j} with i = j .

The probability that G is asymmetric and the probability that G is complete
are both (3/4)n(n−1)/2 since, for G to be asymmetric, at most one of viv j and
v jvi should be an arc, and for G to be complete, at least one of viv j and v jvi

should be an arc, for each unordered pair {i, j}, with i = j .
The number of symmetric pairs s(G) has the distribution B(n(n− 1)/2,

1/4) since s(G) is the sum of the n(n− 1)/2 independent Bernoulli variables
Yi j , where Yi j = Xi j X ji for any unordered pair {i, j} with i = j .

It is much more difficult to deal with probabilities of events depending
on the distance between vertices because d(vi , v j ) depends not only on what
happens at vi and v j but also on what happens in other parts of the digraph.

For example, to find the probability that G is strongly connected, we
have to find the number f (n) of strongly connected digraphs on the vertex
set {v1, v2, . . . , vn}. A method for computing this number f (n) for any n is
known (see Harary, 1988). (The problem is usually referred to as enumeration
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Figure 3.1

of strongly connected labeled digraphs on n vertices, with the word labeled
signifying that the vertex set is fixed and we are not counting nonisomorphic
digraphs.) However, this involves generating functions, and no closed formula
is known for f (n). Thus, even finding the probability that G is strongly
connected is difficult. When n= 2, this probability is 1/4. If n= 3, out of the
64 possible digraphs, 18 are strongly connected, so the probability is 9/32.
Here, the strongly connected digraphs consist of one digraph with six arcs; six
digraphs with five arcs; three digraphs with four arcs forming two reciprocal
pairs; six digraphs with four arcs, two of which form a reciprocal pair; and two
digraphs with three arcs forming a circuit (see Figure 3.1). When n= 4, it can
be checked that out of 4,096 possible digraphs, 1,606 are strongly connected,
so the probability that G is strongly connected is 1,606/4,096 = 0.392.

When n= 2, the probability that G is weakly connected is 3/4. When
n= 3, 54 out of the 64 possible digraphs are weakly connected, so the
probability is 54/64= 0.844. When n= 4, it can be checked that out of
4,096 possible digraphs, 3,834 are weakly connected, so the probability is
3,834/4,096 = 0.936.

In Figure 3.2, we give the 16 nonisomorphic digraphs on three vertices.
Along with each of these, we also give the number of digraphs on {v1, v2, v3}
isomorphic to it.

The probability that G has diameter 1 is clearly 1/2n(n−1). When n= 3, it
is easy to check from Figure 3.2 that the probability that G has diameter 2 is
17/64, and the probability that G has diameter∞ is 23/32.
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Figure 3.2

Let n= 3. Then P(r(G)= 1)= P(dmax= 2)= 37/64, where r(G) is the
radius of G. It can be checked that 14 digraphs have radius 2 and 13 digraphs
have radius∞, so P(r(G)= 2)= 7/32 and P(r(G))=∞)= 13/64.

We mention that for general n and k, even expressions such as (3.3)
are difficult to find for P(r(G)= k) and P(d(G)= k). However, it is easy
to prove that P(d(G)= 2)→ 1 as n→∞. To see this, let Ai be the event
that at least one of v1vi and viv2 is not an arc. Then P(Ai )= 3/4 for all
i = 1, 2. Since P(v1v2 is not an arc)= 1/2, it follows that P(d(v1, v2)>

2)= (3/4)n−2/2. Since P(d(vi , v j )> 2)= P(d(v1, v2)> 2), whenever
i = j , we have P(d(G)> 2)= P(d(vi , v j ) > 2 for at least one pair (i, j))≤
n(n− 1)(3/4)n−2/2→ 0 as n→∞. Since P(d(G)= 1)= 1/2n(n−1)→ 0, we
have P(d(G)= 2)→ 1 as n→∞.

Since P(d(G)= 2)→ 1, we also have P(r(G)≤ 2)→ 1 as n→∞. Now
we show that P(r(G)= 1)→ 0 as n→∞. For any fixed i , let Ei be the
event that viv j is an arc for all j = i . Then P(Ei )= 1/2n−1. Also, Ei s are
independent, so

P(r(G)= 1)= P(E1 ∪ E2 ∪ · · · ∪ En)= 1− P(Ē1 ∩ Ē2 ∩ · · · ∩ Ēn)

= 1−


1− 1
2n−1

n
=

n

k=1

(−1)k−1

�n
k



2k(n−1)
≤ n

2n−1 → 0 (3.7)

as n→∞. Here the inequality follows from the fact that |ak |/|ak+1|> 1 for
all k, where ak denotes the kth term in the sum (it also follows from the fact
that P(∪Ei )≤


P(Ei )). Hence, P(r(G)= 1)→ 0, and P(r(G)= 2)→ 1 as

n→∞.
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of strongly connected labeled digraphs on n vertices, with the word labeled

signifying that the vertex set is fixed and we are not counting nonisomorphic

digraphs.) However, this involves generating functions, and no closed formula

is known for f (n). Thus, even finding the probability that G is strongly

connected is difficult. When n = 2, this probability is 1/4. If n = 3, out of the

64 possible digraphs, 18 are strongly connected, so the probability is 9/32.

Here, the strongly connected digraphs consist of one digraph with six arcs; six

digraphs with five arcs; three digraphs with four arcs forming two reciprocal

pairs; six digraphs with four arcs, two of which form a reciprocal pair; and two

digraphs with three arcs forming a circuit (see Figure 3.1). When n = 4, it can

be checked that out of 4,096 possible digraphs, 1,606 are strongly connected,

so the probability that G is strongly connected is 1,606/4,096 = 0.392.

When n = 2, the probability that G is weakly connected is 3/4. When

n = 3, 54 out of the 64 possible digraphs are weakly connected, so the

probability is 54/64 = 0.844. When n = 4, it can be checked that out of

4,096 possible digraphs, 3,834 are weakly connected, so the probability is

3,834/4,096 = 0.936.

In Figure 3.2, we give the 16 nonisomorphic digraphs on three vertices.

Along with each of these, we also give the number of digraphs on {v1, v2, v3}
isomorphic to it.

The probability that G has diameter 1 is clearly 1/2n(n−1). When n = 3, it

is easy to check from Figure 3.2 that the probability that G has diameter 2 is

17/64, and the probability that G has diameter ∞ is 23/32.
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Figure 3.1

of strongly connected labeled digraphs on n vertices, with the word labeled
signifying that the vertex set is fixed and we are not counting nonisomorphic
digraphs.) However, this involves generating functions, and no closed formula
is known for f (n). Thus, even finding the probability that G is strongly
connected is difficult. When n= 2, this probability is 1/4. If n= 3, out of the
64 possible digraphs, 18 are strongly connected, so the probability is 9/32.
Here, the strongly connected digraphs consist of one digraph with six arcs; six
digraphs with five arcs; three digraphs with four arcs forming two reciprocal
pairs; six digraphs with four arcs, two of which form a reciprocal pair; and two
digraphs with three arcs forming a circuit (see Figure 3.1). When n= 4, it can
be checked that out of 4,096 possible digraphs, 1,606 are strongly connected,
so the probability that G is strongly connected is 1,606/4,096 = 0.392.

When n= 2, the probability that G is weakly connected is 3/4. When
n= 3, 54 out of the 64 possible digraphs are weakly connected, so the
probability is 54/64= 0.844. When n= 4, it can be checked that out of
4,096 possible digraphs, 3,834 are weakly connected, so the probability is
3,834/4,096 = 0.936.

In Figure 3.2, we give the 16 nonisomorphic digraphs on three vertices.
Along with each of these, we also give the number of digraphs on {v1, v2, v3}
isomorphic to it.

The probability that G has diameter 1 is clearly 1/2n(n−1). When n= 3, it
is easy to check from Figure 3.2 that the probability that G has diameter 2 is
17/64, and the probability that G has diameter∞ is 23/32.
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Figure 3.2

Let n= 3. Then P(r(G)= 1)= P(dmax= 2)= 37/64, where r(G) is the
radius of G. It can be checked that 14 digraphs have radius 2 and 13 digraphs
have radius∞, so P(r(G)= 2)= 7/32 and P(r(G))=∞)= 13/64.

We mention that for general n and k, even expressions such as (3.3)
are difficult to find for P(r(G)= k) and P(d(G)= k). However, it is easy
to prove that P(d(G)= 2)→ 1 as n→∞. To see this, let Ai be the event
that at least one of v1vi and viv2 is not an arc. Then P(Ai )= 3/4 for all
i = 1, 2. Since P(v1v2 is not an arc)= 1/2, it follows that P(d(v1, v2)>

2)= (3/4)n−2/2. Since P(d(vi , v j )> 2)= P(d(v1, v2)> 2), whenever
i = j , we have P(d(G)> 2)= P(d(vi , v j ) > 2 for at least one pair (i, j))≤
n(n− 1)(3/4)n−2/2→ 0 as n→∞. Since P(d(G)= 1)= 1/2n(n−1)→ 0, we
have P(d(G)= 2)→ 1 as n→∞.

Since P(d(G)= 2)→ 1, we also have P(r(G)≤ 2)→ 1 as n→∞. Now
we show that P(r(G)= 1)→ 0 as n→∞. For any fixed i , let Ei be the
event that viv j is an arc for all j = i . Then P(Ei )= 1/2n−1. Also, Ei s are
independent, so

P(r(G)= 1)= P(E1 ∪ E2 ∪ · · · ∪ En)= 1− P(Ē1 ∩ Ē2 ∩ · · · ∩ Ēn)

= 1−


1− 1
2n−1

n
=

n

k=1

(−1)k−1

�n
k



2k(n−1)
≤ n

2n−1 → 0 (3.7)

as n→∞. Here the inequality follows from the fact that |ak |/|ak+1|> 1 for
all k, where ak denotes the kth term in the sum (it also follows from the fact
that P(∪Ei )≤


P(Ei )). Hence, P(r(G)= 1)→ 0, and P(r(G)= 2)→ 1 as

n→∞.
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event that viv j is an arc for all j �= i . Then P(Ei ) = 1/2n−1. Also, Ei s are

independent, so

P(r(G) = 1) = P(E1 ∪ E2 ∪ · · · ∪ En) = 1 − P(Ē1 ∩ Ē2 ∩ · · · ∩ Ēn)
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The distribution of the clique number ω(G) is difficult to find for general
n, although it can be worked out for small n using (3.2). It may be noted
that, for any n, P(ω(G)= 1)= P(G is asymmetric)= (3/4)n(n−1)/2 and
P(ω(G)= n)= 1/2n(n−1). Hence, when n= 3, the clique number takes
values 1, 2, and 3 with probabilities 27/64, 9/16, and 1/64. Next let n= 4.
Then P(ω(G)= 1) = 729/4,096, so P(ω(G)≥ 2) = 3,367/4,096. To find
P(ω(G)≥ 3), let A1, A2, A3, A4 be the events that {v1, v2, v3}, {v1, v2, v4},
{v1, v3, v4}, and {v2, v3, v4} induce complete symmetric digraphs. Then
P(Ai )= 1/26, P(Ai ∩ A j )= 1/210 whenever i = j , P(Ai ∩ A j ∩ Ak)=
1/212 whenever i, j, k are distinct, and P(A1 ∩ A2 ∩ A3 ∩ A4)= 1/212. So
P(ω(G)≥ 3)= 4/64− 6/1,024 + 4/4,096 − 1/4,096 = 235/4,096. Hence,
P(ω(G)= 2)= 3,132/4,096, P(ω(G)= 3)= 234/4,096, and P(ω(G)= 4)=
1/4,096. However, if we try to find P(ω(G)≥ 3) in the same way when
n= 5, we note that P(Ai ∩ A j ∩ Ak) depends on what i, j and k are. Thus,
the formulae become more complicated as n increases.

Results of Simulation

It should be evident that for some of the statistics, the exact distributional
properties are hard to derive. These are analytically intractable unless n is
small. For ready reference, therefore, we give the distribution of various statis-
tics considered above, for some values of n. These were obtained by simulation
using 100,000 random digraphs (except for small values of n when the exact
distribution can be computed). The error in the estimate of any probability
should not exceed 0.005 and is expected to be much less (less than 0.001 when
the probability is less than 0.01). We do not give the distributions of m(G) and
s(G) as these are binomial distributions. Note that a dash in an entry in the
table means that the probability is either 0 or is positive but less than 0.0005.

Maximum Out-Degree

0 1 2 3 4 5 6 7 8 9
n
2 .250 .750 − − − − − − − −
3 .016 .406 .578 − − − − − − −
4 − .062 .525 .413 − − − − − −
5 − − .151 .572 .274 − − − − −
6 − − .015 .273 .537 .174 − − − −

10 − − − − .001 .053 .337 .430 .159 .019
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Maximum Out-Degree (Continuation)

11 12 13 14 15 16 17 18

n= 20 .019 .155 .350 .301 .131 .036 .006 .001

Maximum Out-Degree (Continuation)

22 23 24 25 26 27 28 29 30 31 32

n= 40 .001 .015 .095 .230 .281 .207 .106 .044 .015 .005 .001

Sources Isolates

0 1 2 3 4 0 1 2 3 4
n
2 .250 .500 .250 − − .750 − .250 − −
3 .423 .421 .140 .016 − .844 .140 − .016 −
4 .586 .336 .071 .007 − .943 .052 .005 − −
5 .725 .240 .033 .002 − .981 .019 .001 − −
6 .826 .160 .013 .001 − .994 .006 − − −

10 .981 .019 − − − 1 − − − −
20 1 − − − − 1 − − − −
40 1 − − − − 1 − − − −

Diameter Radius

1 2 3 4 5 ∞ 1 2 3 4 5 ∞
n
2 .250 – – – – .750 .750 – – – – .250
3 .016 .267 – – – .717 .578 .219 – – – .203
4 – .174 .219 – – .607 .413 .422 .047 – – .118
5 – .131 .318 .093 – .458 .274 .609 .054 .007 – .055
6 – .116 .413 .136 .020 .316 .174 .752 .045 .007 .001 .021

10 – .124 .746 .086 .005 .039 .020 .974 .006 – – –
20 – .475 .525 – – – – 1 – – – –
40 – .987 .013 – – – – 1 – – – –
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The distribution of the clique number ω(G) is difficult to find for general
n, although it can be worked out for small n using (3.2). It may be noted
that, for any n, P(ω(G)= 1)= P(G is asymmetric)= (3/4)n(n−1)/2 and
P(ω(G)= n)= 1/2n(n−1). Hence, when n= 3, the clique number takes
values 1, 2, and 3 with probabilities 27/64, 9/16, and 1/64. Next let n= 4.
Then P(ω(G)= 1) = 729/4,096, so P(ω(G)≥ 2) = 3,367/4,096. To find
P(ω(G)≥ 3), let A1, A2, A3, A4 be the events that {v1, v2, v3}, {v1, v2, v4},
{v1, v3, v4}, and {v2, v3, v4} induce complete symmetric digraphs. Then
P(Ai )= 1/26, P(Ai ∩ A j )= 1/210 whenever i = j , P(Ai ∩ A j ∩ Ak)=
1/212 whenever i, j, k are distinct, and P(A1 ∩ A2 ∩ A3 ∩ A4)= 1/212. So
P(ω(G)≥ 3)= 4/64− 6/1,024 + 4/4,096 − 1/4,096 = 235/4,096. Hence,
P(ω(G)= 2)= 3,132/4,096, P(ω(G)= 3)= 234/4,096, and P(ω(G)= 4)=
1/4,096. However, if we try to find P(ω(G)≥ 3) in the same way when
n= 5, we note that P(Ai ∩ A j ∩ Ak) depends on what i, j and k are. Thus,
the formulae become more complicated as n increases.

Results of Simulation

It should be evident that for some of the statistics, the exact distributional
properties are hard to derive. These are analytically intractable unless n is
small. For ready reference, therefore, we give the distribution of various statis-
tics considered above, for some values of n. These were obtained by simulation
using 100,000 random digraphs (except for small values of n when the exact
distribution can be computed). The error in the estimate of any probability
should not exceed 0.005 and is expected to be much less (less than 0.001 when
the probability is less than 0.01). We do not give the distributions of m(G) and
s(G) as these are binomial distributions. Note that a dash in an entry in the
table means that the probability is either 0 or is positive but less than 0.0005.

Maximum Out-Degree

0 1 2 3 4 5 6 7 8 9
n
2 .250 .750 − − − − − − − −
3 .016 .406 .578 − − − − − − −
4 − .062 .525 .413 − − − − − −
5 − − .151 .572 .274 − − − − −
6 − − .015 .273 .537 .174 − − − −

10 − − − − .001 .053 .337 .430 .159 .019
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Maximum Out-Degree (Continuation)

11 12 13 14 15 16 17 18

n= 20 .019 .155 .350 .301 .131 .036 .006 .001

Maximum Out-Degree (Continuation)

22 23 24 25 26 27 28 29 30 31 32

n= 40 .001 .015 .095 .230 .281 .207 .106 .044 .015 .005 .001

Sources Isolates

0 1 2 3 4 0 1 2 3 4
n
2 .250 .500 .250 − − .750 − .250 − −
3 .423 .421 .140 .016 − .844 .140 − .016 −
4 .586 .336 .071 .007 − .943 .052 .005 − −
5 .725 .240 .033 .002 − .981 .019 .001 − −
6 .826 .160 .013 .001 − .994 .006 − − −

10 .981 .019 − − − 1 − − − −
20 1 − − − − 1 − − − −
40 1 − − − − 1 − − − −

Diameter Radius

1 2 3 4 5 ∞ 1 2 3 4 5 ∞
n
2 .250 – – – – .750 .750 – – – – .250
3 .016 .267 – – – .717 .578 .219 – – – .203
4 – .174 .219 – – .607 .413 .422 .047 – – .118
5 – .131 .318 .093 – .458 .274 .609 .054 .007 – .055
6 – .116 .413 .136 .020 .316 .174 .752 .045 .007 .001 .021

10 – .124 .746 .086 .005 .039 .020 .974 .006 – – –
20 – .475 .525 – – – – 1 – – – –
40 – .987 .013 – – – – 1 – – – –
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Strong Components Weak Components
1 2 3 4 5 6 1 2 3 4

n
2 .250 .750 – – – – .750 .250 – –
3 .283 .326 .391 – – – .844 .140 .016 –
4 .393 .285 .188 .134 – – .936 .059 .005 –
5 .542 .257 .116 .057 .029 – .979 .020 .001 –
6 .684 .213 .066 .023 .010 .004 .994 .006 – –

10 .961 .037 .001 – – – 1 – – –
20 1 – – – – – 1 – – –

Clique Number
1 2 3 4 5 6

n
2 .750 .250 – – – –
3 .422 .562 .016 – – –
4 .178 .765 .057 – – –
5 .057 .813 .129 .001 – –
6 .014 .754 .229 .003 – –

10 – .263 .694 .043 – –
20 – – .470 .517 .013 –
40 – – – .648 .349 .003

Model I.3
Under Model I.2, the expected number of arcs is n(n− 1)/2. So when m is

very small or very large (close to n(n− 1)), Model I.2 is not appropriate, and
we consider Model I.3.

In this probabilistic model, we again take the vertex set to be fixed and
assume that all the 2n(n−1) digraphs on V are possible. But we stipulate that
viv j is chosen as an arc with a fixed probability p (0 < p < 1) and that the
ordered pairs are all mutually independent. Note that Model I.2 is the special
case of Model I.3 corresponding to p= 1/2.

Let Xi j be defined as before. Then, under the present model, we have
P(Xi j = 1)= p, and Xi j s are independent. So the number of arcs m has the
binomial distribution B(n(n− 1), p), and the out-degree di as well as the
in-degree ei of vi has the same binomial distribution B(n− 1, p).

Clearly, the probability of getting any particular digraph G0 on V is
pmqn(n−1)−m , where m is the number of arcs in G0 and q = 1− p. Hence, any
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two digraphs with the same number of arcs are equally likely; in particular,
P(G=G0)= P(G=Gc

0), where Gc
0 denotes the converse of G0.

Here, the probability that vi is a source is qn−1. Also, the number of sources
has the distribution B(n, qn−1). Similarly, the probability that vi is a sink is
qn−1, and the number of sinks has the distribution B(n, qn−1).

The probability that vi is an isolated vertex is q2n−2. The probability that
k given vertices are isolates is qk(2n−k−1). Hence, the probability that there are
exactly k isolates is


n
k


qk(2n−k−1)−


k+ 1

k


n

k+ 1


q(k+1)(2n−k−2)

+


k+ 2
k


n

k+ 2


q(k+2)(2n−k−3)−+ · · ·+ (−1)n−k


n
k


qn(n−1). (3.8)

Again, an expression, similar to (3.2), for the probability that there are at least
k isolates can be written down.

The probability that G is a null digraph is qn(n−1), and the probability that
G is the complete symmetric digraph is pn(n−1).

The probability that G is symmetric is (p2+ q2)n(n−1)/2, the probability
that G is asymmetric is (1− p2)n(n−1)/2, and the probability that G is complete
is (1− q2)n(n−1)/2.

The number of symmetric pairs s(G) has the distribution B(
�n

2


, p2).

When n= 2, the probability that G is strongly connected is p2. If n= 3,
the probability is p6+ 6p5q + 9p4q2+ 2p3q3. This can be seen easily from
Figure 3.1.

Here also expressions for P(r(G)= k) and P(d(G)= k) cannot be found
but, rather surprisingly, it is easy to prove that P(d(G)= 2)→ 1 and P(r(G)=
2)→ 1 as n→∞, provided only that 0 < p < 1. To see this, let Ai be the
event that at least one of v1vi and viv2 is not an arc. Then P(Ai )= 1− p2 for
all i = 1,2. Since P(v1v2 is not an arc)= 1− p, we have P(d(v1, v2)> 2)=
(1− p)(1− p2)n−2. It follows as before that P(d(G)> 2)≤ n(n− 1)(1− p)

(1− p2)n−2→ 0 as n→∞. Since P(d(G)= 1)= pn(n−1)→ 0, it follows
that P(d(G)= 2)→ 1 as n→∞. Hence, we also have P(r(G)≤ 2)→ 1 as
n→∞. Now we show that P(r(G)= 1)→ 0 as n→∞. For any fixed i , let
Ei be the event that viv j is an arc for all j = i . Then P(Ei )= pn−1. Also, Ei s
are independent, so

P(r(G)= 1) = P(E1 ∪ E2 ∪ · · · ∪ En)

= 1− P(Ē1 ∩ Ē2 ∩ · · · ∩ Ēn)= 1− �
1− pn−1n

. (3.9)
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Strong Components Weak Components
1 2 3 4 5 6 1 2 3 4

n
2 .250 .750 – – – – .750 .250 – –
3 .283 .326 .391 – – – .844 .140 .016 –
4 .393 .285 .188 .134 – – .936 .059 .005 –
5 .542 .257 .116 .057 .029 – .979 .020 .001 –
6 .684 .213 .066 .023 .010 .004 .994 .006 – –

10 .961 .037 .001 – – – 1 – – –
20 1 – – – – – 1 – – –

Clique Number
1 2 3 4 5 6

n
2 .750 .250 – – – –
3 .422 .562 .016 – – –
4 .178 .765 .057 – – –
5 .057 .813 .129 .001 – –
6 .014 .754 .229 .003 – –

10 – .263 .694 .043 – –
20 – – .470 .517 .013 –
40 – – – .648 .349 .003

Model I.3
Under Model I.2, the expected number of arcs is n(n− 1)/2. So when m is

very small or very large (close to n(n− 1)), Model I.2 is not appropriate, and
we consider Model I.3.

In this probabilistic model, we again take the vertex set to be fixed and
assume that all the 2n(n−1) digraphs on V are possible. But we stipulate that
viv j is chosen as an arc with a fixed probability p (0 < p < 1) and that the
ordered pairs are all mutually independent. Note that Model I.2 is the special
case of Model I.3 corresponding to p= 1/2.

Let Xi j be defined as before. Then, under the present model, we have
P(Xi j = 1)= p, and Xi j s are independent. So the number of arcs m has the
binomial distribution B(n(n− 1), p), and the out-degree di as well as the
in-degree ei of vi has the same binomial distribution B(n− 1, p).

Clearly, the probability of getting any particular digraph G0 on V is
pmqn(n−1)−m , where m is the number of arcs in G0 and q = 1− p. Hence, any
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two digraphs with the same number of arcs are equally likely; in particular,
P(G=G0)= P(G=Gc

0), where Gc
0 denotes the converse of G0.

Here, the probability that vi is a source is qn−1. Also, the number of sources
has the distribution B(n, qn−1). Similarly, the probability that vi is a sink is
qn−1, and the number of sinks has the distribution B(n, qn−1).

The probability that vi is an isolated vertex is q2n−2. The probability that
k given vertices are isolates is qk(2n−k−1). Hence, the probability that there are
exactly k isolates is


n
k


qk(2n−k−1)−


k+ 1

k


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k+ 1


q(k+1)(2n−k−2)

+


k+ 2
k
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k+ 2


q(k+2)(2n−k−3)−+ · · ·+ (−1)n−k


n
k


qn(n−1). (3.8)

Again, an expression, similar to (3.2), for the probability that there are at least
k isolates can be written down.

The probability that G is a null digraph is qn(n−1), and the probability that
G is the complete symmetric digraph is pn(n−1).

The probability that G is symmetric is (p2+ q2)n(n−1)/2, the probability
that G is asymmetric is (1− p2)n(n−1)/2, and the probability that G is complete
is (1− q2)n(n−1)/2.

The number of symmetric pairs s(G) has the distribution B(
�n

2


, p2).

When n= 2, the probability that G is strongly connected is p2. If n= 3,
the probability is p6+ 6p5q + 9p4q2+ 2p3q3. This can be seen easily from
Figure 3.1.

Here also expressions for P(r(G)= k) and P(d(G)= k) cannot be found
but, rather surprisingly, it is easy to prove that P(d(G)= 2)→ 1 and P(r(G)=
2)→ 1 as n→∞, provided only that 0 < p < 1. To see this, let Ai be the
event that at least one of v1vi and viv2 is not an arc. Then P(Ai )= 1− p2 for
all i = 1,2. Since P(v1v2 is not an arc)= 1− p, we have P(d(v1, v2)> 2)=
(1− p)(1− p2)n−2. It follows as before that P(d(G)> 2)≤ n(n− 1)(1− p)

(1− p2)n−2→ 0 as n→∞. Since P(d(G)= 1)= pn(n−1)→ 0, it follows
that P(d(G)= 2)→ 1 as n→∞. Hence, we also have P(r(G)≤ 2)→ 1 as
n→∞. Now we show that P(r(G)= 1)→ 0 as n→∞. For any fixed i , let
Ei be the event that viv j is an arc for all j = i . Then P(Ei )= pn−1. Also, Ei s
are independent, so

P(r(G)= 1) = P(E1 ∪ E2 ∪ · · · ∪ En)

= 1− P(Ē1 ∩ Ē2 ∩ · · · ∩ Ēn)= 1− �
1− pn−1n

. (3.9)







“BDB-Ch-03” — 2010/5/11 — 15:56 — page 68 — #16 











68 MODELS FOR SOCIAL NETWORKS WITH STATISTICAL APPLICATIONS

Moreover, P(E1 ∪ E2 ∪ · · · ∪ En)≤ P(E1)+ P(E2)+ · · ·+ P(En)= npn−1

→ 0. Hence, P(r(G)= 1)→ 0 and P(r(G)= 2)→ 1 as n→∞.

3.3 MODELS FIXING THE TOTAL NUMBER OF
VERTICES AND THE TOTAL OF ALL ARCS

Model II.1

In Model I.1, we took only the number of vertices (n) as given and assumed
that all values of m from 0 to n(n− 1) are actually possible. Often this is not
realistic, particularly when n is large, so we introduce Model II.1.

This graphical (nonprobabilistic) model takes the vertex set V ={v1, v2,
. . . , vn} and the number of arcs m as fixed and assumes that all the

�n(n−1)
m



digraphs on V with m arcs are actually possible. Note that 0≤m≤ n(n− 1),
and m refers to the total of all out-degrees of the n vertices, and this is also the
same as the total of all in-degrees.

Under the present model, the minimum value taken by the out-degree di

(as well as the in-degree ei ) of the i th vertex is max(0, m− (n2− 2n+ 1)).
To see this, it is enough to notice that the number of arcs left in the complete
symmetric digraph, when all the arcs leaving vi are dropped, is n2− 2n+ 1.
Trivially, the maximum value taken by the out-degree di (as well as ei )
is min(n− 1, m), and every integer value between the minimum and the
maximum can actually be attained by di (as well as by ei ).

We now show that the range of dmax is {m
n , m

n + 1, . . . , min
(n− 1, m)}. Here a denotes the smallest integer greater than or equal to the
number a. For example, 2= 2 and 2.1= 3. That the maximum value of
dmax is min(n− 1, m) is trivial to prove.

That dmax in any digraph on n vertices with m arcs is ≥m
n  follows fromn

i=1 di =m since max(d1, d2, . . . , dn)≥
di/n. To construct a digraph

G with dmax=m
n , let m= nq − r , where 0≤ r ≤ n− 1. We consider the

cases n odd and n even separately. First suppose n= 2k+ 1. Then we show
how to partition the set A of arcs of the complete symmetric digraph on
V ={v0, v1, . . . , v2k} into n− 1 disjoint subsets of size n, each forming a
single cycle (such a cycle is called a Hamiltonian cycle). Arrange the vertices
{v1, v2, . . . , v2k} regularly on a circle with center v0. The first Hamiltonian
cycle is [v0, v1, v2, v2k, v3, v2k−1, v4, . . . , vk , vk+2, vk+1, v0]. This is shown
in the first diagram in Figure 3.2. For i = 2, 3, . . . , 2k, the i th Hamiltonian
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cycle—namely, [v0, vi , vi+1, vi−1, vi+2, vi−2, vi+3, . . . , vk+i−1, vk+i , v0]—
is obtained by rotating the first cycle clockwise around v0 by i − 1 steps. Now,
we get G by taking the union of q of the Hamiltonian cycles and dropping r
arcs of one cycle if r > 0. Next let n= 2k+ 2. Then we replace the arc bypass-
ing the central vertex v0 by a path of length 2 with v2k+1 as the middle vertex,
as shown in the second diagram in Figure 3.2 (imagine v2k+1 to be directly
above v0 in a different plane). As before, we get 2k Hamiltonian cycles here
also. Now we also have another set of n arcs: the 2k arcs in the earlier digraph,
which were replaced by paths of length 2 and the two arcs v0v2k+1 and
v2k+1v0. Note that every vertex has out-degree 1 w.r.t. the arcs in this last set
also. Now, again, we get G by taking the union of q of the Hamiltonian cycles
(including the last set if necessary) and dropping r arcs from one set if r > 0.

To give the minimum and maximum values taken by the number of sources,
let p denote the number of sources. Then min p=max(0, n−m). To see this,
we note that p can be made 0 whenever m≥ n by including a circuit on n
vertices in the digraph. If m≤ n− 1, the m arcs can make at most m vertices
nonsources, so p≥ n−m, and a digraph with p= n−m is obtained by taking
a directed path on m+ 1 vertices together with n−m− 1 isolated vertices. We
now show that max p= n−m/(n− 1). Denote the right-hand side (RHS) by
k. If S is the set of sources in any digraph on n vertices with m arcs, then there
is no arc entering any vertex in S, so m≤ p(n− p)+ (n− p)(n− p− 1)=
(n− 1)(n− p), which gives p≤ k. A digraph G attaining p= k is obtained
as follows: Let H be a complete symmetric digraph with vertex set V , where
|V | = n, and let S be a subset of V with |S| = k. Remove all the arcs within S
and all the arcs from V − S to S and a few more if necessary (so that exactly
m arcs remain) to get G.

Since changing the position of an arc can change the number of sources by
at most 1 and since any two digraphs on V with m arcs each can be obtained
from each other by changing the position of one arc at a time, it follows that
the number p of sources actually takes all integer values between the minimum
and the maximum. Finally, it is easy to see that the range of the number of
sources is the same as that of the number of sinks.

To give the minimum and maximum values taken by the number of
isolates, let q denote the number of isolates. Then it is easy to see that
min q = max (0, n− 2m) since the number of distinct vertices that are end
(initial or terminal) vertices of the m arcs is at most 2m, and the remaining ver-
tices are isolated.We next show that max q = , where =max{k : m≤ (n− k)
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Moreover, P(E1 ∪ E2 ∪ · · · ∪ En)≤ P(E1)+ P(E2)+ · · ·+ P(En)= npn−1

→ 0. Hence, P(r(G)= 1)→ 0 and P(r(G)= 2)→ 1 as n→∞.

3.3 MODELS FIXING THE TOTAL NUMBER OF
VERTICES AND THE TOTAL OF ALL ARCS

Model II.1

In Model I.1, we took only the number of vertices (n) as given and assumed
that all values of m from 0 to n(n− 1) are actually possible. Often this is not
realistic, particularly when n is large, so we introduce Model II.1.

This graphical (nonprobabilistic) model takes the vertex set V ={v1, v2,
. . . , vn} and the number of arcs m as fixed and assumes that all the

�n(n−1)
m



digraphs on V with m arcs are actually possible. Note that 0≤m≤ n(n− 1),
and m refers to the total of all out-degrees of the n vertices, and this is also the
same as the total of all in-degrees.

Under the present model, the minimum value taken by the out-degree di

(as well as the in-degree ei ) of the i th vertex is max(0, m− (n2− 2n+ 1)).
To see this, it is enough to notice that the number of arcs left in the complete
symmetric digraph, when all the arcs leaving vi are dropped, is n2− 2n+ 1.
Trivially, the maximum value taken by the out-degree di (as well as ei )
is min(n− 1, m), and every integer value between the minimum and the
maximum can actually be attained by di (as well as by ei ).

We now show that the range of dmax is {m
n , m

n + 1, . . . , min
(n− 1, m)}. Here a denotes the smallest integer greater than or equal to the
number a. For example, 2= 2 and 2.1= 3. That the maximum value of
dmax is min(n− 1, m) is trivial to prove.

That dmax in any digraph on n vertices with m arcs is ≥m
n  follows fromn

i=1 di =m since max(d1, d2, . . . , dn)≥
di/n. To construct a digraph

G with dmax=m
n , let m= nq − r , where 0≤ r ≤ n− 1. We consider the

cases n odd and n even separately. First suppose n= 2k+ 1. Then we show
how to partition the set A of arcs of the complete symmetric digraph on
V ={v0, v1, . . . , v2k} into n− 1 disjoint subsets of size n, each forming a
single cycle (such a cycle is called a Hamiltonian cycle). Arrange the vertices
{v1, v2, . . . , v2k} regularly on a circle with center v0. The first Hamiltonian
cycle is [v0, v1, v2, v2k, v3, v2k−1, v4, . . . , vk , vk+2, vk+1, v0]. This is shown
in the first diagram in Figure 3.2. For i = 2, 3, . . . , 2k, the i th Hamiltonian
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cycle—namely, [v0, vi , vi+1, vi−1, vi+2, vi−2, vi+3, . . . , vk+i−1, vk+i , v0]—
is obtained by rotating the first cycle clockwise around v0 by i − 1 steps. Now,
we get G by taking the union of q of the Hamiltonian cycles and dropping r
arcs of one cycle if r > 0. Next let n= 2k+ 2. Then we replace the arc bypass-
ing the central vertex v0 by a path of length 2 with v2k+1 as the middle vertex,
as shown in the second diagram in Figure 3.2 (imagine v2k+1 to be directly
above v0 in a different plane). As before, we get 2k Hamiltonian cycles here
also. Now we also have another set of n arcs: the 2k arcs in the earlier digraph,
which were replaced by paths of length 2 and the two arcs v0v2k+1 and
v2k+1v0. Note that every vertex has out-degree 1 w.r.t. the arcs in this last set
also. Now, again, we get G by taking the union of q of the Hamiltonian cycles
(including the last set if necessary) and dropping r arcs from one set if r > 0.

To give the minimum and maximum values taken by the number of sources,
let p denote the number of sources. Then min p=max(0, n−m). To see this,
we note that p can be made 0 whenever m≥ n by including a circuit on n
vertices in the digraph. If m≤ n− 1, the m arcs can make at most m vertices
nonsources, so p≥ n−m, and a digraph with p= n−m is obtained by taking
a directed path on m+ 1 vertices together with n−m− 1 isolated vertices. We
now show that max p= n−m/(n− 1). Denote the right-hand side (RHS) by
k. If S is the set of sources in any digraph on n vertices with m arcs, then there
is no arc entering any vertex in S, so m≤ p(n− p)+ (n− p)(n− p− 1)=
(n− 1)(n− p), which gives p≤ k. A digraph G attaining p= k is obtained
as follows: Let H be a complete symmetric digraph with vertex set V , where
|V | = n, and let S be a subset of V with |S| = k. Remove all the arcs within S
and all the arcs from V − S to S and a few more if necessary (so that exactly
m arcs remain) to get G.

Since changing the position of an arc can change the number of sources by
at most 1 and since any two digraphs on V with m arcs each can be obtained
from each other by changing the position of one arc at a time, it follows that
the number p of sources actually takes all integer values between the minimum
and the maximum. Finally, it is easy to see that the range of the number of
sources is the same as that of the number of sinks.

To give the minimum and maximum values taken by the number of
isolates, let q denote the number of isolates. Then it is easy to see that
min q = max (0, n− 2m) since the number of distinct vertices that are end
(initial or terminal) vertices of the m arcs is at most 2m, and the remaining ver-
tices are isolated.We next show that max q = , where =max{k : m≤ (n− k)
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(n− k− 1)}. Clearly, we have m≤ (n− q)(n− q − 1) and so q ≤  for every
digraph. To get a digraph attaining , all one has to do is to put the m arcs within
n−  vertices. Again, it is easy to see that all values between the minimum and
the maximum are attained.

It is easy to see that the minimum and the maximum of the number s of
symmetric pairs are max

�
0, m− �n

2


and m/2, respectively, and that every

integral value between the minimum and the maximum is attained by s. If t
is the number of arcs that are not reciprocated, we have (i) 2s+ t =m and (ii)
s+ t ≤ �n

2


. Subtracting (ii) from (i), we get s≥m− �n

2


. Since t ≥ 0, (i) gives

s≤m/2.
The minimum and maximum values of the diameter were obtained by

Goldberg and Ghouila-Houri, respectively (see Berge, 1973). If a digraph G
is strongly connected, the out-degree as well as the in-degree of every vertex
in G is at least 1, so m≥ n. Moreover, if m= n in G, then G is a circuit, and
the diameter is n− 1. Hence, the minimum and the maximum values of the
diameter are ∞ if m≤ n− 1. The minimum is n− 1 and the maximum is ∞
if m= n. Next we take n < m≤ n(n− 1). Let n− 1= (m− n+ 1)q + r where
0≤ r < m− n+ 1. Then the minimum value of the diameter is





2q if r = 0
2q + 1 if r = 1
2q + 2 otherwise

, (3.10)

and the maximum value of the diameter is




n− 1 if m≤ (n2+ n− 2)/2
n+ 1

2 −


2m− n2− n+ 17
4


otherwise

. (3.11)

It is easy to see that the minimum and maximum values of the radius are
∞ if m < n− 1. If m≥ n− 1, the minimum radius is 1. For maximum radius,
see Berge (1973).

We now prove that the minimum number θ of strong components is

θ =





n if m= 0
1 if m≥ n
n−m+ 1 otherwise

. (3.12)

The result is trivial if m≤ 1. If m≥ n, then we can get a strongly connected
digraph on n vertices with m arcs by starting with a circuit on n vertices
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and adding m− n arcs arbitrarily, so θ = 1. So let 1 < m < n. We first note
that any strongly connected digraph on t ≥ 2 vertices has at least t arcs since
the out-degree of each vertex must be at least 1. Let G be any digraph on
n vertices with m arcs. Suppose exactly  of the p strong components of
G are singletons. If = n, then p= n≥ n−m+ 1. If < n, then m≥ n− ,
so p≥ + 1≥ n−m+ 1. To get a digraph with exactly n−m+ 1 strong
components, consider a circuit on m vertices together with n−m isolated
vertices.

We next prove that the maximum number  of strong components is

k0=max


k : k ≤ n and m−


n
2


≤


n− k+ 1

2


,

which reduces to
1
2


2n+ 1−


8


m− n(n− 1)

2


+ 1


if m≥


n
2


. (3.13)

(Note that
�1

2

= 0 by definition.) For this, suppose G is an arbitrary digraph on
n vertices with m arcs. Let the strong components of G be C1, C2, . . . , C p, Ci

containing ni vertices. Then no arc between two Ci s can be reciprocated, so
the number of arcs between Ci s is at most

�n
2


. Hence,

m≤


n
2


+

p

i=1


ni

2


≤


n
2


+


n− p+ 1

2


,

where the second inequality follows on observing that
p

i=1
�ni

2


is maximum

when all but one of the ni s are 1 each. So p≤ k0, and it follows that ≤ k0. To
show equality, consider the digraph on the vertex set {v1, v2, . . . , vn} obtained
as follows: If m≤ �n

2


, put m arcs of the type viv j with i < j . If m >

�n
2


, make

viv j an arc whenever 1≤ i < j ≤ n and add m− �n
2


arcs of the type v jvi with

i < j within the first n− k0+ 1 vertices. In this digraph, the last k0− 1 vertices
form singleton strong components, so the digraph has at least k0 and so exactly
k0 strong components.

We now prove that the minimum number ξ of weak components is
max(1, n−m). The result is trivial if m= 0. If m≥ n− 1, then we can get a
weakly connected digraph on n vertices with m arcs by starting with a path on n
vertices and adding m− n+ 1 arcs arbitrarily, so ξ = 1. Next let 0 < m < n− 1.
We first note that any weakly connected digraph on t vertices has at least t − 1
arcs (we omit the proof of this statement). Now let G be any digraph on n
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(n− k− 1)}. Clearly, we have m≤ (n− q)(n− q − 1) and so q ≤  for every
digraph. To get a digraph attaining , all one has to do is to put the m arcs within
n−  vertices. Again, it is easy to see that all values between the minimum and
the maximum are attained.

It is easy to see that the minimum and the maximum of the number s of
symmetric pairs are max

�
0, m− �n

2


and m/2, respectively, and that every

integral value between the minimum and the maximum is attained by s. If t
is the number of arcs that are not reciprocated, we have (i) 2s+ t =m and (ii)
s+ t ≤ �n

2


. Subtracting (ii) from (i), we get s≥m− �n

2


. Since t ≥ 0, (i) gives

s≤m/2.
The minimum and maximum values of the diameter were obtained by

Goldberg and Ghouila-Houri, respectively (see Berge, 1973). If a digraph G
is strongly connected, the out-degree as well as the in-degree of every vertex
in G is at least 1, so m≥ n. Moreover, if m= n in G, then G is a circuit, and
the diameter is n− 1. Hence, the minimum and the maximum values of the
diameter are ∞ if m≤ n− 1. The minimum is n− 1 and the maximum is ∞
if m= n. Next we take n < m≤ n(n− 1). Let n− 1= (m− n+ 1)q + r where
0≤ r < m− n+ 1. Then the minimum value of the diameter is





2q if r = 0
2q + 1 if r = 1
2q + 2 otherwise

, (3.10)

and the maximum value of the diameter is




n− 1 if m≤ (n2+ n− 2)/2
n+ 1

2 −


2m− n2− n+ 17
4


otherwise

. (3.11)

It is easy to see that the minimum and maximum values of the radius are
∞ if m < n− 1. If m≥ n− 1, the minimum radius is 1. For maximum radius,
see Berge (1973).

We now prove that the minimum number θ of strong components is

θ =





n if m= 0
1 if m≥ n
n−m+ 1 otherwise

. (3.12)

The result is trivial if m≤ 1. If m≥ n, then we can get a strongly connected
digraph on n vertices with m arcs by starting with a circuit on n vertices
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and adding m− n arcs arbitrarily, so θ = 1. So let 1 < m < n. We first note
that any strongly connected digraph on t ≥ 2 vertices has at least t arcs since
the out-degree of each vertex must be at least 1. Let G be any digraph on
n vertices with m arcs. Suppose exactly  of the p strong components of
G are singletons. If = n, then p= n≥ n−m+ 1. If < n, then m≥ n− ,
so p≥ + 1≥ n−m+ 1. To get a digraph with exactly n−m+ 1 strong
components, consider a circuit on m vertices together with n−m isolated
vertices.

We next prove that the maximum number  of strong components is

k0=max


k : k ≤ n and m−


n
2


≤


n− k+ 1

2


,

which reduces to
1
2


2n+ 1−


8


m− n(n− 1)

2


+ 1


if m≥


n
2


. (3.13)

(Note that
�1

2

= 0 by definition.) For this, suppose G is an arbitrary digraph on
n vertices with m arcs. Let the strong components of G be C1, C2, . . . , C p, Ci

containing ni vertices. Then no arc between two Ci s can be reciprocated, so
the number of arcs between Ci s is at most

�n
2


. Hence,

m≤


n
2


+

p

i=1


ni

2


≤


n
2


+


n− p+ 1

2


,

where the second inequality follows on observing that
p

i=1
�ni

2


is maximum

when all but one of the ni s are 1 each. So p≤ k0, and it follows that ≤ k0. To
show equality, consider the digraph on the vertex set {v1, v2, . . . , vn} obtained
as follows: If m≤ �n

2


, put m arcs of the type viv j with i < j . If m >

�n
2


, make

viv j an arc whenever 1≤ i < j ≤ n and add m− �n
2


arcs of the type v jvi with

i < j within the first n− k0+ 1 vertices. In this digraph, the last k0− 1 vertices
form singleton strong components, so the digraph has at least k0 and so exactly
k0 strong components.

We now prove that the minimum number ξ of weak components is
max(1, n−m). The result is trivial if m= 0. If m≥ n− 1, then we can get a
weakly connected digraph on n vertices with m arcs by starting with a path on n
vertices and adding m− n+ 1 arcs arbitrarily, so ξ = 1. Next let 0 < m < n− 1.
We first note that any weakly connected digraph on t vertices has at least t − 1
arcs (we omit the proof of this statement). Now let G be any digraph on n
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vertices with m arcs. Suppose C1, C2, . . . , Cq are the weak components of G,
with Ci having ni vertices. Then m≥q

i=1(ni − 1)= n− q, so q ≥ n−m. To
get a digraph with exactly n−m weak components, consider a path on m+ 1
vertices together with n−m− 1 isolated vertices.

We next prove that the maximum number  of weak components is

k0 = max{k : k ≤ n and m≤ (n− k+ 1)(n− k)}
=


1
2

�
2n+ 1−√4m+ 1


.

(3.14)

The proof is similar to that for . Suppose G is an arbitrary digraph with weak
components C1, C2, . . . , Cq , with Ci containing ni vertices. Then there are no
arcs between Ci s, so

m≤
q

i=1

ni (ni − 1)≤ (n− q + 1)(n− q),

where the second inequality follows as before. Hence, q ≤ k0 and ≤ k0. To
show equality, consider a digraph with all the arcs belonging to one weak
component with n− k+ 1 vertices.

We now consider the difference p− q, where p and q denote the number of
strong components and the number of weak components, respectively. We first
note that p≥ q. If m≥ 2, then a digraph with a circuit on min(m, n) vertices
has p= q. If m= 1, then p= n and q = n− 1. If m= 0, then p= q = n. Hence,
we have

min p− q =


1 if m= 1
0 otherwise

. (3.15)

We next show that

max p− q =


m if m≤ n− 1
− 1 otherwise

, (3.16)

where  is the maximum number of strong components. For this, it is enough
to observe that there is a digraph attaining the maximum number of strong
components and the minimum number of weak components simultaneously.

We next consider the number h of arcs joining different strong components.
The minimum value of h is 0 or 1 accordingly as m≥ 2 or m= 1. To see this,
all one has to do is to include a circuit on min(m, n) vertices if m≥ 2. We
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next consider the maximum value of h. Clearly, max h=m if m≤ �n
2


. So let

m >
�n

2


. Let

t =min


i=1
�ni

2


: ≥ 1, ni ≥ 1 for i = 1, 2, . . . , ,


i=1 ni = n and m≤ �n

2

+
i=1

�ni
2


.

Then we will show that max h= �n
2

− t . Suppose G is a network on n vertices
with m arcs, of which h is between strong components. Suppose G has 

strong components C1, C2, . . . , C, with Ci containing ni vertices. Then, for
i = j , there cannot be arcs both from Ci to C j and from C j to Ci . Hence,
h≤ �n

2

−
i=1

�ni
2

≤ �n
2

− t . To prove that the bound is attained, consider
a digraph with viv j an arc whenever i < j and with the sizes of the strong
components equal to n1, n2, . . . , n (it is easy to see that such a digraph
exists). We mention that t ≥m− �n

2


, but the equality may not always hold. For

example, if n= 6 and m= 20, then t = 6 attains when = 2 and n1= n2= 3,
whereas m− �n

2

= 5. Thus, max h is 9 here.
We finally come to clique number. It is easy to see that the maximum value

for the clique number of a digraph on n vertices with m arcs is

max{k : m≥ k(k− 1)}=


1
2

�
1+√4m+ 1


. (3.17)

It can be shown that the minimum value of the clique number is

max


k : m≤ n(n− 1)− k


q
2


− rq where q =

n
k


and r = n− kq


.

(3.18)
We omit the proof of this result. We mention that the corresponding result
for (undirected) graphs is known as Turan’s theorem. A digraph attaining
the bound, which we denote by k, is obtained as follows: The vertex set is
V1 ∪ V2 ∪ . . .∪ Vk , where the Vi s are pairwise disjoint, r of the Vi s has size
q + 1, and the rest have size q. The m arcs are adjusted in such a way that
there is no symmetric pair within any Vi . The clique number of this digraph is
k because any clique in it can contain only one vertex from each Vi .

Model II.2

This model is the probabilistic version of Model II.1. It takes the vertex set
V ={v1, v2, . . . , vn} and the number of arcs m (0≤m≤ n(n− 1)) as fixed and
assumes that all the

�n(n−1)
m


possible digraphs are equally likely. Note that a
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vertices with m arcs. Suppose C1, C2, . . . , Cq are the weak components of G,
with Ci having ni vertices. Then m≥q

i=1(ni − 1)= n− q, so q ≥ n−m. To
get a digraph with exactly n−m weak components, consider a path on m+ 1
vertices together with n−m− 1 isolated vertices.

We next prove that the maximum number  of weak components is

k0 = max{k : k ≤ n and m≤ (n− k+ 1)(n− k)}
=


1
2

�
2n+ 1−√4m+ 1


.

(3.14)

The proof is similar to that for . Suppose G is an arbitrary digraph with weak
components C1, C2, . . . , Cq , with Ci containing ni vertices. Then there are no
arcs between Ci s, so

m≤
q

i=1

ni (ni − 1)≤ (n− q + 1)(n− q),

where the second inequality follows as before. Hence, q ≤ k0 and ≤ k0. To
show equality, consider a digraph with all the arcs belonging to one weak
component with n− k+ 1 vertices.

We now consider the difference p− q, where p and q denote the number of
strong components and the number of weak components, respectively. We first
note that p≥ q. If m≥ 2, then a digraph with a circuit on min(m, n) vertices
has p= q. If m= 1, then p= n and q = n− 1. If m= 0, then p= q = n. Hence,
we have

min p− q =


1 if m= 1
0 otherwise

. (3.15)

We next show that

max p− q =


m if m≤ n− 1
− 1 otherwise

, (3.16)

where  is the maximum number of strong components. For this, it is enough
to observe that there is a digraph attaining the maximum number of strong
components and the minimum number of weak components simultaneously.

We next consider the number h of arcs joining different strong components.
The minimum value of h is 0 or 1 accordingly as m≥ 2 or m= 1. To see this,
all one has to do is to include a circuit on min(m, n) vertices if m≥ 2. We
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next consider the maximum value of h. Clearly, max h=m if m≤ �n
2


. So let

m >
�n

2


. Let

t =min


i=1
�ni

2


: ≥ 1, ni ≥ 1 for i = 1, 2, . . . , ,


i=1 ni = n and m≤ �n

2

+
i=1

�ni
2


.

Then we will show that max h= �n
2

− t . Suppose G is a network on n vertices
with m arcs, of which h is between strong components. Suppose G has 

strong components C1, C2, . . . , C, with Ci containing ni vertices. Then, for
i = j , there cannot be arcs both from Ci to C j and from C j to Ci . Hence,
h≤ �n

2

−
i=1

�ni
2

≤ �n
2

− t . To prove that the bound is attained, consider
a digraph with viv j an arc whenever i < j and with the sizes of the strong
components equal to n1, n2, . . . , n (it is easy to see that such a digraph
exists). We mention that t ≥m− �n

2


, but the equality may not always hold. For

example, if n= 6 and m= 20, then t = 6 attains when = 2 and n1= n2= 3,
whereas m− �n

2

= 5. Thus, max h is 9 here.
We finally come to clique number. It is easy to see that the maximum value

for the clique number of a digraph on n vertices with m arcs is

max{k : m≥ k(k− 1)}=


1
2

�
1+√4m+ 1


. (3.17)

It can be shown that the minimum value of the clique number is

max


k : m≤ n(n− 1)− k


q
2


− rq where q =

n
k


and r = n− kq


.

(3.18)
We omit the proof of this result. We mention that the corresponding result
for (undirected) graphs is known as Turan’s theorem. A digraph attaining
the bound, which we denote by k, is obtained as follows: The vertex set is
V1 ∪ V2 ∪ . . .∪ Vk , where the Vi s are pairwise disjoint, r of the Vi s has size
q + 1, and the rest have size q. The m arcs are adjusted in such a way that
there is no symmetric pair within any Vi . The clique number of this digraph is
k because any clique in it can contain only one vertex from each Vi .

Model II.2

This model is the probabilistic version of Model II.1. It takes the vertex set
V ={v1, v2, . . . , vn} and the number of arcs m (0≤m≤ n(n− 1)) as fixed and
assumes that all the

�n(n−1)
m


possible digraphs are equally likely. Note that a
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random digraph is now obtained by choosing m of the n(n− 1) ordered pairs
viv j , by simple random sampling without replacement, and making them arcs.

Since n(n− 1) occurs repeatedly, we will write M for n(n− 1) in what
follows.

Let Xi j be defined as before. Then under the present model, P(Xi j = 1)=
m/M , but the Xi j s are not independent.

Since the out-degree di of vi is the number of pairs chosen from {viv j 1≤
j ≤ n, j = i}, it follows that di has the following hypergeometric distribution:

P(di = k)=
�n−1

k

�n2−2n+1
m−k


�M

m

 , max(0, m− (n2− 2n+ 1))≤k ≤min(n− 1, m).

(3.19)
Hence, E(di )=m/n and

V (di )=m
1
n


1− 1

n

 M −m
M − 1

. (3.20)

It may be noted that the distribution of di is approximately B(m, 1/n) if
m≤ n− 1 and B(n− 1, m/M) if m≥ n− 1. The distribution can also be
approximated by Poisson distribution with mean m/n when m << n(n− 1)

and a normal distribution with mean and variance given above when m, M,

and n are large subject to finite mean and variance in the limits. It is easy to
see that the out-degree di and the in-degree ei of vi have the same distribution.

Now, different di s are not independent. For example,

P(d2= k|d1= )=
�n−1

k

�M−2(n−1)
m−k−


�M−(n−1)

m−

 , k= 0, 1, . . . , min(n− 1, m− ).

So the distribution of dmax is not easy to compute now.
The probability that vi is a source is

P(ei = 0)=
�M−(n−1)

m


�M

m

 . (3.21)

Now, the events that different vertices are sources are not independent. How-
ever, the probability that k given vertices are sources is

�
(n−k)(n−1)

m


�M

m

 . (3.22)

So an expression similar to (3.1), for the probability that there are exactly k
sources, can be written down. A simpler approximation to the distribution of
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the expected number of sources can be obtained as follows when n is large:
We assume that the events that different vertices are sources are independent.
Then the number of sources has the distribution B(n, p), where p is given in
(3.3). Now,

p=
n−2

i=0


1− m

M − i


≈


1− m

M − 2n/3

n−1
≈ exp


− m(n− 1)

M − 2n/3


.

This approximation seems to be good if m < n. When m≥ n,

p=
m−1

i=0


1− n− 1

M − i


≈


1− n− 1

M − 2m/3

m
≈ exp


− m(n− 1)

M − 2m/3



seems to be better. In both cases, the mean of the true distribution is quite close
to the mean of the binomial distribution, but the variance of the true distribution
is somewhat smaller than that of the binomial distribution.

The probability that vi is a sink equals the probability that vi is a source,
and the number of sinks and the number of sources have the same distribution.

The probability that vi is an isolated vertex is

P(di = 0 and ei = 0)=
�M−2(n−1)

m


�M

m

 , (3.23)

which is approximately exp(−2m(n− 1)/(M − 4n/3)) if m < 2n. When m≥
2n, exp(−2m(n− 1)/(M − 2m/3)) is a better approximation. The events that
different vertices are isolates are not independent. The probability that k given
vertices are isolates is �

(n−k)(n−k−1)
m


�M

m

 . (3.24)

So an expression similar to (3.1), for the probability that there are exactly
k isolates, can be written down. However, again, the number of isolates is
approximately B(n, p), where p is given by (3.4).

By definition, any two digraphs with m arcs (in particular, any digraph and
its converse) have the same probability—namely, 1/

�M
m


.

The probability that G is symmetric is
�M/2

m/2


/
�M

m


, provided that m is even

(and 0 otherwise).
The probability that G is asymmetric is

�M/2
m


2m/

�M
m


.

To find the probability that G is complete, we note that given k dis-
tinct unordered pairs {i1, j1}, {i2, j2}, . . . , {ik, jk}, the probability that none of
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random digraph is now obtained by choosing m of the n(n− 1) ordered pairs
viv j , by simple random sampling without replacement, and making them arcs.

Since n(n− 1) occurs repeatedly, we will write M for n(n− 1) in what
follows.

Let Xi j be defined as before. Then under the present model, P(Xi j = 1)=
m/M , but the Xi j s are not independent.

Since the out-degree di of vi is the number of pairs chosen from {viv j 1≤
j ≤ n, j = i}, it follows that di has the following hypergeometric distribution:

P(di = k)=
�n−1

k

�n2−2n+1
m−k


�M

m

 , max(0, m− (n2− 2n+ 1))≤k ≤min(n− 1, m).

(3.19)
Hence, E(di )=m/n and

V (di )=m
1
n


1− 1

n

 M −m
M − 1

. (3.20)

It may be noted that the distribution of di is approximately B(m, 1/n) if
m≤ n− 1 and B(n− 1, m/M) if m≥ n− 1. The distribution can also be
approximated by Poisson distribution with mean m/n when m << n(n− 1)

and a normal distribution with mean and variance given above when m, M,

and n are large subject to finite mean and variance in the limits. It is easy to
see that the out-degree di and the in-degree ei of vi have the same distribution.

Now, different di s are not independent. For example,

P(d2= k|d1= )=
�n−1

k

�M−2(n−1)
m−k−


�M−(n−1)

m−

 , k= 0, 1, . . . , min(n− 1, m− ).

So the distribution of dmax is not easy to compute now.
The probability that vi is a source is

P(ei = 0)=
�M−(n−1)

m


�M

m

 . (3.21)

Now, the events that different vertices are sources are not independent. How-
ever, the probability that k given vertices are sources is

�
(n−k)(n−1)

m


�M

m

 . (3.22)

So an expression similar to (3.1), for the probability that there are exactly k
sources, can be written down. A simpler approximation to the distribution of
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the expected number of sources can be obtained as follows when n is large:
We assume that the events that different vertices are sources are independent.
Then the number of sources has the distribution B(n, p), where p is given in
(3.3). Now,

p=
n−2

i=0


1− m

M − i


≈


1− m

M − 2n/3

n−1
≈ exp


− m(n− 1)

M − 2n/3


.

This approximation seems to be good if m < n. When m≥ n,

p=
m−1

i=0


1− n− 1

M − i


≈


1− n− 1

M − 2m/3

m
≈ exp


− m(n− 1)

M − 2m/3



seems to be better. In both cases, the mean of the true distribution is quite close
to the mean of the binomial distribution, but the variance of the true distribution
is somewhat smaller than that of the binomial distribution.

The probability that vi is a sink equals the probability that vi is a source,
and the number of sinks and the number of sources have the same distribution.

The probability that vi is an isolated vertex is

P(di = 0 and ei = 0)=
�M−2(n−1)

m


�M

m

 , (3.23)

which is approximately exp(−2m(n− 1)/(M − 4n/3)) if m < 2n. When m≥
2n, exp(−2m(n− 1)/(M − 2m/3)) is a better approximation. The events that
different vertices are isolates are not independent. The probability that k given
vertices are isolates is �

(n−k)(n−k−1)
m


�M

m

 . (3.24)

So an expression similar to (3.1), for the probability that there are exactly
k isolates, can be written down. However, again, the number of isolates is
approximately B(n, p), where p is given by (3.4).

By definition, any two digraphs with m arcs (in particular, any digraph and
its converse) have the same probability—namely, 1/

�M
m


.

The probability that G is symmetric is
�M/2

m/2


/
�M

m


, provided that m is even

(and 0 otherwise).
The probability that G is asymmetric is

�M/2
m


2m/

�M
m


.

To find the probability that G is complete, we note that given k dis-
tinct unordered pairs {i1, j1}, {i2, j2}, . . . , {ik, jk}, the probability that none of
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vi1v j1 , v j1vi1 , vi2v j2 , v j2vi2 , . . . , vik v jk , v jk vik is an arc is
�M−2k

m


/
�M

m


. Hence,

the probability that G is not complete is


n
2

 �M−2
m


�M

m

 −
�n

2



2

 �M−4
m


�M

m

 +
�n

2



3

 �M−6
m


�M

m

 − · · · (3.25)

It is not difficult to see that

P(s(G)= k)=
�(n

2)
k

�(n
2)−k

m−2k


2m−2k

�n(n−1)
m

 . (3.26)

From this it follows that

P(s(G)= k+ 1)

P(s(G)= k)
= (m− 2k)(m− 2k+ 1)

4(k+ 1)(
�n

2

−m+ k+ 1)
.

This ratio is greater than 1 or less than 1 accordingly as k < x or k > x , where

x = (m+ 4)(m− 1)− 2n(n− 1)

2n(n− 1)+ 6
. (3.27)

Hence, it follows that the distribution of s(G) is unimodal with mode at
x. (The maximum probability may be attained at most at two consecutive
integers.) We can also find the mean and the variance since s(G) is the sum of
the n(n− 1)/2 variables Yi j , where Yi j = Xi j X ji for any unordered pair {i, j}
with i = j . Now

E(Yi j )= P(Yi j = 1)=
�M−2

m−2


�M

m

 = m(m− 1)

M(M − 1)
.

Let us denote m(m− 1)/(M(M − 1)) by p for convenience. Then

E(s(G))= Mp
2
= m(m− 1)

2n(n− 1)− 2
. (3.28)

Now, V (Yi j )= p(1− p). If {i, j} and {k, } are distinct, then

cov(Yi j , Yk) = E(Yi j Yk)− E(Yi j )E(Yk)

= m(m− 1)(m− 2)(m− 3)

M(M − 1)(M − 2)(M − 3)
− p2.

Noting that
�n

2

=M/2, we get
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V (s(G)) = M
2

p(1− p)+ M
2


M
2
− 1


p

(m− 2)(m− 3)
(M − 2)(M − 3)

− p


= E(s(G))


1− E(s(G))+ (m− 2)(m− 3)

2M − 6


. (3.29)

If n is large (n > 10, say), E(s(G))≈m2/(2n2) and V (s(G))≈ E(s(G))×
(1−m/M)2. Writing α= V (s(G))/E(s(G)) and β = (1−m/M)2, we actu-
ally have

α−β = (M −m)(3(M −m)(M − 1)−mM)

M2(M − 1)(M − 3)
,

so |α−β| ≤ 3/M . Note that the range of s(G) is [max(0,m−M/2), [m/2]].
It is now even more difficult than in Model I.2 to deal with probabilities of

events depending on the distance between vertices.
For example, to find the probability that G is strongly connected, we have

to find the number g(n,m) of strongly connected digraphs on the vertex set
{v1, v2, . . . , vn} with m arcs. No method for computing this number g(n,m)

is known. Thus, even finding the probability that G is strongly connected is
difficult. If n= 3 and m≤ 2, the probability is 0. If n= 3 and m= 3, out of the
20 possible digraphs, only 2 are strongly connected, so the probability is 1/10.
If n= 3 and m= 4, out of the 15 possible digraphs, 9 are strongly connected,
so the probability is 3/5. If n= 3 and m≥ 5, then the probability is 1.

The probability that G has diameter 1 is clearly 1 or 0 according to
whether m= n(n− 1) or not. When n= 3 and m= 5, G has diameter 2 with
probability 1. When n= 3 and m= 4, G has diameter 2 with probability 3/5
and diameter∞ with probability 2/5. When n= 3 and m= 3, G has diameter
2 with probability 1/10 and diameter ∞ with probability 9/10. When n= 3
and m≤ 2, G has diameter∞ with probability 1.

When n= 3 and m≥ 4, G has radius 1 with probability 1. When n= 3 and
m= 3, G has radius 1 with probability 3/10 and radius 2 with probability 7/10.
When n= 3 and m= 2, G has radius 1 with probability 1/5, radius 2 with
probability 2/5, and radius∞ with probability 2/5. When n= 3 and m≤ 1, G
has radius∞ with probability 1.

Results of Simulation

To give an idea of the distributions of various statistics when both n and m
are fixed, we give them for n= 10 and a few values of m. These were obtained
by simulation using 100,000 random digraphs.
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vi1v j1 , v j1vi1 , vi2v j2 , v j2vi2 , . . . , vik v jk , v jk vik is an arc is
�M−2k

m


/
�M

m


. Hence,

the probability that G is not complete is


n
2

 �M−2
m


�M

m

 −
�n

2



2

 �M−4
m


�M

m

 +
�n

2



3

 �M−6
m


�M

m

 − · · · (3.25)

It is not difficult to see that

P(s(G)= k)=
�(n

2)
k

�(n
2)−k

m−2k


2m−2k

�n(n−1)
m

 . (3.26)

From this it follows that

P(s(G)= k+ 1)

P(s(G)= k)
= (m− 2k)(m− 2k+ 1)

4(k+ 1)(
�n

2

−m+ k+ 1)
.

This ratio is greater than 1 or less than 1 accordingly as k < x or k > x , where

x = (m+ 4)(m− 1)− 2n(n− 1)

2n(n− 1)+ 6
. (3.27)

Hence, it follows that the distribution of s(G) is unimodal with mode at
x. (The maximum probability may be attained at most at two consecutive
integers.) We can also find the mean and the variance since s(G) is the sum of
the n(n− 1)/2 variables Yi j , where Yi j = Xi j X ji for any unordered pair {i, j}
with i = j . Now

E(Yi j )= P(Yi j = 1)=
�M−2

m−2


�M

m

 = m(m− 1)

M(M − 1)
.

Let us denote m(m− 1)/(M(M − 1)) by p for convenience. Then

E(s(G))= Mp
2
= m(m− 1)

2n(n− 1)− 2
. (3.28)

Now, V (Yi j )= p(1− p). If {i, j} and {k, } are distinct, then

cov(Yi j , Yk) = E(Yi j Yk)− E(Yi j )E(Yk)

= m(m− 1)(m− 2)(m− 3)

M(M − 1)(M − 2)(M − 3)
− p2.

Noting that
�n

2

=M/2, we get
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V (s(G)) = M
2

p(1− p)+ M
2


M
2
− 1


p

(m− 2)(m− 3)
(M − 2)(M − 3)

− p


= E(s(G))


1− E(s(G))+ (m− 2)(m− 3)

2M − 6


. (3.29)

If n is large (n > 10, say), E(s(G))≈m2/(2n2) and V (s(G))≈ E(s(G))×
(1−m/M)2. Writing α= V (s(G))/E(s(G)) and β = (1−m/M)2, we actu-
ally have

α−β = (M −m)(3(M −m)(M − 1)−mM)

M2(M − 1)(M − 3)
,

so |α−β| ≤ 3/M . Note that the range of s(G) is [max(0,m−M/2), [m/2]].
It is now even more difficult than in Model I.2 to deal with probabilities of

events depending on the distance between vertices.
For example, to find the probability that G is strongly connected, we have

to find the number g(n,m) of strongly connected digraphs on the vertex set
{v1, v2, . . . , vn} with m arcs. No method for computing this number g(n,m)

is known. Thus, even finding the probability that G is strongly connected is
difficult. If n= 3 and m≤ 2, the probability is 0. If n= 3 and m= 3, out of the
20 possible digraphs, only 2 are strongly connected, so the probability is 1/10.
If n= 3 and m= 4, out of the 15 possible digraphs, 9 are strongly connected,
so the probability is 3/5. If n= 3 and m≥ 5, then the probability is 1.

The probability that G has diameter 1 is clearly 1 or 0 according to
whether m= n(n− 1) or not. When n= 3 and m= 5, G has diameter 2 with
probability 1. When n= 3 and m= 4, G has diameter 2 with probability 3/5
and diameter∞ with probability 2/5. When n= 3 and m= 3, G has diameter
2 with probability 1/10 and diameter ∞ with probability 9/10. When n= 3
and m≤ 2, G has diameter∞ with probability 1.

When n= 3 and m≥ 4, G has radius 1 with probability 1. When n= 3 and
m= 3, G has radius 1 with probability 3/10 and radius 2 with probability 7/10.
When n= 3 and m= 2, G has radius 1 with probability 1/5, radius 2 with
probability 2/5, and radius∞ with probability 2/5. When n= 3 and m≤ 1, G
has radius∞ with probability 1.

Results of Simulation

To give an idea of the distributions of various statistics when both n and m
are fixed, we give them for n= 10 and a few values of m. These were obtained
by simulation using 100,000 random digraphs.
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Maximum Out-Degree (Continuation)

Maximum Out-Degree
1 2 3 4 5 6 7 8 9

m
4 .538 .434 .027 .001 – – – – –
7 .076 .724 .184 .015 .001 – – – –

10 .001 .478 .444 .071 .006 – – – –
15 – .055 .583 .305 .052 .005 – – –
20 – – .228 .546 .193 .030 .003 – –
40 – – – – .122 .529 .291 .054 .004
60 – – – – – – .172 .630 .198
80 – – – – – – – .001 .999

Sources

0 1 2 3 4 5 6 7 8 9
m
4 – – – – – – .538 .411 .050 .001
7 – – – .076 .359 .412 .140 .013 – –

10 .001 .024 .178 .392 .309 .088 .008 – – –
15 .075 .319 .394 .180 .030 .002 – – – –
20 .323 .461 .189 .026 .001 – – – – –
40 .964 .036 – – – – – – – –
60 1 – – – – – – – – –
80 1 – – – – – – – – –

Isolates

0 1 2 3 4 5 6 7
m
4 – – .029 .236 .450 .248 .036 .001
7 .046 .262 .414 .231 .044 .003 – –

10 .312 .465 .195 .027 .001 – – –
15 .764 .221 .015 – – – – –
20 .940 .059 .001 – – – – –
40 1 – – – – – – –
60 1 – – – – – – –
80 1 – – – – – – –
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Symmetric Pairs

0 1 2 3 4 5 6 7
m
4 .932 .067 .001
7 .775 .212 .013 – – – – –

10 .571 .356 .069 .004 – – – –
15 .247 .419 .254 .070 .009 .001 – –
20 .065 .241 .337 .240 .094 .021 .002 –

Symmetric Pairs (Continued)

4 5 6 7 8 9 10 11 12 13 14

m = 40 .004 .019 .062 .137 .213 .238 .181 .098 .037 .009 .002

Symmetric Pairs (Continued)

16 17 18 19 20 21 22 23 24 25

m = 60 .008 .041 .126 .227 .261 .200 .097 .033 .006 .001

Symmetric Pairs (Continued)

35 36 37 38

m = 80 .573 .356 .067 .004

Diameter

1 2 3 4 5 6 7 8 9 ∞
m
4 – – – – – – – – – 1
7 – – – – – – – – – 1

10 – – – – – – – – – 1
15 – – – – – .001 .001 .001 – .997
20 – – – .002 .028 .032 .015 .004 .001 .918
40 – .001 .738 .181 .009 – – – – .071
60 – .880 .119 – – – – – – .001
80 – 1 – – – – – – – –
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Maximum Out-Degree (Continuation)
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Symmetric Pairs

0 1 2 3 4 5 6 7
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4 5 6 7 8 9 10 11 12 13 14

m = 40 .004 .019 .062 .137 .213 .238 .181 .098 .037 .009 .002

Symmetric Pairs (Continued)

16 17 18 19 20 21 22 23 24 25

m = 60 .008 .041 .126 .227 .261 .200 .097 .033 .006 .001

Symmetric Pairs (Continued)

35 36 37 38

m = 80 .573 .356 .067 .004

Diameter

1 2 3 4 5 6 7 8 9 ∞
m
4 – – – – – – – – – 1
7 – – – – – – – – – 1

10 – – – – – – – – – 1
15 – – – – – .001 .001 .001 – .997
20 – – – .002 .028 .032 .015 .004 .001 .918
40 – .001 .738 .181 .009 – – – – .071
60 – .880 .119 – – – – – – .001
80 – 1 – – – – – – – –
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Radius

1 2 3 4 5 6 7 8 ∞
m
4 – – – – – – – – 1
7 – – – – – – – – 1

10 – – .001 .002 .002 .002 .001 – .992
15 – .008 .092 .093 .054 .023 .007 .002 .721
20 – .105 .389 .149 .057 .016 .004 .001 .279
40 .004 .987 .009 – – – – – –
60 .199 .801 – – – – – – –
80 .999 .001 – – – – – – –

Clique Number

1 2 3 4 5 6 7 8
m
4 .932 .068 – – – – – –
7 .775 .225 – – – – – –

10 .571 .429 – – – – – –
15 .247 .752 .001 – – – – –
20 .065 .928 .007 – – — – –
40 – .492 .504 .004 – – – –
60 – – .437 .544 .019 – – –
80 – – – .001 .253 .645 .100 .001

Strong Components

1 2 3 4 5 6 7 8 9 10
m
4 – – – – – – – .009 .067 .924
7 – – – – – .004 .021 .074 .195 .706

10 – – – .004 .018 .051 .104 .177 .251 .395
15 .003 .022 .069 .127 .166 .170 .158 .130 .095 .060
20 .082 .209 .250 .196 .126 .070 .037 .019 .008 .003
40 .929 .068 .003 – – – – – – –
60 1 – – – – – – – – –
80 1 – – – – – – – – –
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Weak Components

1 2 3 4 5 6 7 8 9 10
m
4 – – – – – .897 .102 .001 – –
7 – – .444 .460 .092 .004 – – – –

10 .197 .504 .262 .036 .001 – – – – –
15 .750 .234 .016 – – – – – – –
20 .939 .060 .001 – – – – – – –
40 1 – – – – – – – – –
60 1 – – – – – – – — –
80 1 – – - - – – – – – –

3.4 MODELS FIXING ALL OUT-DEGREES
OF INDIVIDUAL VERTICES

Model III.1

Model II.1 leaves the possibility that all the m arcs are within a few vertices.
This is often not realistic, and many of the vertices may have positive out-
degree. In such a situation, as well as others in which the respondent is asked a
question to name his or her three best friends, Model III.1 is more appropriate.

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree di

of vi as fixed for i = 1, 2, . . . , n and assumes that all the
�n−1

di


digraphs

on V with d+(vi )= di for i = 1, 2, . . . , n are actually possible. Note that
the di s have to satisfy the following condition: 0≤ di ≤ n− 1 for all i . For
the sake of convenience, we will assume in the discussion of this model
that d1≥ d2≥ · · · ≥ dn . Moreover, G will denote a digraph with vertex set
{v1, v2, . . . , vn} and with d+(vi )= di for all i .

Clearly, the present model fixes m since m=n
i=1 di . The number of sinks

is also fixed since vi is a sink if and only if di = 0. We now show that the
range of the in-degree e j of v j is [


i = j max(0, di − n+ 2),


i = j min(1, di )].

Clearly, e j ≥


i = j max(0, di − n+ 2) in every G since for all i = j such that
di > n− 2, viv j is an arc. It is easy to see that the bound is attained. Also,
e j ≤


i = j min(1, di ) in every G since for all i = j , viv j can be an arc only if

di ≥ 1. Again it is easy to see that the bound is attained.
To give the minimum and maximum values taken by the number of sources,

let p denote the number of sources. Then we show that min p=max(0, n−
m). Suppose G has a source u and a vertex v with in-degree at least 2. We may
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Radius
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m
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Weak Components

1 2 3 4 5 6 7 8 9 10
m
4 – – – – – .897 .102 .001 – –
7 – – .444 .460 .092 .004 – – – –

10 .197 .504 .262 .036 .001 – – – – –
15 .750 .234 .016 – – – – – – –
20 .939 .060 .001 – – – – – – –
40 1 – – – – – – – – –
60 1 – – – – – – – — –
80 1 – – - - – – – – – –

3.4 MODELS FIXING ALL OUT-DEGREES
OF INDIVIDUAL VERTICES

Model III.1

Model II.1 leaves the possibility that all the m arcs are within a few vertices.
This is often not realistic, and many of the vertices may have positive out-
degree. In such a situation, as well as others in which the respondent is asked a
question to name his or her three best friends, Model III.1 is more appropriate.

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree di

of vi as fixed for i = 1, 2, . . . , n and assumes that all the
�n−1

di


digraphs

on V with d+(vi )= di for i = 1, 2, . . . , n are actually possible. Note that
the di s have to satisfy the following condition: 0≤ di ≤ n− 1 for all i . For
the sake of convenience, we will assume in the discussion of this model
that d1≥ d2≥ · · · ≥ dn . Moreover, G will denote a digraph with vertex set
{v1, v2, . . . , vn} and with d+(vi )= di for all i .

Clearly, the present model fixes m since m=n
i=1 di . The number of sinks

is also fixed since vi is a sink if and only if di = 0. We now show that the
range of the in-degree e j of v j is [


i = j max(0, di − n+ 2),


i = j min(1, di )].

Clearly, e j ≥


i = j max(0, di − n+ 2) in every G since for all i = j such that
di > n− 2, viv j is an arc. It is easy to see that the bound is attained. Also,
e j ≤


i = j min(1, di ) in every G since for all i = j , viv j can be an arc only if

di ≥ 1. Again it is easy to see that the bound is attained.
To give the minimum and maximum values taken by the number of sources,

let p denote the number of sources. Then we show that min p=max(0, n−
m). Suppose G has a source u and a vertex v with in-degree at least 2. We may
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then take an arc xv where x = u, drop the arc xv, and introduce the arc xu.
This will give another digraph with the same out-degrees and with less number
of sources. Now suppose m≥ n. If there is a source in G, then some vertex
has in-degree at least 2, so we can reduce the number of sources. Repeating
the process, we get a digraph with p= 0. Next let m < n. Then the m arcs can
make at most m vertices nonsources, so p≥ n−m in every G. By the argument
given above, a digraph with the minimum number of sources has no vertex with
in-degree larger than 2 and so has n−m sources. Hence, min p= n−m.

To give the maximum value taken by p, let k= d1. Then max p= n− k if
dn−k+1 < k and n− k− 1 otherwise. To see this, we note that in any G, v1 is
joined to k vertices, so p≤ n− k. If dn−k+1 < k, then vi can be joined to di of
the last k vertices for i = 1, 2, . . . , n, giving a digraph with p= n− k. Next let
dn−k+1= k. Then in any G, if W is the set of vertices to which v1 is joined,
the out-degree of at least one vertex in W is larger than k− 1, so at least one
vertex outside W is not a source, and hence p≤ n− k− 1. It is easy to see that
this bound is attained.

To give the minimum and maximum values taken by the number of isolates,
let q denote the number of isolates. Let d1= k and let  be the number of
di s, which are 0. We show that min q =max(0, −n−

i=1 di ). In any G, at
most

n−
i=1 di of the last  vertices can have positive in-degree, and hence

it follows that q ≥max(0, −n−
i=1 di ). A digraph attaining the bound is

obtained by choosing a vertex among the last , which has not yet received
any arc (if it exists) while choosing the vertices to which vi is joined, i =
1, 2, . . . , n− .

We now give the maximum value taken by the number of isolates. If k= 0,
then max q = n. So let k ≥ 1. Then we show that max q =min(n− k− 1, ).
Clearly, v1 and the vertices to which it is joined as well as the n−  vertices
with positive out-degree are not isolates, so q ≤min(n− k− 1, ). Clearly, the
bound is attained by the digraph obtained by joining vi to di of the first k+ 1
vertices for i = 1, 2, . . . , n− . It is easy to see that every value between the
minimum and the maximum values of q is attained.

The range of s(G) in the present model was determined by Achuthan,
Rao, and Rao (1984). To give this range, let the di s be arranged so that
d1≥ d2≥ · · · ≥ dn . For any t with 1≤ t ≤ n, define

f (t)=
t

i=1

di − t (n− t)−


t
2


. (3.30)
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Then the minimum value of the number s(G) of reciprocal pairs is
maxt f (t). We show only that min s(G)≥maxt f (t). Fix any t and any di-
graph with vertex set {v1, v2, . . . , vn} such that the out-degree of vi is di for
i = 1, 2, . . . , n. Then the number of arcs viv j in G with i ≤ t is

t
i=1 di . Of

these, at most t (n− t) can have j ≥ t + 1. So G has at least
t

i=1 di − t (n− t)
arcs within the first t vertices. Hence, G has at least f (t) symmetric pairs
(within the first t vertices). This proves min s(G)≥maxt f (t).

To give the maximum value of s(G), define

g(t)=
t

i=1

di − t (t − 1)−
n

j=t+1

min(t, d j ). (3.31)

Then, max s(G)= (m−maxt g(t))/2, where m=n
i=1 di . We only show that

the left-hand side does not exceed the right-hand side. Fix t and G as in the
preceding paragraph. Then the number of arcs viv j in G with i ≤ t is

t
i=1 di .

Of these, at most t (t − 1) can have j ≤ t . So G has at least
t

i=1 di − t (t − 1)

arcs from the first t vertices to the last n− t vertices. Now there are at mostn
j=t+1 min(t, d j ) arcs from the last n− t vertices to the first t vertices.

Hence, there are at least g(t) arcs from the first t vertices to the last n− t
vertices, which are not reciprocated (i.e., do not form symmetric pairs). Hence,
s(G)≤ (m− g(t))/2.

It is easy to see that every value between the minimum and the maximum
values of s(G) is attained.

Exact analytical determination of the range of the diameter seems to be a
difficult problem when the out-degrees of the vertices are fixed.

We now give the minimum value ρ of the radius r . If


i di < n− 1, clearly
ρ=∞. So let


i di ≥ n− 1. Let u be a center of G. Clearly, only n0= 1 vertex

is at distance 0 from u. It is easy to see that at most, n1 : = n0+ d1 vertices are
at distance ≤ 1 from u, at most n2 : = n1+ dn0+1+ dn0+2+ · · ·+ dn1 vertices
are at distance ≤ 2 from u, at most n3 : = n2+ dn1+1+ dn1+2+ · · ·+ dn2

vertices are at distance ≤ 3 from u, and so on. It follows easily that ρ is the
smallest k such that nk ≥ n. To give an example, suppose the out-degrees are
3,2,2,1,1,1,1,1,1,0. Then, n0= 1, n1= 4, n2= 9, and n3= 14. Since n= 10, it
follows that ρ= 3. We do not know the maximum value of the radius.

We now prove that the minimum number of strong components is min
(n, + 1), where  is the number of di s, which are 0. Clearly, any G will have
at least min(n, + 1) strong components. We can get a digraph attaining this
bound by including a circuit on the first n−  vertices if n− ≥ 2.
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then take an arc xv where x = u, drop the arc xv, and introduce the arc xu.
This will give another digraph with the same out-degrees and with less number
of sources. Now suppose m≥ n. If there is a source in G, then some vertex
has in-degree at least 2, so we can reduce the number of sources. Repeating
the process, we get a digraph with p= 0. Next let m < n. Then the m arcs can
make at most m vertices nonsources, so p≥ n−m in every G. By the argument
given above, a digraph with the minimum number of sources has no vertex with
in-degree larger than 2 and so has n−m sources. Hence, min p= n−m.

To give the maximum value taken by p, let k= d1. Then max p= n− k if
dn−k+1 < k and n− k− 1 otherwise. To see this, we note that in any G, v1 is
joined to k vertices, so p≤ n− k. If dn−k+1 < k, then vi can be joined to di of
the last k vertices for i = 1, 2, . . . , n, giving a digraph with p= n− k. Next let
dn−k+1= k. Then in any G, if W is the set of vertices to which v1 is joined,
the out-degree of at least one vertex in W is larger than k− 1, so at least one
vertex outside W is not a source, and hence p≤ n− k− 1. It is easy to see that
this bound is attained.

To give the minimum and maximum values taken by the number of isolates,
let q denote the number of isolates. Let d1= k and let  be the number of
di s, which are 0. We show that min q =max(0, −n−

i=1 di ). In any G, at
most

n−
i=1 di of the last  vertices can have positive in-degree, and hence

it follows that q ≥max(0, −n−
i=1 di ). A digraph attaining the bound is

obtained by choosing a vertex among the last , which has not yet received
any arc (if it exists) while choosing the vertices to which vi is joined, i =
1, 2, . . . , n− .

We now give the maximum value taken by the number of isolates. If k= 0,
then max q = n. So let k ≥ 1. Then we show that max q =min(n− k− 1, ).
Clearly, v1 and the vertices to which it is joined as well as the n−  vertices
with positive out-degree are not isolates, so q ≤min(n− k− 1, ). Clearly, the
bound is attained by the digraph obtained by joining vi to di of the first k+ 1
vertices for i = 1, 2, . . . , n− . It is easy to see that every value between the
minimum and the maximum values of q is attained.

The range of s(G) in the present model was determined by Achuthan,
Rao, and Rao (1984). To give this range, let the di s be arranged so that
d1≥ d2≥ · · · ≥ dn . For any t with 1≤ t ≤ n, define

f (t)=
t

i=1

di − t (n− t)−


t
2


. (3.30)
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Then the minimum value of the number s(G) of reciprocal pairs is
maxt f (t). We show only that min s(G)≥maxt f (t). Fix any t and any di-
graph with vertex set {v1, v2, . . . , vn} such that the out-degree of vi is di for
i = 1, 2, . . . , n. Then the number of arcs viv j in G with i ≤ t is

t
i=1 di . Of

these, at most t (n− t) can have j ≥ t + 1. So G has at least
t

i=1 di − t (n− t)
arcs within the first t vertices. Hence, G has at least f (t) symmetric pairs
(within the first t vertices). This proves min s(G)≥maxt f (t).

To give the maximum value of s(G), define

g(t)=
t

i=1

di − t (t − 1)−
n

j=t+1

min(t, d j ). (3.31)

Then, max s(G)= (m−maxt g(t))/2, where m=n
i=1 di . We only show that

the left-hand side does not exceed the right-hand side. Fix t and G as in the
preceding paragraph. Then the number of arcs viv j in G with i ≤ t is

t
i=1 di .

Of these, at most t (t − 1) can have j ≤ t . So G has at least
t

i=1 di − t (t − 1)

arcs from the first t vertices to the last n− t vertices. Now there are at mostn
j=t+1 min(t, d j ) arcs from the last n− t vertices to the first t vertices.

Hence, there are at least g(t) arcs from the first t vertices to the last n− t
vertices, which are not reciprocated (i.e., do not form symmetric pairs). Hence,
s(G)≤ (m− g(t))/2.

It is easy to see that every value between the minimum and the maximum
values of s(G) is attained.

Exact analytical determination of the range of the diameter seems to be a
difficult problem when the out-degrees of the vertices are fixed.

We now give the minimum value ρ of the radius r . If


i di < n− 1, clearly
ρ=∞. So let


i di ≥ n− 1. Let u be a center of G. Clearly, only n0= 1 vertex

is at distance 0 from u. It is easy to see that at most, n1 : = n0+ d1 vertices are
at distance ≤ 1 from u, at most n2 : = n1+ dn0+1+ dn0+2+ · · ·+ dn1 vertices
are at distance ≤ 2 from u, at most n3 : = n2+ dn1+1+ dn1+2+ · · ·+ dn2

vertices are at distance ≤ 3 from u, and so on. It follows easily that ρ is the
smallest k such that nk ≥ n. To give an example, suppose the out-degrees are
3,2,2,1,1,1,1,1,1,0. Then, n0= 1, n1= 4, n2= 9, and n3= 14. Since n= 10, it
follows that ρ= 3. We do not know the maximum value of the radius.

We now prove that the minimum number of strong components is min
(n, + 1), where  is the number of di s, which are 0. Clearly, any G will have
at least min(n, + 1) strong components. We can get a digraph attaining this
bound by including a circuit on the first n−  vertices if n− ≥ 2.
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We do not have a simple expression for the maximum number of strong
components, but we will show that the digraph D with the property

P : v j is joined to the last d j vi s (excluding v j itself) for j = 1, 2, . . . , n,

is extremal. We prove this by induction on n. The basis for induction is trivial.
Assume the result for less than n vertices. Let G be any extremal digraph (i.e.,
a digraph with d+(v)= di for i = 1, 2, . . . , n and with the maximum number k
of strong components). Then the strong components C1, C2, . . . , Ck in G can
be numbered in such a way that (i) there is no arc from Ci to C j if i > j .
To see this, we note that the condensation H of G obtained by shrinking
each Ci to a vertex has no circuits. Let P be an open (i.e., the first and last
vertices are distinct) path of the maximum length in H . Then the first vertex
of P is a source in H . Let C1 be the strong component of G corresponding
to this vertex. Now deleting C1 and repeating the procedure, we can order
the strong components so that (i) is satisfied. Now, if u ∈Ci , v ∈C j , i < j ,
and d+(u)< d+(v), then by interchanging u and v (note that condition (i) is
easy to satisfy), we get another extremal digraph. Repeating this process, we
get an extremal digraph G such that the last few (say, nk) vi s form a strong
component. Clearly, we may assume that each v j belonging to Ck is joined to
the last d j vi s (excluding v j itself). We may also assume that for all i ≤ n− nk ,
vi is joined to the last min(di , nk) vi s. Finally, the subdigraph induced by
C1 ∪ · · · ∪Ck−1 is also extremal and can be replaced by one satisfying P .
Then G itself satisfies P . The number of strong components in such a digraph
can easily be counted, although it is difficult to give a nice expression for it.
For example, suppose the out-degree sequence is (9, 8, 8, 5, 5, 5, 5, 3, 2, 0).
Then the strong components in the extremal digraph obtained as above are
{v10}, {v5, v6, v7, v8, v9}, {v4}, {v2, v3}, and {v1} (note that it is convenient to
determine the strong components starting at the right end).

Let p denote the number of weak components. Then we show that min p=
max(1, n−m). Suppose G has two weak components, C1 and C2, and C1 is
not a tree. Then C1 has an arc uv such that C1 remains weakly connected
when arc uv is deleted. Now deleting the arc uv and joining u to a vertex
of C2 reduces the number of weak components. Thus, in a digraph attaining
the minimum number of weak components, either there is only one weak
component or there are at least two weak components, and all of them are
trees. In the former case, m≥ n− 1, and in the latter case, m= n− p≤ n− 2.
This proves that min p=max(1, n−m).
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We do not know the maximum value  of the number of weak components
precisely but have partial information on it. Let G be a maximal digraph (i.e., a
digraph attaining ). Let C1 be the weak component containing v1. If there is
a vertex u other than v1 in C1 and a vertex v in another weak component such
that the out-degree of u is less than the out-degree of v, then by interchanging
u and v (note that this is possible since the out-degree of v is less than the
size of C1), we get another extremal digraph. Repeating this process, we
get an extremal digraph such that the vertices in C1 have the largest few
out-degrees. Repeating the argument starting with the first vertex not in C1,
we ultimately get an extremal digraph in which the weak components are
{1, 2, . . . , n1}, {n1+ 1, n1+ 2, . . . , n2}, . . . , {n p−1+ 1, n p−1+ 2, . . . , n}
for some n1, n2, . . . , n p such that 1≤ n1 < n2 < · · ·< n p = n and ni+1−
ni ≥ dni+1+ 1 for i = 0, 2, . . . , p− 1. It is also easy to see that  is the
maximum p such that such ni s exist. However, we cannot always take
n1= d1+ 1 and so forth. For example, if the di s are 3, 3, 3, 2, 2, 2, we have
to take n1= 6 and = 1. Moreover, if the di s are 3, 3, 3, 3, 3, 1, 1, 0,
taking n1= 5, n2= 7, and n3= 8 is better than taking n1= 4 and
n2= 8.

We finally come to clique number ω. We show that max ω=max{k : dk ≥
k− 1}. For this, it is enough to observe that k vertices can be made to induce a
complete symmetric digraph if and only if their out-degrees are at least k− 1.
The minimum value of ø is not known.

Model III.2

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree
di (0≤ di ≤ n− 1) of vi as fixed for i = 1, 2, . . . , n and assumes that all the�n−1

di


possible digraphs are equally likely.

Note that now a random digraph is obtained by choosing, for each i , di

of the n− 1 ordered pairs viv j , 1≤ j ≤ n, j = i , by simple random sampling
without replacement and making them arcs. Note that different is are treated
independently.

Let Xi j be defined as before. Then, under the present model, P(Xi j = 1)=
di/(n− 1). Also, Xi j and Xk are independent if i = k.

Clearly, now di s and thus m are fixed. But the in-degrees are variable,
and the distribution of e j is not easy to compute. However, the mean and the
variance of e j can be computed as follows Since e j =

{Xi j : 1≤i ≤ n, i = j},
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We do not have a simple expression for the maximum number of strong
components, but we will show that the digraph D with the property

P : v j is joined to the last d j vi s (excluding v j itself) for j = 1, 2, . . . , n,

is extremal. We prove this by induction on n. The basis for induction is trivial.
Assume the result for less than n vertices. Let G be any extremal digraph (i.e.,
a digraph with d+(v)= di for i = 1, 2, . . . , n and with the maximum number k
of strong components). Then the strong components C1, C2, . . . , Ck in G can
be numbered in such a way that (i) there is no arc from Ci to C j if i > j .
To see this, we note that the condensation H of G obtained by shrinking
each Ci to a vertex has no circuits. Let P be an open (i.e., the first and last
vertices are distinct) path of the maximum length in H . Then the first vertex
of P is a source in H . Let C1 be the strong component of G corresponding
to this vertex. Now deleting C1 and repeating the procedure, we can order
the strong components so that (i) is satisfied. Now, if u ∈Ci , v ∈C j , i < j ,
and d+(u)< d+(v), then by interchanging u and v (note that condition (i) is
easy to satisfy), we get another extremal digraph. Repeating this process, we
get an extremal digraph G such that the last few (say, nk) vi s form a strong
component. Clearly, we may assume that each v j belonging to Ck is joined to
the last d j vi s (excluding v j itself). We may also assume that for all i ≤ n− nk ,
vi is joined to the last min(di , nk) vi s. Finally, the subdigraph induced by
C1 ∪ · · · ∪Ck−1 is also extremal and can be replaced by one satisfying P .
Then G itself satisfies P . The number of strong components in such a digraph
can easily be counted, although it is difficult to give a nice expression for it.
For example, suppose the out-degree sequence is (9, 8, 8, 5, 5, 5, 5, 3, 2, 0).
Then the strong components in the extremal digraph obtained as above are
{v10}, {v5, v6, v7, v8, v9}, {v4}, {v2, v3}, and {v1} (note that it is convenient to
determine the strong components starting at the right end).

Let p denote the number of weak components. Then we show that min p=
max(1, n−m). Suppose G has two weak components, C1 and C2, and C1 is
not a tree. Then C1 has an arc uv such that C1 remains weakly connected
when arc uv is deleted. Now deleting the arc uv and joining u to a vertex
of C2 reduces the number of weak components. Thus, in a digraph attaining
the minimum number of weak components, either there is only one weak
component or there are at least two weak components, and all of them are
trees. In the former case, m≥ n− 1, and in the latter case, m= n− p≤ n− 2.
This proves that min p=max(1, n−m).
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We do not know the maximum value  of the number of weak components
precisely but have partial information on it. Let G be a maximal digraph (i.e., a
digraph attaining ). Let C1 be the weak component containing v1. If there is
a vertex u other than v1 in C1 and a vertex v in another weak component such
that the out-degree of u is less than the out-degree of v, then by interchanging
u and v (note that this is possible since the out-degree of v is less than the
size of C1), we get another extremal digraph. Repeating this process, we
get an extremal digraph such that the vertices in C1 have the largest few
out-degrees. Repeating the argument starting with the first vertex not in C1,
we ultimately get an extremal digraph in which the weak components are
{1, 2, . . . , n1}, {n1+ 1, n1+ 2, . . . , n2}, . . . , {n p−1+ 1, n p−1+ 2, . . . , n}
for some n1, n2, . . . , n p such that 1≤ n1 < n2 < · · ·< n p = n and ni+1−
ni ≥ dni+1+ 1 for i = 0, 2, . . . , p− 1. It is also easy to see that  is the
maximum p such that such ni s exist. However, we cannot always take
n1= d1+ 1 and so forth. For example, if the di s are 3, 3, 3, 2, 2, 2, we have
to take n1= 6 and = 1. Moreover, if the di s are 3, 3, 3, 3, 3, 1, 1, 0,
taking n1= 5, n2= 7, and n3= 8 is better than taking n1= 4 and
n2= 8.

We finally come to clique number ω. We show that max ω=max{k : dk ≥
k− 1}. For this, it is enough to observe that k vertices can be made to induce a
complete symmetric digraph if and only if their out-degrees are at least k− 1.
The minimum value of ø is not known.

Model III.2

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree
di (0≤ di ≤ n− 1) of vi as fixed for i = 1, 2, . . . , n and assumes that all the�n−1

di


possible digraphs are equally likely.

Note that now a random digraph is obtained by choosing, for each i , di

of the n− 1 ordered pairs viv j , 1≤ j ≤ n, j = i , by simple random sampling
without replacement and making them arcs. Note that different is are treated
independently.

Let Xi j be defined as before. Then, under the present model, P(Xi j = 1)=
di/(n− 1). Also, Xi j and Xk are independent if i = k.

Clearly, now di s and thus m are fixed. But the in-degrees are variable,
and the distribution of e j is not easy to compute. However, the mean and the
variance of e j can be computed as follows Since e j =

{Xi j : 1≤i ≤ n, i = j},
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it follows that E(e j )=


i = j E(Xi j )=


i = j di/(n− 1)= (m− d j )/(n− 1).
Also, since Xi j s are independent for different is, we get

V (e j )=


i = j

V (Xi j )=


i = j

di (n− 1− di )

(n− 1)2 =
(n− 1)(S1− d j )− (S2− d2

j )

(n− 1)2 ,

(3.32)
where S1 : =

di =m and S2 : =
d2

i .
The probability that v j is a source is

P(e j = 0)=


i : i = j


1− di

n− 1


. (3.33)

Even though one can, in principle, write an expression for any k-given vertices
to be sources, this and the expression obtained from it for the probability that
there are exactly k sources are not useful. Note that the e j s are not independent
since their sum is a constant. So the distribution of emax is also not easy to
compute.

The probability that v j is an isolated vertex is P(ei = 0) if di = 0 and 0
otherwise. The events that different vertices are isolates are not independent.
The probability that k-given vertices are isolates and the probability that there
are exactly k isolates are not easy to compute.

Now the probabilities that G is symmetric, asymmetric, complete, and so
on are all difficult to find.

For any unordered pair {i, j}, the probability that none of viv j and v jvi is
an arc is

(n− 1− di )(n− 1− d j )

(n− 1)2 .

But given k distinct unordered pairs i1 j1, i2 j2, . . . , ik jk , the probability that
none of vi1v j1 , v j1vi1 , vi2v j2 , v j2vi2 , . . . , vik v jk , v jk vik is an arc is not easy to
write down. Hence, the probability that G is not complete cannot be found
easily.

The distribution of the number of symmetric pairs s(G) is complicated,
but its mean and variance were computed by Katz and Wilson (1956). To
compute these, we write s(G) as the sum of Yi j s as before. Now E(Yi j )=
di d j/(n− 1)2. Hence, writing Sk =


dk

i for k= 1, 2, . . ., we get

E(s(G))= S2
1 − S2

2(n− 1)2 . (3.34)

It can be proved similarly that
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V (s(G)) = E(s(G))+ S2
1 S2− S2

2 − 2S1S3+ 2S4− S3
1 + 3S1S2− 2S3

(n− 1)3(n− 2)

−2S2
1 S2− S2

2 − 4S1S3+ 3S4

2(n− 1)4 . (3.35)

If the di s do not differ much, it can be seen that

E(s(G))≈ nd̄ 2

2(n− 1)
and V (s(G))≈ E(s(G))


1− d̄

n− 1

2

,

where d̄ denotes


di/n.

Model III.3

This model is a generalization of Model III.2. Here, again, we take the
vertex set V ={v1, v2, . . . , vn} and the out-degree di (0≤ di ≤ n− 1) of vi as
fixed for i = 1, 2, . . . , n. But we now assume that for each i , there is a set
Pi ⊆{1, 2, . . . , n}− {i} and that the terminal vertices of the di arcs leaving vi

belong to Pi . Finally, the model assumes that the
�ni

di


possible digraphs are

equally likely, where ni denotes the size of Pi .
The set Pi may be called the potential set for vi since vi makes its

choices from Pi . The need for considering this type of model has already
been explained in Chapter 1. Model III.2 implicitly makes two important
assumptions: (i) for any fixed i , the probability that v j is chosen by vi is the
same for all j , and (ii) the choices of different vi s are statistically independent.
Assumption (i) is perhaps unrealistic when di is much smaller than n. So we
remove it in the present model while still retaining assumption (ii).

Let Xi j be defined as before. We take Xii to be 0. Then, under the present
model, P(Xi j = 1) is di/ni if j ∈ Pi and 0 otherwise. Also, Xi j and Xk are
independent if i = k.

Clearly, again, di s and thus m are fixed. But the in-degrees are variable,
and the distribution of e j is not easy to compute. However, the mean and
the variance of e j can be computed as follows. Let us denote di/ni by ri .
Then E(Xi j )= ri and V (Xi j )= ri (1− ri ) if j ∈ Pi . If j /∈ Pi , then E(Xi j )=
V (Xi j )= 0. Now, e j =


i Xi j , so E(e j )=


i : j∈Pi

ri . Also, since Xi j s are
independent for different is, we get

V (e j )=

{ri (1− ri ) : j ∈ Pi }. (3.36)

Although the distribution of s is difficult to compute, Rao and Bandyopadhyay
(1987) showed that E(s)=n

j=1 r j Tj/2 and
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it follows that E(e j )=


i = j E(Xi j )=


i = j di/(n− 1)= (m− d j )/(n− 1).
Also, since Xi j s are independent for different is, we get

V (e j )=


i = j

V (Xi j )=


i = j

di (n− 1− di )

(n− 1)2 =
(n− 1)(S1− d j )− (S2− d2

j )

(n− 1)2 ,

(3.32)
where S1 : =

di =m and S2 : =
d2

i .
The probability that v j is a source is

P(e j = 0)=


i : i = j


1− di

n− 1


. (3.33)

Even though one can, in principle, write an expression for any k-given vertices
to be sources, this and the expression obtained from it for the probability that
there are exactly k sources are not useful. Note that the e j s are not independent
since their sum is a constant. So the distribution of emax is also not easy to
compute.

The probability that v j is an isolated vertex is P(ei = 0) if di = 0 and 0
otherwise. The events that different vertices are isolates are not independent.
The probability that k-given vertices are isolates and the probability that there
are exactly k isolates are not easy to compute.

Now the probabilities that G is symmetric, asymmetric, complete, and so
on are all difficult to find.

For any unordered pair {i, j}, the probability that none of viv j and v jvi is
an arc is

(n− 1− di )(n− 1− d j )

(n− 1)2 .

But given k distinct unordered pairs i1 j1, i2 j2, . . . , ik jk , the probability that
none of vi1v j1 , v j1vi1 , vi2v j2 , v j2vi2 , . . . , vik v jk , v jk vik is an arc is not easy to
write down. Hence, the probability that G is not complete cannot be found
easily.

The distribution of the number of symmetric pairs s(G) is complicated,
but its mean and variance were computed by Katz and Wilson (1956). To
compute these, we write s(G) as the sum of Yi j s as before. Now E(Yi j )=
di d j/(n− 1)2. Hence, writing Sk =


dk

i for k= 1, 2, . . ., we get

E(s(G))= S2
1 − S2

2(n− 1)2 . (3.34)

It can be proved similarly that
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V (s(G)) = E(s(G))+ S2
1 S2− S2

2 − 2S1S3+ 2S4− S3
1 + 3S1S2− 2S3

(n− 1)3(n− 2)

−2S2
1 S2− S2

2 − 4S1S3+ 3S4

2(n− 1)4 . (3.35)

If the di s do not differ much, it can be seen that

E(s(G))≈ nd̄ 2

2(n− 1)
and V (s(G))≈ E(s(G))


1− d̄

n− 1

2

,

where d̄ denotes


di/n.

Model III.3

This model is a generalization of Model III.2. Here, again, we take the
vertex set V ={v1, v2, . . . , vn} and the out-degree di (0≤ di ≤ n− 1) of vi as
fixed for i = 1, 2, . . . , n. But we now assume that for each i , there is a set
Pi ⊆{1, 2, . . . , n}− {i} and that the terminal vertices of the di arcs leaving vi

belong to Pi . Finally, the model assumes that the
�ni

di


possible digraphs are

equally likely, where ni denotes the size of Pi .
The set Pi may be called the potential set for vi since vi makes its

choices from Pi . The need for considering this type of model has already
been explained in Chapter 1. Model III.2 implicitly makes two important
assumptions: (i) for any fixed i , the probability that v j is chosen by vi is the
same for all j , and (ii) the choices of different vi s are statistically independent.
Assumption (i) is perhaps unrealistic when di is much smaller than n. So we
remove it in the present model while still retaining assumption (ii).

Let Xi j be defined as before. We take Xii to be 0. Then, under the present
model, P(Xi j = 1) is di/ni if j ∈ Pi and 0 otherwise. Also, Xi j and Xk are
independent if i = k.

Clearly, again, di s and thus m are fixed. But the in-degrees are variable,
and the distribution of e j is not easy to compute. However, the mean and
the variance of e j can be computed as follows. Let us denote di/ni by ri .
Then E(Xi j )= ri and V (Xi j )= ri (1− ri ) if j ∈ Pi . If j /∈ Pi , then E(Xi j )=
V (Xi j )= 0. Now, e j =


i Xi j , so E(e j )=


i : j∈Pi

ri . Also, since Xi j s are
independent for different is, we get

V (e j )=

{ri (1− ri ) : j ∈ Pi }. (3.36)

Although the distribution of s is difficult to compute, Rao and Bandyopadhyay
(1987) showed that E(s)=n

j=1 r j Tj/2 and
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V (s)= 1
2

n

j=1

r j Tj −
1
2

n

j=1

r2
j W j −

n

j=1

r j (1− r j )

n j − 1
(T 2

j −W j ), (3.37)

where

Tj =

{ri : i ∈ Pj and j ∈ Pi } and W j =


{r2

i : i ∈ Pj and j ∈ Pi }.
(3.38)

If we make the assumptions (i) i ∈ Pj if j ∈ Pi and (ii) r j = r for all j , then

E(s)= mr
2

and V (s)= mr
2

(1− r)2.

3.5 MODELS FIXING ALL OUT-DEGREES
AND IN-DEGREES OF INDIVIDUAL VERTICES

Model IV.1

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree
di as well as the in-degree ei of vi as fixed for i = 1, 2, . . . , n and assumes
that all the digraphs on V with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n
are actually possible. Note that the di s and ei s have to satisfy the following
conditions: 0≤ di ≤ n− 1 and 0≤ ei ≤ n− 1 for all i and


di =


ei . But

these conditions are not sufficient. Ryser (1963) and Fulkerson (1966) proved
that these together with the following condition are necessary and sufficient for
the existence of a digraph with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n:

k

i=1

di ≤
k

j=1

min(k− 1, e j )+
n

j=k+1

min(k, e j ), k= 1, 2, . . . , n, (3.39)

where we assume without loss of generality that d1≥ d2≥ · · · ≥ dn . We will
make this assumption for convenience in what follows. Moreover, G will
denote a digraph with vertex set {v1, v2, . . . , vn} and with d+(vi )= di and
d−(vi )= ei for all i .

We will prove only the necessity of the above condition. Clearly, there
are

k
i=1 di arcs viv j with 1≤ i ≤ k. The number of arcs among these with

1≤ j ≤ k is at most
k

j=1 min(k− 1, e j ), and the number with k+ 1≤ j ≤ n
is at most

n
j=k+1 min(k, e j ), and hence the inequality follows. This proves

the necessity. A proof of sufficiency can be found in Berge (1973). One can
easily give an example where the inequality is not satisfied: Take both the
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out-degree and in-degree sequences to be (3, 3, 1, 1). Then the inequality is
violated for k = 2.

Under the present model, the total number of arcs, out-degrees, in-degrees,
and sources, sinks, and isolates is all fixed. The range of the other parameters
considered earlier seem to be difficult to find. Rao (1984; unpublished
manuscript) gave some lower and upper bounds for min s(G). These are quite
involved, and we only mention a special case. Let ai = di + ei for all i . If
the product of the two largest ai s does not exceed N + 1, where N is the
number of nonzero ai s, then min s(G)= 0. We next note that max s(G)≤ n

i=1 min(di , ei )/2


. To prove this, it is enough to note that there can be at
most min(di , ei ) symmetric pairs containing vi . We do not know any sufficient
conditions under which the bound is attained, and we do not have any lower
bound for max s(G). We give an example to show that the above upper bound
is not always attained. Suppose there is a digraph G with out-degree and
in-degree sequences (3, 2, 2, 2, 1, 1, 0) and (0, 0, 0, 2, 2, 3, 4) and with two
symmetric pairs. Then v4v5, v4v6, v5v4, and v6v4 should be arcs, and v7

cannot have in-degree 4, a contradiction. Note, however, that there exists
a digraph with the given out-degree and in-degree sequences and with one
symmetric pair.

Even though we do not know the minimum and maximum values of s(G)

in general, we may be able to find them sometimes by using the technique
described below. Suppose we are given one digraph G. By an alternating
rectangle in G, we mean four distinct vertices u, v, w, x such that uv and
wx are arcs and ux and wv are not arcs. (Note that the entries in the cells
of the adjacency matrix corresponding to the pairs (u, v), (u, x), (w, x), and
(w, v) are 1, 0, 1, 0—hence the name alternating rectangle.) By switching
along this alternating rectangle, we mean dropping the arcs uv and wx and
introducing the arcs ux and wv (this amounts to interchanging 1s and 0s in
the four cells of the adjacency matrix referred to above). Note that this does
not alter the out-degree or the in-degree of any vertex. Similarly, by a compact
alternating hexagon in G, we mean three distinct vertices u, v and w such
that uv, vw, and wu are arcs and vu, wv, and uw are not arcs. (Note that the
entries in the cells of the adjacency matrix corresponding to the pairs (u, v),
(w, v), (w, u), (v, u), (v,w), and (u, w) are 1, 0, 1, 0, 1, 0—hence the name
compact alternating hexagon.) By switching along this compact alternating
hexagon, we mean dropping the arcs uv, vw, and wu and introducing the arcs
vu, wv, and uw. Again, this does not alter the out-degree or the in-degree of
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V (s)= 1
2

n

j=1

r j Tj −
1
2

n

j=1

r2
j W j −

n

j=1

r j (1− r j )

n j − 1
(T 2

j −W j ), (3.37)

where

Tj =

{ri : i ∈ Pj and j ∈ Pi } and W j =


{r2

i : i ∈ Pj and j ∈ Pi }.
(3.38)

If we make the assumptions (i) i ∈ Pj if j ∈ Pi and (ii) r j = r for all j , then

E(s)= mr
2

and V (s)= mr
2

(1− r)2.

3.5 MODELS FIXING ALL OUT-DEGREES
AND IN-DEGREES OF INDIVIDUAL VERTICES

Model IV.1

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree
di as well as the in-degree ei of vi as fixed for i = 1, 2, . . . , n and assumes
that all the digraphs on V with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n
are actually possible. Note that the di s and ei s have to satisfy the following
conditions: 0≤ di ≤ n− 1 and 0≤ ei ≤ n− 1 for all i and


di =


ei . But

these conditions are not sufficient. Ryser (1963) and Fulkerson (1966) proved
that these together with the following condition are necessary and sufficient for
the existence of a digraph with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n:

k

i=1

di ≤
k

j=1

min(k− 1, e j )+
n

j=k+1

min(k, e j ), k= 1, 2, . . . , n, (3.39)

where we assume without loss of generality that d1≥ d2≥ · · · ≥ dn . We will
make this assumption for convenience in what follows. Moreover, G will
denote a digraph with vertex set {v1, v2, . . . , vn} and with d+(vi )= di and
d−(vi )= ei for all i .

We will prove only the necessity of the above condition. Clearly, there
are

k
i=1 di arcs viv j with 1≤ i ≤ k. The number of arcs among these with

1≤ j ≤ k is at most
k

j=1 min(k− 1, e j ), and the number with k+ 1≤ j ≤ n
is at most

n
j=k+1 min(k, e j ), and hence the inequality follows. This proves

the necessity. A proof of sufficiency can be found in Berge (1973). One can
easily give an example where the inequality is not satisfied: Take both the
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out-degree and in-degree sequences to be (3, 3, 1, 1). Then the inequality is
violated for k = 2.

Under the present model, the total number of arcs, out-degrees, in-degrees,
and sources, sinks, and isolates is all fixed. The range of the other parameters
considered earlier seem to be difficult to find. Rao (1984; unpublished
manuscript) gave some lower and upper bounds for min s(G). These are quite
involved, and we only mention a special case. Let ai = di + ei for all i . If
the product of the two largest ai s does not exceed N + 1, where N is the
number of nonzero ai s, then min s(G)= 0. We next note that max s(G)≤ n

i=1 min(di , ei )/2


. To prove this, it is enough to note that there can be at
most min(di , ei ) symmetric pairs containing vi . We do not know any sufficient
conditions under which the bound is attained, and we do not have any lower
bound for max s(G). We give an example to show that the above upper bound
is not always attained. Suppose there is a digraph G with out-degree and
in-degree sequences (3, 2, 2, 2, 1, 1, 0) and (0, 0, 0, 2, 2, 3, 4) and with two
symmetric pairs. Then v4v5, v4v6, v5v4, and v6v4 should be arcs, and v7

cannot have in-degree 4, a contradiction. Note, however, that there exists
a digraph with the given out-degree and in-degree sequences and with one
symmetric pair.

Even though we do not know the minimum and maximum values of s(G)

in general, we may be able to find them sometimes by using the technique
described below. Suppose we are given one digraph G. By an alternating
rectangle in G, we mean four distinct vertices u, v, w, x such that uv and
wx are arcs and ux and wv are not arcs. (Note that the entries in the cells
of the adjacency matrix corresponding to the pairs (u, v), (u, x), (w, x), and
(w, v) are 1, 0, 1, 0—hence the name alternating rectangle.) By switching
along this alternating rectangle, we mean dropping the arcs uv and wx and
introducing the arcs ux and wv (this amounts to interchanging 1s and 0s in
the four cells of the adjacency matrix referred to above). Note that this does
not alter the out-degree or the in-degree of any vertex. Similarly, by a compact
alternating hexagon in G, we mean three distinct vertices u, v and w such
that uv, vw, and wu are arcs and vu, wv, and uw are not arcs. (Note that the
entries in the cells of the adjacency matrix corresponding to the pairs (u, v),
(w, v), (w, u), (v, u), (v,w), and (u, w) are 1, 0, 1, 0, 1, 0—hence the name
compact alternating hexagon.) By switching along this compact alternating
hexagon, we mean dropping the arcs uv, vw, and wu and introducing the arcs
vu, wv, and uw. Again, this does not alter the out-degree or the in-degree of
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any vertex. Rao, Jana, and Bandyopadhyay (1996) proved that any digraph H
with d+(vi )= di and d−(vi )= ei for all i can be obtained from any other such
digraph G by a finite sequence of switches along alternating rectangles and
compact alternating hexagons. (In most cases, this can be achieved by using
only alternating rectangles.) Using this technique, we may be able to prove in
some cases by actual construction that a known lower bound or upper bound
for s(G) is actually attained.

We do not know the range of the diameter, the radius, and the number
of strong and weak components when both di s and ei s are fixed. However,
we can give the minimum number of weak components. For this, let m=

di =


ei , and let p denote the number of weak components. Let  be the
number of is such that di = ei = 0. Then min p= +max(1, n− −m) (when
m < n− − 1, every weak component of a digraph attaining min p is a “tree”
on one or more vertices; when m≥ n− − 1, a digraph attaining min p has
only one weak component other than the  isolated vertices), but the value of
max p is not known. Finally, the range of the clique number is also not known.

Model IV.2

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree di

as well as the in-degree ei of vi as fixed for i = 1, 2, . . . , n and assumes all
the digraphs on V with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n to be
equally likely.

Note that the di s and ei s have to satisfy the conditions stated in Model
IV.1 for the existence of at least one digraph with the given out-degrees
and in-degrees. (If the out-degrees and in-degrees are read from an observed
network, these conditions will automatically be satisfied.) The number of
possible networks is a very complicated function of di s and ei s and is not
known, although some recursive methods have been given by Sukhatme (1938)
and Katz and Powell (1954) for computing it. The number can be astronomical
even for moderate n like n= 40. There is also no easy way of generating
(listing) all the networks.

Under the present model, practically nothing is known about the distribu-
tion of any of the statistics except those that are trivially fixed by the model. So
one has to take recourse to simulation. But even generating a random network
(where all possible networks are chosen with equal probabilities) is a difficult
problem now.
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Pramanik (1994) gave a heuristic procedure to get an approximately ran-
dom network by generating its incidence matrix. His method basically con-
sists of the following: choose a cell, the (i, j)th with probability proportional
to di e j ; put a 1 in that cell; update the di s and ei s; and repeat. At each stage
including the beginning, the entries in all the cells that are determined by the
current di s and ei s are filled in before applying the above procedure. Although
this procedure seems to give an approximately random network, there is no
theoretical basis for it or an estimate of how good the approximation is.

Snijders (1991) bypassed the problem of generating a random matrix and
gave a way of generating a nearly random network so that its probability could
be computed. One can then estimate the distribution of any statistic (under the
model where all possible networks are equally likely) using a ratio estimator.

One possible way of generating a random network is the following: Gener-
ate a random network with out-degree sequence (d1, d2, . . . , dn). Accept it if
its in-degree sequence is (e1, e2, . . . , en); otherwise, reject it, generate another
with out-degree sequence (d1, d2, . . . , dn), and repeat this until a network is
accepted. It is easy to see that this gives a random network under the present
model, but the rate of rejection will generally be so high that not even one may
be accepted in a million even for moderate values of n.

Rao et al. (1996) gave a Markov chain simulation method for generating a
random network. We will briefly describe the method without detailed proofs.
In the following text, we use the term alternating cycles to mean alternating
rectangles and compact alternating hexagons as defined in the discussion of
Model IV.1.

Let
..........................

....................................... denote the set of all networks with vertex set V ={v1, v2, . . . , vn}
and with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n. The basic step of the
Markov chain Monte Carlo (MCMC) method is as follows. We start with an
initial network belonging to

..........................
....................................... . At any stage, we enumerate the alternating

cycles in the current network, choose one of them at random, and switch
along it to get a new network in

..........................
....................................... . We perform this process a large number

of times. Then one believes that the network obtained should be a random
network (we shall see presently that this is not quite correct). To try to prove
this, let us formulate it as a Markov chain. The states of the Markov chain are
the networks belonging to

..........................
....................................... . We shall say that two states are adjacent if the

networks represented by them can be obtained from each other by switching
along one alternating cycle. Let c(i) denote the number of states adjacent to the
state i . Then the procedure mentioned above obviously gives a Markov chain
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any vertex. Rao, Jana, and Bandyopadhyay (1996) proved that any digraph H
with d+(vi )= di and d−(vi )= ei for all i can be obtained from any other such
digraph G by a finite sequence of switches along alternating rectangles and
compact alternating hexagons. (In most cases, this can be achieved by using
only alternating rectangles.) Using this technique, we may be able to prove in
some cases by actual construction that a known lower bound or upper bound
for s(G) is actually attained.

We do not know the range of the diameter, the radius, and the number
of strong and weak components when both di s and ei s are fixed. However,
we can give the minimum number of weak components. For this, let m=

di =


ei , and let p denote the number of weak components. Let  be the
number of is such that di = ei = 0. Then min p= +max(1, n− −m) (when
m < n− − 1, every weak component of a digraph attaining min p is a “tree”
on one or more vertices; when m≥ n− − 1, a digraph attaining min p has
only one weak component other than the  isolated vertices), but the value of
max p is not known. Finally, the range of the clique number is also not known.

Model IV.2

This model takes the vertex set V ={v1, v2, . . . , vn} and the out-degree di

as well as the in-degree ei of vi as fixed for i = 1, 2, . . . , n and assumes all
the digraphs on V with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n to be
equally likely.

Note that the di s and ei s have to satisfy the conditions stated in Model
IV.1 for the existence of at least one digraph with the given out-degrees
and in-degrees. (If the out-degrees and in-degrees are read from an observed
network, these conditions will automatically be satisfied.) The number of
possible networks is a very complicated function of di s and ei s and is not
known, although some recursive methods have been given by Sukhatme (1938)
and Katz and Powell (1954) for computing it. The number can be astronomical
even for moderate n like n= 40. There is also no easy way of generating
(listing) all the networks.

Under the present model, practically nothing is known about the distribu-
tion of any of the statistics except those that are trivially fixed by the model. So
one has to take recourse to simulation. But even generating a random network
(where all possible networks are chosen with equal probabilities) is a difficult
problem now.
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Pramanik (1994) gave a heuristic procedure to get an approximately ran-
dom network by generating its incidence matrix. His method basically con-
sists of the following: choose a cell, the (i, j)th with probability proportional
to di e j ; put a 1 in that cell; update the di s and ei s; and repeat. At each stage
including the beginning, the entries in all the cells that are determined by the
current di s and ei s are filled in before applying the above procedure. Although
this procedure seems to give an approximately random network, there is no
theoretical basis for it or an estimate of how good the approximation is.

Snijders (1991) bypassed the problem of generating a random matrix and
gave a way of generating a nearly random network so that its probability could
be computed. One can then estimate the distribution of any statistic (under the
model where all possible networks are equally likely) using a ratio estimator.

One possible way of generating a random network is the following: Gener-
ate a random network with out-degree sequence (d1, d2, . . . , dn). Accept it if
its in-degree sequence is (e1, e2, . . . , en); otherwise, reject it, generate another
with out-degree sequence (d1, d2, . . . , dn), and repeat this until a network is
accepted. It is easy to see that this gives a random network under the present
model, but the rate of rejection will generally be so high that not even one may
be accepted in a million even for moderate values of n.

Rao et al. (1996) gave a Markov chain simulation method for generating a
random network. We will briefly describe the method without detailed proofs.
In the following text, we use the term alternating cycles to mean alternating
rectangles and compact alternating hexagons as defined in the discussion of
Model IV.1.

Let
..........................

....................................... denote the set of all networks with vertex set V ={v1, v2, . . . , vn}
and with d+(vi )= di and d−(vi )= ei for i = 1, 2, . . . , n. The basic step of the
Markov chain Monte Carlo (MCMC) method is as follows. We start with an
initial network belonging to

..........................
....................................... . At any stage, we enumerate the alternating

cycles in the current network, choose one of them at random, and switch
along it to get a new network in

..........................
....................................... . We perform this process a large number

of times. Then one believes that the network obtained should be a random
network (we shall see presently that this is not quite correct). To try to prove
this, let us formulate it as a Markov chain. The states of the Markov chain are
the networks belonging to

..........................
....................................... . We shall say that two states are adjacent if the

networks represented by them can be obtained from each other by switching
along one alternating cycle. Let c(i) denote the number of states adjacent to the
state i . Then the procedure mentioned above obviously gives a Markov chain
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with transition probability pi j = 1/c(i) if j is adjacent to i and 0 otherwise.
Note that the Markov chain is irreducible since every state can be reached from
every other state in a finite number of steps. So, there exists a unique stationary
distribution (see Feller, 1968), and if the Markov chain is aperiodic, the
distribution of the state after q steps approaches this stationary distribution as
q→∞, whatever the initial state. To find the stationary distribution, note that
it is a probability vector π  = (π1, π2, . . . , πN ) such that π P=π , where P is
the transition probability matrix ((pi j )). Taking θ i = c(i)/


k c(k), it is easy

to see that


i θ i pi j = θ j , and thus πi = θ i . Thus, according to the stationary
distribution, the probability of the i th state is not 1/N but is proportional to the
number c(i) of alternating cycles in the network corresponding to the i th state.

As observed in the preceding paragraph, the basic Markov chain simulation
method given above does not choose the networks in

..........................
....................................... with equal probabilities

and needs modification. Suppose we know an upper bound K for the c(i)s.
Then we can modify the basic method as follows: At any stage, if we are
currently in state i , we go to any one of the states adjacent to i , each with
probability 1/K , and remain at the state i itself with probability 1− c(i)/K .
Then the transition probability pi j is 1/K if i = j and i, j are adjacent, 0 if
i = j and i, j are not adjacent, and 1− c(i)/K if i = j . Clearly, now P is
(symmetric and) doubly stochastic, and so the stationary distribution gives
probability 1/N to each state provided the Markov chain is aperiodic. If
c(i)< K and so pii > 0 for at least one state i , that state and thus (noting
that the Markov chain is irreducible) the entire Markov chain are aperiodic,
and the distribution of the state after q steps tends toward the discrete uniform
distribution as q→∞, whatever the initial state.

The difficulty in using the modification mentioned in the preceding para-
graph is that one cannot get a good upper bound for the c(i)s. If K is too large
compared to the c(i)s, then the pii s become close to 1, and the convergence
to the uniform distribution will be too slow. The best K would, of course, be
the maximum of c(i)s over all the states, increased by a small number to take
care of periodicity. Since this exact maximum cannot be determined, we do
the following: We estimate the maximum c(i) using a pilot study and use the
estimate increased by a small amount as the initial value of K . At any stage, if
the current state is i , then we go from i to one of the states adjacent to i , each
with probability 1/K , and remain at i with probability 1− c(i)/K . If we move
to state i’, we update K by replacing it with max(K , c(i’)). It can be shown
that, in the limit, all states are equally probable.
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One decision to make while using the Markov chain simulation method
is the following: How long should the Markov chain be run to get a nearly
random matrix? We do not have a definite answer, but it is known that any
network can be obtained from any other network in t or fewer steps, where
t =min(m, n(n− 1)−m). Perhaps running the Markov chain for 2t to 3t steps
will be enough to achieve a reasonably good level of mixing. Note that the
network obtained in the 3t th step is a nearly random network. To get another,
we have to run the Markov chain again for 3t steps starting from the initial
network.

3.6 OTHER MODELS

Model V

Recall that Model III.2 implicitly makes two assumptions: (i) For any fixed
i , the probability that v j is chosen by vi is the same for all j , and (ii) the choices
of different vi s are statistically independent. Assumption (i) was removed in
Model III.3. In the present model, which is essentially that proposed by Katz
and Powell (1956), we remove assumption (ii). This model is an incomplete
model and stipulates that there is a common correlation τ between Xi j and
X ji for all i and j with i = j . P(Xi j = 1) is still assumed to be di/(n− 1) for
all j = i .

Now, from the definition of τ , we have

P(Xi j = X ji = 1)= 1
(n− 1)2


di d j + τ


di d j (n− 1− di )(n− 1− d j )



and E(s(G)|τ) is the sum of the above probability over all i and j such that
i < j . Equating s(G) to its expected value, we get an estimate τ̂ of τ that can
be taken as a measure of reciprocity. A positive value of τ̂ will be interpreted
as indicating a tendency toward reciprocation and a negative value toward anti-
reciprocation ( j not going to i when i goes to j), while a value of 0 indicates
neutrality with respect to reciprocation.

Note that when di = d for all i , the above expression reduces to

P(Xi j = X ji = 1)= d
n− 1

 d
n− 1

+ τ
n− 1− d

n− 1


.

Thus,
P(X ji = 1|Xi j = 1)= P(X ji = 1)+ τ P(X ji = 1).
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with transition probability pi j = 1/c(i) if j is adjacent to i and 0 otherwise.
Note that the Markov chain is irreducible since every state can be reached from
every other state in a finite number of steps. So, there exists a unique stationary
distribution (see Feller, 1968), and if the Markov chain is aperiodic, the
distribution of the state after q steps approaches this stationary distribution as
q→∞, whatever the initial state. To find the stationary distribution, note that
it is a probability vector π  = (π1, π2, . . . , πN ) such that π P=π , where P is
the transition probability matrix ((pi j )). Taking θ i = c(i)/


k c(k), it is easy

to see that


i θ i pi j = θ j , and thus πi = θ i . Thus, according to the stationary
distribution, the probability of the i th state is not 1/N but is proportional to the
number c(i) of alternating cycles in the network corresponding to the i th state.

As observed in the preceding paragraph, the basic Markov chain simulation
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..........................
....................................... with equal probabilities

and needs modification. Suppose we know an upper bound K for the c(i)s.
Then we can modify the basic method as follows: At any stage, if we are
currently in state i , we go to any one of the states adjacent to i , each with
probability 1/K , and remain at the state i itself with probability 1− c(i)/K .
Then the transition probability pi j is 1/K if i = j and i, j are adjacent, 0 if
i = j and i, j are not adjacent, and 1− c(i)/K if i = j . Clearly, now P is
(symmetric and) doubly stochastic, and so the stationary distribution gives
probability 1/N to each state provided the Markov chain is aperiodic. If
c(i)< K and so pii > 0 for at least one state i , that state and thus (noting
that the Markov chain is irreducible) the entire Markov chain are aperiodic,
and the distribution of the state after q steps tends toward the discrete uniform
distribution as q→∞, whatever the initial state.

The difficulty in using the modification mentioned in the preceding para-
graph is that one cannot get a good upper bound for the c(i)s. If K is too large
compared to the c(i)s, then the pii s become close to 1, and the convergence
to the uniform distribution will be too slow. The best K would, of course, be
the maximum of c(i)s over all the states, increased by a small number to take
care of periodicity. Since this exact maximum cannot be determined, we do
the following: We estimate the maximum c(i) using a pilot study and use the
estimate increased by a small amount as the initial value of K . At any stage, if
the current state is i , then we go from i to one of the states adjacent to i , each
with probability 1/K , and remain at i with probability 1− c(i)/K . If we move
to state i’, we update K by replacing it with max(K , c(i’)). It can be shown
that, in the limit, all states are equally probable.
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One decision to make while using the Markov chain simulation method
is the following: How long should the Markov chain be run to get a nearly
random matrix? We do not have a definite answer, but it is known that any
network can be obtained from any other network in t or fewer steps, where
t =min(m, n(n− 1)−m). Perhaps running the Markov chain for 2t to 3t steps
will be enough to achieve a reasonably good level of mixing. Note that the
network obtained in the 3t th step is a nearly random network. To get another,
we have to run the Markov chain again for 3t steps starting from the initial
network.

3.6 OTHER MODELS

Model V

Recall that Model III.2 implicitly makes two assumptions: (i) For any fixed
i , the probability that v j is chosen by vi is the same for all j , and (ii) the choices
of different vi s are statistically independent. Assumption (i) was removed in
Model III.3. In the present model, which is essentially that proposed by Katz
and Powell (1956), we remove assumption (ii). This model is an incomplete
model and stipulates that there is a common correlation τ between Xi j and
X ji for all i and j with i = j . P(Xi j = 1) is still assumed to be di/(n− 1) for
all j = i .

Now, from the definition of τ , we have

P(Xi j = X ji = 1)= 1
(n− 1)2


di d j + τ


di d j (n− 1− di )(n− 1− d j )



and E(s(G)|τ) is the sum of the above probability over all i and j such that
i < j . Equating s(G) to its expected value, we get an estimate τ̂ of τ that can
be taken as a measure of reciprocity. A positive value of τ̂ will be interpreted
as indicating a tendency toward reciprocation and a negative value toward anti-
reciprocation ( j not going to i when i goes to j), while a value of 0 indicates
neutrality with respect to reciprocation.

Note that when di = d for all i , the above expression reduces to

P(Xi j = X ji = 1)= d
n− 1

 d
n− 1

+ τ
n− 1− d

n− 1


.

Thus,
P(X ji = 1|Xi j = 1)= P(X ji = 1)+ τ P(X ji = 1).
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Summing the above joint probability over i and j such that i < j , we get

E(s|τ)= nd2

2(n− 1)
(1− τ)+ nd

2
τ,

so

τ̂ = 2(n− 1)s− nd2

nd(n− 1− d)
.

This expression can be used as an approximation when di s are nearly equal to
d. Generalizing the above expression for E(s|τ) to


i < j

di d j

(n− 1)2 (1− τ)+


i di

2
τ,

(τ will not be the correlation coefficient and equation (6) will not hold now),
Katz and Powell (1956) obtained the expression

τ̂ = 2(n− 1)2s− S2
1 + S2

(n− 1)2S1− S2
1 + S2

(3.40)

for τ̂ in the general case, where S1 and S2 are as defined in Model III.2. Notice
that this reduces to the preceding expression when di = d for all i .

For given di s, the set of values τ̂ takes is contained in [−1, 1]. But τ̂ attains
the value 1 only when s attains the value


di/2, and τ̂ attains the value −1

only when di = (n− 1)/2 for all i and s= 0. When the di s are all equal, τ is
like an intraclass correlation coefficient.

The present model is incomplete since it does not even specify P(Xi j =
X ji = Xk= Xk = 1). Thus, even the variance of s under the model cannot be
computed.

Model VI

Wasserman and Faust (1999) discuss some useful models for understand-
ing single relational data involving a given number of individuals in a social
network of choice relation. We propose providing a description of these mod-
els, which are also termed dyadic interaction models. Some generalizations
of these dyadic models have been recently studied in Em-ot, Tiensuwan, and
Sinha (2008), and applications have also been made to real network data. We
will provide a detailed description of the model and related data analysis results
in Chapter 4 and also in Chapter 6 on graph-theoretic case studies.
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As usual, we start with n individuals forming a network based on some
form of choice relation between any pair of individuals. The possibilities of
choice involving the pair of individuals i and j are

(0,0), (1,0), (0,1) and (1,1),

where the first component is 1 or 0 according to whether i chooses j or not,
and the second component is 1 or 0 according to whether j chooses i or not.

The body of data arising from a network in the form of the adjacency matrix
(or sociomatrix) of order n × n is referred to as X data. Note that Xi j = 1 or 0
according to whether there is an arc from i to j or not.

Y Array

In general, X data are not symmetric. For modeling purposes, we convert X
data into what is called the “Y array.” It is a symmetric matrix of order 2n × 2n
made up of a 2 × 2 submatrix Y(i, j) for each pair of vertices i and j .

The rows as well as the columns of Y(i, j) are designated 0 and 1 (instead
of the usual 1 and 2). If Xi j = r and X ji = s, we put 1 in the (r, s)-cell of
Y(i, j) and 0s in the other three cells. Clearly, Y( j,i) is the transpose of Y(i, j).
The matrices Y(i, j) corresponding to the four possibilities for the pair (i, j) are
shown below.

Xi j = 0, X ji = 0 : Y(i, j) =


1 0
0 0



Xi j = 0, X ji = 1 : Y(i, j) =


0 1
0 0



Xi j = 1, X ji = 0 : Y(i, j) =


0 0
1 0



Xi j = 1, X ji = 1 : Y(i, j) =


0 0
0 1



The contemplated model for the Y array dwells on specific expressions for
the multinomial cell probabilities corresponding to the four cells designated by
(r, s), r = 0, 1; j = 0, 1, for every pair of individuals (i, j). Let P[(r, s); (i, j)]
denote the probability that the cell (r, s) receives the value 1 in Y(i, j) (i.e., that
Xi j = r and X ji = s). Then the model stipulates the following:
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Summing the above joint probability over i and j such that i < j , we get

E(s|τ)= nd2

2(n− 1)
(1− τ)+ nd

2
τ,

so

τ̂ = 2(n− 1)s− nd2

nd(n− 1− d)
.

This expression can be used as an approximation when di s are nearly equal to
d. Generalizing the above expression for E(s|τ) to


i < j

di d j

(n− 1)2 (1− τ)+


i di

2
τ,

(τ will not be the correlation coefficient and equation (6) will not hold now),
Katz and Powell (1956) obtained the expression

τ̂ = 2(n− 1)2s− S2
1 + S2

(n− 1)2S1− S2
1 + S2

(3.40)

for τ̂ in the general case, where S1 and S2 are as defined in Model III.2. Notice
that this reduces to the preceding expression when di = d for all i .

For given di s, the set of values τ̂ takes is contained in [−1, 1]. But τ̂ attains
the value 1 only when s attains the value


di/2, and τ̂ attains the value −1

only when di = (n− 1)/2 for all i and s= 0. When the di s are all equal, τ is
like an intraclass correlation coefficient.

The present model is incomplete since it does not even specify P(Xi j =
X ji = Xk= Xk = 1). Thus, even the variance of s under the model cannot be
computed.

Model VI

Wasserman and Faust (1999) discuss some useful models for understand-
ing single relational data involving a given number of individuals in a social
network of choice relation. We propose providing a description of these mod-
els, which are also termed dyadic interaction models. Some generalizations
of these dyadic models have been recently studied in Em-ot, Tiensuwan, and
Sinha (2008), and applications have also been made to real network data. We
will provide a detailed description of the model and related data analysis results
in Chapter 4 and also in Chapter 6 on graph-theoretic case studies.
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As usual, we start with n individuals forming a network based on some
form of choice relation between any pair of individuals. The possibilities of
choice involving the pair of individuals i and j are

(0,0), (1,0), (0,1) and (1,1),

where the first component is 1 or 0 according to whether i chooses j or not,
and the second component is 1 or 0 according to whether j chooses i or not.

The body of data arising from a network in the form of the adjacency matrix
(or sociomatrix) of order n × n is referred to as X data. Note that Xi j = 1 or 0
according to whether there is an arc from i to j or not.

Y Array

In general, X data are not symmetric. For modeling purposes, we convert X
data into what is called the “Y array.” It is a symmetric matrix of order 2n × 2n
made up of a 2 × 2 submatrix Y(i, j) for each pair of vertices i and j .

The rows as well as the columns of Y(i, j) are designated 0 and 1 (instead
of the usual 1 and 2). If Xi j = r and X ji = s, we put 1 in the (r, s)-cell of
Y(i, j) and 0s in the other three cells. Clearly, Y( j,i) is the transpose of Y(i, j).
The matrices Y(i, j) corresponding to the four possibilities for the pair (i, j) are
shown below.

Xi j = 0, X ji = 0 : Y(i, j) =


1 0
0 0



Xi j = 0, X ji = 1 : Y(i, j) =


0 1
0 0



Xi j = 1, X ji = 0 : Y(i, j) =


0 0
1 0



Xi j = 1, X ji = 1 : Y(i, j) =


0 0
0 1



The contemplated model for the Y array dwells on specific expressions for
the multinomial cell probabilities corresponding to the four cells designated by
(r, s), r = 0, 1; j = 0, 1, for every pair of individuals (i, j). Let P[(r, s); (i, j)]
denote the probability that the cell (r, s) receives the value 1 in Y(i, j) (i.e., that
Xi j = r and X ji = s). Then the model stipulates the following:
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log P[(0, 0); (i, j)]= λi j ,

log P[(1, 0); (i, j)]= λi j + θ +αi +β j ,

log P[(0, 1); (i, j)]= λi j + θ +α j +βi ,

log P[(1, 1); (i, j)]= λi j + 2θ +αi +β j +α j +βi + (αβ),

(3.41)

where the logarithm is the natural logarithm (w.r.t. the base e).
In the above, for every pair (i, j), λi j is a normalizing constant since the

four probability expressions have to add up to unity. This yields

λi j =− log
�
1+ eθ+αi+β j + eθ+α j+βi + e2θ+(αi+β j )+(α j+βi )+(αβ). (3.42)

The other parameters are interpreted as follows:

1. θ represents what may be termed the overall “choice” parameter (like
the grand mean in analysis of variance [ANOVA]), and for each choice
(by either i or j or by both), its presence in the model expression for
probability is thus incorporated.

2. α represents the “expansiveness” or “out-degree” aspect and β the “pop-
ularity” or in-degree aspect of an individual, and these are individual
specific in general terms.

3. (αβ) represents the “reciprocity” aspect of the pair of individuals con-
cerned, and it is regarded as a global phenomenon (so that its dependence
on specific individuals’ features is ruled out).

More general models are discussed in Wasserman and Faust (1999).
Note that while the in-degree and/or out-degree aspects are assumed to be

individual specific, the reciprocity aspect is taken to be a “global” phenomenon
and not pairwise individual specific. The same is true of θ as a parameter
indicating the “global” aspect of choices of individuals in the network. It
receives weight 2 for the last case when both the individuals choose each
other. We must also note that there are altogether n(n− 1) ordered pairs of
individuals indexed like (i, j) in terms of X data, but in terms of Y array,
we have to consider only n(n− 1)/2 dyads—that is, unordered pairs or,
equivalently, ordered pairs (i, j) with i < j—since Y(i, j) determines Y( j,i).
Furthermore, in the model described above, there are altogether 1+ n+ n+
1= 2(n+ 1) parameters. As a matter of convention, it is assumed that


αi =


βi = 0

so that, in effect, there are 2n parameters to be estimated. For a given pair
of individuals, the likelihood function is readily expressible in terms of the
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multinomial (4-cell) probabilities, using the indicator functions. Hence, the
joint log-likelihood function for all such unordered pairs of individuals can
be written down in a routine manner. The main problem in finding maximum
likelihood estimates of the parameters lies in the dependence of the λi j s on
the others—namely, θ, αi , α j , βi , β j , and (αβ). Therefore, the likelihood
equations are not analytically tractable, and one has to take recourse to
statistical computing.

W Array

Having described a general model as above, we can now focus the dis-
cussion on some simplified models that are motivated by considerations of
possible “grouping” among the individuals. In a sociological context, these
groupings may be prompted by family size, occupation, caste, kinship, and
the like. If we consider one such “external factor,” then the individuals may
be classified into several disjoint categories, and the category-specific out-
degree and in-degree parameters may be more appropriate to use. That means
we can dispense with individual-specific αi and β j parameters and replace
them by those associated with their groups. Thus, for two groups or cate-
gories I and I I (like small/large family size), we may use αI and αI I along
with the constraint nIαI + nI IαI I = 0, where nI and nI I are the group sizes.
The same is true of the βs, the in-degree parameters. Of course, m and (αβ)

remain unaltered. This leads to what has been referred to as a W array. It
may be noted that under the W array, the number of parameters reduces to
1+ (C − 1)+ (C − 1)+ 1= 2C , where C is the number of categories induced
by the external factor.

For the W array with two categories, the model description is given by

log P[(0, 0); (i, j)]= λI,I ,

log P[(1, 0); (i, j)]= λI,I + θ +αI +βI ,

log P[(0, 1); (i, j)]= λI,I + θ +αI +βI ,

log P[(1, 1); (i, j)]= λI,I + 2θ + 2αI + 2βI + (αβ)

(3.43)

when the two individuals are both in Category I . Similar descriptions apply
for the cases: Both are in Category I I or one is in Category I , while the other
is in Category I I . For example, if i and j belong to different categories, we
may assume without loss of generality that i belongs to Category I and j to
Category I I (since we have to consider only unordered pairs of individuals),
and then
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log P[(0, 0); (i, j)]= λi j ,

log P[(1, 0); (i, j)]= λi j + θ +αi +β j ,

log P[(0, 1); (i, j)]= λi j + θ +α j +βi ,

log P[(1, 1); (i, j)]= λi j + 2θ +αi +β j +α j +βi + (αβ),

(3.41)

where the logarithm is the natural logarithm (w.r.t. the base e).
In the above, for every pair (i, j), λi j is a normalizing constant since the

four probability expressions have to add up to unity. This yields

λi j =− log
�
1+ eθ+αi+β j + eθ+α j+βi + e2θ+(αi+β j )+(α j+βi )+(αβ). (3.42)

The other parameters are interpreted as follows:

1. θ represents what may be termed the overall “choice” parameter (like
the grand mean in analysis of variance [ANOVA]), and for each choice
(by either i or j or by both), its presence in the model expression for
probability is thus incorporated.

2. α represents the “expansiveness” or “out-degree” aspect and β the “pop-
ularity” or in-degree aspect of an individual, and these are individual
specific in general terms.

3. (αβ) represents the “reciprocity” aspect of the pair of individuals con-
cerned, and it is regarded as a global phenomenon (so that its dependence
on specific individuals’ features is ruled out).

More general models are discussed in Wasserman and Faust (1999).
Note that while the in-degree and/or out-degree aspects are assumed to be

individual specific, the reciprocity aspect is taken to be a “global” phenomenon
and not pairwise individual specific. The same is true of θ as a parameter
indicating the “global” aspect of choices of individuals in the network. It
receives weight 2 for the last case when both the individuals choose each
other. We must also note that there are altogether n(n− 1) ordered pairs of
individuals indexed like (i, j) in terms of X data, but in terms of Y array,
we have to consider only n(n− 1)/2 dyads—that is, unordered pairs or,
equivalently, ordered pairs (i, j) with i < j—since Y(i, j) determines Y( j,i).
Furthermore, in the model described above, there are altogether 1+ n+ n+
1= 2(n+ 1) parameters. As a matter of convention, it is assumed that


αi =


βi = 0

so that, in effect, there are 2n parameters to be estimated. For a given pair
of individuals, the likelihood function is readily expressible in terms of the
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multinomial (4-cell) probabilities, using the indicator functions. Hence, the
joint log-likelihood function for all such unordered pairs of individuals can
be written down in a routine manner. The main problem in finding maximum
likelihood estimates of the parameters lies in the dependence of the λi j s on
the others—namely, θ, αi , α j , βi , β j , and (αβ). Therefore, the likelihood
equations are not analytically tractable, and one has to take recourse to
statistical computing.

W Array

Having described a general model as above, we can now focus the dis-
cussion on some simplified models that are motivated by considerations of
possible “grouping” among the individuals. In a sociological context, these
groupings may be prompted by family size, occupation, caste, kinship, and
the like. If we consider one such “external factor,” then the individuals may
be classified into several disjoint categories, and the category-specific out-
degree and in-degree parameters may be more appropriate to use. That means
we can dispense with individual-specific αi and β j parameters and replace
them by those associated with their groups. Thus, for two groups or cate-
gories I and I I (like small/large family size), we may use αI and αI I along
with the constraint nIαI + nI IαI I = 0, where nI and nI I are the group sizes.
The same is true of the βs, the in-degree parameters. Of course, m and (αβ)

remain unaltered. This leads to what has been referred to as a W array. It
may be noted that under the W array, the number of parameters reduces to
1+ (C − 1)+ (C − 1)+ 1= 2C , where C is the number of categories induced
by the external factor.

For the W array with two categories, the model description is given by

log P[(0, 0); (i, j)]= λI,I ,

log P[(1, 0); (i, j)]= λI,I + θ +αI +βI ,

log P[(0, 1); (i, j)]= λI,I + θ +αI +βI ,

log P[(1, 1); (i, j)]= λI,I + 2θ + 2αI + 2βI + (αβ)

(3.43)

when the two individuals are both in Category I . Similar descriptions apply
for the cases: Both are in Category I I or one is in Category I , while the other
is in Category I I . For example, if i and j belong to different categories, we
may assume without loss of generality that i belongs to Category I and j to
Category I I (since we have to consider only unordered pairs of individuals),
and then
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log P[(0, 0); (i, j)] = λI,I I ,

log P[(1, 0); (i, j)] = λI,I I + θ +αI +βI I ,

log P[(0, 1); (i, j)] = λI,I I + θ +αI I +βI ,

log P[(1, 1); (i, j)] = λI,I I + 2θ +αI +βI I +αI I +βI + (αβ).

(3.44)

Moreover, for this model involving two groups, there are altogether six
parameters—namely, θ, αI , αI I , βI , βI I , and (αβ).

V Array

There is yet another simplified version of the Y array. For example, in
situations where individual αs and βs are insignificant or sufficiently small
compared to the other parameters, we can ignore them in the model descrip-
tion. This is referred to as a V array, and the model with only two parameters
reduces to

log P[(0, 0); (i, j)] = λ,

log P[(1, 0); (i, j)] = λ+ θ,

log P[(0, 1); (i, j)] = λ+ θ,

log P[(1, 1); (i, j)] = λ+ 2θ + (αβ).

(3.45)

Explicit expression for the maximum likelihood estimate of (αβ) can be
obtained under the present model (see Rao & Bandyopadhyay, 1987). Rao and
Bandyopadhyay (1987) also discuss the special case of this model obtained by
dropping the parameter θ and keeping only the parameter (αβ).

Each of the parameters θ , αi s, βi s, and (αβ) can be estimated, for example,
by the method of maximum likelihood. However, there are no closed formulae
for the estimates, and they have to be computed by iterative procedures (for
details, see Wasserman & Faust, 1999). We will discuss some aspects of model
fitting and model validation in Chapter 4, wherein the problem of estimating
these parameters will also be briefly addressed. Illustrative examples will be
discussed in Chapter 6 on case studies.

Model VII

Model VII, due to Holland and Leinhardt (1981), assumes that the proba-
bility of obtaining any particular network is

const. exp

θm +

n

i=1

αi di +
n

i=1

βi ei + ρs

,
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where θ , ρ, αi s, and βi s are real valued parameters such that


αi = 0 and
βi = 0. Note that only n is fixed, and m, di s, and ei s are variables.
Under the present model, the distributions of (Xi j , X ji ), and (Xk, Xk)

are independent if i, j, k, and  are distinct. Thus, it allows for correlation
between Xi j and X ji , but disjoint pairs are independent. Here, θ represents
density (or overall choice), αi s represent the differential expansiveness of
the vertices, βi s represent the differential popularity of the vertices, and ρ

represents overall reciprocity. It can be verified that

P(X ji = 1|Xi j = 1)
P(X ji = 0|Xi j = 1)


P(X ji = 1|Xi j = 0)
P(X ji = 0|Xi j = 0)

= eρ

is independent of i and j . Thus, ρ is a log-odds ratio. One can get special cases
of the present model corresponding to Models II.2 and III.2 as follows: For II.2,
drop the terms containing di s, ei s, and s. For III.2, drop the terms containing
ei s and s. On the other hand, it turns out that the dyadic model (described in the
preceding section and expanded by Wasserman & Faust, 1999) encompasses
this model as the “joint likelihood of the parameters” based on the entire body
of dyadic interaction data on all pairs of vertices with the identification of ρ
as αβ.

As mentioned before, each of the parameters θ , ρ, αi s, and βi s can be
estimated, for example, by the method of maximum likelihood. However,
there are no closed formulae for the estimates, and they have to be computed
by iterative procedures. For details, see Holland and Leinhardt (1981) and
Wasserman and Faust (1999).

REFERENCES

Achuthan, N., Rao, S. B., & Rao, A. R. (1984). The number of symmetric edges in a
digraph with prescribed out-degrees. In Combinatorics and applications: Proceed-
ings of the Seminar in Honour of Professor S. S. Shrikhande (pp. 8–20). Calcutta:
Indian Statistical Institute.

Berge, C. (1973). Graphs and hypergraphs. Amsterdam: North-Holland.
Em-ot, P., Tiensuwan, M., & Sinha, B. K. (2008). Some aspects of stochastic modeling

of dyadic relations in social networks: Theory and applications. Journal of Statisti-
cal Theory and Applications, 7, 303–322.

Feller, W. (1968). An Introduction to probability theory and its applications (Vol. 1, 3rd
ed.). New York: John Wiley.

Fulkerson, D. R. (1966). A network flow computation for project cot curves. Manage-
ment Science, 7, 167–178.







“BDB-Ch-03” — 2010/5/11 — 15:56 — page 98 — #46 











98 MODELS FOR SOCIAL NETWORKS WITH STATISTICAL APPLICATIONS

log P[(0, 0); (i, j)] = λI,I I ,

log P[(1, 0); (i, j)] = λI,I I + θ +αI +βI I ,

log P[(0, 1); (i, j)] = λI,I I + θ +αI I +βI ,

log P[(1, 1); (i, j)] = λI,I I + 2θ +αI +βI I +αI I +βI + (αβ).

(3.44)

Moreover, for this model involving two groups, there are altogether six
parameters—namely, θ, αI , αI I , βI , βI I , and (αβ).

V Array

There is yet another simplified version of the Y array. For example, in
situations where individual αs and βs are insignificant or sufficiently small
compared to the other parameters, we can ignore them in the model descrip-
tion. This is referred to as a V array, and the model with only two parameters
reduces to

log P[(0, 0); (i, j)] = λ,

log P[(1, 0); (i, j)] = λ+ θ,

log P[(0, 1); (i, j)] = λ+ θ,

log P[(1, 1); (i, j)] = λ+ 2θ + (αβ).

(3.45)

Explicit expression for the maximum likelihood estimate of (αβ) can be
obtained under the present model (see Rao & Bandyopadhyay, 1987). Rao and
Bandyopadhyay (1987) also discuss the special case of this model obtained by
dropping the parameter θ and keeping only the parameter (αβ).

Each of the parameters θ , αi s, βi s, and (αβ) can be estimated, for example,
by the method of maximum likelihood. However, there are no closed formulae
for the estimates, and they have to be computed by iterative procedures (for
details, see Wasserman & Faust, 1999). We will discuss some aspects of model
fitting and model validation in Chapter 4, wherein the problem of estimating
these parameters will also be briefly addressed. Illustrative examples will be
discussed in Chapter 6 on case studies.

Model VII

Model VII, due to Holland and Leinhardt (1981), assumes that the proba-
bility of obtaining any particular network is

const. exp
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θm +
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i=1
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where θ , ρ, αi s, and βi s are real valued parameters such that


αi = 0 and
βi = 0. Note that only n is fixed, and m, di s, and ei s are variables.
Under the present model, the distributions of (Xi j , X ji ), and (Xk, Xk)

are independent if i, j, k, and  are distinct. Thus, it allows for correlation
between Xi j and X ji , but disjoint pairs are independent. Here, θ represents
density (or overall choice), αi s represent the differential expansiveness of
the vertices, βi s represent the differential popularity of the vertices, and ρ

represents overall reciprocity. It can be verified that

P(X ji = 1|Xi j = 1)
P(X ji = 0|Xi j = 1)


P(X ji = 1|Xi j = 0)
P(X ji = 0|Xi j = 0)

= eρ

is independent of i and j . Thus, ρ is a log-odds ratio. One can get special cases
of the present model corresponding to Models II.2 and III.2 as follows: For II.2,
drop the terms containing di s, ei s, and s. For III.2, drop the terms containing
ei s and s. On the other hand, it turns out that the dyadic model (described in the
preceding section and expanded by Wasserman & Faust, 1999) encompasses
this model as the “joint likelihood of the parameters” based on the entire body
of dyadic interaction data on all pairs of vertices with the identification of ρ
as αβ.

As mentioned before, each of the parameters θ , ρ, αi s, and βi s can be
estimated, for example, by the method of maximum likelihood. However,
there are no closed formulae for the estimates, and they have to be computed
by iterative procedures. For details, see Holland and Leinhardt (1981) and
Wasserman and Faust (1999).
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ries A, 58, 225–242.

Ryser, H. J. (1963). Combinatorial mathematics. New York: John Wiley.
Snijders, T. A. B. (1991). Enumeration and simulation methods for 0–1 matrices with

given marginals. Psychometrika, 56, 397–417.
Sukhatme, P. V. (1938). On bipartitional functions. Philosophical Transactions of the

Royal Society of London, 237, 375–409.
Wasserman, S., & Faust, K. (1999). Social network analysis: Methods and applications.

Cambridge, UK: Cambridge University Press.




