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CHAPTER 3. THE IMPERFECT  
CUMULATIVE SCALE

3.1 Model Violations

If a set of items does not form a perfect Guttman scale but contains a few 
“wrong” responses, we do not necessarily need to discard it. A “wrong” 
response, or a “model violation,” “model error,” or simply “error,” is a 
response that is inconsistent with the implications of the model. Guttman’s 
scaling model is very restrictive. With k dichotomous items, there are 2k 
possible response patterns in total, but only k + 1 response patterns form a 
perfect Guttman scale. So with 8 dichotomous items, there are 28 = 256 pos-
sible response patterns but only 9 acceptable patterns. It is highly unlikely, 
even with the best possible set of questions, that a dataset contains only 
these nine acceptable response patterns. We therefore need to consider how 
to define model violation and how many model violations can be accepted.

In the 1950s and 1960s there was much discussion about how to define 
the number of errors or model violations for response patterns with more 
than two items. Take, for instance, the response pattern ABCD,1101 to the 
items A, B, C, and D, in which A, B, C, and D are ordered from the easiest 
to the most difficult. Are there two errors, because item C should be 
answered positively and item D should be answered negatively, if the num-
ber of positive responses is kept constant? Or is there only one error, because 
changing the response of either C or D would make the pattern perfect?

To add to this confusion, we also have to ask whether we still can use the 
response pattern ABCD,1101 for measurement purposes and, if so, how. 
Should such a person get the scale value 2 because her response pattern can 
be made perfect by changing the response to item D to 0? Should she get 
the scale value 4 because her response pattern can be made perfect by 
changing the response to item C to 1? Or should she get scale value 3 
because she gave the positive response to three items? An excellent review 
of this debate can be found in chapter 2 of Mokken (1971). We return to 
this question later in this chapter.

3.2 Error: Violation of a Transitivity  
Relation Between Items and Subjects

The answer a person gives to a question is interpreted as a dominance rela-
tion between the person and the question (the item). The person dominates 
the item if she gives the positive response, and the item dominates the 
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person if she gives the negative response. If we have more people and more 
items, and if all people and items can be represented along a single dimen-
sion, we can infer two other types of dominance relationships, namely 
dominance relations between people and dominance relations between 
items. This is the case because when all people and items can be repre-
sented along a single dimension, all these dominance relations are transi-
tive. And if all dominance relations are transitive, then we have managed to 
order both the people and the items with respect to each other along that 
dimension. The concept of a model violation, or an error, can therefore best 
be explained as the violation of a transitivity relation.

Let us assume three items, A, B, and C, in order of difficulty, and four 
subjects, W, X, Y, and Z, in order of ability (Figure 3.1):

easy items (A, B)			                difficult items (C)

                  A                         B                            C

     W                         X                         Y                            Z

less able subjects (W, X)	                more able subjects (Y, Z)

Figure 3.1 � Four subjects (W, X, Y, Z) and three items (A, B, C) along a 
cumulative scale.

	 1.	 We can specify a transitivity relationship between three items as fol-
lows: If item B is more difficult than item A, and if item C is more 
difficult than item B, then item C is more difficult than item A. This 
transitivity relationship is logically true if we define the “easiness”—
and hence also the “difficulty”—of an item by the frequency (or 
proportion, as the relative frequency) of people who give the positive 
response to that item. If two or more items have exactly the same 
proportion of positive answers, we cannot order them, and they are 
tied. In terms of Table 2.1, both cells (0,1) and (1,0) should then be 
empty. But if the proportion of people agreeing with each item dif-
fers, then we have found the order of the items based on their “popu-
larity” or, conversely, “difficulty.”

Now we can specify three other transitivity relationships.

	 2.	 Between two people and one item. If person Y is more able than item B 
is difficult (i.e., if person Y is represented to the right of item B on 
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the dimension), and if person X is less able than item B is difficult 
(i.e., person X is represented to the left of item B), then person Y is 
more able than person X. This transitivity relationship (Y > B, B > X, 
and therefore Y > X) is used to order two people in terms of their 
ability, or scale value, on the dimension. The outcome of this transi-
tivity relationship can then be used in the third transitivity relation.

	 3.	 Between three people. If person Y is more able than person X, and if 
person Z is more able than person Y, then person Z is more able than 
person X. This transitivity relationship allows us to give rank orders 
as scale values to all people (i.e., to give scale values on an ordinal 
scale to these people).

There is a fourth kind of transitivity relationship that is crucially important.

	 4.	 Between one person and two items. If person Y is more able than item 
B is difficult, and if item B is more difficult than item A, then person 
Y is also more able than item A is difficult. In other words, if person 
Y can give the positive response to the difficult item B, then he 
should also be able to give the positive response to the easy item A. 
Note that I purposely write should, because it is not always true that 
if a person gives the positive response to a difficult item, he also 
gives the positive response to an easier one.

Only the last of these four transitivity relations can logically be violated. 
We therefore define a model violation as the violation of the transitivity 
relationship between one person and a pair of items. Each time a person 
gives the positive response to a difficult item and the negative response to 
any easier item, she violates the cumulative model; that is, she makes an 
error with respect to the deterministic cumulative model. That is why this 
error is sometimes called a Guttman error. The number of errors a person 
makes in the response pattern ABCD,1101 is therefore 1, because only item 
pair (pair CD) violates the model.1

Let us see how to calculate the number of errors in the following 
response patterns (in which the items are given in order of difficulty from 

1Establishing the number of model violations is possible only if we have established the 
difficulty order of the items. Previous definitions of model violations in terms of changing 
responses such that perfect patterns occur imply that such changes may affect the difficulty 
order of the items. However, this is not the case when model violations are defined in terms of a 
transitivity relationship between a subject and two items. In practical applications of this model 
the researcher may either use a preestablished theoretical order of the items or experiment with 
different possible orders of difficulty. We will not pursue this theme further in this monograph 
and will assume that the difficulty order of the items is known.
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left to right). With four items there are six—namely 4*(4–1)/2—item pairs. 
The number of model violations is the number of item pairs that violate the 
model. Table 3.1 gives some examples. The order of the items was previ-
ously established by their order of difficulty in the sample, where A is the 
easiest and D is the most difficult item. In the first response patterns 
(ABCD,0011) four of the six item pairs violate the model. The number of 
model violations in this response pattern, or of a subject who gives this 
response pattern, therefore is four.

ABCD AB AC AD BC BD CD

0 0 1 1 0 1 1 1 1 0 4 errors: item pairs 
AC, AD, BC, BD

0 1 1 1 1 1 1 0 0 0 3 errors: item pairs 
AB, AC, AD

0 1 0 1 1 0 1 0 0 1 3 errors: item pairs 
AB, AD, CD

0 0 0 1 0 0 1 0 1 1 3 errors: item pairs 
AD, BD, CD

1 0 1 1 0 0 0 1 1 0 2 errors: item pairs 
BC, BD

0 1 1 0 1 1 0 0 0 0 2 errors: item pairs 
AB, AC

1 0 0 1 0 0 0 0 1 1 2 errors: item pairs 
BD, CD

0 0 1 0 0 1 0 1 0 0 2 errors: item pairs 
AC, BC

1 1 0 1 0 0 0 0 0 1 1 error: item pair CD

1 0 1 0 0 0 0 1 0 0 1 error: item pair BC

0 1 0 0 1 0 0 0 0 0 1 error: item pair AB

# of 
violations

4 4 4 4 4 4 24 model violations 
in this (hypothetical) 
dataset

Table 3.1 � Comparison of item pairs that violate the cumulative model of four 
items in order from least to most difficult (1: violation; 0: no violation).
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3.3 Extension of the Definition of Error to a Larger Dataset

When the number of errors in the response pattern of one subject has been 
defined as the number of item pairs in that response pattern that violate the 
cumulative model, it is easy to define the total number of errors in the data-
set: It is simply the sum of the number of errors over all subjects. So if the 
dataset consists of the 11 response patterns in Table 3.1 then the total num-
ber of errors in the dataset would be 24, calculated either from the last 
column or from the last row.

We can also calculate the number of errors contributed by each item sepa-
rately. Knowing the number of errors in each item will turn out to be helpful 
in a later stage of developing a cumulative scale or evaluating whether all 
items in a cumulative scale are equally good. Although we need an item pair 
to define an error, we can distinguish the members of the pair by attributing 
an error in the pair to each of the two items separately. The number of errors 
for each item is then defined as the total number of item pairs that involve 
that item and that contain an error, summed over all people.

A small example is given in Table 3.2. Whereas in Table 3.1 we compared 
each item pair, in Table 3.2 we look at individual items by combining the 
item pairs that contain them. Item A consists of item pairs AB, AC, and AD, 
item B consists of item pairs AB, BC, and BD, and so on. For subject 1 with 
response pattern 0001, three item pairs violate the model: AD, BD, and CD. 
So items A, B, and C are each involved once, and item D is involved three 
times. Rather than showing all 11 response patterns with four items that 
contain one or more errors, here we show only five such patterns.

Errors in item (i.e., in item pairs containing that item)

ABCD A B C D Total Item pairs

Person 1 0 0 0 1 1 1 1 3 3 AD, BD, CD

Person 2 0 1 1 1 3 1 1 1 3 AB, AC, AD

Person 3 1 0 0 1 0 1 1 2 2 BD, CD

Person 4 1 0 1 1 0 2 1 1 2 BC, BD

Person 5 0 0 1 0 1 1 2 0 2 AC, BC

Total 5 6 6 7 12

Table 3.2  Calculating the number of errors in each item separately.
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3.4 How Can We Evaluate the  
Amount of Model Violation in a Dataset?

Now that we have established what we mean by a model violation or a 
model error, and we can calculate the number of such errors, how do we 
evaluate the amount of error? What do we mean by “not too many errors”? 
Here again, a number of different answers have been given in the literature, 
and again Mokken’s (1971) book provides an excellent overview. If we can 
compare the number of errors we observe with some benchmark, we may 
be able to express the amount of model error in a measure of model fit. 
Several measures of model fit, which we may call criteria for scalability, 
have been proposed. We will discuss some of the major ones now.

What is the benchmark against which we want to compare the number of 
errors in the dataset? One answer that comes to mind is to use the maximum 
number of errors possible for this dataset. But what is the maximum num-
ber of errors that people can make?

The worst situation would be the one in which every person gave a 
positive response to all the difficult items and a negative response to all the 
easy items, as in ABCD,0011. But in almost all empirical situations the 
difficulty of the item is established from the very dataset under study. So if 
everybody gave the response ABCD,0011, items C and D would automati-
cally be defined as the easy items and A and B as the difficult ones. In such 
a situation the maximum number of errors could never be as high as the 
total number of responses, the number of people times the number of items 
(N * k). In fact, it is not easy to determine the maximum number of errors 
possible in a dataset. A number of procedures give us estimates of that 
number, but these can be proven to overestimate the real maximum number 
of errors.

If we were able to determine the maximum number of errors possible, 
then we could develop a criterion for scalability by comparing the number 
of errors observed to the maximum number of errors. The first criterion for 
scalability developed by Guttman was called the coefficient of reproducibil-
ity, Rep.

                  Err(obs)
 Rep = 1 - --------	 (3.1)
                    N * k

Here, Err(obs) is the observed number of errors and N * k is the total 
number of responses. Rep can therefore be interpreted as the proportion of 
responses not in error.
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In later proposed criteria for scalability, N * k was replaced by a better 
estimate of the maximal number of model violations, Err(max). The coef-
ficient of scalability S was then defined as follows:

      		  Err(obs)
              S = 1 -  ---------	 (3.2)
      		  Err(max)

But even if we had a proper estimate of the maximum number of errors, we 
have another reason for not wanting to compare the number of errors observed 
with the maximum number of errors. This problem can best be understood if 
we think of establishing the criterion for scalability as a form of hypothesis 
testing. We generally test one hypothesis by comparing it with another hypoth-
esis. One hypothesis is that our dataset does indeed form a cumulative scale. 
But what should the other hypothesis be? When we compare the number of 
errors that we have observed with the maximum number of errors possible, 
given a candidate ordering of the items, we are saying in essence that the other 
hypothesis is that the data conform to a model that is as different from a cumu-
lative scale as possible. But how sensible is this as the other hypothesis?

A more appropriate other hypothesis is the null hypothesis, according to 
which the items are simply unrelated. They do not form a cumulative scale, 
nor do they conform to some other weird extreme model. If the items are 
unrelated, we cannot predict whether someone who gives the positive 
response to a supposedly difficult item will give the positive response to a 
supposedly easier item. Or, put differently, our prediction about whether a 
person gives the positive response to an easy item does not change if we 
know that he responded positively to a more difficult item.

The idea that we should compare the number of errors observed with the 
number of errors expected under statistical independence, Err(exp), was 
suggested by Loevinger in 1948 but not taken up until the end of the 1960s 
by Mokken. Mokken reintroduced Loevinger’s coefficient of homogeneity 
H as a criterion for scalability:

			   Err(obs)
                      H = 1 - --------	 (3.3)
	       		  Err(exp)

Here, Err(exp) for item pair (i,j) is the number of errors expected under 
statistical independence, and Err(obs) is the number of subjects who give 
both a positive response to the more difficult item j and a negative response 
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to the easier item i.2 H = 1 implies perfect model fit, because then there are 
no errors to be observed. That is also true when Rep = 1 or when S = 1. 
H = 0 implies that we cannot distinguish our dataset from a completely 
random dataset. H can be negative when we observe more errors then we 
would expect under statistical independence. This might happen, for 
instance, if we used the wrong order of difficulty of the items.

So let us compare the following two hypotheses:

The null hypothesis H0 The items are unrelated.

The model hypothesis H1 The items form a cumulative scale.

It is common practice in statistics to want to reject or falsify the null 
hypothesis in favor of the model hypothesis. The model hypothesis is gen-
erally called the alternative hypothesis. To put this strategy of model testing 
more informally, everything worse than perfect is bad, but everything better 
than random is good.

The easiest way to describe the number of errors expected under statisti-
cal independence is by reference to a cross table of two items. As an exam-
ple, let us return to the two questions about religious beliefs:

Question A: Do you believe in heaven? yes/no

Question B: Do you believe in hell? yes/no

Let us assume that in interviews with 100 people, we find that 24 people 
believe in heaven and hell, 34 believe in neither heaven nor hell, 36 believe 
in heaven but not hell, and 6 believe in hell but not heaven (Table 3.3a). 
Do these two items form a cumulative scale? Let us compare the number 
of errors observed with the number of errors expected under statistical 
independence.

2Err(exp) is calculated as [1 - p(i)]*p(j)*N, in which p(i) and p(j) are the relative frequencies 
with which the positive response to these items were given, and N is the sample size of the 
dataset. H has the same interpretation as Goodman and Kruskal’s (1979) coefficient λ (lambda) 
as a proportional reduction in error measure. It can also be interpreted as the ratio of the 
correlation between the two variables over the highest possible correlation, given the marginal 
distributions of the two variables.
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How do we find the number of errors observed? In the 2 × 2 cross table 
in which the row item is the difficult one (only 30 positive answers) and the 
column item is the easier one (60 positive responses), the upper right top 
cell (hell yes, heaven no) can be called the error cell. In a perfect cumula-
tive scale, this cell is empty, as in the second cross table (Table 3.3b), called 
the perfect situation. In the empirical situation, however, the error cell 
contains 6 people, that is, Err(obs) = 6.

Heaven

Yes No Total

Hell
Yes 24 6 30
No 36 34 70
Total 60 40 100

Table 3.3a  Hypothetical empirical situation: Belief in heaven versus belief in hell.

Heaven

Yes No Total

Hell

Yes 30 0 30

No 30 40 70

Total 60 40 100

Table 3.3b  Perfect Guttman scale for items from Table 3.3a.

How do we find the number of errors expected under statistical inde-
pendence? In the case of statistical independence the probability of a 
given response to two items is simply the product of the probability of the 
response to each item taken separately. So if the probability of a posi-
tive response to the difficult item is 0.30 and the probability of a negative 
response to the easy item is 0.40 (1 – 0.60), the probability of the two responses 
taken together is 0.3 * 0.4 = 0.12. Because there are 100 people in the 
dataset, we expect 100 * 0.12 = 12 people to give the error response to 
these two items if the items are statistically independent. Therefore, 
Err(exp) = 12 (Table 3.3c).
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Now we can compute the coefficient of homogeneity for this scale of two 
items:

		     6H = 1 - ------    = 0.50
		   12

Note that if the denominator Err(exp) becomes 0, it will be impossible to 
calculate the H value. Err(exp) becomes 0 if all subjects give the positive 
response to the easier item or if all subjects give the negative response to 
the more difficult item. Items to which every subject gives the same 
response are therefore not included in the analysis.

The coefficient of homogeneity is 0.50. Now the next question is, “Is this 
high or low?”

3.5 Evaluating the Coefficient of Homogeneity

There are two ways to approach the question, “How high or low is a 
coefficient of homogeneity H = 0.50?” Informally, we might ask, “How 
close is 0.50 to 0.00?” or no homogeneity, or we might ask, “How close 
is 0.50 to 1.00?” or perfect homogeneity. There is a statistical answer to 
the first question. It is possible to estimate the probability that a certain 
value of the coefficient of homogeneity (say, our 0.50) in a sample of 
size N is found in a population that has an H coefficient of 0.00, which 
means that the responses to all items are unrelated. This statistical 
answer is given in Appendix 1. It depends on finding the distribution of 
the H coefficient, in the case that all responses are statistically independ-
ent, and deriving a (one-sided) confidence interval between 0 and a 
positive value, given a particular exceedance probability α (generally 

Table 3.3c � Cross table if response to items from Table 3.3a were statistically 
independent.

Heaven

Yes No Total

Hell

Yes 18 12 30

No 42 28 70

Total 60 40 100
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5%). If H falls within this confidence interval, we accept the null 
hypothesis and reject the model hypothesis that our items form a cumu-
lative scale. This decision is formulated in terms of a Z and a Z(i) statis-
tic, Z for the whole scale and Z(i) for item i: If Z (or Z(i)) is high enough 
(roughly >3), then the homogeneity of the whole scale (or of item i) 
cannot be explained by chance.

But accepting the model hypothesis—that the coefficient of homogene-
ity is higher than 0.00 in the entire population—does not provide an answer 
to the second question: How high is high, or how close is our dataset to 
perfect homogeneity? Unfortunately, there is no simple answer to this ques-
tion. Correlations, or coefficients of homogeneity, that are statistically sig-
nificant may still not be very important. Mokken has suggested that data-
sets with coefficients below 0.30 are not homogeneous enough to form a 
cumulative scale. He based this suggestion on substantive experience and 
informal comparison with scales accepted on the basis of reliability and 
factor analysis.

3.6 Using the Coefficient of Homogeneity  
in Scales With More Than Two Items

Now that we can test whether two items form a cumulative scale by 
interpreting the coefficient of homogeneity, we can extend this test to 
scales with more than two items. In such a scale we sum the number of 
errors observed, Err(obs), in each item pair. So with four items, we add 
over the six pairs. We can also calculate the amount of error expected 
under statistical independence, Err(exp), for each item pair and sum over 
all item pairs. The coefficient of homogeneity for the whole scale, H, is 
as follows:

                   k–1        k
                    Σ          Σ     Err(obs)
                  i = 1    j = i+1
H = 1 –  -----------------------	 (3.4)
                  k–1       k
                   Σ         Σ      Err(exp)
                 i = 1    j = i+1

Let us give an example with four items in Tables 3.4 and 3.5:
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The sum of the errors observed over all item pairs is 5 + 6 + 4 + 10 + 
7 + 8 = 40.

The sum of the errors expected over all item pairs is 15 + 12 + 6 + 20 + 
10 + 12 = 75.

             40H = 1 - -- = 0.47
             75

It is now also possible to determine the coefficients of scalability of each 
of the four items, A, B, C, and D. In this case the number of errors observed 
and expected have to be summed over the item pairs that include the item 
under scrutiny.

                 5 + 6 + 4            15                            5 + 10 + 7     22HA = 1 - ----------- = 1 - --- = 0.55  HB = 1 - ---------- = --- = 0.51
	       15 + 12 + 6           33                          15 + 20 + 10    45

                6 + 10 + 8             24                               4+7+8      19HC = 1 - ----------- = 1 - --- = 0.49  HD = 1 - --------- = --- = 0.32
              15 + 20 + 12           47                          6 + 10 + 12    28

Each of the four items has a coefficient of homogeneity that is higher 
than the proposed lower boundary of 0.30. It is easy to show that when each 
of the items in a cumulative scale has a coefficient of homogeneity larger 
than some value c, the scale as a whole will also have a coefficient of 
homogeneity that is larger than c. The inspection of the coefficient of 
homogeneity of individual items allows the researcher to evaluate these 
items for their inclusion in the cumulative scale. Items that are not suffi-
ciently homogeneous should not be part of a cumulative scale. Item D, for 
instance, just barely makes the lower boundary of 0.30. Table 3.6 gives 
another numerical example.

Item pair AB AC AD BC BD CD Sum
Err(obs)      5      6      4    10      7      8    40

Err(exp)    15    12      6    20    10    12    75

H 0.67 0.50 0.33 0.50 0.30 0.33 0.47

Table 3.5  Summary of the results from Table 3.4.
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Number of errors in a cumulative scale

A B C D Freq. AB AC AD BC BD CD

1 1 1 1 70

1 1 1 0 240

1 1 0 1 40   40

1 0 1 1 20  20   20

0 1 1 1 8     8    8   8

1 1 0 0 160

1 0 1 0 60  60

1 0 0 1 28   28   28

0 1 1 0 16   16  16

0 1 0 1 14   14 14   14

0 0 1 1 4    4   4    4    4

1 0 0 0 168

0 1 0 0 48 48

0 0 1 0 24  24 24

0 0 0 1 10 10  10   10

0 0 0 0 90

--- --- --- --- ---- -- -- --- -- -- --

726 596 442 194 1,000   86   52 36 108  62   92

No. errors 
expected: 

163 121 53 179 115 108

H(ij): .47 .57 .32 .40 .46 .15

The number of errors expected in the cumulative scale for item pair AB was 
calculated as (1,000 – 726)*.596 = 163.30.
H(AB) was calculated as 1 – 86/163 = 0.47.

Item coefficients for the cumulative scale:

E(o)A: 86 + 52 + 36 = 174  E(e)A: 163 + 121 + 53 = 337     
H(A) = 1 – 174/337 = .48

E(o)B: 86 + 108 + 62 = 256   E(e)B: 163 + 179 + 115 = 457     
H(B) = 1 – 256/457 = .44
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E(o)C: 52 + 108 + 92 = 252   E(e)C: 121 + 179 + 115 = 408     
H(C) = 1 – 252/408 = .38

E(o)D: 36 +  62  + 92 = 190   E(e)D: 53 + 115 + 108 = 276     
H(D) = 1 – 190/276 = .31

                                   ------                                        ------

Total Err(obs) =            872   Total Err(exp) =              1,478

H(scale)= 1 – 872/1,478 = .41

For total Err(obs) and Err(exp) we can divide by 2, because each pair contributes 
twice to a model violation.

Table 3.6  A small numerical example for the cumulative scale.

For scales larger than two items, we can inspect not only whether all 
H(ij)s are significantly higher than 0 but also whether all H(i)s and the 
overall H are significantly higher than 0 (See Appendix 1 for elaboration).

The use of 0.30 as a lower boundary for the homogeneity of each item 
and of the scale as a whole is generally far higher than the boundary for 
statistical significance. A homogeneity value of 0.30 could be insignificant 
only if the number of respondents is very small (say, below 50), the number 
of items is very small (say, 2 or 3), and the difficulty of the items is extreme 
(say, above 0.90 or below 0.10). In analyses where these conditions do not 
hold, this precaution of testing against the null hypothesis is generally not 
necessary. We want to keep the lower boundary higher than the boundary 
for statistical significance for reasons of interpretability or substantive rel-
evance. In our experience scales or items with homogeneity values below 
0.30 are difficult to interpret.

3.7 The “Cause” of Errors: Items or Subjects?

When a set of responses to items by subjects does not conform to a per-
fect Guttman scale, we have until now followed a procedure in which we 
“blame” the items: The items are not good enough indicators of the same 
latent trait. But in Guttman’s model, an error is simply a violation of the 
expected relationship between a subject and a pair of items. So the error 
could just as well be attributed to subjects who march to a different 
drummer or for whom the questions mean something different.

If we want a measurement instrument that can be used for different 
groups of subjects, at different time periods, or in different experimental 
conditions, then we would rather have a scale in which the items function 
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in the same way for all subjects. If necessary, we may discard the items that 
function differently and work with the maximal subset of items that are still 
useful. These items can be considered as still sufficiently prototypical indi-
cators for the latent variable.

It is more difficult to justify discarding subjects and working only with 
a maximal subset of subjects. In that case the researcher faces the problem 
of generalizing from the remaining sample to a larger population. Often 
the initial sample was drawn from a well-determined population with a 
well-specified procedure. If we now delete a number of subjects who do 
not fit the scale, the remaining sample may no longer represent the original 
population well. So it is generally preferable to remove items rather than 
discarding subjects. Nevertheless, there are occasions when one would 
like to identify and possibly remove the deviant subjects. Let us look at a 
method for doing this.

3.8 “Blaming” the Subjects: Transposing the  
Data Matrix and Calculating Subject Homogeneities

One way of determining which subjects give rise to most model violations is 
simply to count the number of errors against the Guttman scale in each 
response pattern. But another way takes advantage of the fact that in a perfect 
Guttman scale the roles of items and subjects are entirely symmetrical, so 
they can be reversed. Thus, we can simply transpose the matrix, that is, inter-
change the rows and the columns, as shown in Table 3.7a and 3.7b. In the 
case of a perfect Guttman scale (Table 3.7a), we get perfect response patterns 
regardless of whether we show our data matrix with subjects as rows and 
items as columns, as is usual, or with subjects as columns and items as rows, 
In both cases we see a lower triangle of 1s and an upper triangle of 0s.

The symmetry between items and subjects underscores that we can 
evaluate subjects by their individual subject homogeneity as well. A homo-
geneity coefficient HT can be calculated for the whole dataset, for individ-
ual subjects HT(s), and for each pair of subjects HT(st) for subjects s and t, 
in the same way as the original homogeneity coefficients. The major differ-
ence is that the calculation of item homogeneities generally is done over 
hundreds of subjects, but the calculation of subject homogeneities only 
over some 5 to 20 items. This means that the estimates of these subject 
homogeneities have to be taken with a grain of salt.

Meijer (1994) has shown that the number of Guttman errors is a simple 
and powerful person-fit statistic and that it compares well with other alter-
natives, such as the subject homogeneity. But establishing subject homoge-
neity is also useful for the evaluation of probabilistic models, to which we 
will turn later in this monograph.
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3.9 Using Imperfect Patterns  
to Measure Subject Scale Values

Can we use response patterns that contain errors for the measurement of a 
subject? This question can be answered with “yes” if we can still assume 
that the set of items forms a cumulative scale and that the subject under-
stood the questions in the same way as the other people we have tried to 

Data matrix

A B C D E

1 0 0 0 0 0

2 1 0 0 0 0

3 1 1 0 0 0

4 1 1 1 0 0

5 1 1 1 1 0

6 1 1 1 1 1

Table 3.7a � Perfect Guttman scale with subjects 1–6 as rows and items A–E  
as columns.

Table 3.7b � Perfect Guttman scale with items E–A as rows and subjects 6–1  
as columns.

Transposed data matrix

6 5 4 3 2 1

E 1 0 0 0 0 0

D 1 1 0 0 0 0

C 1 1 1 0 0 0

B 1 1 1 1 0 0

A 1 1 1 1 1 0
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measure. If we can use each response pattern to measure a subject, regard-
less of the number of errors he makes, how do we obtain this measurement?

Since we do not define the number of errors in a response pattern on the 
basis of the number of changes needed to make the pattern perfect, we can-
not assign to him the scale value of the nearest perfect pattern. We have also 
seen that, for the response pattern ABCD,1101, for example, the nearest 
perfect pattern cannot be assigned unambiguously; it could be either 2 or 4. 
We therefore opt for defining the scale value of a subject who gives a 
response pattern that contains errors simply as the number of items to which 
he has given the positive response.3 So subjects with the response pattern 
ABCD,1101 get 3 as their scale value.

3.10 Conclusion

In this chapter we have discussed how to evaluate a dataset as a cumulative 
scale, using Loevinger’s coefficients of homogeneity. We have also dis-
cussed how to measure subjects and items: subjects by the rank order of 
their scale scores and items by their order of popularity in the dataset. The 
next chapter is devoted to the question of how to find subsets of items that 
form a cumulative scale, if the whole set of all items does not, and whether 
to discard items or subjects in that case.

3As Mokken (1971, pp. 140–141) demonstrated, this definition of the manifest scale score of 
subjects correlates highly with their true latent scale score.




