
Chapter 2

Brief Introduction to R

The computer examples of this book all use the R program. This chapter is intended for readers who have
never encountered R, or for readers who want a refresher on some basic topics. The programming topics
discussed here provide necessary building blocks for more complex data manipulation and analysis presented
in later chapters. Additional syntax will be presented in future chapters as the need arises.

According to the R FAQ, R is “a system for statistical computation and graphics” (Hornik, 2010). In its
basic form, R consists of a base package for performing numerical calculations, looping and branching, and
various types of statistical analysis. In addition to the base package, there are add-on packages written by
users to perform all sorts of graphical and statistical analysis. A number of these add-on packages, designed
for longitudinal data analysis, will be used in future chapters.

One benefit of R, as opposed to other programs popular in the behavioral sciences, is that it is free. R is
licensed under the GNU General Public License to help ensure it remains free (Free Software Foundation,
2007). Overstating the advantages of using a freely available program is difficult. Free software means people
with varied resources can use the program, as long as they have an Internet connection. It also implies greater
freedom, as one is not constrained by the software choices of the larger entity of which they are a part, such
as a business, an academic department, a research lab, etc.

Another advantage of R is that it is syntax-based. This means the user must supply the input to tell the
computer what to do, rather than select menu options to accomplish tasks. This certainly is not exclusive
to R, but it is nonetheless an advantage. The term syntax, or code, is used to refer to the input supplied by
the user.

The main advantage of a syntax-based program is reproducibility. The analyst can save the computer
code as a script file, so that all the analyses in one session can be reproduced in a future session. Syntax
also facilitates analysis comprehension, meaning there is a greater demand on the user to understand the
analysis. In most contexts, one must have at least a working knowledge of a topic in order to successfully
program in R. The structure of the syntax often provides insights into the nature of the statistical method
in question, and how its parameters are estimated.

Because R is a programming language, it is highly flexible and customizable. This means R can perform
a wide number of tasks and analyses, with tailoring to the problem at hand. Accomplishing some tasks does
require an understanding of some programming skills, an introduction to which appears below.

When one hears complaints about R having “a steep learning curve”, perhaps what is being referred to
is the fact that knowledge of syntax and functions is necessary to use the program. Many of the functions
are part of add-on packages that must be installed. One problem is that R does not provide a self-contained
readily accessible list of functions, though an Internet search will reveal lists that have been compiled by
users. Consequently, some who are new to R might feel frustrated by the “blank slate” nature of the program.

Two approaches are suggested for facilitating the learning of R. The first is to work through the primer
provided in this chapter, and possibly other available primers. The second is to use the help facilities in R,
described below in Section 2.10. The help facilities can be used to acquaint the user with available functions
and packages to solve specific problems, such as the analysis of longitudinal data.

24

CHAPTER 2. BRIEF INTRODUCTION TO R 25

2.1 Obtaining and Installing R

In order to download and install R, the computer must have a connection to the Internet. The latest version
of R (2.12.2 as of this writing) is obtained from the R Project for Statistical Computing at http://www.r-

project.org/. After navigating to the website, click on CRAN under Download, Packages on the left-hand
side of the welcome screen. A server must be selected, called a CRAN mirror, in a preferable country of
origin (e.g., USA). After selecting a server, the appropriate operating system for the computer must be
chosen, either Linux, MacOS, or Windows. For Linux and MacOS, there are directions at the top of the
download page for installation. For Windows, the base package is downloaded and installed like any other
executable file. On Windows machines, the user might need to have administrator privileges to successfully
install and use the program. This problem can often be circumvented by installing R outside of the default
Program Files directory (e.g., install in C:\R).

A FAQ for each operating system is available on the website, and should be consulted in the event there
are problems with downloading or installing the program. User-written help documents and videos can be
obtained with a judicious Internet search.

2.2 Functions and Packages

The base package has an impressive variety of functions for manipulating, analyzing, and graphing data. For
more specialized analysis, such as that involving longitudinal data, it is often advantageous to use one of the
user contributed add-on packages. These packages typically have specialized functions tailored for specific
topics. Many of the add-on packages are written by world leading authorities on the topic of interest.

Throughout this book, names of packages and functions appear in typewriter font. Functions will be
written with trailing parentheses, as in mean(), to denote the fact that arguments must be supplied to the
functions. The arguments constitute pieces of information that influence the workings of the function. For
instance, many functions require an argument naming the variable to be analyzed and options for treating
missing data. The following is an example of the mean() function with two arguments (arg. 1 and arg. 2)
that will be explained below.

function︷ ︸︸ ︷
mean(x︸︷︷︸

arg. 1

, na.rm = TRUE︸ ︷︷ ︸
arg. 2

)

Add-on packages, beyond the base package, must be installed before they can be used. The easiest
method of installing is within R. After invoking R, an add-on package can be installed by using menu op-
tions. For Windows computers, this is accomplished with the Packages menu option. Alternatively, the
install.packages() function can be used at the prompt or from a script file. The name of the package to
be installed must be supplied in quotes, along with the quoted name of the repository or remote server that
houses the package. A list of repositories is provided on the R Project for Statistical Computing website.

As an example, consider installation of the add-on package ggplot2, useful for graphing longitudinal data.
Assume the base package has been successfully installed, and the R program has been invoked (started).
The following syntax installs the ggplot2 package from the repository at the University of California at Los
Angeles (UCLA):

install.packages("ggplot2", repos = "http://cran.stat.ucla.edu/")

To be perfectly clear, the above syntax is typed at the prompt, >, in the R console window, which is the
window that appears when R is first invoked. After typing the syntax, the Enter key is pressed to execute it.
Alternatively, the syntax can be executed from a script file that is explained in a moment. After submitting
the syntax, the console window will show some relatively cryptic messages, but the last line should indicate
successful installation.

In addition to the ggplot2 package, extensive use is made of lme4 and AICmodavg in the following
chapters. Additional packages will be mentioned as needed. Many primary packages link to, or depend on,
other ancillary packages. These ancillary packages are usually automatically installed along with the primary
package. For example, when the ggplot2 package is installed, the plyr package for data manipulation and

CHAPTER 2. BRIEF INTRODUCTION TO R 26

analysis is also automatically installed. To ensure that dependent packages are always installed, the additional
argument dependencies = TRUE should be included in the install.packages() function.

Once a package is installed, its functions are not automatically made available. The library() or
require() function must be used to load the package. If you want to use the functions in the ggplot2

package, for example, type require(ggplot2) at the prompt or execute the syntax from a script file.
Ancillary packages are also made available when a primary package is loaded. The require(ggplot2) not
only loads ggplot2, but also loads plyr and other related packages.

2.3 Essential Syntax

Every syntax-based computer program has its own conventions. The following sections outline concepts and
syntax that are essential building blocks for the data manipulation and analysis covered later in this book.

2.3.1 Prompt versus Script Files

One method of executing syntax is to type it at the prompt in the R console window and press the Enter
key. Syntax can also be typed in a script file and executed in part or whole. R provides a script editor for
creating script files that is accessed by the menu options. There are a whole host of free third-party script
editors that are also available.

The main advantage of the script file is the contents can be saved. The script file is a record of the
analyses you perform and the file can be opened in future R sessions. The script file should be periodically
saved using the appropriate menu options or key strokes. The script file is saved with the extension *.r or
*.R.

The computer examples in this book depict the syntax as being typed and executed from the prompt in
the console window. However, this is done for clarity of presentation, and it is suggested that a script file be
routinely used.

2.3.2 Input and Output Appearance in this Book

In this book, R syntax and output appear in typewriter font that is slightly smaller than the narrative
text. In addition, input and output are shaded in gray. Syntax (input) is always preceded by the symbol >,
which is the R prompt in the console window. When syntax runs over one line, a plus sign (+) appears at
the beginning of any continuation lines. If the reader is copying syntax from the book, the plus sign should

not be submitted as part of the syntax. Output is always boxed to distinguish it from syntax. Depending
on the nature of the output, it might be indexed by numbers appearing in single brackets, for example, [1],
or double brackets, [[2]]. The details of indexing are discussed later in this chapter.

In certain cases, it is desirable to discuss specific parts of multi-line syntax or output. To facilitate this,
line numbers will sometimes appear to the left of the syntax or output box, so that reference can be made
to specific material. The following is an example, but do not worry about the meaning of the syntax for the
time being.

> summary(c(10, 5, 2))

1 Min. 1st Qu. Median Mean 3rd Qu. Max.

2 2.000 3.500 5.000 5.667 7.500 10.000

Line 1 contains the headings of the columns. Line 2 contains the numerical output that will be explained
later. The reader familiar with elementary statistics can probably determine the meaning of the statistics
by the column headings (e.g., Min. is the minimum value).

2.3.3 Quitting R

The R session is terminated by typing q() at the command prompt, or running the syntax from the script
file, or selecting the appropriate menu options (e.g., File, Exit on Windows machines). When quitting,
there is a prompt to save the workspace image. The workspace image consists of the objects created in the

CHAPTER 2. BRIEF INTRODUCTION TO R 27

session (see below), but not the syntax. The workspace is saved in a file that is only readable by R, and has
the extension *.rdata or *.Rdata. Typically, important things like data sets and output are saved within
the session, so the workspace image need not be saved when exiting.

2.3.4 Terminating a Process

Sometimes a syntax mistake is made, and a process is initiated that is unintended on the part of the user.
Other times a closing parenthesis or curly bracket (}) is omitted and the user cannot return to the console
prompt. In these situations, the Esc key (escape key) can be used on a Windows machine to terminate a
process. This returns the cursor to the console prompt. The menu option Misc can also be used.

2.3.5 Basic Calculations

A basic use of R is as a calculator. Using commands for addition (+), multiplication (*), division (/),
exponents (^), etc., all the typical operations available on hand-held calculators can be performed. Suppose
you want to carry out the calculations in the following equation,

(2 + 3) + (2 · 3)−
(

6

3

)
− 32 = 0. (2.3.1)

The syntax for the operations is shown below. When the syntax is executed, the result is printed to the
computer screen, which is the same as saying it is printed to the R console window.

> (2 + 3) + (2 * 3) - (6 / 3) - 3 ∧ 2

[1] 0

The input and output above are similar to what appears when the syntax is executed from the R prompt.
As shown above, syntax is preceded by the > symbol, and each line of syntax has its output immediately
below, appearing in a box. Boxing is used to facilitate understanding in this text, but it is not used in the R

program. The [1] preceding each output line is for indexing, conveying that there is only one line of output.
Basic calculations are often used within more complex operations. An advantage of R is that several

things can be done “on the fly” by embedding simpler operations within more complex ones. Examples
appear in later sections.

2.3.6 Objects

R is an object-oriented program. Objects are named storage entities to which things like numbers, words, or
data sets are assigned. The assignment of things to objects requires use of the assignment operator, <-. The
assignment operator is formed with the < and - keys. The required form is,

object name← thing to be assigned.

An example will help clarify the assignment concept. Suppose the result of simple addition is assigned
to the object myresult.

> myresult ← 2 + 3

> myresult

[1] 5

The object stores the result of the operation, and its contents are displayed by typing the object
name. This is an implicit print. An explicit print can be performed by using the print() function, as
in print(myresult). Explicit print is sometimes desirable, as additional arguments can be used to alter the
output.

One of the powerful features of R is that after an object is created, it can be used in subsequent operations.
As an illustration, consider the following.

> myresult * 2

CHAPTER 2. BRIEF INTRODUCTION TO R 28

[1] 10

In the example, myresult consists of a number, and it can be manipulated in the same way as using the
number directly. In most of the analyses presented in future chapters, extensive use of objects is made.

Object names are arbitrary, but there are some conventions that should be followed when naming. Names
cannot begin with a number, and should not have spaces. A period rather than an underscore (or other
character) should be used for clarity, for instance, my.result. Objects should not have the same names as
functions (see below), so names like mean or sd are to be avoided. In addition, R is case-sensitive. You
cannot type Myresult to display myresult, as the two names are interpreted as different objects.

Up to this point, objects have been proxies for numbers. The object-oriented approach is more impressive
when one considers that an object can consist of complex things, such as a data set, or the output from a
statistical analysis. An example of storing a data set as an object is presented in Section 2.5.3. In Section
2.9, the output of a statistical analysis is saved as an object.

2.3.7 Concatenation

A group or list of numbers, known as a vector, is assigned to an object using the concatenation function,
c(). The following syntax assigns a vector of numbers to the object mydat.

> mydat ← c(2, 3, 1, 0, 3, 4)

> mydat

[1] 2 3 1 0 3 4

The commas are necessary separators for the numbers in the syntax, but the spaces are optional. Because
the values in the vector are numbers, mydat is a numeric vector. The mydat object can be used in similar
operations as an object consisting of a single number.

It is important to understand how R interprets the syntax when the object is a vector. Suppose mydat is
multiplied by 2.

> mydat * 2

[1] 4 6 2 0 6 8

Comparison with the previous output shows that the original vector is multiplied by 2 on an element-by-
element basis. That is, each element of mydat is multiplied by 2. Functions are available for other types of
operations on vectors that are not element-by-element. Some of these are shown in the Appendix, where an
introduction to matrix algebra is presented. Additional functions are introduced as needed in the following
chapters.

The concatenation operator can be used with non-numeric data. For example, a vector of names rather
than numbers is created below.

> mynames ← c("Carlos", "Marta", "Salome", "Philip")

> mynames

[1] "Carlos" "Marta" "Salome" "Philip"

The quotes are necessary in c() for non-numeric data, and the resulting object is a character vector or
string vector. In printing the character vector, the quotes are removed by using an explicit print with the
logical argument quote=FALSE, as in print(mynames, quote=FALSE).

R will return an error message if non-permissible operations are attempted with character vectors. For
example, the following will produce an error message.

> mynames * 2

There are permissible operations with character vectors. As an example, two character vectors are
concatenated to produce a new character vector using the paste() function.

> paste("grade.", as.character (5:8), sep = "")

CHAPTER 2. BRIEF INTRODUCTION TO R 29

[1] "grade .5" "grade .6" "grade .7" "grade .8"

As shown in the output, the as.character() function converts the numbers 5, 6, 7, 8 to characters, and
then concatenates each with grade. The sep= argument sets no separation space between the concatenated
elements (the default is a single space).

2.3.8 Statistical Functions

The base package has a number of useful statistical functions. The statistical functions are usually used with
vector objects, but they can also be used with other types of objects. Below are examples of some common
statistical functions and the output they produce. Various statistics are computed for the mydat vector from
the previous section.

> mydat # Display the data.

[1] 2 3 1 0 3 4

> mean(mydat) # Mean.

[1] 2.166667

> sd(mydat) # Standard deviation.

[1] 1.47196

> summary(mydat) # Descriptive statistics.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.250 2.500 2.167 3.000 4.000

> min(mydat); max(mydat) # Minimum and maximum values.

[1] 0

[1] 4

The pound sign (#) is used for comments, allowing the input program to be annotated for increased
comprehension. Everything following the pound sign to the end of the line will be ignored by the program.
The last line of syntax uses a semi-colon (;) to separate two functions. This convention must be followed if
more than one function is used on a single line. As shown above, the output is stacked when the semi-colon
is used.

A number of additional statistical functions will be introduced in the following chapters. Many of these
functions are specific to the package designed for particular purposes.

2.4 Data Types

There are different data types in R, and vectors of data are characterized by the data they contain. Data
types are important to consider, as they have implications for data analysis. Two types have already been
encountered, numeric data and character data.

A third data type is a factor. A factor variable represents a categorical variable, or grouping variable, that
uses numbers to represent its categories or levels. Factor variables are created with the factor() function.
One method of creating a factor variable is to first create a numeric vector, and then associate character
descriptors with each number. It is common for the factor vector to have few distinct values, perhaps two
or three.

Suppose the goal is to create a factor variable of gender, with coding of male and female. First, a vector
of 0s and 1s is created, and then 0 is associated with “Male” and 1 is associated with “Female”. The following
syntax accomplishes the task.

CHAPTER 2. BRIEF INTRODUCTION TO R 30

> myfac0 ← c(0, 1, 1, 0)

> myfac ← factor(myfac0 , labels = c("Male", "Female"))

> myfac

1 [1] Male Female Female Male

2 Levels: Male Female

Line 1 of the output contains an index, [1], and then a listing of the factor vector contents. Line 2 of the
output provides an exhaustive list of the category labels. In this instance, the exhaustive list is not needed,
as the label categories are readily apparent from the listing of the factor vector contents. In other situations,
the exhaustive list is helpful in understanding the details of the factor vector.

A function helpful for understanding output objects is the structure function, str(). The structure
function provides a partial listing of vector contents and provides information about data type. Suppose
that str() is used with myfac.

> str(myfac)

Factor w/ 2 levels "Male","Female ": 1 2 2 1

The output indicates myfac is a factor variable with two levels, and the levels are coded as “Male” and
“Female”. The numbers on the right index the levels and are in the same order as the original values. The
numeric levels are produced in this case by adding 1 to the original values of 0 and 1, yielding 1 and 2,
respectively. Factor vectors are very useful when one wants to include a categorical variable in an analysis.
Examples are shown in future chapters.

The str() function can be used with almost any output object. Consider its use with a numeric vector
and a character vector.

> mynum ← c(1.5, 10, 8.467 , 8)

> str(mynum)

num [1:4] 1.5 10 8.47 8

> mychar ← c("Carlos", "Marta", "Salome", "Philip")

> str(mychar)

chr [1:4] "Carlos" "Marta" "Salome" "Philip"

In the output, num stands for numeric and chr stands for character. The bracketed numbers, [1:4], refer
to there being 1 through 4 elements in the vectors; more on this later.

2.4.1 Missing Values

An important consideration with all data types is the coding of missing elements, or missing values. In R,
missing values are represented as NA, “not available.” NA is used when an observation is not available, but a
place holder is desired anyway. Consider an example of a numeric vector with the second element missing.

> mynum2 ← c(1.5, NA, 8.467 , 8)

> mynum2

[1] 1.500 NA 8.467 8.000

In the concatenation function, NA is not quoted. The output shows the second element is not available,
but a space (or location) is retained for it anyway.

In the NA example, why not skip over the missing value and simply assign c(1.5, 8.467, 8)? The
answer is that it is often desirable to reserve a space for observations that were intended, but not realized.
Suppose the intention is to obtain scores from four subjects, but the second subject’s score cannot not be
ascertained. For bookkeeping purposes, it is desirable to index the fact that there was an attempt to obtain
scores from four subjects. The bookkeeping is especially important when observations are collected on many
variables. Certain subjects may have missing values on some variables, but not others. It is confusing to
have the data vectors contract and expand based on the missing data. Including missing data values allows
a clear matching of the subjects with their data.

CHAPTER 2. BRIEF INTRODUCTION TO R 31

Missing values present issues for the use of R functions. All functions have a default method of treating
missing data that can be changed with optional arguments. The default method for a function is found on
the help page of each function, as described later.

Some functions, such as summary(), will ignore missing data by default and compute descriptive statistics
on the non-missing values. Values other than NA are referred to as available values. In what follows, the
summary() function is used on the numeric vector with a missing value.

> mynum2

[1] 1.500 NA 8.467 8.000

> summary(mynum2)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA ' s

1.500 4.750 8.000 5.989 8.234 8.467 1.000

As the output shows, descriptive statistics are computed on the available values. The summary() function
counts and displays the number of missing values in the NA's column.

Other functions, such as mean() and sd(), do not use available values by default. Consider what happens
when mean() is applied to the vector with a missing value.

> mean(mynum2)

[1] NA

The result is a missing value. Though this default might appear inconvenient at first, it is useful for
alerting the user to the presence of missing data. This is not crucial in the small example, but it can be with
larger data vectors.

In order to have functions like mean() ignore missing values, one must include the logical argument
na.rm=TRUE. A logical argument takes the value of TRUE or FALSE. The logical argument tells the function
to remove the missing values and then compute the mean. Consider what happens when the optional syntax
is used.

> mean(mynum2 , na.rm = TRUE)

[1] 5.989

Now the mean of the available values is computed. In the chapters to follow, additional details regarding
missing values and their treatment are discussed.

2.5 Matrices, Data Frames, and Lists

There are three main formats, or data structures, for the arrangement of data in R. These are a matrix, a
data frame, and a list. A summary of the main features is shown in Table 2.1.

A matrix is a rectangular array for only one data type. A soft introduction to matrices is provided in
the Appendix. A vector is a special case of a matrix that has only one column or one row. A data frame is
similar to a matrix, but different columns (vectors) can have different data types. However, you cannot mix
types of data in the same column. The use of NA in a numeric vector may appear to violate the same-column
convention, but NA is not a character string in R.

An important characteristic of both a matrix and a data frame is that the columns are of the same length.
A list is similar to a data frame allowing different vectors to have different types of data, but the vectors
need not be of the same length.

2.5.1 Vector

As seen above, a vector is constructed with the concatenation function. Suppose that the numeric and
character vectors previously considered are once again created.

> mynum ← c(1.5, 10, 8.467 , 8)

> mychar ← c("Carlos", "Marta", "Salome", "Philip")

These vectors will be considered for calculations in the sections below.

CHAPTER 2. BRIEF INTRODUCTION TO R 32

2.5.2 Matrix

A matrix can be made from the two vectors, mynum and mychar. As indicated in Table 2.1, a matrix must
have columns (vectors) of equal length, and mynum and mychar meet this requirement. In addition, a matrix
can only have one type of data. This is a problem because one vector is numeric and the other is character.
In such situations, R will coerce the data to be of one type.

The matrix() function is used to create a matrix. The concatenation function is used to list the two
vectors that will be the columns of the mymat matrix. The argument ncol= specifies the number of columns
of the matrix. The number of rows is determined from the ncol= argument and the data.

> mymat ← matrix(c(mynum , mychar), ncol = 2) # Matrix with 2 columns.

> mymat

[,1] [,2]

[1,] "1.5" "Carlos"

[2,] "10" "Marta"

[3,] "8.467" "Salome"

[4,] "8" "Philip"

The output shows that each element of mymat is quoted. Quotes denote character data, illustrating that
R forces the numeric vector to be a character vector in the matrix. The column and row brackets (e.g., [1,])
are used for indexing to be discussed in a moment. For now, it should be evident the matrix consists of two
columns, each having four rows.

To gain further insight, the str() function is used with the matrix object.

> str(mymat)

chr [1:4, 1:2] "1.5" "10" "8.467" "8" "Carlos" "Marta" ...

The output reveals that mymat is a character matrix (char). A partial listing of the matrix elements is
displayed, beginning with the first column.

2.5.3 Data Frame

A data frame is created using the data.frame() function. A data frame is also created with read.table(),
which is used to read an external text file into R. The reading in of data is discussed in the next chapter.

Table 2.1 shows that a data frame has columns with equal numbers of rows, but the data types can differ.
Consider a data frame created from the numeric and character vectors. Column labels, or variable names,
are specified by using the equal sign (=).

> mydat ← data.frame(Char = mychar , Num = mynum) # Data frame.

> mydat

Char Num

1 Carlos 1.500

2 Marta 10.000

3 Salome 8.467

4 Philip 8.000

As the syntax shows, data.frame() does not require the use of c(). The vector objects to be included
are listed, separated by a comma.

The output illustrates some useful characteristics of data frames. The character vector and the numeric
vector are displayed without quotes, indicating that different data types are associated with different columns.
The headings of the columns are known as column names, which can be changed. The numbers to the extreme
left of the vectors are row names, which also can be changed.

Consider the use of the str() function with the data frame object.

> str(mydat)

1 ' data.frame ': 4 obs. of 2 variables:

2 $ Char: Factor w/ 4 levels "Carlos","Marta ",..: 1 2 4 3

3 $ Num : num 1.5 10 8.47 8

CHAPTER 2. BRIEF INTRODUCTION TO R 33

Line 1 of the output shows mydat is a data frame with four rows, and two columns (two variables). Line 2
lists the first column name after the dollar sign ($), and reveals it is a factor variable. Both the category labels
and the level numbers are listed. The data.frame() function converts a character vector to a factor vector
by default. Character vectors are retained as such by using the logical argument stringsAsFactors=FALSE.
Line 3 shows the second column is numeric (num) and lists its values.

2.5.4 List

A list is created using the list() function. Table 2.1 shows that a list can have different data types and
different column lengths. In order to illustrate different column lengths, a list with three elements is created,
the last element being a numeric vector with one row shorter than the others.

> mylist ← list(Char = mychar , Num4 = mynum , Num3 = c(1, 2, 3)) # List.

> mylist

$Char

[1] "Carlos" "Marta" "Salome" "Philip"

$Num4

[1] 1.500 10.000 8.467 8.000

$Num3

[1] 1 2 3

The output for the mylist list object depicts the vectors in rows rather than columns. The character
vector has quoted elements, whereas the numeric vectors do not, illustrating that mixed data types are
allowed. The third vector is one element shorter than the first two, but all the vectors are displayed. The
bracketing ([1]) is indexing, which is discussed in the next section.

Further insight is obtained by using the str() function on the list object.

> str(mylist)

1 List of 3

2 $ Char: chr [1:4] "Carlos" "Marta" "Salome" "Philip"

3 $ Num4: num [1:4] 1.5 10 8.47 8

4 $ Num3: num [1:3] 1 2 3

Line 1 indicates the mylist object is a list with three elements. Line 2 shows the first vector is a character
vector (char). Lines 3-4 reveal the remaining two vectors are numeric and are of different lengths.

Table 2.1: Features of R data structures.

Structure Data Type Indexing Column Lengths Function

Vector Single [row] or [column] Not Applicable c(), matrix()
Matrix Single [row, column] Equal matrix()

Data Frame Mixed [row, column] Equal data.frame(), read.table()
List Mixed [[vector]][row]† Unequal list()

†Assumes elements are vectors (see text).

Working with Data Frames

The data frame will be the primary data structure in future chapters, so it is beneficial to mention some
additional characteristics. First, the column names of a data frame are changed using the colnames()

function. Second, a column (vector) is accessed or extracted by using the data frame object name followed
by a dollar sign ($) and the column name. Consider an illustration.

> colnames(mydat) # Shows the column names.

[1] "Char" "Num"

CHAPTER 2. BRIEF INTRODUCTION TO R 34

> colnames(mydat) ← c("Name", "Score") # Assigns new column names.

> mydat # Implicit print.

Name Score

1 Carlos 1.500

2 Marta 10.000

3 Salome 8.467

4 Philip 8.000

> mydat$Name # Print first column (variable).

[1] Carlos Marta Salome Philip

Levels: Carlos Marta Philip Salome

> mydat$Score # Print second column (variable).

[1] 1.500 10.000 8.467 8.000

Small data frames with a limited number of rows and columns are easily created with the concatenation
function, as shown above. Larger data frames are usually created by reading in a text file of the data set
with the read.table() function. Discussion of read.table() is deferred to the next chapter.

An alternative to the dollar sign syntax for accessing variables is attach() and detach(). By including
the data frame name in attach(), the variables of the data frame are made available directly by their names.
The direct naming is ended by including the data frame name in detach(). Consider the following.

> attach(mydat)

> mean(Score)

[1] 6.99175

> sd(Score)

[1] 3.759513

> detach(mydat)

Since Score is a variable in the mydat data frame, it is accessed directly after executing attach(mydat).
The access is ended by executing detach(mydat). Using mean(Score) outside of attach() and detach()

returns an error.
Any number of procedures can be performed between attach() and detach(), and above two were shown

for brevity. It is always good to use detach() when finished with the data frame. This avoids the potential
problem of similarly named variables in one data frame replacing (masking) variables in another data frame.

Another alternative is the with() function, which is similar to attach() and detach(), but is used a
single time. In the syntax below, with() is used to allow the variable names to appear in mean().

> with(mydat , mean(Score))

[1] 6.99175

> with(mydat , c(mean(Score), sd(Score)))

[1] 6.991750 3.759513

The second line of syntax uses c() to perform two tasks.

2.6 Indexing

Accessing and extracting individual elements of a vector, matrix, data frame, or list is accomplished using
the indexing conventions of R. See Table 2.1 for a summary of syntax conventions.

CHAPTER 2. BRIEF INTRODUCTION TO R 35

2.6.1 Matrix and Data Frame

For a matrix and a data frame, each element has a location defined by the row and column where it resides.
The row and column address is denoted by square brackets separated by a comma, [,]. For example,
mymat[1,2] refers to the element in the first row and second column of the matrix object. Listing the object
name and bracket indexes implicitly prints the element to the computer screen. Here are some examples.

> mymat # Display all matrix elements.

[,1] [,2]

[1,] "1.5" "Carlos"

[2,] "10" "Marta"

[3,] "8.467" "Salome"

[4,] "8" "Philip"

> mymat [1,2] # First row , second column.

[1] "Carlos"

> mydat # Display all data frame elements.

Name Score

1 Carlos 1.500

2 Marta 10.000

3 Salome 8.467

4 Philip 8.000

> mydat [2,2] # Second row , second column.

[1] 10

Several row and/or column elements can be indexed in various ways. Contiguous elements are indexed
by a colon (:), and the concatenation function is used for non-contiguous elements. An entire row or column
is denoted by a blank. Examples using these conventions are the following.

> mymat [1:2 ,2] # First two rows of the second column.

[1] "Carlos" "Marta"

> mydat [1:2 ,1:2] # First two rows , first two columns.

Name Score

1 Carlos 1.5

2 Marta 10.0

> mymat[c(1,3),1] # First and third rows of the first column.

[1] "1.5" "8.467"

> mydat[,1] # All rows of first column.

[1] Carlos Marta Salome Philip

Levels: Carlos Marta Philip Salome

> mydat[1,] # All columns of first row.

Name Score

1 Carlos 1.5

CHAPTER 2. BRIEF INTRODUCTION TO R 36

2.6.2 Vector

A vector is a matrix with only one column or one row. As a consequence, vector objects have only a single
index. Elements of a vector are referred to by a single entry in brackets. Consider the following.

> mynum ← c(1.5, 10, 8.467 , 8)

> mynum [1] # First element.

[1] 1.5

> mynum [3] # Third element.

[1] 8.467

The vector index is often used in output. Each output example above consists of a single row. The output
indexing is particularly helpful when output wraps onto multiple lines.

2.6.3 List

Indexing for lists requires double square brackets, [[]]. The double brackets are used to access specific
vectors. Single brackets are used in conjunction with double brackets to access elements of specific vectors.
Consider these examples.

> mylist # Print all list elements.

$Char

[1] "Carlos" "Marta" "Salome" "Philip"

$Num4

[1] 1.500 10.000 8.467 8.000

$Num3

[1] 1 2 3

> mylist [[2]] # Second vector.

[1] 1.500 10.000 8.467 8.000

> mylist [[2]][2] # Second element of second vector.

[1] 10

> mylist [[3]] # Third vector.

[1] 1 2 3

> mylist [[3]][1] # First element of third vector.

[1] 1

In the examples here, the list elements are vectors, and the indexing represented in Table 2.1 applies.
However, lists are general, and the individual elements can be almost anything like matrices, data frames,
and statistical output. In these more complex situations, the double bracket notation can be used to access
a list element, but the single bracketing might require both a row and column, or single bracketing might
not work at all.

CHAPTER 2. BRIEF INTRODUCTION TO R 37

2.6.4 Sorting

Indexing can be used to sort the rows of data. As discussed in future chapters, it is often desirable to sort
the rows of a data frame by the subject identification number.

Sorting of rows is accomplished by using the order() function in the row index of a data frame. The
sort variable must be supplied to order(). Consider sorting the mydat data frame by Score.

> mydat # Unsorted data frame.

Name Score

1 Carlos 1.500

2 Marta 10.000

3 Salome 8.467

4 Philip 8.000

> mydat2 ← mydat[order(mydat$Score),] # Sort data frame by Score.

> mydat2 # Sorted data frame.

Name Score

1 Carlos 1.500

4 Philip 8.000

3 Salome 8.467

2 Marta 10.000

The order() function appears in the row index, and the column index is left blank, indicating the intent
to sort all the columns (variables). The sort variable, Score, must be attached to its data frame, mydat,
using the dollar sign, so that R properly recognizes it. The sorted data is saved in a new data frame, mydat2.
As shown here, it is recommended that data frame manipulations be saved to a new object in case of error.

2.6.5 Recoding

Indexes can be used to recode specific elements. Suppose the goal is to recode the second element in the
second column of the mydat2 object to NA. The following syntax accomplishes this goal.

> mydat2 [2,2] ← NA # Recode a value to NA.

> mydat2

Name Score

1 Carlos 1.500

4 Philip NA

3 Salome 8.467

2 Marta 10.000

2.6.6 Saving Objects

Objects are saved to file with the save() function. A single object or multiple objects can be saved in a
single file. The saved file has the extension *.rdata or *.Rdata. The objects to be saved must be supplied
and the name and location of the Rdata file. Consider saving the mynum and mydat objects to a file on a
Windows computer.

> save(mynum , mydat , file = "C:/Mine/myfile.Rdata")

The mynum vector and the mydat data frame are both saved to myfile.Rdata. Note the use of the forward
slash (/), which can also be replaced by a double back slash (\\). Rdata files are only recognized by R. Text
files can be written with the write.table() function discussed in the next chapter.

2.6.7 Loading and Listing Objects

A saved Rdata file is loaded into R using the load() function. The quoted file name and location must be
supplied. Once the objects are loaded into computer memory, a listing of available objects is obtained with

CHAPTER 2. BRIEF INTRODUCTION TO R 38

ls() or objects(). Any object can be deleted from memory – but not from the Rdata file – using rm().
To delete objects from a Rdata file, a new Rdata file is saved omitting the desired object(s).

In the syntax below, all objects from memory are deleted. Then the myfile.Rdata file saved above is
loaded. After loading the file, the objects in active computer memory are listed. Finally, it is shown how an
individual object is deleted from computer memory.

> rm(list = ls()) # Delete all objects from memory.

> ls() # No objects available.

character (0)

> load(file="C:/Mine/myfile.Rdata")

> objects ()

[1] "mychar" "mydat" "mynum"

> rm(mynum)

> objects ()

[1] "mychar" "mydat"

2.7 User-Defined Functions

For situations encountered later in this book, it is desirable to define functions that are not part of the
standard set in the base package or the add-on packages. Such functions are known as user-defined functions.
User-defined functions are commonly used to handle special tasks, such as bootstrap simulations in LMER
analysis; see the optional sections of Chapters 7 and 8.

User-defined functions are created with function(). The contents of function() are assigned to an
object, and then the object is used in a similar manner as the other functions discussed in this chapter.

As an illustration, consider defining a function for computing the sample mean. There is no need to write
a function for the sample mean, as mean() already exists. But this task affords the opportunity to compare
and check the results of the user-defined function against an existing function from the base package.

Suppose the mynum numerical vector is created again, and a function is written to compute the mean.
The goal is to compute the sum of the elements of mynum and divide by the total number of elements, or the
length of the vector. The sum() and length() functions are used along with division, /, to accomplish the
goal. Consider the following.

> mynum ← c(1.5, 10, 8.467 , 8)

> mymean ← function () {sum(mynum) / length(mynum)}

The operations are enclosed in curly brackets, { }, but this is optional. The parentheses of function()
must be included, though they are empty in this example. The syntax indicates the function will compute
the sum of mynum and divide by its length.

The above syntax defines the mymean() function. Now the function is used and checked against the result
of mean().

> mymean ()

[1] 6.99175

> mean(mynum)

[1] 6.99175

As the output shows, the user-defined mymean() function yields the same result as the mean() function.
In its current state, mymean() will only work on the mynum vector. To apply the function to a vector

other than mynum, a variable must be specified in the definition. Any character string will work as a variable,
and here the simple alternative of x is used. By incorporating x into the syntax in the following manner, it
is possible to apply mymean() to any vector.

CHAPTER 2. BRIEF INTRODUCTION TO R 39

> mymean ← function(x) {sum(x) / length(x)}

Now an argument must be passed to mymean() to replace x in the function definition. In this case, the
argument is the name of the vector for which the mean is to be computed. This can be made explicit by
using the optional argument x=.

> mymean(x = mynum)

[1] 6.99175

> mynum2 ← c(10, 8, 2, 0)

> mymean(mynum2)

[1] 5

As shown in the output, mymean() can now be used with any numeric vector. Missing data treatments are
not programmed in mymean(), which is a reason to use mean(). In general, an existing function is preferred
to a user-defined function. However, in later chapters, operations are encountered that are not encompassed
in any existing functions. In such cases, a user-defined function is valuable.

2.8 Repetitive Operations

In later chapters, statistical procedures known as bootstrap methods will be discussed. Bootstrap methods
require that the same statistical operations to be repeated a large number of times. Repetitive operations
can be carried out in a number of ways, but two methods are particularly useful. The first uses the rdply()

function from the plyr package, written by Hadley Wickham (Wickham, 2009a). The second uses a for()

loop, which is the R version of a loop structure common in general computer programming.
It is easiest to use rdply() in conjunction with a user-defined function, which is illustrated below. With

a for() loop, the user-defined function is incorporated into the programming structure. For the novice
programmer, rdply() is easier to use than a for() loop, as the conventions of the latter usually require
some getting used to.

2.8.1 rdply()

Necessary arguments for rdply() are the number of repetitions (.n=), and the function or expression to
be repeated (.expr=). In the example below, the expression will be a user-defined function, but standard
functions can also be used. There is an optional progress bar that indicates the progression of the repetitions,
but this is not discussed until Chapter 7.

As an illustration of rdply(), suppose for each replication, N = 10 scores from a normal distribution
are generated, and the mean is computed. This simulates the process of drawing a random sample from a
known population and computing the sample mean each time. Such a simulation is common in introductory
statistics courses to illustrate the sampling distribution of the mean.

The rnorm() function is used for generating data from a normal distribution. The arguments are the
sample size (n=), the population mean (mean=), and the population SD (sd=). For this example, a population
with µ = 100 and σ = 15 is arbitrarily selected. For each sample, the mean is computed using mean().

The function mymean2 is defined to carry out the operations for each repetition. The function is executed
twice below to illustrate that a different random sample is selected for each repetition.

> mymean2 ← function (){

+ mysamp ← rnorm(n = 10, mean = 100, sd = 15)

+ mean(mysamp)

+ }

> mymean2 ()

[1] 90.63217

> mymean2 ()

CHAPTER 2. BRIEF INTRODUCTION TO R 40

[1] 108.9655

Assume the goal is to repeat the mymean2() function 15 times. The goal could be accomplished by
executing 15 different lines of the same syntax. However, this is time-consuming and the resulting means
are not stored in any convenient manner.

A better option is to use rdply(), which stores the output in a data frame object. The output object
will record the repetition number and the resulting mean. The syntax require(ggplot2) is used to load the
ggplot2 and plyr packages. The set.seed() function with the arbitrary value 111 is included, so that the
results can be replicated by the reader. In practice, the set.seed() function is not used unless the results
need to be replicated.

> require(ggplot2)

> set.seed (111)

> myresult ← rdply(.n = 15, .expr = mymean2 ())

> colnames(myresult) ← c("rep", "mean")

> myresult

rep mean

1 1 99.42380

2 2 102.14509

3 3 89.36441

4 4 104.51982

5 5 107.68322

6 6 107.04305

7 7 103.34770

8 8 95.59829

9 9 98.98696

10 10 99.15023

11 11 99.65499

12 12 107.91997

13 13 96.24939

14 14 106.01613

15 15 91.50929

The output shows the replication number in the rep column, and the sample mean in the mean column.
Consistent with statistical theory (see e.g., Howell, 2010, chap.4), the means appear to vary about µ = 100.

To gain additional insight, consider a simulation using 15000 samples rather than 15. For each sample,
the mean is computed and stored. After this is performed, the ggplot() function from the ggplot2 package
is used to create a density graph of the means.

In the next chapter the details of ggplot() are thoroughly discussed. The minimal elements required to
create a density graph are shown below. The data= argument specifies the data frame, the aes() component
defines the horizontal axis (x-axis) variable for the graph, and geom_density() draws the density curve. The
ggplot() syntax is enclosed in parentheses forcing the automatic printing of the graph. When the syntax
is executed, the graph will appear in the R graph window. The menu options in this window allow for the
copying and saving of the graph.

> myresult ← rdply(.n = 15000, .expr = mymean2 ())

> colnames(myresult) ← c("rep", "mean")

> (ggplot(data = myresult , aes(x = mean)) + geom_density ())

The density graph is shown in Figure 2.1. The distribution is approximately centered about µ = 100,
and the shape is consistent with a normal distribution.

2.8.2 for() Loop

For certain bootstrap applications discussed later in this book, it is necessary to have greater control than
that afforded by rdply(). In such cases, an alternative method of executing repetitive operations is used,
the for() loop.

The for() loop has the basic form,

for(replications){operations}.

CHAPTER 2. BRIEF INTRODUCTION TO R 41

Figure 2.1: Density graph of means based on simulation.

mean

de
ns

ity

0.00

0.02

0.04

0.06

0.08

85 90 95 100 105 110 115

The number and nature of the replications are defined in the parentheses, and the operations to be performed
at each repetition are defined in the curly brackets. For this example, the operations are similar to the user-
defined function considered above.

What makes the for() loop more difficult than rdply() for the novice programmer, is that the details
of the repetitions must be specified with some rather esoteric conventions. An example is for(i in 1:15),
which will increment the i index by 1 starting at 1 and ending at 15 (i.e., 1, 2, 3, . . . , 13, 14, 15). This will
provide 15 repetitions for the operations defined in the curly brackets.

A second difficulty is that, in contrast to rdply(), one must define a storage data frame prior to the
for() loop, and assign the results of the operations for each repetition. The assignment is performed using
the indexes discussed earlier in this chapter.

To fix ideas, consider the repetition of the sample mean simulation that was first performed with rdply().
The syntax below performs 15 replications. For each one, a sample of N = 10 is generated from a normal
distribution, the sample mean is computed, and the repetition number and sample mean are stored in the
data frame myresult. A twist here is that myresult is defined prior to the for() loop with its elements set
to NA. The missing values are replaced with the repetition number and the sample mean within the loop.

> myresult ← as.data.frame(matrix(NA, ncol = 2, nrow = 15)) # Define storage data frame.

> for(i in 1:15){ # Repetition details.

+ set.seed(i) # Allows replication.

+ mysamp ← rnorm(n = 10, mean = 100, sd = 15) # Generate sample data.

+ myresult[i,1] ← i # Store repetition number.

+ myresult[i,2] ← mean(mysamp) # Store sample mean.

+ }

> colnames(myresult) ← c("rep", "mean")

> myresult

CHAPTER 2. BRIEF INTRODUCTION TO R 42

rep mean

1 1 101.98304

2 2 103.16727

3 3 98.99296

4 4 108.49794

5 5 98.81723

6 6 101.58037

7 7 101.55963

8 8 93.26021

9 9 96.71472

10 10 92.64015

11 11 96.54906

12 12 92.99179

13 13 109.00081

14 14 111.31309

15 15 102.67989

The output is the same form as that of rdply(), with the repetition number in the first column and
the sample mean in the second column. The values of the means are different than in the rdply() example
because set.seed() is used within the loop.

2.9 Linear Regression

Having discussed some basics of R programming, a more advanced example is included as a harbinger of
things to come. Without much detail, a short traditional regression analysis is presented using made-up
data. A more thorough treatment of traditional regression is given in Chapter 5.

Consider the two-predictor regression equation,

y = β0 + β1(x1) + β2(x2) + ε, (2.9.1)

where y is the response variable, x1 and x2 are the predictors, β0 is the intercept, β1 and β2 are the regression
coefficients (regression weights), and ε is a random error term.

The regression coefficients are estimated using the lm() function. Traditional regression is a special case
of the linear model (LM), which explains the lm() abbreviation. The lm() function requires the names of
the variables, and replaces the equal sign in the Equation (2.9.1) with a tilde (∼).

In the syntax below, a sample size of N = 20 is generated for a response variable and two predictors.
The set.seed() function is used so that the same random data can be generated by the reader in order
to reproduce the example. The rnorm() function is used to generate the variables according to a normal
distribution with µ = 100 and σ = 15.

After generating the data, the parameters are estimated with lm(), and the output is saved as the object
lm.out. The summary() function is used on the output object to display pertinent information.

> set.seed (123) # Allows reproduction of results.

> y ← rnorm(n = 20, mean = 100, sd = 15) # Generate variables.

> x1 ← rnorm(n = 20, mean = 100, sd = 15)

> x2 ← rnorm(n = 20, mean = 100, sd = 15)

> lm.out ← lm(y ∼ x1 + x2) # Estimate model and save output.

> summary(lm.out) # Display output.

1 Call:

2 lm(formula = y ∼ x1 + x2)

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -15.887 -10.287 -1.550 9.395 20.044

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 120.72000 28.30410 4.265 0.000523 ***

11 x1 0.05128 0.19302 0.266 0.793673

12 x2 -0.23315 0.21167 -1.101 0.286035

CHAPTER 2. BRIEF INTRODUCTION TO R 43

13 ---

14 Signif. codes: 0 '*** ' 0.001 '** ' 0.01 '* ' 0.05 '. ' 0.1 ' ' 1

15

16 Residual standard error: 12.58 on 17 degrees of freedom

17 Multiple R2: 0.06826 , Adjusted R2: -0.04136

18 F-statistic: 0.6227 on 2 and 17 DF, p-value: 0.5483

Lines 1-2 show the syntax that was used. Lines 4-6 show descriptive statistics for the residuals. Lines
8-14 show information about the intercept and regression coefficients; the estimated values, SEs, t-ratios,
and p-values. This information is provided for the intercept on line 10, for x1 on line 11, and for x2 on line
12. Line 14 provides a key for interpreting the symbols attached to the p-values (e.g., *). Lines 16-18 show
information about omnibus fit; the residual standard error (line 16), R2 and adjusted R2 (line 17), and the
omnibus F -test (line 18).

Additional details of the lm() output are provided in Chapter 5. For the moment, it is stressed that
the output of a statistical function can be saved as an object, and additional functions can act on the saved
object. The advantages of these features are illustrated throughout the book.

2.10 Getting Help

There are a number of methods for obtaining help with R. If the name of the function for which one wants
help is known, then typing a question mark (?) and the name of the function at the prompt will display
its help page. For example, ?mean will display the help page for the mean() function. The help page shows
the syntax conventions for the function that include optional arguments. Most helpful to new users are the
examples that appear at the bottom of the help page.

For packages of known name, the help() function can be used. Typing, for example, help(package=lme4)
at the prompt will display the functions available in the lme4 package, supporting material, and technical
specifications, if applicable.

The above two help functions require a user to know the name of the function or package for which
they are requesting help. There is a potential for frustration, as one might feel there is an expectation to
know what one does not know! To ease frustration, a topical search is recommended, as this only requires
keywords for the topic of interest, for example, “standard deviation”. A topical search is conducted with
the RSiteSearch() function in the package of the same name. The function uses the search engine at
http://search.r-project.org (the search engine can be used directly with a Web browser). A quoted
topic must be supplied for the function, and the computer must be connected to the Internet.

Assume one wants help on the general topic of random effects. After submitting require(RSiteSearch),
the syntax below will open a web browser with listings that contain the quoted string,

RSiteSearch("random effects").

Without any options, the RSiteSearch() function displays help pages that contain the quoted string. Ar-
ticles in the R-help mailing list can also be searched by adding the option, restrict=''Rhelp02a''. R manuals
can be searched by using the option restrict=''docs''. The results can also be sorted, see ?RSiteSearch

for more details.

2.11 Summary of Functions

A summary of the functions discussed in this chapter appears in Table 2.2. The functions are loosely
grouped based on general purpose categories. In addition to a brief description of each function, one or
two key arguments are provided. The arguments may be optional depending on the function. For a more
extensive list of options, the help page for the function should be consulted. In the remaining chapters,
additional functions and arguments are presented as the need arises.

CHAPTER 2. BRIEF INTRODUCTION TO R 44

Table 2.2: List of R functions.

Function Description Arguments

Administrative

q() Quit

ls(), objects() List active objects pattern=

rm() Remove active objects list=ls()

help() Help for topic or package package=

? Help for a topic

RSiteSearch() Topical Internet search restrict=

install.packages() Install add-on packages repos=

library(), require() Load an installed package

Statistical

mean() Mean na.rm=

sd() Standard deviation na.rm=

summary() Basic statistics digits=

min(), max() Minimum and maximum na.rm=

sum() Sum na.rm=

length() Length of a vector

set.seed() Set random number seed

rnorm() Generate normal data n=, mean=, sd=

lm() Linear regression y∼x, data=

Data Structure

c() Concatenation

matrix() Create matrix nrow=, ncol=

data.frame() Create data frame var.name=

list() Create a list vector.name=

colnames() Access data frame variable names

rownames() Access data frame row names

factor() Create factor variable labels=

str() Structure digits.d=

order() Sorting decreasing=

read.table() Read external text file file=

Printing

print() Explicit print quote=

Accessing Variables

attach(), detach() Use data frame variable names directly

with() Use data frame variable names directly

Saving and Retrieving

save() Save objects in Rdata file file=

load() Load Rdata file file=

Programming

function() User-defined functions x

rdply() Repetitive execution .n=, .expr=

for() Programming loop

