7

Drawing It All Together:
Two Examples

This chapter draws together the entire material presented so far in two detailed
examples. The first example involves the WITNESS model of eyewitness identifi-
cation (Clark, 2003) and in particular its application to the “verbal overshadowing
effect” reported by Clare and Lewandowsky (2004). The second example involves
a head-to-head comparison of some models of categorization, thereby illustrating
the concepts of model selection developed in Chapter 5.

These two examples illustrate several important contrasts: First, WITNESS is
based on a stochastic simulation involving a large number of replications, whereas
the categorization models are based on analytic solutions and hence provide pre-
dictions that are not subject to sampling variability. Second, WITNESS considers
the data at the aggregate level because each subject in an eyewitness identification
experiment provides only a single response, and response proportions are thus
only available in the aggregate, whereas the categorization models can be fit to
the data from individuals. Third, the WITNESS example is based on a descriptive
approach relying on a least squares criterion (i.e., root mean squared deviation
[RMSD]; see Chapter 3), whereas the comparison of the categorization models
involves maximum likelihood estimation and model comparison (see Chapters 4
and 5).

7.1 WITNESS: Simulating Eyewitness Identification

In 1979, a Catholic priest, Father Bernard Pagano, was on trial in New Jersey on
multiple charges of armed robbery. The prosecution’s case was supported by the
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fact that the defendant had been positively identified by seven (7!) independent
eyewitnesses. After the prosecution had presented its case, the actual perpetrator,
a Mr. Ronald Clouser, came forward and confessed to the crimes after having
been identified and located by a former FBI agent. The charges against Father
Pagano were dropped (see Searleman & Herrmann, 1994, for a recounting of this
intriguing case). How could so many eyewitnesses have mistakenly identified an
innocent person? Lest one dismiss this as an isolated case, Wells et al. (1998)
presented a sample of 40 cases in which wrongfully convicted defendants were
exonerated on the basis of newly available DNA evidence. In 90% of those cases,
eyewitness identification evidence was involved—in one case, a person was erro-
neously identified by five different witnesses.

Not surprisingly, therefore, the study of eyewitness behavior has attracted
considerable attention during the past few decades. In eyewitness identification
experiments, subjects typically watch a (staged) crime and are then presented with
a lineup consisting of a number of photographs of people (for an overview, see
Wells & Seelau, 1995). The lineup typically contains one individual who commit-
ted the (staged) crime, known as the perpetrator, and a number of others who had
nothing to do with the crime, known as foils. Occasionally, “blank” lineups may
be presented that consist only of foils. There is little doubt that people’s perfor-
mance in these experiments is far from accurate, with false identification rates—
that is, identification of a foil—in excess of 70% (e.g., Clare & Lewandowsky,
2004; Wells, 1993). The laboratory results thus confirm and underscore the known
problems with real-world identification evidence.

The first computational model of eyewitness identification, appropriately
called WITNESS, was proposed by Clark (2003). WITNESS provided the first
detailed description of the behavior of eyewitnesses when confronted with a police
lineup or its laboratory equivalent, and it has successfully accounted for several
diagnostic results (Clark, 2003, 2008).

7.1.1 WITNESS: Architecture

WITNESS belongs to the class of direct-access matching models of memory
(Clark & Gronlund, 1996), in which recognition decisions are based on direct
comparisons between the test items—that is, the people in the lineup—and the
contents of memory. In WITNESS, the only relevant content of memory is
assumed to be the face of the perpetrator. WITNESS is based on the following
architectural principles:

(1) All stimuli are represented as random vectors (fi, fo, ..., fr) with fea-
tures drawn from a uniform distribution with mean zero (and range —.5 to +.5).
One of those vectors represents the perpetrator, whereas the others represent the
foils in the lineup.



Chapter 7 Drawing It All Together 237

(2) Encoding into memory is assumed to be imperfect, such that only a propor-
tion s (0 < s < 1) of features are veridically copied into a memory vector (called
M) when the perpetrator is witnessed during commission of the crime. The value
of s is typically estimated from the data as a free parameter.' The remaining 1 — s
features are stored incorrectly and hence are replaced in memory by another sam-
ple from the uniform distribution.

(3) At the heart of WITNESS’s explanatory power is its ability to handle
rather complex similarity relationships between the perpetrator and the foils in
a lineup, which vary with the way foils are selected (see Clark, 2003, for details).
For the present example, we simplified this structure to be captured by a single
parameter, sim, which determined the proportion of features (0 < sim < 1) that
were identical between any two vectors, with the remainder (1 — sim) being ran-
domly chosen from the same uniform distribution (range —.5 to +.5). Thus, all
foils in the lineup resembled the perpetrator to the extent determined by the sim
parameter.

(4) At retrieval, all faces in the lineup are compared to memory by computing
the dot product between the vector representing each face and M. The dot product,
d, is a measure of similarity between two vectors and is computed as

N
d=>"gM,, (7.1)

i=1

where N is the number of features in each vector and i the subscript running over
those features. The greater the dot product, the greater the similarity between the
two vectors. In WITNESS, the recognition decision relies on evaluating the set of
dot products between the faces in the lineup and M.

(5) The complete WITNESS model differentiates between three response
types: an identification of a lineup member (“it’s him”), a rejection of the entire
lineup (“the perpetrator is not present”), and a “don’t know” response that was
made when there was insufficient evidence for an identification (Clark, 2003).
For the present example, we simplified this decision rule by eliminating the “don’t
know” category in accordance with the experimental method to which we applied
the model. This simplified decision rule reduces to a single comparison: If the
best match between a lineup member and memory exceeds a criterion, ¢,.., the
model chooses that best match as its response. If all matches fell below c;.., the
model rejects the lineup and records a “not present” response.

Because each participant in an eyewitness identification experiment provides
only a single response, the data are best considered in the aggregate. In particular,
the data consist of the proportion of participants in a given condition who identify
the perpetrator or one of the foils, or say “not present.” The model predictions are
likewise generated by aggregating across numerous replications, each of which
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involved a different set of randomly constructed stimulus vectors. Each replication
can be taken to represent a unique participant who catches a uniquely encoded
glimpse of the perpetrator.”

7.1.2 ' WITNESS and Verbal Overshadowing

A common task of eyewitnesses is to provide police with a verbal description of
the perpetrator, in the hope that this may lead to the apprehension of a suspect
for subsequent identification from a lineup. Although providing a verbal descrip-
tion is standard police procedure, Schooler and Engstler-Schooler (1990) reported
an unexpected adverse side effect of verbal descriptions. In their study, subjects
viewed a staged crime and then either provided a verbal description of the per-
petrator (verbalization condition) or completed an irrelevant filler task (control
condition). Following this manipulation, witnesses attempted to identify the per-
petrator from a photo lineup. The verbalization condition yielded significantly
fewer correct identifications than the control condition. Schooler and Engstler-
Schooler termed this adverse influence of verbalization on identification the ver-
bal overshadowing effect. This initial study was followed by much research activ-
ity, and a meta-analysis of a large number of published and unpublished studies
by Meissner and Brigham (2001) confirmed the presence of a small, but signif-
icant, negative effect of verbalization on identification accuracy. How might one
explain the verbal overshadowing effect? Why would verbalization disrupt one’s
visual memory of a person’s face?

There are several candidate explanations for verbal overshadowing, and the
example below is using the WITNESS model to differentiate between them. We
focus on two candidates, which for brevity we refer to as the memory and criterion
explanation, respectively. According to the memory explanation, the verbalization
harms and disrupts one’s memory for the perpetrator, for example, when the ver-
bal description inadvertently entails generation of incorrect elements. According
to the criterion explanation, by contrast, verbalization does not alter the memory
of the perpetrator but adjusts one’s response criterion upward. That is, owing to
the subjective difficulty most people experience during an attempt to describe a
person, they become more reluctant to choose someone subsequently from the
lineup—thus giving rise to the appearance of impaired recognition accuracy.

The two explanations can be empirically differentiated by manipulating the
type of lineup and the decision required of subjects: First, in a forced-choice
situation, in which people must identify someone from the lineup, the criterion
explanation predicts that no verbal overshadowing should occur. If a choice is
mandatory, then a response criterion does not matter. The memory explanation, by
contrast, predicts the presence of verbal overshadowing even with forced-choice
lineups.
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Second, in an optional-choice situation, in which people may make a “not
there” response, both explanations expect verbal overshadowing to be present;
however, the criterion explanation expects the effect to arise from an increase in
(erroneous) “not there” responses, whereas the memory explanation expects the
effect to involve primarily an increase in false identifications (of a foil) from the
lineup.

Third, if the perpetrator is not present in an optional-choice lineup (which cor-
responds to a situation in which the police have apprehended the wrong person),
then the criterion explanation predicts an increase in accuracy after verbalization.
If verbalization renders people more conservative, thus making an identification
less likely, accuracy in perpetrator-absent lineups should be enhanced. The mem-
ory explanation, by contrast, expects overshadowing to have a detrimental effect
even with perpetrator-absent lineups because an impaired memory should impair
accuracy irrespective of whether or not the perpetrator is presented.

Clare and Lewandowsky (2004) reported three experiments that sought to dif-
ferentiate between those explanations. The results of all studies clearly confirmed
the predictions of the criterion explanation and, by implication, rejected the mem-
ory explanation. We focus on two of their studies (their Experiments 1 and 2) that
involved an optional-choice lineup in which the perpetrator either was or was not
present (Experiment 1) and a forced-choice lineup in which the perpetrator was
always present (Experiment 2). Table 7.1 summarizes the results from those two
studies.

In each experiment, there were three conditions: a control condition in which
people had to perform a verbal task that was unrelated to eyewitness identifi-
cation and two verbalization conditions that differed only with respect to what
people were to emphasize in their descriptions—namely, holistic aspects of the
face (i.e., traits such as intelligence, friendliness, etc.) or featural aspects (i.e.,
hair color, shape of nose, skin tone, etc.). In Experiment 2, in which an identifi-
cation was mandated, identification rates did not differ between the three condi-
tions, exactly as predicted by the criterion explanation. In Experiment 1, where
an identification was optional, the verbal description conditions differed consid-
erably from the control condition, but the direction of the effect was reversed with
lineup type. When the perpetrator was present, people were less accurate after
providing a description, whereas when the perpetrator was absent, people were
more accurate—but in both instances, this change in accuracy reflected a com-
mon tendency to be less likely to identify someone (and, correspondingly, to be
more likely to respond “not there”) after verbalization.

The data clearly seem to favor the criterion explanation. However, there are
at least two reasons why modeling is advisable before the explanation can be
accepted: First, we must demonstrate that the explanation can be instantiated in a
model and that the model can quantitatively handle the data (recall the surprising
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Table 7.1 Eyewitness Responses in Two Experiments Reported by Clare and
Lewandowsky (2004)

Verbalization Condition

Lineup? Decision Response Type®  Control Holistic Featural

Experiment 1

Hit .80 57 .69
PP Optional choice False ID 13 .06 12
Miss .07 .36 .19
CR 23 52 52
. . False ID ¢ 7 A48 48
PA Optional choice Suspect .04 20 .00
Foil 73 28 48
Experiment 2
. Hit .86 .81 .84
PP Forced choice 160 1p 14 19 16

a. PP = perpetrator present; PA = perpetrator absent.

b. Hit = correct identification; False ID = identification of foil; Miss = erroneous “not there” response;
CR = correct rejection.

c. False IDs with the perpetrator-absent lineup are further broken down by “suspect” versus the other
foils.

difficulties we faced in Chapter 2 when we tried to instantiate the phonological
loop model). Second, we must rule out the possibility that some variant of the
memory explanation might handle the data after all. We now present the modeling
that resolved both of those issues.

7.1.3 WITNESS in MATLAB

Clare and Lewandowsky (2004) applied WITNESS to the data from all three of
their experiments using six free parameters. For this example, we focus on their
Experiments 1 and 2 and rely on a slightly simpler five-parameter version of WIT-
NESS that was fit to both studies simultaneously. We begin by presenting the
criterion explanation within WITNESS.

Table 7.2 summarizes the parameters and their best-fitting estimates (which
you will be able to reproduce by the time you have worked through the MATLAB
programs that we discuss next).

The first three parameters are exactly as discussed in Section 7.1.1. The last
two parameters, cyo.c(H) and cr..(F), instantiate the criterion explanation and
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Table 7.2 Free Parameters in WITNESS

Parameter Best-Fitting Estimate
Encoding strength s 27
Similarity sim .29
Baseline criterion Crec(C) 1.20
Holistic criterion Crec(H) 1.84
Featural criterion Crec(F) 1.64
Main
A
Y
witness Wwrapper4fmin »|  fminsearch
storevec
etvec
eVt > e LR >
getsimvec bof
decision | €=

Figure 7.1 The relationship between the MATLAB functions used in the WITNESS simu-
lation. The names in each box refer to the function name(s) and file names. Boxes within a
box represent embedded functions. Arrows refer to exchanges of information (via function
calls and returns or global variables). Solid arrows represent information exchanges that
are managed by the programmer, whereas broken arrows represent exchanges managed by
MATLAB. Shading of a box indicates that the function is provided by MATLAB and does
not need to be programmed. See text for details.

represent, respectively, the value of the response criterion after holistic and fea-
tural verbalization. Aside from altering the setting of the criterion, verbalization
has no further effect within this version of WITNESS.?

7.1.3.1 The Calling Sequence

Our example adheres to the schema introduced in Chapter 3 (Figure 3.2). To
guide our presentation, we show the relationship among our various programs in
Figure 7.1. The figure is nearly identical to the earlier schema (Figure 3.2) except
that the names of the functions have changed to reflect the current situation.



242  Computational Modeling in Cognition

We now present and discuss the various programs, beginning with the function
that implements WITNESS and that is called from within bo£, the function that
computes badness of fit. We present the main program and the Wwrapper4fmin
function later.

7.1.3.2 The WITNESS Function

We begin by presenting in Listing 7.1 the core of the function that implements
WITNESS. The function takes a single input argument that contains the current
parameter values, and it returns the associated predictions in a single array. In
addition, the function uses a “global” variable—defined immediately below the
function header—to communicate with other MATLAB programs and functions
that are part of the simulation package. Variables that are declared global in MAT-
LAB are accessible from within all functions in which they appear in a global
statement; this provides another convenient avenue of communication between
parts of a large program that does not require input or output arguments.

Listing 7.1 The WITNESS Function

1| function predictions = witness (parms)

% Implementation of the WITNESS model for

% "Computational Modeling in Cognition: Principles <«
and Practice"

[OSTN \)

global consts;

rand ( 'state ', consts.seed)

0 3N b

O

s = parms(1);
10{ sim = parms(2);
1l{ssp = sim;

12| paSim= sim;

13| ppSim= sim;

14
15|predictions = zeros (consts.nCond, 3);

16| for reps=1:consts.nRep

17 %obtain perpetrator and perform holdup
18 perp=getvec(consts.n) ;

19 m=storevec (s, perp);

20
21 %get an innocent suspect

22 inSus=getsimvec(ssp, perp);
23 %create both types of lineup
24 paLineup (1,:)= inSus;

25 ppLineup (1,:)= perp;
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26 for i=2:consts.lSize

27 palineup (i,:) = getsimvec (paSim, perp);

28 ppLineup (i,:) = getsimvec (ppSim, perp);

29 end

30

31 %eyewitness inspects lineup

32 for i=1:consts.1Size

33 paMatch(i) = dot(paLineup(i,:), m);

34 ppMatch(i) = dot(ppLineup(i,:), m);

35 end

36

37 J%witness responds

38 for iLineup=1:consts.nCond

39 if any(iLineup==consts.fChoice)

40 criterion=0;

41 else

42 criterion=parms(consts.ptToCrit(iLineup)) :;

43 end

44 if any(iLineup==consts.palineup)

45 useMatch = paMatch;

46 else

47 useMatch = ppMatch;

48 end

49 resp = decision (useMatch, criterion);

50 predictions (iLineup, resp) = <>
predictions(iLineup, resp) + 1;

51 end

52| end %rep loop

Preliminaries. First consider the statement in line 7, which calls the random-
number generator with two arguments that reset its state to the value provided
by the variable consts.seed.* Note that this usage of consts.seed identifies
the global variable consts to be a “structure.” A structure is a very useful con-
struct in MATLAB because it allows you to refer to many variables (known as
“structure members”) at the same time, in much the same way that checking in a
single suitcase is far preferable to carrying numerous socks and shirts to the air-
port. Structure members are identified by appending their names to the structure’s
name, separated by a period (*.”).

Because the consts structure contains several important variables that govern
the simulation, we summarize all its members and their values in Table 7.3. We
will show later how those structure members are initialized; for now, we can take
their values for granted as shown in the table. The structure members that are
identified by an asterisk will be explained further in the following; the others are
self-explanatory.
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Table 7.3 Members of the consts Structure in WITNESS

Member Name Explanation Value
consts.seed Seed for random generator 21335
consts.1Size Size of lineup 6
consts.nRep Number of simulation replications 1000
consts.n Number of features in vectors 100
consts.nCond Number of conditions modeled 7
consts.fChoice Forced-choice conditions* [789]
consts.paLineup Conditions without perpetrator* [456]
consts.ptToCrit Pointer to appropriate criterion* [345345]
consts.maxParms Maximums for parameters* [1 1 inf inf inf]

The reseeding of the random generator ensures that the sequence of ran-
dom numbers provided by MATLAB’s rand function is identical every time the
witness function is called. In consequence, there are no uncontrolled random
variations across calls of the function during parameter estimation, thus minimiz-
ing the disturbance of the error surface that is associated with stochastic simula-
tion models (see Chapter 3).3

The subsequent lines (9—13) assign the first two entries in the parameter vec-
tor to more mnemonic variable names. Thus, we create a variable s that contains
the current value of the encoding parameter, s, and a variable sim for the param-
eter of the same name. (In case you are wondering how we know that those two
parameters take the first two slots in the parameter vector, the answer is that the
order of parameters in the vector corresponds to their order of presentation in
Table 7.2; this order was determined by us, the programmers.) We then assign
the same value of sim to three other variables that represent the specific simi-
larities within the simulation—namely, between the perpetrator and an innocent
suspect (i.e., the person that takes the perpetrator’s place on perpetrator-absent
lineups; variable ssp) and between the perpetrator and all foils on the perpetrator-
present (ppSim) and perpetrator-absent (paSim) lineups. The reason we use dif-
ferent variable names here even though all are assigned the same value is to leave
open the possibility that in future simulations, the different similarities may take
on distinct values.

The core components. The core of the function begins in line 16 with a loop
that accumulates predictions across the multiple replications. Within the loop,
each replication first involves a holdup (or some other heinous crime), which is
modeled in line 19 by storing in memory an image of the perpetrator (generated
in the line immediately above). The two functions getvec and storevec form
part of the WITNESS simulation package (as foreshadowed in Figure 7.1) and
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are presented later; for now, it suffices to know that they generate a random vector
and store a vector in memory, respectively.

The holdup is immediately followed by lineup construction. First, an inno-
cent suspect is obtained for the perpetrator-absent lineup using another embedded
function—namely, getsimvec (Line 22). The two lineup types are then created
by placing the perpetrator or innocent suspect in the first lineup position (lines 24
and 25) and the foils in the remaining positions (lines 26-29). At this point, your
training in experimental design should kick in, and you should balk at the idea
that the first lineup position is always taken up by the perpetrator (when present).
Surely this important variable must be randomized or counterbalanced? Yes, if
this were a behavioral experiment involving human subjects whose decisions are
subject to all sorts of biases, then it would be imperative to determine the posi-
tion of the perpetrator at random. Fortunately, however, WITNESS does not suffer
from such biases and considers all lineup positions exactly equally. For that rea-
son, we can fix the perpetrator’s position, which turns out greatly to facilitate
scoring.

You might also wonder why we created two separate lineups, rather than just
a single set of foils that is presented either with the perpetrator or an innocent
suspect in the first position. Does the use of different foils for the perpetrator-
present and perpetrator-absent lineups not introduce an unnecessary source of
variation? The answer is that in reality, foils are selected by police officers in
order to match the apprehended person of interest—who may or may not be the
perpetrator (for details, see Clark & Tunnicliff, 2001). It follows that in order
to be realistic, the foils should differ between the two lineup types. However,
because ppSimand paSim are set to the same value, there should be no systematic
differences between foils in the two lineup types.

Once created, the witness inspects the lineups, and a match between memory
and each lineup member is computed (lines 32-35). In contrast to human wit-
nesses, who can only be assigned to one lineup type or the other—but not both—
the model can consider two completely different conditions without any bias or
carryover effects. This means that although it looks like we are testing the same
witness under different conditions, we are actually testing different simulated par-
ticipants in line with the experimental design. The match is computed by calling
the MATLAB function dot, which returns the dot product between two vectors.

Response selection and scoring. WITNESS then selects a response in the man-
ner dictated by the experimental methodology and in line with the criterion expla-
nation. This crucial segment, which implements the experimental methodology
underlying the data in Table 7.1, involves the loop beginning in line 38.

At this point things get to be somewhat intricate, and to facilitate understand-
ing, we present the mapping between experimental conditions and the program
variables in Figure 7.2.
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Experiment 1 2

Lineup PP PA PP

Condition Control| Holistic | Featural | Control | Holistic | Featural | Control | Holistic | Featural
iLineup 1 2 3 4 5 6 7 8 9
consts.ptToCrit 3 4 5 3 4 5 n/a n/a n/a
criterion parms (3)| parms (4)| parms (5)| parms (3)| parms (4)| parms (5) 0 0 0
any(iLineup==consts. 0 0 0 1 1 1 0 0 0
paLineup)

any(iLineup==consts. 0 0 0 0 0 0 1 1 1
fChoice)

Figure 7.2 Mapping between experimental conditions (shaded part at the top) and pro-
gram parameters in our simulation (bottom part). PP = perpetrator-present lineup; PA =
perpetrator-absent lineup. See text for details.

The shaded cells at the top of the figure summarize the data that we want
to simulate: There are two experiments, there are two lineup types, and there are
three conditions for each lineup type in each experiment. Now consider the bottom
(unshaded) panel of the figure, which lists the values of the program variables that,
in lines 38 through 51, instantiate this experimental setup, thus ensuring that WIT-
NESS selects responses in the manner appropriate for the experiment, condition,
and lineup type being modeled. Turning first to Experiment 2, the response crite-
rion is disabled by setting it to zero (line 40) whenever the loop index iLineup
matches one of the elements of consts.fChoice, which is an array that points
to the conditions that comprise Experiment 2 (see Table 7.3 and Figure 7.2). Note
that the criterion explanation cannot differentiate between the three conditions
within a forced-choice methodology, which implies that to the extent that there are
differences between the conditions in Experiment 2, this will necessarily increase
the misfit of the model.

For the remaining optional-choice conditions from Experiment 1, two choices
must be made: The appropriate criterion must be selected from the parameter vec-
tor, and the appropriate lineup must be chosen. The criterion is chosen in line 42
using the array consts.ptToCrit. The first three rows in the bottom panel of
Figure 7.2 clarify the mapping between the loop index (iLineup) and the deci-
sion criterion that is being selected from the parameter vector. The lineup type is
determined in line 44, using the array consts.palineup. The second-last row
in Figure 7.2 shows the outcome of the expression in line 44, which is equal to
1 (i.e., true) whenever the value of the loop index (iLineup) matches one of the
perpetrator-absent conditions.

Finally, once the criterion and lineup type have been selected, a response is
returned by the decision function, which we will discuss in a moment. The
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returned responses are counted in the predictions array (line 50), which keeps
track of the number of occurrences of each response type for each condition.

To summarize, within each replication, WITNESS encounters a perpetrator
and then selects a response under all conditions being modeled—that is, two
lineup types (perpetrator present or absent), two decision types (optional choice
or forced choice), and three experimental conditions (control, holistic, and fea-
tural). Once all replications are completed, the counted responses are converted
to predicted proportions (not shown in listing) and are returned as the model’s
predictions.

You may have noted that a seemingly disproportionate amount of program
(and description) space was devoted to vaguely annoying matters of bookkeep-
ing, such as identification of the appropriate parameters and lineups for the var-
ious conditions. Comparatively little space seemed to be devoted to doing the
actual simulation, for example, the encoding of the perpetrator’s face. This is not
at all unusual: In our experience, the majority of programming effort tends to
be devoted to instantiating important details of the experimental method and to
keeping track of simulation results.

Embedded functions. Let us now turn to the various embedded functions that
are required to make WITNESS work. Listing 7.2 shows the remaining segment
of the witness function; as indicated by the line numbers, this listing involves
the same file shown above in Listing 7.1.

Listing 7.2 Embedded Functions for WITNESS

54

55

56/%——— miscellaneous embedded functions
57|%get random vector

58 function rv = getvec (n)

59 rv = (rand(1,n) —0.5);

60 end

61

62|%take a vector and return one of specified similarity
63 function outVec=getsimvec (s, inVec)

64 a = rand(1l,length(invec)) < s;

65 outVec = a.x*1inVec + ~a.xgetvec(length(invec));
66 end

67

68|%encode a vector in memory

69 function m=storevec (s, inVec)

70 m = getsimvec(s, inVec);

71 end

72

73|%implement the decision rules

74 function resp = decision(matchValues, cRec)

(Continued)
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(Continued)

75 %if all lineup members fall below cRec, then <«
reject

76 if max(matchValues) < cRec

77 resp=3;

78 else

79 [c,]j]=max (matchValues) ;

80 if j = %suspect or perp always <

first

81 resp=1;

82 else

83 resp=2;

84 end

85 end

86 end

87| end

The first embedded function in line 58, getvec, is simplicity itself: It creates
a vector of uniform random numbers that are centered on zero and range from
—.5 to +.5. All stimulus vectors in this simulation are ultimately generated by
this function.

The next function, getsimvec in line 63, also returns a random vector, but
in this instance, the new vector is of a specified similarity to another one that is
provided by the input argument invec. Specifically, the function returns a vec-
tor in which a random proportion s of features are drawn from invec, and the
remainder is sampled at random.

To encode the perpetrator in memory, we use the function storevec in line 69:
As it turns out, this function simply calls getsimvec, thus instantiating WIT-
NESS’s assumption that only part of the perpetrator image is stored correctly,
whereas the remaining encoded features are sampled at random. (In fact, we could
have omitted this function altogether and used getsimvec to do the encoding.
However, by using a separate function, we leave open the door for possible future
modifications of the encoding process.)

Finally, we must examine how WITNESS selects a response. This selection
is made by the function decision, which is defined in lines 74 through 86.
The function receives an array of dot products that represent the match between
memory and the lineup members (input argument matchvalues) together with
a response criterion (cRec). If all matches fall below the criterion (line 76), then
a response type “3” is returned. Alternatively, the lineup member with the largest
match is returned as the response. If that largest match is in Position 1 (line 80),
then we know that we have identified the perpetrator (or innocent suspect, in
perpetrator-absent lineups), and the function returns a response type “1.” (Remem-
ber how we said earlier that placing the perpetrator in Position 1 facilitates
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scoring—now you know why.) Alternatively, if the largest match is in any other
position, we return response type “2,” which means that a foil has been mistak-
enly identified. To summarize, the decision function returns a single variable
that can take on values 1, 2, or 3 and classifies the response, respectively, as
(1) an identification of the perpetrator, (2) an identification of a foil, or (3) the
rejection of the lineup. Recall that those response types are counted separately
across replications (refer back to line 50 in Listing 7.1).

This, then, completes the presentation and discussion of the central part of
the simulation—namely, the witness function and all its embedded auxiliary
functions. Within the structure in Figure 7.1, we have discussed the box on the
left. We next turn to the main program shown in the box at the top of that figure.

7.1.3.3 The Main Program

The compact main program is presented in Listing 7.3 and is explained quite
readily. Lines 6 through 13 initialize the consts structure with the values shown
earlier in Table 7.3. Note how those values were available inside the witness
function because consts was declared to be global both here and inside the
function.

Listing 7.3 Main Program for WITNESS Simulation

1|{% Program to estimate parameters for WITNESS
2|% for Lewandowsky and Farrell 's

3|% "Computational Modeling in Cognition: Principles <«
and Practice"

4| global consts;

5

6| consts.seed = 2135; %for random generator

7| consts.1Size=6; %lineup size

8| consts.nRep=1000; Jonumber of reps at each call

9| consts.n=100; %number of features in vectors

10| consts.nCond=9; 9number of conditions modeled

11| consts. fChoice=[7 8 9]; %forced —choice conditions

12| consts.palineup=[4 5 6]; %paLineup conditions

13| consts.ptToCrit=[3 4 5 3 4 5]; %slots in parameters
14
15|%Data Exp 1 & 2 of Clare & Lewandowsky (2004),
16|%columns are: Suspect, Foil, and Reject

17|data = [.80, .13, .07; 9%PP control
18 .57, .06, .36; %PP holistic
19 .69, .12, .19; %PP featural
20 .05, .72, .23; 9PA control
21 .20, .28, .52; I9PA holistic
22 .00, .48, .52; 9%PA featural

(Continued)
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(Continued)

23 .86, .14, .00; 9%Exp 2 control
24 81, .19, .00; P%Exp 2 holistic
25 .84, .16, .00]; %Exp 2 featural
26

27|%initialize parameters in order:

28(% s

29|% sim

30|% crec —control
31|% crec —holistic
32|% crec —featural
33| disp ('Starting values of parameters ')

34| startParms = [0.2942 0.3508 1.0455 2.0930 <~
1.8050]

35| consts.maxParms = [1. 1. inf inf inf];

36

37| [finalParms, fVal] = Wwrapper4fminBnd(startParms, <
data) ;

38

39|%print final predictions
40| predictions = witness(finalParms)

The next few lines (17-25) initialize a matrix with the to-be-fitted data that
were shown earlier in Table 7.1. You will note that all numbers in the table are
also shown here, albeit in a slightly different arrangement (e.g., the columns repre-
sent response types rather than conditions) that simplifies the programming. Note
also that the order of conditions, from top to bottom, is the same as their order,
from left to right, in Figure 7.2. This is no coincidence because it means that the
predictions returned by function witness share the layout of the data.

We next set the starting values for the parameters (line 34) and determine their
maximum values (line 35) to ensure that they do not go out of bounds during esti-
mation (e.g., sim must not exceed 1 because the similarity between two vectors
cannot be greater than identity). Finally, wwrapper4fminBnd is called to esti-
mate the parameters (line 37). This part of the code is virtually identical to the
example presented earlier (in Section 3.1.2) and does not require much comment.
We therefore now turn to the remaining function, represented by the central box
in Figure 7.1, which coordinates the parameter estimation.

7.1.3.4  Estimating the Parameters

Using MATLAB’s standard search function. The function Wwrapper4fmin in
Listing 7.4 should be quite familiar from the earlier chapters. Indeed, with the
exception of specifying some options (in lines 4 and 5) and dealing with bound-
ary conditions (line 9), this listing is nearly identical to Listing 3.2.
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Listing 7.4 Parameter Estimation Function for WITNESS Simulation

function [x, fVal] = Wwrapper4fmin(parms, data)
global consts;

defOpts = optimset ( 'fminsearch');

options = optimset (defOpts, 'Display', 'iter', <«
'"MaxFunEvals ', 400)

6| [x,fVal,dummy, output] = <«

fminsearch(@bof ,parms, options,data)

1
2
3
4
5

7

8 function rmsd=bof(parms, data)

9 if (min(parms) < 0) || (min(consts.maxParms — <>
parms) < 0)

10 rmsd = realmax ;

11 else

12 sd=(witness (parms)—data).”2;

13 rmsd=sqrt (sum(sum(sd))/numel(data));

14 end

15 end

16| end

The test for boundary conditions in line 9 is noteworthy: If any of the param-
eters are out of bounds, the function bof returns the maximum number that
MATLAB can represent (realmax), thus signaling Simplex not to go anywhere
near those values. Only if the current parameter values are within bounds are the
predictions of WITNESS computed and compared to the data by computing the
standard RMSD (Equation 2.2). We used RMSD as the discrepancy function for
comparability with Clare and Lewandowsky (2004); because the data consist of
counts (i.e., number of subjects who make a certain response), we could equally
have used a x 2 discrepancy function (which was employed by Clark, 2003).

Improving boundary checks. One limitation of the boundary check in List-
ing 7.4 is that it creates a “step” function, such that any legitimate parameter
value, no matter how close to the boundary, is left unpenalized, whereas any out-
of-bounds value, no matter how small the transgression, is given an equally large
penalty. These problems can be avoided by using the fminsearchbnd function,
which is not part of a standard MATLAB installation but can be readily down-
loaded from MATLAB Central.

Listing 7.5 shows an alternative parameter estimation function, called
Wwrapper4 fminBnd, which uses fminsearchbnd and passes the lower and
upper bounds of the parameters as additional arguments (lines 4 and 5). Owing to
the use of fminsearchbnd, the code has also become more compact because the
boundary check did not have to be programmed explicitly.
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Listing 7.5 Using fminsearchbnd for WITNESS Simulation

1| function [x, fVal] = Wwrapper4fminBnd(parms, data)

2| global consts;

3

4| [x,fVal,dummy,output]| = <>
fminsearchbnd(@bof ,parms, zeros ( size (parms)) ,

5 consts.maxParms)

6

7 function rmsd=bof (parms)

8 sd=(witness (parms)—data).”2;

9 rmsd=sqrt (sum(sum(sd))/numel (data));
10 end

11| end

There is one other noteworthy aspect of Wwrapper4 fminBnd: The embedded
function bof accesses the data not as a function argument (as in Listing 7.4) but
by referring to a variable data that was passed to the surrounding function. We
already discussed this valuable ability of embedded functions to automatically
inherit variables from the surrounding function in Section 3.1.2; if this sounds
cryptic, you may wish to reread that earlier section. For didactic reasons, we used
the inheriting regime in one of our functions while using function arguments in
the other.

7.1.4 WITNESS Simulation Results

Our modeling seeks to answer two questions: First, does the criterion explana-
tion as embodied in WITNESS account for the data of Clare and Lewandowsky
(2004) at a quantitative level? Second, can an alternative memory explanation be
constructed within WITNESS to handle those data?

7.1.4.1 The Criterion Explanation

The simulation as just described was run three times, with a different set of start-
ing values for the parameters on each run. The best-fitting estimates reported in
Table 7.2 are based on the run that yielded the smallest RMSD (.0498), suggesting
that the average deviation between model predictions and data was on the order
of 5%.

Can we be certain that this solution reflects a global rather than a local mini-
mum? There can be no complete assurance that the observed minimum is indeed
global, but several facts raise our level of confidence in the solution. First, the
different runs converged on very similar RMSDs—namely, .0498, .0511, and
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Figure 7.3 Final parameter estimates as a function of their starting values for three fits of
the WITNESS model to the data of Clare and Lewandowsky (2004). From left to right, the
panels show the values of s, sim, and the recognition criteria, respectively. In the rightmost
panel, circles, squares, and triangles refer to Cyec(C), Crec (H), and Crec (F), respectively.

.0509, respectively. Second, the final parameter estimates were remarkably sim-
ilar, notwithstanding considerable variation in their starting values. This is illus-
trated in Figure 7.3, which shows the final parameter estimates as a function of
their starting values. The figure shows that there is very little variability along
the ordinate (final estimates) even though the values differ quite noticeably along
the abscissa (starting values). The fact that the three simulation runs converged
onto nearly indistinguishable best-fitting estimates bolsters our confidence that
we have reached a global minimum.

How well does the model capture the data? Figures 7.4 and 7.5 show the data
from Experiments 1 and 2, respectively, together with the model predictions.

It is clear from the figures that the model handles the main trends in the data
and provides a good quantitative fit of both experiments. By varying the deci-
sion criterion, WITNESS captures the effects of verbalization on identification
performance for both optional-choice and forced-choice lineups and for
perpetrator-absent as well as perpetrator-present lineups. This result lends consid-
erable support to the criterion explanation of verbal overshadowing. What remains
to be seen is whether a memory-based alternative explanation may also handle the
results.

7.1.4.2 An Alternative Memory Explanation

Clare and Lewandowsky (2004) also examined whether WITNESS might handle
the results by assuming that memory is modified during verbalization. Specif-
ically, to instantiate a memory explanation, Clare and Lewandowsky assumed
that verbalization partially overwrites the perpetrator’s image in memory. This
was modeled by a reduction in the encoding parameter s because reducing s is
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Figure 7.4 Data (bars) and predictions of the criterion explanation within WITNESS
(points and lines) for Experiment 1 (optional-choice lineups) of Clare and Lewandowsky
(2004). The top row of panels represents the perpetrator-present lineup and the bottom
row the perpetrator-absent lineup. Data from Clare, J., & Lewandowsky, S. (2004). Verbal-
izing facial memory: Criterion effects in verbal overshadowing. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 30, 739-755. Published by the American
Psychological Association; adapted with permission.

equivalent to unimpaired encoding followed by overwriting of the encoded
features.

We instantiated the same idea in our simulations. To conserve space, we do
not show the modified source code, although it is available at the book’s sup-
porting webpage (http://www.cogsciwa.com). In a nutshell, the criterion param-
eter (croc) was kept constant across all conditions, whereas the encoding param-
eter (s) differed between the control, holistic, and featural conditions. This ver-
sion of WITNESS failed to handle the data, as shown in Figure 7.6. The figure
shows predictions with the best-fitting parameter estimates reported by Clare and
Lewandowsky (2004). We do not present the fit to Experiment 2 as it does not
deviate appreciably from that of the criterion explanation.

Unlike the criterion explanation, the memory explanation cannot handle the
effects of verbal overshadowing, presumably because it cannot simultaneously
explain the improved performance for perpetrator-absent lineups and the
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Figure 7.5 Data (bars) and predictions of the criterion explanation within WITNESS
(points and lines) for Experiment 2 (forced-choice lineup) of Clare and Lewandowsky
(2004). Data from Clare, J., & Lewandowsky, S. (2004). Verbalizing facial memory: Cri-
terion effects in verbal overshadowing. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 30, 739-755. Published by the American Psychological Associa-
tion; adapted with permission.

detriment to performance with perpetrator-present lineups. We invite you to mod-
ify the source code just presented in order to instantiate the memory explanation
and to reproduce the results in the figures. If you encounter difficulties or obtain
surprising results, you can consult the information at our webpage. Clare and
Lewandowsky (2004) applied the model to all three of their experiments simul-
taneously, and they estimated parameters only based on perpetrator-present line-
ups; you will get different results if you fit two experiments only or if you fit all
conditions.

7.1.4.3  Conclusions From the Modeling

What conclusions can we draw from the modeling involving WITNESS? First, the
modeling shows that the verbal overshadowing effect arguably reflects a criterion
adjustment rather than an impairment of memory after verbalization. When this



256 Computational Modeling in Cognition

1 1 1 1 1 1 1 1 1 1 1 1

Hits False IDs Misses
0.8 — r 0.8 o 0.8 =
g o g g
2 0.6 - 2 0.6 - 2 0.6 o
2 £ 3
= B A
2 2 I3
£ 04 = £ 04 = g 04 -
& & &
2 & & .
0.2 o 0.2 o 0.24 =
0 0
Control Holistic Featural Control Holistic Featural Control Holistic Featural
1 1 1 1 1 1 1 1 1 1 1 1
Suspect IDs Foil IDs Correct Rejections
0.8 o 0.8 o 0.8 =
= = =
2 2 2
E £ E
2 0.6 - 2 0.6 - 2 0.6 o
£ £ £ o—o —°
(- ~ [
2 2 2
g 044 - g 044 - £ 044 -
I I 2
] ] 3
& & &
0.24 - 0.24 - 0.24 -
r—'—T': —°
0 — 0 — 0 —
Control  Holistic Featural Control Holistic Featural Control Holistic Featural

Figure 7.6 Data (bars) and predictions of the memory explanation within WITNESS
(points and lines) for Experiment 1 (optional-choice lineups) of Clare and Lewandowsky
(2004). The top row of panels represents the perpetrator-present lineup and the bottom
row the perpetrator-absent lineup. Data from Clare, J., & Lewandowsky, S. (2004). Verbal-
izing facial memory: Criterion effects in verbal overshadowing. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 30, 739-755. Published by the American
Psychological Association; adapted with permission.

criterion explanation is instantiated in WITNESS, the model can predict both the
presence and absence of verbal overshadowing (or indeed a beneficial effect for
perpetrator-absent lineups) depending on the type of decision that is expected of
participants. Second, the modeling showed that the data are not readily modeled
by an explanation based on alteration or overwriting of memory during verbaliza-
tion. Although this second finding does not rule out a memory-based explanation
because we did not explore all possible instantiations of that alternative, the fact
that the criterion explanation handles the data quite parsimoniously makes it an
attractive account of the phenomenon.

In the context of verbal overshadowing, Clark (2008) drew attention to the fact
that the mere label for the effect—namely, “verbal overshadowing”—is not theory
neutral but, simply by its name, “implies the memory impairment explanation that
has been the dominant explanation ...since the original results were reported”
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(pp. 809-810). Thus, merely giving an effect a name can create the appearance
of an explanation: Far from being an advantage, this erroneous appearance may
bias subsequent theorizing and may retard corrective action (cf. Hintzman, 1991).
One of the uses of computational modeling is to provide substantive explanations
that necessarily go beyond labeling of an effect. Thus, although we refer to the
“criterion explanation” by name, this is a name not for a phenomenon but for a
fully instantiated process explanation.

One limitation of the example just presented is that we only considered a sin-
gle model (albeit in two different variants). In general, stronger inferences about
cognitive processes are possible if several competing models are compared in
their ability to handle the data. The next example illustrates this situation.

7.2 Exemplar Versus Boundary Models:
Choosing Between Candidates

One central aspect of human cognition—and shared with such animals as primates
and pigeons (e.g., Fagot, Kruschke, Depy, & Vauclair, 1998; Farrell et al., 2006;
Shimp, Long, & Fremouw, 1996)—is the ability to categorize a virtually limitless
range of objects in the world into a much smaller number of relevant categories
(e.g., Ashby & O’Brien, 2005; Bruner, Goodnow, & Austin, 1956; Lewandowsky,
Kalish, & Ngang, 2002; Murphy, 2002; Nosofsky, 1986; Palmeri, Wong, & Gau-
thier, 2004). Doing so leads to more compact and efficient representations of the
world; we can ignore trivial differences between objects and deal with them on the
basis of their category. Knowing whether something is a chair or a table is impor-
tant for determining whether we sit at it or on it; knowing whether it is made of
oak or pine is not. Unsurprisingly, a huge wealth of data has been generated about
people’s learning and use of categories, and this has driven—and been driven by—
considerable theoretical development (see, e.g., Figure 1 of Palmeri et al., 2004).
The area of categorization is specifically notable in having birthed a number of
formal models, including GCM (e.g., Nosofsky, 1986), GRT (e.g., Ashby, 1992b),
ALCOVE (Kruschke, 1992), RASHNL (Kruschke & Johansen, 1999), the EBRW
model (Nosofsky & Palmeri, 1997), and COVIS (Ashby, Alfonso-Reese, Turken,
& Waldron, 1998). You’ve already seen one of these models, the Generalized
Context Model (GCM), and its approach to explaining category learning in
Chapter 1.

In the following, we will examine three models of categorization and present
code for maximum likelihood estimation of the parameters of those models, along
with calculation of the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) for the purposes of model comparison.
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7.2.1 Models of Categorization

Research on categorization has considered a wide variety of category structures of
varying dimensionality. Here, we will assume that category members vary along
a single dimension. This will simplify the presentation of the models, but it will
nonetheless allow us to make some very diagnostic inferences based on a unidi-
mensional categorization experiment that we will discuss a little later.

7.2.1.1 Generalized Context Model: GCM

You’ve already been presented with the basics of GCM in Chapter 1. Because
that was a while ago, and so that you can easily refer back to this material when
reading about the application of GCM below, we’ll briefly summarize the model
again. GCM’s main claim is that whenever we have an experience about an object®
and its category, we store a localist, unitary representation of that object and its
category: an exemplar. For the example we are looking at here, the experimental
stimuli only vary along a single dimension, and so only a single feature is relevant.

When we come across an object in the world and wish to determine its cate-
gory (e.g., edible vs. inedible), the GCM postulates that we match that object to
all exemplars in memory and categorize the object according to the best match to
existing exemplars. This matching process relies on a calculation of the distance
between the object i and all the stored exemplars j € J:

d,'j = Ixi —Xj|. (7.2)

Note the simple form of this equation compared to the earlier Equation 1.3. We’ve
been able to simplify this because here we only have a single stimulus dimension.
This means we do not need to sum across several dimensions, and it also means
that we can leave out the generalization to different types of difference metric:
For a single dimension, |@ — b| = /(a — b)2. This distance is then mapped into a
measure of similarity (i.e., match) between the new stimulus and each exemplar:

sij = exp(—c - d;j). (7.3)

Remember that the ¢ in Equation 7.3 scales the drop-off in similarity with increas-
ing distance. When c is small, a stimulus will match a wide range of exemplars
(i.e., a slow drop-off with distance), and when c is large, the stimulus will only
match exemplars within a very narrow range (i.e., a fast drop-off with distance).
Finally, the similarity values are added up separately for exemplars in each cate-
gory and used to determine the categorization probability for the new stimulus:
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jeA
(Z Sij) + (Z Sij>
jeA jeB

7.2.1.2 General Recognition Theory: GRT

P(R; = Ali) = (7.4)

The fundamental assumption of the GCM is that all past experiences with cate-
gory members are stored as exemplars in memory. This assumption permits the
model to explain the relationship between categorization and recognition mem-
ory as discussed in Chapter 1. General recognition theory (GRT; Ashby, 1992a;
Ashby & Gott, 1988), by contrast, takes a very different tack. The GRT assumes
that what is represented in memory is an abstraction of the category structure
rather than the exemplars themselves. Specifically, GRT assumes that the stim-
ulus space is carved into partitions by decision boundaries. All that needs to be
stored in memory in order to classify new exemplars is some specification of the
placement of the boundaries. In multidimensional space, this can get quite com-
plicated to conceptualize, as the boundaries can have any form, although they are
usually assumed to be specified by linear or quadratic equations.’ In the case of
stimuli that vary along only a single dimension, things are very easy: A category
boundary is a single point along the stimulus dimension.

Categorization errors are assumed to follow from trial-by-trial variability in
the perception of the stimulus (Alfonso-Reese, 2006). This means that on one
trial, a stimulus may appear to fall on one side of the boundary, whereas on another
trial, it appears to fall on the other side. GRT assumes that this variability takes the
form of a normal probability density function (PDF) centered on the true value of
the stimulus and with standard deviation o. An example is shown in the top panel
of Figure 7.7: The circle shows the actual stimulus value, and around that is drawn
the normal PDF.

Given the normal density around the stimulus and the placement of the bound-
aries, what is the probability of categorizing the stimulus as belonging to a partic-
ular category? This can be worked out using concepts we discussed in Chapter 4
with reference to probability functions. Recall that in the case of a PDF, the proba-
bility that an observation will fall within a specific range involves finding the area
under the curve within that range. That is, we need to integrate the PDF between
the minimum and maximum values defining that range. Take a look again at the
top panel of Figure 7.7. The portion of the PDF shaded in gray shows the area
under the curve to the left of the boundary; this area under the PDF is the prob-
ability that the perceived stimulus value falls below the boundary and therefore
corresponds to the probability that the stimulus i will be categorized as an ‘A,
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Figure 7.7 Depiction of one-dimensional categorization in GRT. Both panels show a nor-
mal PDF reflecting the variability in perception of the stimulus; the stimulus itself has a
value of 4 and is shown as a circle. The vertical lines in each panel (labeled 8) show the
category boundaries. In the top panel, only a single boundary exists, and the probability of
categorizing the stimulus as being in Category A is the area under the normal density to
the left of the boundary. The bottom panel shows a more complicated example with two
boundaries; in this case, the probability of categorizing the stimulus as an ‘A’ is the area
under the curve to the left of the left-most boundary (81) plus the area to the right of the
right-most boundary (8,).

P(R; = Ali). In the top panel, we need to find the integral from the minimum
possible stimulus value up to the boundary value (8). Let’s assume that the stim-
ulus dimension is unbounded, so that the minimum possible value is —oo. This
means we need to calculate

B
P(R; =A|i)=/ N(x;, o), (7.5)

—0o0
where N is the normal PDF with mean x; and standard deviation o. To calculate
this integral, we can use the normal cumulative distribution function (CDF). As
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we discussed in Chapter 4, the CDF is the integral of a PDF and can therefore
be used to integrate across segments of the PDF. Using the integral of the normal
CDF, @, we can rewrite Equation 7.5 as

P(R; =A|i)=d>(’3;x'>, (7.6)
where the integration is assumed to be taken from —oo. The argument passed to
the normal CDF, (8 — x;)/o, expresses the boundary as a z score of the normal
density around the stimulus because the normal CDF function assumes a mean of
0 and a standard deviation of 1.

We can also use this method to obtain predicted probabilities from GRT for
more complicated examples. The bottom panel of Figure 7.7 shows a case where
there are two boundaries, 1 and B. Stimuli below B; and above B, belong to
Category A, whereas stimuli between the two boundaries belong to Category B;
such a category structure might arise when determining whether some milk is safe
to feed to an infant given its temperature. The predicted probability of categoriz-
ing a stimulus i as being an ‘A’ is then the probability that either the perception
of the stimulus falls below S or that it falls above . These two probabilities
are mutually exclusive (unless it is quantum event, the stimulus cannot simulta-
neously both fall below 81 and above f3,), so following the rules of probability in
Chapter 4, the probability of either event happening can be obtained by adding up
the individual probabilities; that is, we sum the gray areas in Figure 7.7. The first
area is obtained in a similar manner to the top panel, by integrating from —oo to

Bi:

P(R; =a1|i)=<1></31 _x"). 1.7)

o

The second region, to the right of 8,, requires only a little more thinking. The
CDF gives the integral from —oo up to some value, so we can use it to obtain the
integral up to B>. To work out the area above 8>, we can calculate the integral up
to B> and subtract it from 1: Remember that probabilities must add up to 1, and
if the perceived stimulus doesn’t fall to the left of 85, it must fall to the right (we
are assuming that the perceived stimulus cannot fall directly on the boundary).
Written as an equation, it looks like this:

P(R; =az|i)=1—<1><ﬂ2_xi). (78)

(e

The probability of making an ‘A’ response is then:

P(R; = Ali) = P(R; = a1li) + P(R; = azli).
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Although we can determine the optimal placement of boundaries, we cannot a pri-
ori specify the boundaries a participant is actually using. Accordingly, boundary
placement will be usually specified by free parameters. In the case of unidimen-
sional stimuli, each boundary will be captured by a single free parameter, and
there will be an additional free parameter for o, the variability in perception.

7.2.1.3  Deterministic Exemplar Model: DEM

Much research has been directed at discriminating between GCM and GRT as
competing explanations for human (and animal) categorization (e.g., Farrell et al.,
2006; Maddox & Ashby, 1998; McKinley & Nosofsky, 1995; Nosofsky, 1998;
Rouder & Ratcliff, 2004). Ashby and Maddox (1993) and Maddox and Ashby
(1993) noted that one difficulty with comparing GCM and GRT directly is that
such a comparison confounds the representations involved in categorizing a stim-
ulus and the processes required to turn the resulting information into an overt
categorization response. That is, not only do GCM and GRT obviously differ in
the way category information is represented, but they also differ in the way in
which responses are generated. In GCM, responses are probabilistic (by virtue
of the use of the Luce choice rule, Equation 7.4), whereas GRT’s responses are
deterministic: If a stimulus is perceived to fall to the left of the boundary in the
top panel of Figure 7.7, it is always categorized as an ‘A.

To partially deconfound these factors, Ashby and Maddox (1993) presented
a deterministic exemplar model (DEM). This model is identical to the standard
GCM model, with the exception that the response rule is deterministic. DEM
replaces Equation 7.4 with a modified version of the Luce choice rule:

%
JjeEA
° . (7.9)
<Z Sij) + (Z Sij)
JjEA jEB

The modification is that the summed similarities are raised to the power of a free
parameter y. This parameter controls the extent to which responding is determin-
istic. If y = 1, the model is identical to GCM. As y gets closer to 0, responding
becomes more and more random, to the point where =0 and Equation 7.9 works
outas 1/(14 1): Responding is at chance and isn’t sensitive to the actual stimulus
presented. As y increases above 1, responding gets more and more deterministic.
This is because y acts nonlinearly on the summed similarities, and if ()" s;;)”
jeA
is greater than () s;;)”, then increasing y will increase () s;;)" m01jre than it
jeB jeA

P(R; = Ali) =
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increases () si;)”. For a very large value of y, the model will respond deter-
JjeB
ministically: If (}_ s;;) >> (_ s;;), the model will always produce an ‘A’
JjEA jeB
response.

7.2.2 A Probabilistic Feedback Experiment

How, then, can the boundary and exemplar models be teased apart? Can they be
unambiguously differentiated? Rouder and Ratcliff (2004) approached this prob-
lem with an ingenious paradigm in which stimuli varied along a single dimension.
Rouder and Ratcliff (2004) presented their participants with a 640 x 480 grid of
pixels, with each pixel being colored white, black, or gray. Rouder and Ratcliff
varied the proportion of nongray (black or white) pixels that were white and asked
participants to categorize each grid as being light or dark. Following Rouder and
Ratcliff, we call this single-stimulus dimension luminance from here on.

The critical feature for telling apart boundary and exemplar models was that
category membership was probabilistic: The same stimulus x; was sometimes
designated as being in Category A by feedback during training and sometimes as
being in Category B. The top panel of Figure 7.8 shows the category structure
for Rouder and Ratcliff’s Experiment 1. The black dots on the solid line refer to
the locations, in luminance space, of the eight training stimuli that we number
1 through 8 (from left to right). Stimuli at either end of the stimulus space (i.e.,
1, 2, 7, and 8) were presented as members of Category A on 60% of the trials.
Stimuli in the middle region of the stimulus space either belonged to Category
A 100% of the time (stimuli 3 and 4) or were always Category B members (i.e.,
never Category A; stimuli 5 and 6).

The bottom two panels show representative predictions from boundary and
exemplar theories and show how the experiment can discriminate between the dif-
ferent theories. The middle panel shows predictions from GRT, under the assump-
tion that people place the boundaries more or less optimally. Although participants
cannot reach perfect accuracy in this task given its probabilistic nature, they can
nonetheless maximize performance by inserting a boundary at each point at which
the probability of belonging to Category A in the top panel shifts from above .5
to below .5. That is, the best strategy would be to place one boundary between
stimuli 4 and 5 and another one between stimuli 6 and 7. Although there is a
shift in probabilities between stimuli 2 and 3, placing a boundary here would be
suboptimal because it would lead to a tendency for participants to classify stim-
uli 1 and 2 as being in Category B, whereas they are more likely to belong to
Category A.

Under these assumptions about boundary placement, the middle panel shows
that GRT predicts a function that dips in the middle and is monotonically
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Figure 7.8 Experimental structure and model predictions for Rouder and Ratcliff’s (2004)
probabilistic categorization experiment. The top panel shows the proportion of times each
stimulus value was designated as belonging to Category A by experimental feedback; the
integers above the plot number the stimuli from 1 to 8. The middle panel shows repre-
sentative predictions from GRT under the assumption that a boundary is placed wherever
the membership probability crosses 0.5. The bottom panel shows representative exemplar
model predictions, from DEM. Figure reprinted from Rouder, J. N., & Ratcliff, R. (2004).
Comparing categorization models. Journal of Experimental Psychology: General, 133,
63-82. Published by the American Psychological Association; reprinted with permission.

increasing as one moves away from the dip in either direction. In contrast, the
bottom panel shows that an exemplar model (DEM) will predict a more compli-
cated function. Although the same dip occurs for stimuli 5 and 6, there is a second
dip at the bottom end of the stimulus space.

Why do the two models make different predictions? Exemplar theory predicts
that response probabilities should track the feedback probabilities. As we move
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down the stimulus dimension in the lower half of the space (i.e., from stimulus
4 down to stimulus 1), the proportion of exemplars in memory that belong to
Category A drops from 1.0 to 0.6. This means that the summed similarity for Cat-
egory A will also drop, and since the summed similarity feeds directly into the
predicted responses via Equation 7.4 or Equation 7.9, the response proportions
are also expected to drop. The extent of this drop will depend on the parameter
settings and on the particular model: GCM will show a strong tendency to track
the feedback probabilities, while DEM, with its ability to respond deterministi-
cally, may show responding that is more deterministic (Farrell et al., 2006). GRT,
by contrast, predicts that as we move away from a stimulus boundary the more
likely a stimulus is to be classified as corresponding to that category. Although
the membership probability decreases as we move to the left of the top panel of
Figure 7.8, all GRT is concerned with is the placement of the boundaries; as we
move to the left, we move away from the boundary, and the predicted probabil-
ity of classifying the stimuli as ‘A’s necessarily increases in a monotonic fashion.
A defining characteristic of GRT is that it cannot predict non-monotonicity in
response proportions as the absolute distance of a stimulus from the boundary
increases.

Figure 7.9 shows the results from the last three sessions for the six participants
from Rouder and Ratcliff’s (2004) experiment, along with the feedback probabil-
ities reproduced from Figure 7.8 (in gray). The participants in the left and middle
columns of Figure 7.9 (SB, SEH, BG, and NC) qualitatively match the predic-
tions of GRT, particularly in the monotonic shape of their response probability
functions in the left-hand size of the stimulus space. Participant VB (top right
panel) behaves more or less as predicted by GRT, but with a small downturn for
the smallest luminances as predicted by exemplar theory. Finally, participant LT
(bottom right panel) behaves as predicted by exemplar theory, with a very clear
downturn in ‘A’ responses.

Following Rouder and Ratcliff (2004), we next apply exemplar and decision-
bound models to the data from the six participants shown in Figure 7.9. We will
use maximum likelihood estimation (MLE) to fit the models to the data and obtain
standard errors on the parameter estimates for each participant. Finally, we will
use AIC and BIC to compare the models on their account of the data.

7.2.3 MATLAB Code for ML Parameter Estimation
for GCM, DEM, and GRT

Let’s start with the code for the log-likelihood functions from GCM, DEM, and
GRT. We will then move on to look at how we use this code to compare models.
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Figure 7.9 Proportion of trials on which stimuli were categorized as belonging to Cat-
egory A, for six participants (separate panels). Feedback probabilities from the training
session are shown in gray. Figure adapted from Rouder, J. N., & Ratcliff, R. (2004). Com-
paring categorization models. Journal of Experimental Psychology: General, 133, 63-82.
Published by the American Psychological Association; reprinted with permission.

7.2.3.1 GCM and DEM

Listing 7.6 provides the code for calculation of the negative log-likelihood for
GCM and DEM. Recall that GCM is simply the DEM model with y set to 1.
Accordingly, we can use the DEM code to run both GCM and DEM, as long as
we remember to set y equal to 1 when running GCM. The first several lines are
comments to tell us what the input arguments are. The first input argument is the
parameter vector theta, which contains c as the first element (line 9) and y as
the second element (line 10). The second argument x is a vector containing the
luminance values for the eight possible stimuli. The third argument feedback
specifies how many times each stimulus was designated to be an ‘A.” Specifically,
feedback has two columns, one giving the number of times A was given as
feedback for each stimulus and a second column giving the number of times B
was designated as feedback. The fourth argument data contains the frequencies
of A responses from the participant for each stimulus, and the vector N contains
the total number of trials per stimulus in a vector.
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Listing 7.6 Negative Log-Likelihood Function for GCM and DEM

l{ function [1nL, predP] = DEMlnL(theta, x, feedback, <>
data, N)

21% gives the negative log—likelihood

3|/% for response frequencies from a single participant <
(data)

4% given the DEM parameters (in vector theta), the <«
stimulus values in X,

5|/% the number of times each stimulus was an "A' in <«
feedback

6|% the number of times “A' was selected as a response <
(data)

7|% and the total number of test trials for each <«
stimulus (N)

9lc = theta(l);
10| gamma = theta(2);

11

12| for i=1:length (x)

13 s = exp(—c.xabs(x(1)—x));

14 sumA = sum(s.*feedback(1l,:)):;

15 sumB = sum(s.*xfeedback(2,:));

16 predP(i) = (sumA”gamma) /(sumA”gamma + sumB”gamma) ;
17| end

18

19| InL, = —sum(data.*log(predP) + (N—data).xlog(l—predP));

The GCM/DEM calculations are contained in lines 12 to 17. The loop goes
through each of the stimuli, i, and for each stimulus calculates the predicted pro-
portion of ‘A’ responses, predP(i). Line 13 instantiates Equation 7.3, using the
simple absolute distance measure in Equation 7.2. Line 13 is in a vectorized form:
It calculates the similarity between each x ; and x; in one go and returns a vector of
similarities as a result. Lines 14 and 15 calculate summed similarity values. Rather
than considering each exemplar individually, lines 14 and 15 take advantage of the
design of the experiment in which there are only eight possible stimulus values.
Since identical stimulus values will have identical similarity to x;, we can cal-
culate the summed similarity between x; and all the exemplars with a particular
value x; by simply multiplying s; by the number of exemplars with that particular
value of x;. Again, we don’t refer explicitly to s; in the code because the code is
vectorized and processes all js at once. Line 16 feeds the summed similarity val-
ues into the Luce choice rule with y-scaling to give a predicted proportion correct
(Equation 7.9).
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The final line in Listing 7.6 calculates the negative log-likelihood based on
the predicted proportions and observed frequencies. Do you recognize the form
of line 197 If not, turn to Section 5.4. Otherwise, right! It’s the binomial log-
likelihood function we discussed in Chapter 4 and that we used to obtain probabil-
ities from SIMPLE in Chapter 5. The function takes the observed frequencies, the
total number of trials, and the predicted proportions to calculate a log-likelihood
value for each stimulus (in vectorized form). We then sum the In L values and
take the negative so we can minimize the negative log-likelihood.

One issue that deserves mention is that we are using the simplified version of
the binomial log-likelihood function and have omitted some of the terms from the
full function (see Section 4.4). This has implications for calculation of AIC and
BIC, as discussed in Chapter 5. This won’t be a problem here, as we will use the
same binomial data model for all three categorization models and will therefore
be subtracting the same constant from AIC and BIC values for all three models.

Finally, to avoid confusion, it should be noted that Rouder and Ratcliff (2004)
fit DEM to their data but called it GCM. This is because a number of authors treat
DEM not as a model separate from GCM but as a version of GCM with response
scaling. The differentiation between GCM and DEM is maintained here because
of the possible importance of the decision process in the probabilistic nature of
this experiment; in many circumstances, the nature of the response process will
be a side issue separate from the main theoretical issue of concern.

7.2.3.2 GRT

Comprehensive code for the GRT is available in a MATLAB toolbox presented in
Alfonso-Reese (2006). We will look at simpler code here that is aimed specifically
at the experiment of Rouder and Ratcliff (2004). The MATLAB code for GRT is
given in Listing 7.7 and has a similar structure to the MATLAB code for GCM.
The first argument is a vector containing values for GRT’s free parameters, which
are extracted in the first bit of the code. The code opens assignment of the three
elements of theta to boundaryl, boundary2 and sd. The function assumes
that the first element in theta is the lower bound 8; and that the second element
is the upper bound B, and includes an if statement that performs a sanity check to
ensure that the upper boundary is indeed greater than the lower boundary; if not, a
large log-likelihood is returned. Lines 19 and 20 implement Equations 7.7 and 7.8.
These calculations make use of the embedded function normalCDF, which makes
use of the error function erf in MATLAB. The error function computes an integral
that is related to the normal CDF by

Dx) = %erf(%) . (7.10)
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This relationship is used to obtain the normal CDF in the embedded function
normalCDF and was also used in Chapter 5 for the ex-Gaussian model, which
also contains the normal CDE.? Line 21 adds the two areas a1 and a2 together
to obtain predicted proportions, and line 23 implements the same binomial data
function as was used in the GCM code. Notice that lines 19 to 21 are written in a
vectorized format: At each step, the result is a vector whose elements correspond
to specific stimulus values.

Listing 7.7 Negative Log-Likelihood Function for GRT

1| function [1lnL, predP] = GRT1nL(theta, x, data, N)

2|% gives the negative log-likelihood

3|% for response frequencies from a single participant <>
(data)

4|% given the GRT parameters (in vector theta),

the stimulus values in x,

6/% the number of times “A' was selected as a response <>
(data)

7|% and the total number of test trials for each <«
stimulus (N)

W
X

8

9| boundl = theta(l);
10| bound2 = theta(2);
11

12| if boundl >= bound2
13 InL = realmax;
14 predP = repmat(NaN, size(N));
15| end

16

17 sd = theta(3);

18

19|al = normalCDF ((boundl—x) ./sd);
20la2 = 1 — normalCDF ((bound2—x) ./sd);
21| predP = al + a2;

22
23| InL = —sum(data.xlog(predP) + (N—data).xlog(l—predP));
24
25|9%% normalCDF

26| function p = normalCDF(x)
27
28|p = 0.5.xerf(x./sqrt(2));

7.2.4 Fitting the Models to Data

The code in Listings 7.6 and 7.7 takes a parameter vector, participant data, and
other details about the experiment and returns the — In L for the parameters given
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the data and the predicted proportion correct for each stimulus value given the
parameters. This is sufficient to carry out parameter estimation and model selec-
tion. Listing 7.8 provides a script to fit each of the models and provides statistics
for model comparison and further interpretation.

7.2.4.1 Setting Up

The first thing the script does is to assign the proportion of ‘A’ responses from
the six participants to the variable data. The data are structured so that the rows
correspond to participants (in the same order as in Figure 7.9), and each column
corresponds to a stimulus i.

Listing 7.8 Code for MLE and Model Selection for the Categorization Models

% script catModels
clear all
close all

dataP = [0.75,0.67,0.54,0.4,0.4,0.37,0.58,0.71;
.92,0.81,0.53,0.28,0.14,0.22,0.45,0.81;
.91,0.97,0.93,0.64,0.28,0.09,0.12,0.7;
.98,0.94,0.85,0.62,0.2,0.037,0.078,0.71;
.97,0.94,0.8,0.58,0.4,0.45,0.81,0.97;
.29,0.66,0.85,0.71,0.33,0.1,0.32,0.77];

0N N bW —

oo o e e

12{% number sessions x 10 blocks x 96 trials /(n stimuli)
13| Ntrain = ((5%10%96)/8);

14| pfeedback = [.6 .6 1 1 0 0 .6 .6];

15| Afeedback = pfeedback .* Ntrain;

16| feedback = [Afeedback; Ntrain—Afeedback];

18| Ntest = ((3%10%96)/8) ;
19|N = repmat(Ntest,1,8);

20

21|dataF = ceil (Ntest.*x(dataP));

22

23| stimval = linspace (.0625, .9375, 8);
24

25|%% Maximum likelihood estimation
26| for modelToFit = {'GCM', 'GRT', 'DEM' };

27

28 for ppt=1:6

29 switch char(modelToFit)

30 case 'GCM'

31 f=@(pars) DEMInL([pars 1], stimval, <

feedback, dataF(ppt,:), N);
32 [theta(ppt,:) ,1nL(ppt) ,exitflag(ppt) |«




33
34
35

36
37

38
39

40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

end

for
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=fminbnd(£, 0, 100);
case 'GRT'
f=@(pars) GRT1nL(pars, stimval, <
dataF(ppt,:), N);
[theta(ppt,:) ,1nL(ppt) ,exitflag(ppt) ]| <«
=fminsearchbnd(f,[.3 .7 .1], <«
[-1 —1 eps], [2 2 10]);
case 'DEM'
f=@(pars) DEMInL(pars, stimval, <
feedback, dataF(ppt,:), N);
[theta(ppt,:) ,1nL(ppt) ,exitflag(ppt) | <«
=fminsearchbnd(f,[5 1], [0 <«
0], [Inf Inf]);
otherwise
error ( 'Unknown model ") ;
end

[Junk, predP(ppt,:)] = f(theta(ppt,:));

hess = hessian(f,theta(ppt,:),10r=3);

cov = inv (hess);

thetaSE(ppt,:) = sqrt(diag(cov));
end
figure

pptLab = {'SB','SEH','VB', 'BG', 'NV', 'LT'};

for ppt=1:6
subplot (2,3 ,ppt);
plot (stimval, dataP(ppt,:), '—');
hold all
plot(stimval, predP(ppt,:), '—.x');

ylim([0 1]);
xlabel ( 'Luminance ') ;
ylabel ('P(A) ') ;
title (char(pptLab{ppt}));
end
set(gef, 'Name', char(modelToFit));

t.theta = theta;

t.thetaSE = thetaSE;

t.nlnL = 1nL;

eval ([ char(modelToFit) '=t;']);
clear theta thetaSE

ppt=1:6

(Continued)
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(Continued)
77 [AIC(ppt,:), BIC(ppt,:), AICd(ppt,:), <
BICd(ppt,:), AICw(ppt,:), BICw(ppt,:)] = ...
78 infoCriteria ([GCM.nlnL(ppt) GRT.nlnL(ppt) <
DEM.nlnL(ppt)], [1 3 2], <«
repmat (Ntest*8,1,3));
79| end

Line 13 works out an approximate number of training trials (i.e., number of
exemplars per stimulus) based on details provided in Rouder and Ratcliff (2004):
There were between four and six (i.e., approximately five) learning sessions per
participant, each session containing 10 blocks of 96 trials that were shared between
the eight stimuli. Line 14 assigns the category assignment probabilities in the top
panel of Figure 7.8 to the variable pfeedback, and these are then multiplied with
the number of trials stored in Ntrain to work out the number of trials on which
the feedback indicated each stimulus belonged to Category A; this is assigned
to the variable Afeedback. The variable feedback is then constructed in accor-
dance with Listing 7.6, with one column for frequency of ‘A’ feedback and a
second column for the frequency of ‘B’ feedback (these two values adding up to
Ntrain for each luminance value).

Line 18 uses a similar procedure to line 13 to work out the number of test
trials per stimulus. Rouder and Ratcliff (2004) analyzed the data from the last
three sessions for each participant, by which time performance had stabilized.
As for line 13, this is combined with the number of blocks per session (10) and
the number of trials per block (96), along with the number of stimulus values
(8) to determine the number of test trials per stimulus value per participant. It
is important that this is exact, as these numbers will feed into the binomial log-
likelihood function, which is sensitive to the overall number of trials (1,000 trials
are more informative than only 10 trials and will sharpen the log-likelihood sur-
face). These are then multiplied by the proportions stored in dataP to calculate
dataF, the number of trials on which each participant responded ‘A’ for each
stimulus value. The resulting value is then replicated eight times to make a vector
N holding Ntest for each stimulus value.

The final piece of setting up is in line 23, which assigns the eight stimulus
values (linearly spaced in the range .0625-.9375, with increments of .125) to the
variable stimval. In line with Rouder and Ratcliff (2004), we assume that the
physical luminance values (the proportion of nongray pixels that are white) map
directly into psychological luminance values. However, it is possible that there
may be some nonlinear relationship between the actual and perceived stimulus.
Methods such as multidimensional scaling (Kruskal & Wish, 1978) are available
to extract the underlying psychological dimension based on similarity ratings and
confusability data. Rouder and Ratcliff (2004) compared a number of functions
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mapping physical luminance to perceived luminance and found all gave compa-
rable results, including a function assuming a linear relationship between actual
and perceived luminance. In providing the physical luminance values as perceived
luminance, we are assuming a deterministic (i.e., noise-free) linear relationship
between physical and perceived luminance.

7.2.4.2  Fitting the Models

The loop beginning at line 26 and finishing at line 73 does the hard graft of fit-
ting each model to the data from each participant. We start off by setting up a
loop across the models; each time we pass through the loop, we will be fitting
a different model whose name will be contained in the variable modelToFit
as a string. Within that loop is another loop beginning at line 28, which loops
across participants, as we are fitting each participant’s data individually, indexed
by the loop variable ppt. The next line looks at modelToFit to work out which
model’s code to use in the fitting. This uses a switch statement, which matches
char(modelToFit) to a number of possible cases ('GCM',GRT',DEM'), and
otherwise reverts to a default catch statement, which here returns an error mes-
sage. The switch statement uses char(modelToFit) rather than modelToFit
directly because the set of values for modelToFit is provided in a cell array
(being enclosed in curly braces), so the current value of modelToFit must be
turned into a string using the function char before it can be matched to the string
in each case statement.

Within each possible case, there are two lines. The first line (e.g., line 31)
constructs an anonymous function (see the MATLAB documentation for further
details). Anonymous functions are functions that are adaptively created on the fly
and do not require their own function files in MATLAB. We are using anonymous
functions here because, as we will see, we end up calling the same function several
times. By using the anonymous function, we will simplify our code and make it
easier to read. The main purpose of line 31 is to create a new on-the-fly function
called £ that takes only a single argument, a parameter vector called pars. Inside
this function, all that happens is that we call DEM1nL and pass it pars, along with
the other information needed by DEM1nL. Remember that GCM is DEM with y
fixed at 1; the first argument to DEM is therefore a vector joining together the free
parameter ¢ and the fixed value of 1 for y. Going from left to right, we next have
stimval, the luminance of each stimulus; [feedback; Ntrain—feedback], a
matrix containing one row for the number of times ‘A’ was given as feedback
and a second row containing the number of times ‘B’ was given as feedback; the
frequency of ‘A’ responses for the participant of current interest; and N, a vector
specifying how many trials in total were tested for each stimulus. No feedback
information is provided to the anonymous function for GRT because GRT does
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not require this argument. All this information from stimval onwards doesn’t
change within the participant loop; by using the anonymous function, we can
specify it the one time and ignore it for the rest of the code, focusing instead on
the parameter vector, which will need to change during the parameter estimation.

The second line within each case passes the anonymous function £ to a
minimization routine to find the ML parameter estimates (remember, we are min-
imizing the negative log-likelihood). GCM has only a single parameter to be esti-
mated (c); accordingly, we use the built-in MATLAB function £minbnd, which
performs unidimensional function minimization. This function does not need a
starting point and only requires the minimum and maximum possible values for
the parameter; we’ve set these to 0 and 100, respectively. For GRT and DEM, the
models incorporating at least two free parameters, we use the fminsearchbnd
function that was introduced in Section 7.1. This function requires a starting
vector and vectors of lower and upper bounds on the parameters. These can be
inspected in lines 37 and 41.

The result of what we’ve discussed so far is that for a given model (indexed
by modelToFit), the code loops across participants, and for each participant,
the anonymous function is reconstructed and passed to code that minimizes the
appropriate negative log-likelihood function (contained in £) using a minimization
routine. When each minimization attempt is finished, the ML parameter estimates,
the minimized — In L, and the exit flag (giving information about whether or not
the minimization was successful) are respectively placed in variables theta, 1nL,
and exitflag.

Having found the ML parameter estimates, line 46 runs the model a final time
using the MLEs to obtain the predictions of the model under the MLEs; these
predicted proportions of ‘A’ responses are stored in the matrix predp.

7.2.4.3  Obtaining Standard Errors on Parameter Estimates

After ML estimation has been performed, the next section of code (lines 48-50)
finds the standard errors on the parameter estimates. Because we rewrote each
log-likelihood function into the anonymous function £, we can use the same code
for all three models. Line 48 passes the anonymous function and MLEs to the
hessian function provided in Chapter 5, along with the § parameter required by
that function. The following two lines convert the resulting Hessian matrix hess
into standard errors by taking the matrix inverse of the Hessian matrix to obtain a
covariance matrix and then taking the square root of the values along the diagonal
of this matrix to obtain the standard error on the ML parameter estimates.

The ML parameter estimates and their estimated standard errors are given in
Tables 7.4, 7.5, and 7.6 for GCM, GRT, and DEM, respectively. We will refer
back to these after discussing the model comparison results.
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Table 7.4 ML Parameter Estimates and Associated Standard Errors for the GCM Fits to
the Data in Figure 7.9

Participant c SE(c)
SB 2.29 0.36
SEH 5.29 0.32
VB 9.32 0.38
BG 9.43 0.38
NV 591 0.36
LT 10.28 0.41

Table 7.5 ML Parameter Estimates and Associated Standard Errors for the GRT Fits to
the Data in Figure 7.9

Participant B SE(B)) B> SE(B)) o SE(0)
SB 0.29 0.01 0.80 0.01 0.29 0.01
SEH 0.33 0.01 0.82 0.01 0.17 0.00
VB 0.92 0.01 0.46 0.01 0.16 0.00
BG 0.45 0.01 0.92 0.01 0.13 0.00
NV 0.43 0.01 0.69 0.01 0.15 0.00
LT 0.12 0.07 1.26 0.17 0.78 0.17

Table 7.6 ML Parameter Estimates and Associated Standard Errors for the DEM Fits to
the Data in Figure 7.9

Participant c SE(c) y SE(y)
SB 2.44 0.90 0.95 0.26
SEH 4.89 0.43 1.13 0.11
VB 4.39 0.22 3.38 0.18
BG 4.65 0.21 3.24 0.16
NV 0.86 0.07 5.81 0.23
LT 13.51 1.19 0.69 0.07

7.2.4.4 Model Predictions

Lines 53 to 66 plot the predictions of the model currently specified by
modelToFit given the ML parameter estimates. These plots are shown in
Figures 7.10 to 7.12. GCM, whose predictions are shown in Figure 7.10, gives
a visually poor fit to the data in most cases. GCM qualitatively misses the pattern
in the data for participants SB, SEH, BG, and NV and apparently quantitatively
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Figure 7.10 Proportion of ‘A’ responses predicted by GCM under ML parameter estimates.
The data are plotted as crosses connected by solid lines, and the model predictions are
plotted as asterisks connected by dashed lines.

misses the data of VB. The one participant for whom GCM appears to give a rea-
sonable fit is participant LT in the bottom-right panel, who showed a very clear
drop in ‘A’ responses with lower luminance values (stimuli 1 and 2). The predic-
tions of GRT, shown in Figure 7.11, are much more in line with the data. The
one exception is participant LT, for whom GRT predicts a nearly flat function that
does little to capture the large changes in responses across luminance values for
that participant. Finally, the predictions of DEM are shown in Figure 7.12. These
predictions are similar to those of GCM (Figure 7.10), with DEM giving visu-
ally better fits in some cases (VB and BG). DEM generally appears to be inferior
to GRT, with two exceptions. For participant VB, GRT and DEM appear to give
equally good fits, and for participant LT, GRT is clearly inferior to DEM.

7.2.4.5 Model Comparison

Let’s use the model selection methods presented in Chapter 5 to compare the three
models. Although GRT looks like it gives a better fit to the data in some cases, this
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Figure 7.11 Proportion of ‘A’ responses predicted by GRT under ML parameter estimates.

may simply follow from the fact that it has more free parameters than both GCM
and DEM. Similarly, DEM appears to give a better account of the data than GCM,
but to what extent is this due to its extra parameter y picking up nonsystematic
residual variance?

Lines 68 to 72 prepare the results of the model fitting for model comparison
by storing the results of each model’s fit in a separate structure. Line 71 uses the
eval function to assign the modeling results, collected in the temporary structure t
in the preceding few lines, to a structure named either GCM, GRT, or DEM. Line 72
deletes a few variables because they differ in size between the different models
and would return an error otherwise.

The last part of Listing 7.8 calls the function infoCriteria from Chapter 5
to obtain AIC and BIC values, AIC and BIC differences, and model weights for
each participant. The AIC and BIC differences calculated by this code are shown
in Table 7.7, and the corresponding model weights are shown in Table 7.8. For
participants SB, SEH, BG, and NV, the model differences and model weights
bear out the superior fit of the GRT suggested in the figures, with the model
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Figure 7.12 Proportion of ‘A’ responses predicted by DEM under ML parameter estimates.

weights for GRT indistinguishable from 1 for these participants. The information
criterion results for VB are more informative. Recall that the fits for GRT and
DEM looked similar in quality for VB. Tables 7.7 and 7.8 show that GRT nonethe-
less gives a statistically superior fit to VB’s data, even when the extra parameter
in the GRT is accounted for via the correction term in the AIC and BIC. Finally,
Tables 7.7 and 7.8 show that LT’s data are better fit by an exemplar model, par-
ticularly the DEM. Not only does DEM provide a superior fit to GRT in this
case, but the information criteria point to DEM also being superior to GCM in
its account of the data, indicating that the extra parameter y is important for the
exemplar model’s account for this participant. Inspection of the ML parameter
estimates in Table 7.6 is instructive for interpreting DEM’s success. The row for
LT shows that the estimated ¢ was very large compared to the other participants
and that the y parameter was below 1. The large ¢ for DEM (and, indeed, GCM, as
shown in Table 7.4) means that stimuli only really match exemplars with the same
luminance in memory, leading the model to strongly track the feedback probabil-
ities. However, the y < 1 means that the model undermatches those feedback
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Table 7.7 AIC and BIC Differences Between the Three Models GCM, GRT, and DEM

AAIC A BIC

GCM GRT DEM GCM GRT DEM
SB 178.42 0.00 180.38 166.49 0.00 174.42
SEH 715.39 0.00 715.83 703.46 0.00 709.87
VB 413.26 0.00 43.53 401.33 0.00 37.57
BG 703.67 0.00 337.16 691.74 0.00 331.20
NV 990.71 0.00 581.08 978.78 0.00 575.12
LT 18.78 527.95 0.00 12.82 533.92 0.00

sum 3020.23 527.95 1857.99 2954.61 533.92 1828.16

Note. Differences are calculated for each participant individually, and summed differences are shown
in the bottom row.

Table 7.8 AIC and BIC Weights for the Three Models GCM, GRT, and DEM

AAIC A BIC

GCM GRT DEM GCM GRT DEM
SB 0.00 1.00 0.00 0.00 1.00 0.00
SEH 0.00 1.00 0.00 0.00 1.00 0.00
VB 0.00 1.00 0.00 0.00 1.00 0.00
BG 0.00 1.00 0.00 0.00 1.00 0.00
NV 0.00 1.00 0.00 0.00 1.00 0.00
LT 0.00 0.00 1.00 0.00 0.00 1.00
mean 0.00 0.83 0.17 0.00 0.83 0.17

Note. Model weights are calculated for each participant individually, and mean weights are shown in
the bottom row.

probabilities, which pulls the predicted proportion of ‘A’ responses back to the
baseline of 0.5.

7.2.5 What Have We Learned About Categorization?

The results of the model fitting just presented lie heavily in favor of the GRT
model. If we assume that all participants’ performance was based on a single
model, we can examine the summed AIC/BIC differences in Table 7.7, or the
average model weights in Table 7.8, and conclude that the data as a whole are
most consistent with the GRT model, and by quite a margin. However, the data
plotted in Figure 7.9, along with the modeling results in Tables 7.7 and 7.8,
suggest that one participant, LT, is using a different set of representations or
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processes to perform this task. The most obvious conclusion based on the mod-
eling results is that LT’s performance is supported by matching to stored exem-
plars. However, that conclusion may be premature. Although the results corre-
spond more to the ML predictions of GCM and DEM, notice that although LT’s
observed probability of giving an ‘A’ response changes dramatically between
stimuli 1 and 2 (and, indeed, between 7 and 8), GCM and DEM’s predictions
change little between the same stimuli. Arguably, GCM and DEM are still failing
to capture an important aspect of these data. Rouder and Ratcliff (2004) noted
another possible explanation for these results: that LT was relying on boundaries
(as in GRT) to categorize the stimuli but had inserted a third boundary somewhere
around the lowest luminance stimulus despite this being a nonoptimal approach.
Rouder and Ratcliff (2004) fit GRT with three boundaries to the data of LT and
found it to give the best fit of all models and that it was able to produce the large
change between stimuli 1 and 2 seen in LT’s data. We leave implementation of that
model as an exercise for you, but note that this reinforces the overall consistency
between GRT and the data.

What does it mean to say that GRT is the “best” model? The main message
is that under conditions of uncertainty, and with stimuli varying along a single
dimension, people partition the stimulus space using boundaries and use those
boundaries to categorize stimuli observed later on. We know it isn’t simply that
GRT assumes deterministic responding: The DEM model, an exemplar-based
model with deterministic responding, failed to compete with the GRT in most
cases.

One interesting note to sign off on is that hybrid models have become increas-
ingly popular in accounting for categorization. For example, the RULEX model of
Nosofsky and Palmeri (1998) assumes that people use rules to categorize stimuli
but store category exceptions as exemplars. The COVIS model of Ashby
et al. (1998) assumes that participants can use both explicit rules and implicit
representations learned procedurally to categorize stimuli. Rouder and Ratcliff
(2004) found that in some circumstances, their participants appeared to use exem-
plars to perform similar probabilistic categorization tasks and shifted between
using boundaries and exemplars depending on the discriminability of the stimuli.
This fits well with another hybrid model, ATRIUM (Erickson & Kruschke, 1998),
in which rules and exemplars compete to categorize and learn each new object.
ATRIUM has been shown to account for a variety of categorization experiments,
particularly ones where participants appear to switch between strategies or mech-
anisms (e.g., Yang & Lewandowsky, 2004). Nonhybrid models of the types con-
sidered here are still useful for determining what type of model is predominantly
in use in a particular task; nonetheless, a comprehensive model of categorization
will need to explain how participants appear to be using quite different
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representations depending on the nature of the task and stimuli (e.g., Ashby &
O’Brien, 2005; Erickson & Kruschke, 1998).

7.3 Conclusion

We have presented two detailed examples that build on the material from the
preceding chapters. If you were able to follow those examples and understand
what we did and why, then you have now gathered a very solid foundation in the
techniques of computational and mathematical modeling.

Concerning future options for exploring the implementation and fitting of
models, two directions for further study immediately come to mind: First, we sug-
gest you explore Bayesian approaches to modeling and model selection. Bayesian
techniques have recently become prominent in the field, and the material in this
book forms a natural and solid foundation for further study in that area. Second,
we suggest you investigate hierarchical (or multilevel) techniques. We touched on
those techniques in Chapter 3 but were unable to explore them further in this vol-
ume. Many good introductions to both issues exist, and one particularly concise
summary can be found in Shiffrin, Lee, Kim, and Wagenmakers (2008).

We next present a final chapter that moves away from the techniques of model-
ing and considers several general frameworks that have been adopted by modelers
to explain psychological processes.

Notes

1. Note that our notation and symbology correspond to that used by Clare and
Lewandowsky (2004) rather than by Clark (2003).

2. The fact that each replication involves different stimulus vectors (in addition to encod-
ing of a different subset of features of the perpetrator) also implies that each replication
involves a different set of faces in the lineup. This is desirable because it generalizes the
simulation results across possible stimuli, but it does not reflect the procedure of most
experiments in which a single lineup is used for all participants.

3. There are some minor differences between the simulations reported by Clare and
Lewandowsky (2004) and those developed here, which were introduced to make the present
example simple and transparent. The parameter estimates and model predictions reported
here thus differ slightly (though not substantially) from those reported by Clare and
Lewandowsky (2004).

4. In fact, we also select a method by which random numbers are selected, but we ignore
this subtlety here for brevity.

5. If the number of replications is small, reseeding the random generator carries the risk
that the model may capitalize on some chance idiosyncrasy in the random sequence. The
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number of replications should therefore be ample (minimum of 100, preferably 1,000 or
more).

6. We use object to refer to a collection of feature values; these features could be any of
the dimensions defining a potentially highly multidimensional space, such as brightness,
nose length, tone frequency, or time.

7. This follows from the assumption that members of a category are distributed as a mul-
tivariate Gaussian. The optimal boundary in such a case is a multidimensional plane (i.e., a
manifold) tracing out those regions of space where the two adjacent categories are equally
plausible, which for multivariate Gaussian distributions is mathematically described by a
quadratic equation (Ashby, 1992a).

8. Alternatively, you can use the function normcdf in the MATLAB Statistics
Toolbox.





